
 Open access Posted Content DOI:10.1101/500280

Massively Parallel FPGA Hardware for Spike-By-Spike Networks — Source link

David Rotermund, Klaus Pawelzik

Institutions: University of Bremen

Published on: 19 Dec 2018 - bioRxiv (Cold Spring Harbor Laboratory)

Topics: Network on a chip, Field-programmable gate array and Massively parallel

Related papers:

 Efficient Computation Based on Stochastic Spikes

 Deep learning in neural networks

 Efficient deep neural network acceleration through FPGA-based batch processing

 Throughput optimizations for FPGA-based deep neural network inference

 Scalable Network-on-Chip Architectures for Brain–Machine Interface Applications

Share this paper:

View more about this paper here: https://typeset.io/papers/massively-parallel-fpga-hardware-for-spike-by-spike-networks-
1sxww7vbit

https://typeset.io/
https://www.doi.org/10.1101/500280
https://typeset.io/papers/massively-parallel-fpga-hardware-for-spike-by-spike-networks-1sxww7vbit
https://typeset.io/authors/david-rotermund-3iirgbdasu
https://typeset.io/authors/klaus-pawelzik-40pgx8ch6e
https://typeset.io/institutions/university-of-bremen-1kfo5fg2
https://typeset.io/journals/biorxiv-318tydph
https://typeset.io/topics/network-on-a-chip-14zuz5dw
https://typeset.io/topics/field-programmable-gate-array-1w67h42e
https://typeset.io/topics/massively-parallel-3km3a8vz
https://typeset.io/papers/efficient-computation-based-on-stochastic-spikes-59igbyd1w2
https://typeset.io/papers/deep-learning-in-neural-networks-547rl0mo05
https://typeset.io/papers/efficient-deep-neural-network-acceleration-through-fpga-3h7p8khkh6
https://typeset.io/papers/throughput-optimizations-for-fpga-based-deep-neural-network-316vx5leh5
https://typeset.io/papers/scalable-network-on-chip-architectures-for-brain-machine-35cmyie34s
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/massively-parallel-fpga-hardware-for-spike-by-spike-networks-1sxww7vbit
https://twitter.com/intent/tweet?text=Massively%20Parallel%20FPGA%20Hardware%20for%20Spike-By-Spike%20Networks&url=https://typeset.io/papers/massively-parallel-fpga-hardware-for-spike-by-spike-networks-1sxww7vbit
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/massively-parallel-fpga-hardware-for-spike-by-spike-networks-1sxww7vbit
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/massively-parallel-fpga-hardware-for-spike-by-spike-networks-1sxww7vbit
https://typeset.io/papers/massively-parallel-fpga-hardware-for-spike-by-spike-networks-1sxww7vbit

1

Massively Parallel FPGA Hardware for

Spike-By-Spike Networks
David Rotermund 1,∗ and Klaus R. Pawelzik 1

1Institute for Theoretical Physics, University of Bremen, Bremen, Germany

Correspondence*:
David Rotermund
davrot@neuro.uni-bremen.de

ABSTRACT2

While inspired by the brain, currently successful artificial neural networks lack key features of3

the biological original. In particular, the deep convolutional networks (DCNs) neither use pulses4

as signals exchanged among neurons, nor do they include recurrent connections which are5

both core properties of real neuronal networks. This not only puts to question the relevance of6

DCNs for explaining information processing in nervous systems but also limits their potential for7

modeling natural intelligence.8

Spike-By-Spike (SbS) networks are a promising new approach that combines the9

computational power of artificial networks with biological realism. Instead of separate neurons10

they consist of neuronal populations performing inference. Even though the underlying equations11

are rather simple implementations of such networks on currently available hardware are several12

orders of magnitude slower than for comparable non-spiking deep networks.13

Here, we develop and investigate a framework for SbS networks on chip. Thanks to the14

communication via spikes, already moderately sized deep networks based on the SbS approach15

allows a parallelization into thousands of simple and fully independent computational cores. We16

demonstrate the feasibility of our design on a Xilinx Virtex 6 FPGA while avoiding proprietary17

cores (except block memory) that can not be realized on a custom-designed ASIC. We present18

memory access optimized circuits for updating the internal variables of the neurons based on19

incoming spikes as well as for learning the connection’s strength. The optimized computational20

circuits as well as the representation of variables fully exploit the non-negative properties of all21

data in the SbS approach. We compare the sizes of the arising circuits for floating and fixed point22

numbers. In addition we show how to minimize the number of components that are required for23

the computational cores by reusing their components for different functions.24

1 INTRODUCTION

Nowadays, deep neuronal networks (Schmidhuber, 2015) are a basis for successfully applying neuronal25

networks on problems from artificial intelligence research (Azkarate Saiz, 2015; Silver et al., 2016;26

Guo et al., 2016; Gatys et al., 2016). The revival of using neuronal networks was provoked by the increase27

of computational powers in modern computers and boosted even more through modern 3D graphic cards28

as well as specialized application specific integrated circuits (ASICs) (Sze et al., 2017; Jouppi et al., 2018)29

and field programmable gate arrays (FPGAs) (Lacey et al., 2016). The most successful type of networks30

is based on multilayer perceptrons (Rumelhart et al., 1986; Rosenblatt, 1958) and consists of several so31

1

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted June 14, 2019. ; https://doi.org/10.1101/500280doi: bioRxiv preprint

https://doi.org/10.1101/500280

Rotermund & Pawelzik SbS FPGA

called hidden layers. Typically information is processed and feed forward from one hidden layer to the32

next, beginning at the input layer and ending at the network’s output layer. In theory such a network is33

able to calculate arbitrary functions. However, for doing so the weights – describing the connection of34

elements of one layer to the next – must be learned based on the intended task. During learning these35

weights, the error between the desired outcome and the actual outcome of the network is minimized.36

In the realm of brain research, more detailed and biologically realistic spiking neuron models37

are used (Maass and Bishop, 2001; Davies et al., 2018; Thakur et al., 2018; Pfeiffer and Pfeil, 2018;38

Izhikevich, 2004) which require a vast amount of computational power (Izhikevich, 2004). There is39

a large engineering community that constructs neuromorphic hardware for accelerating the necessary40

computation for simulating these type of neurons, e.g. (Thakur et al., 2018; Davies et al., 2018;41

Furber et al., 2014; Moore et al., 2012; Wang and van Schaik, 2018). Also, networks in the brain have42

no simple feed-forward architecture but instead recurrent connections are ubiquitous implying that real43

information processing is dynamic.44

In (Ernst et al., 2007) we presented a different type of neuronal network (called Spike-by-Spike network,45

SbS) based on the family of generative models (Lee and Seung, 1999, 2001; Salakhutdinov, 2015; Hinton,46

2012). Instead of separate neurons they consist of neuronal populations performing inference and the47

neurons exchange information via stochastic spikes. In terms of computational requirements the SbS48

network lies in between the traditional perceptron based non-spiking networks and typical spike-based49

networks.50

In terms of biological plausibility, the SbS network is placed in between non-spiking networks (e.g.51

deep convolutional networks) and networks of spiking neurons with realistic models (e.g. leaky integrate-52

and-fire neurons, IaF neurons). Comparing it with networks of IaF neurons, the SbS network removes53

large parts of biological plausibility. However, this comes with a reduction in parameters. There is no54

need to optimize e.g. time parameters, firing thresholds, or membrane constants because there is no real55

time left in a SbS network. Instead of many (sometimes thousands) computational steps that are required56

to get the next spike in a IaF population, a SbS IP requires only one update per neuron to determine57

the next spike. Such an update requires 3N multiplications, 2N summations, and the inversion of one58

value if N is the number of neurons in the SbS IP. It is also possible to build recurred networks with IPs59

(Rotermund and Pawelzik, 2019b). This all together allows SbS IPs to be used for building larger models60

for understanding information processing in the brain.61

Furthermore all entities in SbS networks are described by positive numbers which leads to62

sparse representations Bruckstein et al. (2008). A recent discovery in the field of machine learning63

is compressed sensing (Candes et al., 2006), which allows to reconstruct underlying causes from64

incomplete measurements if the underlying causes are sparse. This lead to applications in many fields65

from reducing measurement time for Magnetic Resonance Imaging (Lustig et al., 2008) to building66

swarms of robots for efficiently exploring other planets (Wiedemann et al., 2018). Sparseness and its67

benefits for information processing is also an important topic in brain research (Olshausen and Field,68

2006; Spanne and Jörntell, 2015; Ganguli and Sompolinsky, 2012). In the context of this work, the69

finding that non-negative representations in a network can be sufficient to induce some degree70

of sparsity is particularly interesting(Ganguli and Sompolinsky, 2010; Bruckstein et al., 2008). In71

(Rotermund and Pawelzik, 2019a) we extended the old SbS approach for shallow networks to deep72

networks consisting of large numbers of inference populations (IPs). In (Rotermund and Pawelzik, 2019b)73

we show how to use bi-directional information exchange between the layers of deep SbS network for74

biologically realistic learning.75

2

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted June 14, 2019. ; https://doi.org/10.1101/500280doi: bioRxiv preprint

https://doi.org/10.1101/500280

Rotermund & Pawelzik SbS FPGA

X

Y
Pooling layer

4x4 IPs
with 64 neurons

eachPooling layer
12x12 IPs

with 32 neurons
each

Convolution layer
8x8 IPs

with 64 neurons
each

Convolution layer
24x24 IPs

with 32 neurons
each

Input layer X
with 28x28 pixel

24x24 populations
with 50 neurons

each

Fully
connected

layer
1 IP with

1024 neurons

Output
layer

1 IP with
10 neurons

24x24
spikes

24x24
spikes

12x12
spikes

12x12
spikes

8x8
spikes

8x8
spikes

4x4
spikes

4x4
spikes

1 spike

1 spike

1 spike

H1

H2

H3

H4

H5

HY

Figure 1. Example SbS network (see (Rotermund and Pawelzik, 2019a) for more details on this network)
for analyzing handwritten digits (MNIST benchmark, http://yann.lecun.com/exdb/mnist/).
The input image (28x28 gray value pixels) is represented by a 576 node input population and 802 parallel
SbS IPs with different number of neurons (with 10, 32, 64, or 1024 neurons per SbS inference population
IP, colored columns in layers H1-H4). Thus this network consists of 1378 independent computational
elements. The network is organized in one input layer, two convolution layers, two pooling layers, one
fully connected layer, and one output layer. All the layers, except the input layer, use the same update
dynamic (i.e. updating the internal state of a SbS inference population with an incoming spike). In contrast
to usual deep convolutional networks, there is no algorithmic difference for pooling layers, they only have
a special arrangement of their weight matrices. Information between elements (SbS inference population
and input populations) are exchanged only by spikes. Depending on the architecture of the network, the
information can flow either only forward or bi-directionally (as indicated by the blue arrows). The latter
can be used to implement local learning rules. In this specific network there are no interactions in between
SbS inference populations within the same layer, but in a more complex network they could be helpful.

Figure 1 shows an example SbS network architecture for classifying MNIST benchmark handwritten76

digits. The shown network consists of several layers. Each layer can perform different computations77

like convolution, pooling or other learned functions. These layers are all constructed from many IPs78

and all the IPs realize the same algorithm for updating the latent variables based on arriving spikes as79

well as learning the weights. The spikes in such a network can flow either only forward, from input to80

output, (Rotermund and Pawelzik, 2019a) or spikes can flow in both direction to e.g. neighboring layers81

(Rotermund and Pawelzik, 2019b). In this example, spike are only exchanged between IPs from different82

layers but not between IPs in the same layer. On a more abstract level such a network can be understood83

as pools of IPs and input populations, an architecture that defines which of these populations are allowed84

to interact, and spikes traveling between IPs.85

In the supplemental materials, we have summarized the stylized facts of the SbS algorithm. The86

important equation for the design of the hardware are recapitulated in section 2.1.87

3

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted June 14, 2019. ; https://doi.org/10.1101/500280doi: bioRxiv preprint

http://yann.lecun.com/exdb/mnist/
https://doi.org/10.1101/500280

Rotermund & Pawelzik SbS FPGA

While SbS networks are far less computationally demanding than networks with more detailed spiking88

neuron models, e.g. leaky integrate-and-fire neurons (IaF), it still requires high computational effort,89

especially if it is compared to a perceptron-based deep neuronal network. The reduction of the required90

computing power compared to an IaF is a direct result of time progressing in a SbS network only from91

one spike to the next. In between spikes, there are no operations happening in a SbS network; formally92

this time does not exist in such a network. Thus biological realism is traded in for bigger networks that93

require less computational effort for running them.94

However, simulating a SbS network, in particular deep ones with many inference populations for large95

data sets, is a problem when only normal computer CPUs, GPUs or even computer clusters are available.96

Optimally simulating a SbS network benefits from a large number of parallel cores with a medium amount97

of non-shared & directly accessible memory. Every IP in a SbS network is a compact local module that98

only communicates via spikes with its environment. This allows to parallelize the whole network into99

arbitrarily many parallel IPs. In the example of the MNIST network, shown in figure 1, it is best realized100

by 802 individual threads (In bigger network, this number will significantly increase.). One thread per101

IP would be the optimal solution. The information processing within IPs can even be asynchronous to102

the rest of the network as long as the spikes between the populations can be exchanged successfully. The103

design goal of the presented hardware is to create small and optimized computational units (SbS inference104

populations) that simulate an IP. While it is possible to realize a few of these SbS inference populations105

on a FPGA, the long term goal is to build ASICs (or networks of these ASICs) that allow to realize such106

a network where every IP is represented by its own non-shared SbS inference population.107

In the following we investigated how the algorithm can be realized as an ASIC. We tested the resulting108

VHDL implementation with Xilinx Virtex 6 LX550T-1FF1759 FPGA on 4DSP (now abaco systems)109

FM680 cards. The long term goal is to use this design for an ASIC, thus all FPGA specialized circuits110

(e.g. hardware DSP cores) or other intellectual property cores were not used. The only exception to this111

rule is block RAM (BRAM).112

2 MATERIALS AND METHODS

2.1 Design goals113

There are multiple ways to realize the required circuits. For example, the number of components114

necessary for the arithmetic units can be minimized by using sequential processing as well as reusing115

the arithmetic units as much as possible. Another approach would be to design the circuits such that116

the calculations are done as fast as possible (measured in clock cycles) under the penalty of using much117

more components in the process. The design goal for the results of this study is leaning strongly in the118

latter direction by using pipeline designs for the arithmetic units. The reason for this decision lies in the119

low clock speeds. Using FPGAs or ASICs allows us to design a computational environment for these120

SbS networks that allow fast updates of the latent variable. For this task, this architecture allows better121

parallelization than commercial general purpose CPUs.122

For implementing a flexible multi-layer Spike-by-Spike network on chip, the following main ingredients123

are required:124

a) SbS inference population: Each such population consists of a population of neurons that are in a125

competition which is realized by normalization. A inference population receives spikes as indices s of126

4

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted June 14, 2019. ; https://doi.org/10.1101/500280doi: bioRxiv preprint

https://doi.org/10.1101/500280

Rotermund & Pawelzik SbS FPGA

sending populations and uses them to update internal states h(i) of each population member i and weights127

p(s|i) as well as produce outgoing spikes which reflect its internal latent variable h(i).128

b) Input populations: Input into a SbS network is given by probability distributions pµ,g(s) represented129

by populations of neurons s, where µ denotes the actual pattern and g enumerates the input population.130

These probability distributions are used to generated spikes which are send to SbS inference populations131

for further processing. Input patterns can be e.g. pixel images, time series, or waveforms. The input pattern132

is interpreted as a vector of numbers, which is transformed into a probability distributions by normalizing133

it according the L1 norm. Every one of these normalized numbers is represented by an input neuron. The134

higher the value which is stored in the neuron, the higher is the probability that this neuron produces the135

next spike. The input pattern is provided from outside of the FPGA / ASIC from sensors (e.g. camera) or136

from data storage devices and programmed into the input neurons via a data bus. Typically the probability137

distribution stored in the input neurons doesn’t change for an externally defined number of spikes (until138

the computation of this input pattern is done, then it is usurped by a new probability distribution). The139

neurons in the input populations don’t react to any spikes produced in the SbS network. Thus they can be140

considered simplified versions of the inference population where only the spike generating part remained141

but without any weights, learning or updating of internal variables through spikes.142

c) Network communication fabric: Spikes need to be exchanged between populations.143

Focusing on the calculations that a SbS inference population needs to perform, a set of equations have144

to be realized: The basic equation realizes the update dynamic for the latent variables h(i) based on145

an incoming spike. In (Ernst et al., 2007) it was shown that only the identity (i.e. the index) st of the146

subsequently active neuron needs to be taken into account:147

ht+1(i) =
1

1 + ǫ

(

ht(i) + ǫ
ht(i)p(st|i)

∑

j h
t(j)p(st|j)

)

. (1)

Besides updating the latent variables h(i), it is necessary to optimize suitable weights p(s|i) from148

training data for allowing the network to perform the desired function (e.g. pattern recognition). Two149

different approaches were found useful for learning weights. One is based on changing weights based on150

only single spikes observed during processing the actual pattern. This procedure is called online learning.151

The other approach utilizes information gathered over many spikes and several patterns, that is batch152

learning.153

For online learning we focus on a multiplicative learning rule for the weights p(s|i):154

pt+1(s|i) =
pt(s|i) + γ ht(i)p(st|i)∑

j h
t(j)p(st|j)

δs,st

1 + γ ht(i)p(st|i)∑
j h

t(j)p(st|j)

(2)

where γ is a learning parameter which can change during learning.155

For batch learning, a variety of implementations exit, we focus on batch learning rules that base on156

∆p(s|i) =
∑

µ

htµ(i)p̂µ(s)p(s|i)
∑

j h
t
µ(j)p(s|j)

(3)

5

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted June 14, 2019. ; https://doi.org/10.1101/500280doi: bioRxiv preprint

https://doi.org/10.1101/500280

Rotermund & Pawelzik SbS FPGA

where µ identifies the training pattern, and where the sum may run over the whole or only parts of the157

complete set of training patterns. p̂µ(s) denotes the input probability distribution of the incoming spikes158

into the SbS inference population and is approximated by analyzing (counting) the spikes processed by159

the SbS inference population. For allowing a more flexible implementation of these type of rules, ∆p(s|i)160

is handed over by the FPGA to a CPU, which allows to implement batch learning rules based on161

pnew(s|i) = U [p(s|i),∆p(s|i)] . (4)

A simple example for an update rule falling into this category is162

pnew
′

(s|i) = (1− α) p(s|i) + α
∑

µ

htµ(i)p̂µ(s)p(s|i)
∑

j h
t
µ(j)p(s|j)

(5)

pnew(s|i) =
pnew

′

(s|i)
∑

r p
new′

(r|i)
.

U could also be realized by Adam (Kingma and Ba, 2014) or L4 (Rolinek and Martius, 2018) using163

mini-batches. Since ∆p(s|i) is based on a multitude of patterns, offloading ∆p(s|i) to a separate CPU164

and performing the weight update on the CPU occurs at a lower rate than all other operations. Thus the165

reduction in performance by using a CPU for handling the weight updates is outweighed by the gain of166

flexibility.167

Furthermore, we need the means to generate spikes from probability distributions or the latent variables168

using random numbers. Also specialized circuits are required for observing the spikes entering a169

SbS inference population and calculating the corresponding probability distribution p̂µ(s) from these170

observations.171

2.2 Non-negative numbers172

Investigating the three main equations 1, 2 and 3 reveals that no subtractions are required and that173

no negative numbers appear. Furthermore most numbers (especially h(i) and p(s|i)) are in the range174

of [0, ..., 1]. Incorporating these facts into the arithmetic units allows to simplify to the usual designs175

(Shirazi et al., 1995).176

Taking the memory structure of the Xilinx Virtex 6 FPGA into account, where the block memory is177

organized into blocks of multiples of 1024 words with 18 bits each, we decided to used a custom variant178

of 36 bit floating point numbers as well as 18 bit fixed point numbers (X = XInt

218−1
).179

In more detail, we designed the 36 bit floating point numbers as follows: Since only non-negative180

numbers are used, the usual sign bit was not necessary anymore. As part of batch learning, calculations on181

a typical CPU occur. This requires an easy way to convert our floating point numbers into their IEEE 747182

counterpart. Thus we keep the number of bits for exponents, removed the sign bit and appended 5 extra bits183

to the lower significant bits of the mantissa. This allows conversion to be performed just by removing the184

not required bits of the mantissa or filling the extra bits of the mantissa up with zeros. We also introduced185

a similar derivative for 64 bit floating numbers (double precision) with 72 bits. Here 9 additional bits were186

added to the mantissa. These 72 bit floating point numbers are only used for representing ∆p(s|i) because187

summing over the contributions from larger amounts of patterns may otherwise lead to a degeneration of188

precision. For this reason, a similar extension from 18 bits to 36 bits was done for the fixed point numbers.189

6

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted June 14, 2019. ; https://doi.org/10.1101/500280doi: bioRxiv preprint

https://doi.org/10.1101/500280

Rotermund & Pawelzik SbS FPGA

Figure S1 shows the coding for the two types of floating point numbers used in the design. The bits190

marked with gray boxes as well as the not available sign bit are different from the IEEE 747 standard. To191

simplify the floating point arithmetic units even more, only 0 as a sub-normalized number is allowed. In192

the supplemental materials, an investigation is presented where the impact of different representations on193

the performance of the MNIST SbS example network is analyzed.194

2.3 Analyzing the equation’s structure195

Analyzing the three equations 1, 2 and 3 reveals that all have common terms. Especially they share the196

term197

Ω(i; s; ζ) = ζ
h(i)p(s|i)

∑

j h(j)p(s|j)
. (6)

ζ can be ǫ, γ or p̂(s). All three variants of ζ have in common that they change slower than i, which means198

that i can change many times before ζ is changed once. Also the s in p(s|i) changes slower than i. s can199

be selected through an observed spike st and only changes after all latent variables of that SbS inference200

population have been updated. Furthermore, for batch learning s should be selected as the slower changing201

index because this reduces the amount of times p̂(s) needs to be calculated.202

Since memory is a scarce source on FPGAs and ASICs, it is advantageous to recall all the corresponding203

h(i) and p(s|i) pairs twice from memory during calculating Ω(i; s; ζ) while s is fixed. Since the arithmetic204

operation Y/X is known to be computational demanding, the following approach was chosen:205

0.) All h(i) and p(s|i) pairs are streamed through a multiplication pipeline, thus making h(i) · p(s|i)206

available at the same speed with which they are recalled from the memory. However h(i) · p(s|i) is only207

available after a fixed delay.208

1.) During the first sweep through the h(i) and p(s|i) pairs,
∑

j h(j)p(s|j) is calculated by observing209

the output from the multiplication pipeline. In the case of floating point numbers, adding two numbers210

take longer than two clock cycles. Figure S5a shows the steps necessary for adding these numbers and211

every step requires one clock cycle in our design. Thus we found that it is beneficial to implement the212

summation operation via an addition pipeline, where the output of the addition pipeline is feedback to its213

input (this procedure will be explained in detail later).214

2.) After calculating
∑

j h(j)p(s|j),
ζ∑

j h(j)p(s|j)
is calculated in a sequential fashion. This keeps the215

required amount of components for this arithmetic operation lower while a pipeline approach wouldn’t216

lead to a faster calculation anyhow.217

3.) Finally, in a second sweep the h(i) and p(s|i) pair are recalled from memory. After the first218

multiplication pipeline which produces h(i) · p(s|i), a second multiplication pipeline is placed. The latter219

one multiplies
ζ∑

j h(j)p(s|j)
with h(i) · p(s|i) which results in Ω(i; s; ζ).220

For reducing the amount of overall delay, it is beneficial to start step 3.) some time before step 2.) is221

fully complete. The timing has to selected such that
ζ∑

j h(j)p(s|j)
is just ready when the first h(i) · p(s|i)222

result leaves the first multiplication pipeline.223

For the implementation of online learning, it is self-evident that the results from the circuits for step224

0.) and 1.), calculated during the update of the latent variables, should be reused. Adding an additional225

sequential division unit and an additional multiplication pipeline allows to calculate step 2.) and 3.) fully226

in parallel to the ongoing update of the latent variables.227

7

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted June 14, 2019. ; https://doi.org/10.1101/500280doi: bioRxiv preprint

https://doi.org/10.1101/500280

Rotermund & Pawelzik SbS FPGA

Since the calculation of Ω(i; s; ζ) of the batch learning update for the actually processed pattern isn’t228

done at the same time as the update of the latent variable, it is beneficial to use the same circuits for these229

two tasks.230

3 RESULTS

3.1 Computational building blocks231

delay line

pipelined

pipelined

sequential

sequential

after all i:

o
n

lin
e

 l
e

a
rn

in
goptional

e

d
delay line

delay line
memory

memory

m
u

x

initialize

MEM

NORM-MULTI

delay line

pipelined

a

c

delay line

pipelined

b

delay line

sequential

pipelined

*

+

#

address
calculator

Figure 2. Basic computational building blocks: a.) Module ∗, b.) Module +, c.) Module #, d.) Module
MEM, and e.) Module NORM-MULTI.

Five basic building block can be identified for implementing the three equations. All five modules have232

in common that input entering the module is accompanied by an organizational index i. Delay lines in233

the modules ensure that this index labels its corresponding output. Figure 2 shows an overview of the234

computations performed in these modules. Table S1 lists the components required to map the circuits235

onto Xilinx Virtex 6 FPGA hardware. Resources listed are Slice Registers (687360 available on the used236

LX550T version), Look-Up-Tables (LUT, 343680 available), LUT Flip Flop pairs used (85920 available),237

and block Random-Access Memory (BRAM, 1264 blocks with 18k bits each or organized as 632 blocks238

with 36k bits). Every type of these resources represent highly complex circuitry (see Xilinx user guide239

8

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted June 14, 2019. ; https://doi.org/10.1101/500280doi: bioRxiv preprint

https://doi.org/10.1101/500280

Rotermund & Pawelzik SbS FPGA

UG364 ’Virtex-6 FPGA Configurable Logic Block Table’ for more details). Every pipelined operation is240

designed such that one new operation can be started per clock cycle. However, it typically takes more241

than one clock cycle (also called latency) before the result of an operation leaves its pipeline. Furthermore242

some modules contain sequential components that need a given number of clock cycles before they are243

initialized for their task and can perform their actual computation. Table S2 gives details concerning the244

latencies or how long the operations take.245

Module ∗ (figure 2a) represents a simple multiplication pipeline. Two inputs A and B enter the module246

and the result A ·B leaves the module. In the case of fixed point numbers, the output has twice the number247

of bits compared to the input.248

Module + (figure 2b) represents a simple adding pipeline. Two inputs A and B enter the module and249

A+B leaves the module. In the case of fixed point numbers, the output has one bit more than the input.250

Module # (figure 2c) computes B · 1
1+A , where A is assumed to be changing on a slower time scale than251

B. For a newly given A, first 1 +A is calculated and then 1
1+A is determined in a sequential fashion. This252

result is used as one factor for a multiplication pipeline, while the fast changing B is the other factor. For253

fixed point numbers, the result of 1+A increases by one significant bit over A and the reciprocal operation254

doubles the number of bits again. The multiplication pipeline doubles the number of bits a second time,255

before the results exiting the module is cut down to the original number of bits for A.256

Module MEM (figure 2d) stores the latent variables h(i) and the corresponding weights p(s|i). The257

main components of this module are two block RAM modules (which can have different sizes), which258

provide a vector of memory values each. For each of the block RAM modules, only one reading operation259

and one writing operation can be done in parallel during one clock cycle. While the access of the h(i)260

memory could be done directly, for p(s|i) the memory location needs to be calculated via an address261

calculator from i and s first (this is done according to the equation: Linear memory position(s, i) =262

s+NS · i with NS as the biggest possible s plus one if s and i are zero-based variables.). Thus the module263

contains two address calculators, one for writing and one for reading operations. Since the calculation of264

the memory address takes some clock cycles (one multiplication and one addition) and the output of the265

module are pairs of h(i) and p(s|i) based on the same i, read requests to h(i) memory are appropriately266

delayed. Figure 2d shows in a simplified fashion the reading part of the module, for which a multiplexer267

is placed at the output of the h(i) memory. This multiplexer allows to usurp the h(i) memory output by268

an initialization value without writing it into h(i) memory first. For floating point numbers, at the input269

and output of the module, the first bit of the mantissa is removed or re-added (see figure S1). This bit is270

necessary for calculations but is directly defined by the exponent and hence doesn’t need to be stored in271

memory.272

Module NORM-MULTI (figure 2e) is a modification of Module ∗. In addition to the multiplication273

functionality, the cumulative sum over the output of the multiplication pipeline is calculated. In case of274

fixed point numbers, adding two numbers can be done in one clock cycle. However, for floating point275

numbers it takes several clock cycles for adding two numbers. In combination with receiving one new276

output from the multiplication pipeline in every clock cycle, this poses a problem. As a solution, we used277

an adder pipeline feedback on itself (see figure S5). The cumulative sum goes through three stages for278

floating point numbers: For stage 1 and 2, input A into the adder pipeline is defined by the output of the279

multiplier pipeline. In stage 1, which lasts as many clock cycles as required to pass through the adder280

pipeline, B are set to 0. Then stage 2 is entered where B is set to the output of the adder pipeline and thus281

creates a kind of circular buffer. After the last input value from the multiplication pipeline’s output was282

9

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted June 14, 2019. ; https://doi.org/10.1101/500280doi: bioRxiv preprint

https://doi.org/10.1101/500280

Rotermund & Pawelzik SbS FPGA

received (defined by an external constant), stage 3 is entered. In stage 3 A and B is set to 0 by default.283

The output of the adder pipeline is collected until two valid outputs are available. These two values are284

send as an A-B-pair through the adder pipeline. This is done several times and thus combines more and285

more remaining pairs until one value is left, which is the desired output of the cumulative sum. Finally,286

an external value (in figure 2e X is a placeholder for ǫ or p̂(s)) is divided by the actual cumulative sum in287

a sequential way. In the case of online learning the weights it is beneficial to perform a second division288

with the learning parameter γ in parallel. A note concerning the number of bits for the fixed point case:289

the cumulative sum can not exceed 1 since h(i) is normalized to 1 and the values of the weights obey290

0 ≤ p(s|i) ≤ 1. Since ǫ values which are larger than 1 can be interesting for some applications, the design291

allows ǫ values with up to 22bits (which allows for values up to 16). Thus ǫ∑
i h(i)p(s|i)

has 22+18 bits.292

Besides the basic computation building blocks for calculating the three main equations, additional293

modules are required for realizing the network. In particular a module that allows to generate spikes from294

a probability distribution and a random number, a module that analyzes spikes and calculates a rate p̂(s)295

out of them, and a module that offsets the weights in a normalized fashion during learning. The figures296

S2, S3 and S4 show simplified schematics for these modules. Table S3 shows the amount of components297

necessary to build them as well as the number of clock cycles they require.298

Module Spike Generator (figure S2a) converts a probability distribution and one random number into299

one spike. A spike is an index describing a position in the probability distribution that elicited the spike.300

The values of the probability distribution (e.g. h(i) or normalized input pattern) are presented to the301

module sequentially.302

The module sequentially calculates the cumulative sums over the observed part of the probability303

distribution and compares it to the random number. Is the actual value of the partial cumulative sum equals304

or is larger than the random number, the index of the probability distribution value that just contributed305

to the sum is the desired index. If every value of the probability distribution was shown but the last value306

and no index was found yet, then the wanted index is the last position in the probability distribution.307

In addition, for this design the values of the probability distribution are converted into a fixed point308

representation, since adding two fixed point numbers can be done in one clock cycle and the available309

random numbers are in a fixed point representation anyway.310

Module Spike Generator with offset (figure S4a): Sometimes, especially during annealing while311

learning, it is helpful to add an offset α to a probability distribution and to fade out this offset over time.312

One way to generate spikes with an offset is to add the offset to the probability distribution, re-normalize313

it and then draw spikes from it. In the context of these circuit designs, a more efficient way is to rely on a314

double stochastic process using two random numbers. One random number is used to draw one spike from315

the original probability distribution without offset and one spike from a uniform probability distribution.316

The second random number is compared to α. The outcome of this comparison decides which one of the317

two spikes is used.318

Random number generator (figure S3): For generating spikes, we need random numbers. For generating319

those, we use a Mersenne twister (MT 19937) which produces 32 bit random numbers (with a period320

of 219937). A requirement for the MT 19937 implementation was that it needs to produce one random321

number in every clock cycle. Several different designs for such MT circuits are available. We decided to322

combine the designs from (Tian and Benkrid, 2009) and (Saraf and Bazargan, 2017). Our design uses two323

block RAM (624x 32bit words each) and 624bit logic RAM as memory. While it uses one more block324

RAM than such an implementation ultimately needs, it allows us to produce exactly the random number325

10

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted June 14, 2019. ; https://doi.org/10.1101/500280doi: bioRxiv preprint

https://doi.org/10.1101/500280

Rotermund & Pawelzik SbS FPGA

series in the order produced by Matlab or C++. Our MT modules also contains a computational unit that326

calculates the initial table after reset given a seed value.327

Module Rate Calculator (figure S2b): For batch learning the weights, the input rate p̂(s) is necessary.328

For calculating the rate p̂(s), the following is required: The total number of spikes cAll observed and the329

number of spikes seen in each channel s counted as c(s). After an externally defined number of spikes330

has been counted, the rate is calculated and recalled by an external module. This is realized by calculating331
1

cAll
first and then multiplying it by c(s). Depending on the required representation of the rates, conversion332

into other number formats may be necessary.333

Module Normalized Weight Offset (figure S2b): During learning it may be necessary to keep the334

weights p(s|i) away from 0 (otherwise the multiplicative learning algorithm may get stuck). Hence this335

module adds an offset
ϕ
NS

to each weight while they pass through this module. However, the module336

must also ensure that the normalization of the weights
∑

s p(s|i) = 1 is still kept intact. Thus the module337

also divides the intermediate weight by 1
1+ϕ before it exits this module. In addition, the corresponding338

h(i) values are delayed to keep them in sync with their p(s|i) counterparts. The module Normalized339

Weight Offset is directly placed in series after the MEM module. To keep the figures 3, 4, and 5 clear,340

we omit showing the Normalized Weight Offset module and show only the MEM module and not the341

combination of both modules.342

3.2 Circuits for updating h(i), online and batch learning p(s|i)343

With the presented building blocks it is now possible to implement the three equations 1, 2 and 3 as344

circuit diagrams. Concerning the update of h(i) based on an observed spike s, figure 3 shows how the345

building blocks are used. The update is done in two stages, during which the spike s is constant. In the346

first stage, the index i counts through all allowed values 1, ..., NH . This recalls NH pairs of h(i) and347

p(s|i) values. After an optional normalized offset is added to the weights p(s|i), these pairs a feed into348

a NORM-MULTI module. As a result ǫ∑
j h(j)p(s|j)

is calculated. Now stage two begins, with recalling349

the h(i) and p(s|i) a second time from the memory. In this stage, the output of the multiplier pipeline350

h(i) · p(s|i) of the module NORM-MULTI is combined with the previous calculated ǫ∑
j h(j)p(s|j)

via351

another multiplication pipeline into
ǫh(i)p(s|i)∑
j h(j)p(s|j)

. In turn, this intermediate result is added via an addition352

pipeline to its h(i) which was delayed to be available at the right moment in time. As a last processing step,353

the output of the addition pipeline is divided by 1
1+ǫ via a Module #. The output of the module # delivers354

the new h(i) values. These are then written into the h(i) memory of the module MEM. Furthermore a355

spike generation module (we used the ’with offset’ variety in our design) observes the new h(i) values356

in parallel and, if provided with a random number, draws a spike out of the new h(i) distribution. Table357

S4 shows the number of components required to map this circuit onto the Xilinx Virtex 6 FPGA as well358

as how many clock cycles of latency the modules ∗, + and # adds to the processing time.359

Measured from the time then the first pair of h(i) and p(s|i) values are requested from module MEM360

until the clock cycle when the last updated h(i) values is written into memory, the h(i) update takes361

179 + 2 ·NH clock cycles for floating point numbers and 118 + 2 ·NH clock cycles for 18bit fixed point362

numbers.363

In parallel to the h(i) update, an online update step for the weights p(s|i) can be performed. Figure364

4 shows the three stage process for doing so. Stage one and two of the h(i)-update and online p(s|i) -365

update overlap. While ǫ∑
j h(j)p(s|j)

is calculated in state one on the h(i)-path,
γ∑

j h(j)p(s|j)
is calculated366

11

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted June 14, 2019. ; https://doi.org/10.1101/500280doi: bioRxiv preprint

https://doi.org/10.1101/500280

Rotermund & Pawelzik SbS FPGA

initialize

initialize

M
E

M
M

E
M

N
O

R
M

-M
U

L
T

I
N

O
R

M
-M

U
L
T

I

Stage 1

Stage 2

from stage 1
(if NaN then set it to 0)

* + #

delay line

memory

reset

spike found spike position

spike generator

Figure 3. Circuits for updating h(i) based on a spike s. The update is done in two stage.

in parallel. In stage two, the output h(i) · p(s|i) of the module NORM-MULTI from the h(i)-path is367

multiplied via another multiplication pipeline with
γ∑

j h(j)p(s|j)
in parallel. This results in

γh(i)p(s|i)∑
j h(j)p(s|j)

as368

an intermediate result which is stored in a temporary memory U(i). Furthermore the spike s is stored as st369

for stage three. In stage three the old weight values need to be updated with U(i) and stored as new weight370

values into their memory in module MEM. For this process all p(s|i) have to be recalled from module371

MEM (and optionally modified with an normalized offset via the corresponding offset module) but with372

i as the slower changing index. For a given index i the module # is prepared with the corresponding373

U(i). After this preparation is finished, the index s counts from 1 to NS . In a first step, it is checked if374

s equals st. If this comparison is true, an addition pipeline adds U(i) to p(s|i). Otherwise 0 is added to375

p(s|i). The output of the addition pipeline is then divided by 1 + U(i) via the already prepared module376

#. This result is written as the new p(s|i) values into their memory in module MEM. The components377

required to realize state three and the temporary memory U(i) is listed in table S4.378

Since stage one and two of the online p(s|i) update are done in parallel to the h(i)-update and with less379

complex calculations, the number of clock cycles required for stage one and two are defined by the h(i)-380

update. Concerning stage three, we measured NH · (124 + NS) clock cycles for floating point numbers381

and NH · (91 + NS) clock cycles for 18bit fixed point numbers. It needs to be noted that the reported382

clock cycle count for the h(i)-path and one p(s|i)-path were measured with the normalized weight offset383

module in place. Furthermore, it is important to point out that the listed 124 and 91 clock cycles are384

12

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted June 14, 2019. ; https://doi.org/10.1101/500280doi: bioRxiv preprint

https://doi.org/10.1101/500280

Rotermund & Pawelzik SbS FPGA

initialize

initialize

Stage 1 (in parallel with h - dynamic) Stage 2

Stage 3

from stage 1
(if NaN then set it to 0)

*

+

{produced by h - dynamics

memory

memory

memory

#

re
a
d
 a

n
d
 w

ri
te

w
ri
te

read

m
u
x

0

delay line

N
O

R
M

-M
U

L
T

I

N
O

R
M

-M
U

L
T

I

M
E

M

M
E

M

Figure 4. Circuits for updating the weights p(s|i) via online learning. The update of p(s|i) is done in a
three stage process.

mainly a result of the time during which the module # needs to be prepared with the actual U(i). Using385

additional modules # and switching between them would reduce these clock cycle counts significantly,386

however, would cost much more components.387

Another approach to learn weights is to perform batch learning. In this learning mode, for a given388

input pattern p(s), h(i) is updated with many spikes s. Based on the final h(i) and the probability389

distribution p(s), for generating the observed spikes s in the first place, a contribution to the update of the390

weights from the actual pattern is calculated. Since p(s) is not available to this circuit, an estimate p̂(s)391

is calculated via the module Rate Calculator from the observed spikes s. The circuit processes several392

patterns and accumulates these individual contributions into a matrix W (s|i). After the scheduled patterns393

are processed and their contributions are collected, W (s|i) is sent to an external CPU for updating the394

weights p(s|i). Using an external CPU for this purpose allows for a high flexibility on the realized update395

rule. Since the collected contributions can stem from a large number of patterns, W (s|i) is realized with396

twice the bits as p(s|i) for accommodating much larger numbers. The circuit for calculating W (s|i) in397

a two stage process is shown in figure 5. The required amount of components for stage two are listed in398

table S4.399

For stage one of adding a pattern’s information to W (s|i), the circuitry of the h(i)-update can be400

reused, since there are no h(i)-update during this time. First, p̂(s) is calculated for one s by module401

Rate Calculator and then used instead of ǫ. As result we get
p̂(s)∑

j h(j)p(s|j)
. In stage two, analogous402

to stage two of the online p(s|i) update path, a multiplexer pipeline is used to create the intermediate403

results
p̂(s)h(i)p(s|i)∑

j h(j)p(s|j)
for all NH indices i. The result of this multiplier pipeline is then converted into the404

13

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted June 14, 2019. ; https://doi.org/10.1101/500280doi: bioRxiv preprint

https://doi.org/10.1101/500280

Rotermund & Pawelzik SbS FPGA

initialize

initialize

Stage 1

Stage 2

from stage 1
(if NaN then set it to 0)

* +

memory (long)

w
ri
te

re
a

d
d

e
la

y
 l
in

e

long

write and read

C
P

U

M
E

M
M

E
M

N
O

R
M

-M
U

L
T

I
N

O
R

M
-M

U
L
T

I

Figure 5. Circuits for batch learning. The matrix W (s|i) is calculated from many spikes and input
patterns. The W (s|i) is send to an external CPU and used to calculate the new weights p(s|i). The
calculation of W (s|i) is done in two stages.

corresponding number format with more bits and added to the content of the matrix W (s|i). After all NH405

indices i are processed, s is incremented by one and the next p̂(s) is recalled. For this new s the process406

starts at stage one again. This sequence of fetching p̂(s), stage one and stage two is repeated until it went407

through all NS index values of s. Altogether this takes 51 +NS · (185 + 2 ·NH) clock cycles for floating408

point numbers and 48 +NS · (124 + 2 ·NH) clock cycles for 18bit fixed point numbers.409

After implementing these circuits on a FPGA, we investigated how the results differ from a Matlab410

simulation. Two factors contribute to the differences between the results for these circuits and a Matlab411

simulation: For all type of divisions, we neglected rounding the least significant bit of the mantissa of the412

result by just truncating it. Rounding would have required additional clock cycles. And for floating point413

numbers, the resolution of the mantissa is higher than the ’single’ counterpart in Matlab simulations.414

Four simple tests have been performed: a.) A non-normalized random h(i)-vector with NH = 11 entries415

was normalized. b.) Given a random input distribution with NS = 16 neurons produced 10 spikes. Using416

a given random weight matrix p(s|i), added with an offset through the weight offset module, the latent417

variable h(i) with NH = 11 was updated with these 10 spikes. c.) Using the setup of b.) after processing418

the sixth spike the weights p(s|i) were updated with every spike in an online fashion. d.) Using the setup419

of b.), after processing the 10th spike an update of W (s|i) was calculated.420

For floating point numbers we found a maximum relative (difference divided by the Matlab simulation421

result) error around 3 · 10−8 for h(i), p(s|i) and W (s|i). For the 18bit floating point numbers, calculating422

the maximum absolute difference for h(i), p(s|i) and W (s|i) between the FPGA implementation and the423

corresponding Matlab simulation resulted in single digit differences, typically in the range from 0 to 6 for424

14

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted June 14, 2019. ; https://doi.org/10.1101/500280doi: bioRxiv preprint

https://doi.org/10.1101/500280

Rotermund & Pawelzik SbS FPGA

numbers in the range of [0, 218− 1]. These differences are a result of combining many differences created425

by neglecting rounding the results for divisions.426

3.3 Connecting Spike-By-Spike inference populations and input populations427

population number

population number

population
number

population
number

shared bus:
neuron number
& valid flag
& population

number

shared bus:
neuron number
& valid flag
& population

number

All population
ready?

All populations
ready?

yes

yes

reset counter

reset counter

counter

count through
all population numbers

counter

count through
all population numbers

broadcast
(higher layer)

broadcast
(lower layer)

p
ro

c
e

s
s
 s

p
ik

e
s

p
ro

c
e

s
s
 s

p
ik

e
s

p
ro

c
e

s
s
 s

p
ik

e
s

p
o

p
u

la
ti
o

n
n

u
m

b
e

r

p
o

p
u

la
ti
o

n
n

u
m

b
e

r

p
o

p
u

la
ti
o

n
n

u
m

b
e

r

n
e

u
ro

n
 n

u
m

b
e

r
(o

u
t)

n
e

u
ro

n
 n

u
m

b
e

r
(o

u
t)

n
e

u
ro

n
 n

u
m

b
e

r
(o

u
t)

n
e

u
ro

n
 n

u
m

b
e

r
(i
n

)

n
e

u
ro

n
 n

u
m

b
e

r
(i
n

)

n
e

u
ro

n
 n

u
m

b
e

r
(i
n

)

s
p

ik
e

 r
e

a
d

y

s
p

ik
e

 r
e

a
d

y

s
p

ik
e

 r
e

a
d

y

population 1 population 2 population G

m
o

re
 p

o
p

u
la

ti
o

n
s

fr
o

m
 h

ig
h

e
r

la
y
e

r
m

o
re

 p
o

p
u

la
ti
o

n
s

fr
o

m
 l
o

w
e

r
la

y
e

r

spikes done

spikes done

next spike

next spike

Figure 6. Communication between spike-processing elements in the network via broadcasts.

Typically, a network consists of more than one Spike-By-Spike inference population which need to428

exchange spikes. Or the task requires input patterns that need to be converted into spikes, which can429

be accomplished by an input population (a simple combination of block RAM for the input probability430

distribution and a module Spike Generation for drawing spikes; see table S5 for a component count for a431

probability distribution of up to 1024 32bit values). As result a communication fabric between these spike432

15

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted June 14, 2019. ; https://doi.org/10.1101/500280doi: bioRxiv preprint

https://doi.org/10.1101/500280

Rotermund & Pawelzik SbS FPGA

p
ro

c
e
s
s
 s

p
ik

e
s

p
ro

c
e
s
s
 s

p
ik

e
s

p
o
p
u
la

ti
o
n
 n

u
m

b
e
r

p
o
p
u
la

ti
o
n
 n

u
m

b
e
r

p
o
p
u
la

ti
o
n
 n

u
m

b
e
r

v
a
lid

fl
a
g

v
a
lid

fl
a
g

p
o
p
u
la

ti
o
n
 n

u
m

b
e
r

p
o
p
u
la

ti
o
n
 n

u
m

b
e
r

p
o
p
u
la

ti
o
n
 n

u
m

b
e
r

n
e
u
ro

n
 n

u
m

b
e
r

(i
n
)

n
e
u
ro

n
 n

u
m

b
e
r

(i
n
)

own population ID
(higher layer)

own population ID
(lower layer)

me?

me?

AND

offset &

white list, ,e g

offset &

white list, ,e g+

+

internal dynamicstart

higher layer

lower layer

neuron number

n
e
u
ro

n
 n

u
m

b
e
r

n
e
u
ro

n
 n

u
m

b
e
r

m
e
?
 =

=
 y

e
s

m
e
?
 =

=
 y

e
s

done with
all spikes?

s
p
ik

e
 r

e
a
d
y

s
p
ik

e
 r

e
a
d
y

y
e
s

y
e
s

yes:
copy last spike position

Figure 7. Handling incoming spike that enter a Spike-by-Spike inference population.

producing and spike received network elements is required. Figure 6 shows the communication fabric that433

was implemented into the presented design.434

The communication fabric functions as follows: The input populations and Spike-By-Spike inference435

populations are connected to one or more shared data buses. The data bus conveys a unique identifier for436

the network element on that particular data bus, a neuron number for describing which neuron in that437

element produced a spike as well as a valid flag signaling that there is valid information on the bus at that438

moment. By default a network element is silent (all outputs are low). Every data bus owns a broadcast439

module (see table S5 for a component count) which coordinates the activity on its data bus. When all440

modules on the bus are ready for exchanging spikes, the broadcast module sequentially calls all unique441

identifiers of the elements connected to this bus. Every element that sees its identifier and has a spike to442

report, sends out its own identifier and neuron identity that caused the actual spike. After the exchange443

is performed, the broadcast module informs the connected network elements to process the information444

they received. The broadcast module itself is controlled from a controller on a higher level. The shared445

data bus is realized by XOR elements which ensures that only one network element at the time uses446

the data bus. For some applications it is helpful to use more than one data bus for selected groups of447

16

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted June 14, 2019. ; https://doi.org/10.1101/500280doi: bioRxiv preprint

https://doi.org/10.1101/500280

Rotermund & Pawelzik SbS FPGA

network elements for keeping the required time to exchange spikes as low as possible. The presented448

design realizes two data buses.449

Concerning the bandwidth of this spike communication, for every spike three numbers are exchanged:450

1) The question if a spikes was produced by population X (where X is a 10 bit number plus one valid451

bit). 2) The answer of population X contains the 10 bit X and one valid bit itself as well as 3) the spike452

st which is a 10 bit number too, which is indexing the neuron that produced the spike in population X .453

However, population X only answers if it has a spike to report. The data bus is designed that transferring454

the question as well as the answer uses only one clock cycle. The questions and answers are transmitted455

non-blockingly in parallel on different parts of the bus. Assuming a population size of NH = 1024, we456

can expect the FPGA to process ≈ 50,000 spikes per second and SbS inference population. For every457

spike, a total of 4 Byte per connected population or 200 kByte per second and connected population are458

exchanged.459

While an input population doesn’t react to spikes on the shared data bus, a Spike-By-Spike inference460

population may need to update its internal variables according the observed spikes on the data bus. Figure461

7 shows how incoming information on the data buses is handled by a Spike-By-Spike core. Assuming that462

it sees a valid set of information on the data bus, it compares the network element’s unique identifier with463

a dynamically programmable white list (table S5 details the required component for such a list). In case464

the unique identifier is on the list, the incoming information is processed further. Otherwise the incoming465

information is ignored. For white-listed information, the neuron number for the spike is stored and a466

flag that there was information received from this sending network is set. After the broadcast module467

signals that all spikes have been exchanged and processing can begin (via a ’process spikes’ line), the468

Spike-by-Spike core goes through its white-lists (one per data bus) and processes all flagged entries. It469

needs to be noted that the white list contains more information: An offset value that allows a dynamically470

programmed offset on the spike index s for this source of spikes as well as individual ǫ and γ values for471

every one of the white-listed spike sources.472

All the spikes in the white-list are processed which causes an update of the Spike-By-Spike inference473

population’s h(i). For every processed spike, automatically a new spike is drawn from the updated h(i)474

probability distribution. However, only the last one of these spikes is stored. After all spikes are processed475

a ’spike ready’ line is raised, informing the broadcasts modules that a new spike is ready for exchange. In476

the moment when the Spike-By-Spike inference population sees it’s own unique identifier on the shared477

bus, it puts its own identifier and the generated spike on the bus.478

3.4 Coordinating the networks and exchanging data479

While spikes are exchanged on specialized shared buses, also other data are required for operating480

the network (e.g. input pattern distributions p(s), weights p(s|i), white-lists and random numbers).481

Some data is generated inside the network, while other data needs to be provided from outside of the482

network. Furthermore, data needs to be read out of the variables from the network (especially h(i)483

distributions after processing input pattern as well as weight matrices p(s|i) or W (s|i) after learning)484

at externally defined moments in time. Thus we implemented two shared 32bit data buses: The first one485

for exchanging incoming external data as well as internally generated data (mainly random numbers and486

control sequences). The second one for sending data (e.g. results or information about the status of issued487

commands) to external receivers. See figure 8 for an overview.488

This communication fabric was designed under the premise that information is loaded into the network489

(weight matrices, parameters and input patterns) and then the network runs for a number of given spikes490

17

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted June 14, 2019. ; https://doi.org/10.1101/500280doi: bioRxiv preprint

https://doi.org/10.1101/500280

Rotermund & Pawelzik SbS FPGA

Data incoming (32 bit)

Data outgoing (32 bit)

Spike count
depended
messages

Arbiter

Arbiter
(shared bus)

FSM
with

spike
counter

Random
number

generator

Broadcast A Broadcast B
N

e
x
t

s
p
ik

e

S
p
ik

e
d
o
n
e

Input
population A

SbS
IP A

Input
population B

SbS
IP B

Input
population C

SbS
IP C

s
h

a
re

d
 b

u
s

(d
a

ta
 o

u
t)

s
h

a
re

d
 b

u
s

(d
a

ta
 o

u
t)

Figure 8. Data bus between the different elements as well as external participants.

(e.g. thousands of spikes). After that the results are readout from the network. New input pattern are491

loaded into the system, the network processes a number of spikes again, and the results are readout from492

the system again. It was not designed such that large amount of data is exchanged between every spike.493

Scalability of the communication fabric can be archived by splitting the communication fabric into parallel494

regions.495

On the incoming data bus there are two sources for data: external data and internal data generated496

by a message control center. The message control center has several tasks: a.) Based on externally497

received information, it knows how many spikes the network needs to process as well as after which498

amount of spikes it needs to start with online learning of the weights. Hence it controls the activity of499

all the broadcast modules. b.) It contains a Mersenne twister random number generator. After a spike, it500

provides all the network elements with new random numbers. It converts random numbers into messages501

18

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted June 14, 2019. ; https://doi.org/10.1101/500280doi: bioRxiv preprint

https://doi.org/10.1101/500280

Rotermund & Pawelzik SbS FPGA

and puts these messages on the data bus which programs the network elements with these random numbers.502

c.) It contains a mailbox system that is controlled by the number of already processed spikes. This allows503

to store every possible – otherwise externally provided – data control sequence in this mailbox together504

with a number of processed spikes that will release the message at that moment on the data bus. E.g. this505

message system can be used to change parameters like ǫ during processing the pre-defined number of506

spikes without waiting of any external just-in-time changes of parameters.507

One arbiter joins the two data streams from the incoming data. Another arbiter combines all data sources508

that are destined for an external data receiver. In table S6 the amount of components required to realize all509

the participants on these data buses are listed. The network’s parts know 17 commands (e.g. set parameters,510

set h(i), p(s|i), read h(i), p(s|i), W (s|i), reset the Rate Calculator modules, normalize h(i), set an input511

pattern probability distribution, set messages in the mailbox, and start the spike processing) that require512

up to nine 32bit words.513

3.5 Test with a Xilinx Virtex 6 FPGA514

Floating point Fixed point
Network LUT 38021 27953
(25 input populations, LUT-FF pairs 45984 35821
1 SbS inference population) Slice registers 58802 43853

BRAM 45x 36k 42x 36k, 2x 18k

Table 1. Amount of components required for a network with one Spike-By-Spike inference population
and 25 input populations.

We designed circuits for the network (see table 1 for details) such that it can be mapped, placed and515

routed without any special FPGA components (e.g. DSP cores), except for block RAM modules, on516

a FPGA or ASIC. Our design, especially the number of buffering and pipeline stages, is optimized to517

generate a firmware that can be operated with 200+MHz clock speed on a Xilinx Virtex 6 LX550T-518

1FF1759 (speed grade: commercial 2). The Xilinx ISE 14.3 software is capable of producing such a519

firmware when the circuit is alone and the IO pins can be selected by the software.520

However, we weren’t able to achieve these high clock rate when the network was embedded into the521

third party firmware which is required for communicating with the Virtex 6 FPGA on the 4DSP FM680522

PCIe card. We used the ’adder’ example from the training materials and simply replaced the ’adder’ core523

with our network. We allowed for a separate clock domain for the network by insulating the data-flow by524

dual clock FIFOs on the input and output side. Nevertheless, Xilinx ISE wasn’t able to provide us with a525

working firmware if we set the clock speed for the network to 200MHz. Thus we were forced to use the526

overall 125MHz clock provided by the 4DSPs example design also for our network.527

With the 125MHz clock speed were were able to run the network on 4DSP FM680 cards under Linux528

(Centos 7.5 64bit with driver version 04.05.2018). Results were identically to the Xilinx ISim simulations.529

However, the overall design of the 4DSP FM680 doesn’t fit for our application very well. This type530

of card is designed for high data bandwidth applications where 64bit words in blocks of 1024bits are531

continuously exchanged. On one side we were forced to incooperate our 32bits into block of 1024bits. On532

the other side we had problems receiving data from the card because our network doesn’t produce data533

continuously. Thus the Linux driver and our software had to recover from trying to read from the card534

when it had no data for us. All this combined, slows down the communication with our network on the535

FPGA significantly.536

19

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted June 14, 2019. ; https://doi.org/10.1101/500280doi: bioRxiv preprint

https://doi.org/10.1101/500280

Rotermund & Pawelzik SbS FPGA

In the supplemental materials we examine how the presented design fairs in comparison to Intel CPUs. In537

addition, it is investigated how the performance in the SbS MNIST example network (see figure 1) reacts538

to floating point and fixed point numbers with different number of bits. The conclusion of these tests is539

that FXP IPs are an interesting option, especially for IPs with smaller number of neurons. However, it540

needs to be tested if, in the given use-case, additional problems haven’t been created by the use of FXP541

IPs.542

4 DISCUSSION AND CONCLUSION

The paper presents a design and an investigation of a circuitry optimized for implementing neuronal543

networks based on Spike-By-Spike (SbS) neurons (Ernst et al., 2007). As in the brain, signaling is based544

exclusively on spikes, interactions among local neuronal circuits are stricly non-negative (Dale’s law), it545

allows for recurrent interactions in cyclic architectures, and both, dynamics of the neuronal state variables546

as well as the learning rules can be local (Rotermund and Pawelzik, 2019b). Thereby this approach547

realizes a compromise between artificial neural networks and biologically realistic models employing548

detailed models of spiking neurons.549

In a typical spiking neuron models (Izhikevich, 2004) are simulated with fine temporal resolution. In550

particular, simulations of networks of noisy leaky integrate-and-fire (IaF) neurons require representation551

of real time. Typically, the membrane potential needs to become updated every time step dt which is often552

in the range of sub-milliseconds. The number of updates between two spikes depends on the firing rate553

of that neuron. If for example dt = 0.1ms and the firing rate is 10Hz then this would translate roughly554

into 1000 updates of the membrane potential. In contrast, the SbS-approach avoids simulations of real555

time dynamics and would perform one update of a whole population between two input spikes. While the556

different types of spiking neuron models (Izhikevich, 2004) have varying number of computations for one557

update, in a SbS population with N neurons 3N multiplications, 2N summations, and one division are558

used for one update of the whole population. This reduction in computational requirement is payed by a559

decrease in biological realism.560

In a SbS network time is only progressed with each spike received by an inference population (IP). Thus561

no computations have to be performed in between spikes, which drastically reduces the computational562

demand. An approach akin to the SbS’s removal of real time is also known for integrate-and-fire neurons.563

This so called event-based neuronal networks (e.g. Brette (2006, 2007); Serrano-Gotarredona et al. (2015);564

Lagorce et al. (2015)) use analytic solutions of the neuron’s dynamics to bridge the time between to spikes.565

However, with stochastic neurons the event-based approach becomes problematic (Brette, 2007). This is566

similar to the problem of finding an analytic solution for the first passage time (Burkitt, 2006a,b) for567

neurons with stochastic inputs in a network, which is a hard problem. For SbS networks, the stochasticity568

rather is feature because it corresponds to importance sampling of the input as well as the latent variables.569

This acts as a filter for capturing the more dominant information in the network and suppress noise.570

In SbS networks, neurons are organized in populations where the neurons within a population compete571

with each other. Every neuron in a populations has a latent variable h(i). The value of h(i) is a positive572

number and the competition is expressed by a normalization over all latent variables of a population573

(
∑

h(i) = 1). In between populations, neurons communicate exclusively via spikes (i.e. an index st574

describing a single neuron’s identity in a population at a time t). The connections between neurons from575

different populations are described by weights p(s|i) (with s as the emitting neuron and i as the receiving576

neuron). Also the values of the weights are positive numbers and limited in size by a second normalization577

20

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted June 14, 2019. ; https://doi.org/10.1101/500280doi: bioRxiv preprint

https://doi.org/10.1101/500280

Rotermund & Pawelzik SbS FPGA

condition (
∑

s p(s|i) = 1). Thus everything describing the state of the network is given by positive578

numbers in the range of 0 to 1. In this paper we compared how different types of representations for these579

numbers result in different sizes of computational circuits as well as different required numbers of clock580

cycles. In particular we examined 18 bit positive fixed point numbers and 36 bit positive floating point581

numbers. The latter are a custom derivation of the IEEE 754 standard by assuming positivity and a higher582

bit count for the mantissa. The fixed point representation requires less components but it was found that583

SbS inference populations can cause problems during learning, especially with larger numbers of neurons.584

If a spike st is received by a population of neurons, for every neuron in this population an update of it’s585

latent variables is calculated through586

ht+1(i) =
1

1 + ǫ

(

ht(i) + ǫ
ht(i)p(st|i)

∑

j h
t(j)p(st|j)

)

.

We presented computational circuitry for this equation that only requires to read the involved h(i)587

and p(st|i) value pairs twice during the update process. For floating point numbers a number of588

179 + 2 · NH clock cycles and 118 + 2 · NH clock cycles for the fixed point numbers were measured.589

The constant numbers of clock cycles in these two equations don’t scale with the number of neurons590

because they represent the time which the information needs to travel through the pipeline structure of591

the computational circuitry as well as setting up the circuits for incoming data. These amounts of clock592

cycles can be reduced if optional features are removed, like e.g. adding an normalized offset to the weights.593

Auxiliary circuits were designed such that, given a random number, they draw a new spike from h(i) while594

simultaneously updating the h-values. Furthermore it was shown that circuits for learning the weights (see595

equation 2 and 3) can be designed, while keeping the amount of required components low by partially596

reusing circuitry for the h-update.597

Also for batch learning, circuits and memory are included into the presented design. Thus during batch598

learning, the contributions from many training patterns are collected within the circuitry. In the design599

phase of the system we decided against a hardware implementation of a specific learning rule that uses600

this accumulated data and calculates updated weights from it. Instead the idea is to use a CPU for these601

final weight update calculations, to allow large flexibility in choosing the ’right’ variation of the learning602

rule later and allow for changes in the learning rule if new learning methods arise in the community603

without changing the hardware design. Combining FPGAs with CPUs has a long tradition, e.g. Intel604

started to offer 2010 the Stellarton (Series E6x5C, Atom CPU with FPGA). The Xilinx Virtex-4 FPGA605

from 2004 had versions with integrated PowerPC cores. At the same time, a soft core for the low-cost606

Xilinx Spartan-3 FPGA (a 32 bit RISC processor called MicroBlaze) was released as intellectual property607

core. This is also an approach which the neuromorphic community also adapted, e.g. (Wunderlich et al.,608

2019; Naylor et al., 2013).609

Given a collection of populations of SbS neurons, the exchange between populations of spikes requires610

organization. In our framework we show that exchanging spike information can easily be done by a611

common data bus. A controller checks if all spike generating elements on that bus are ready for exchanging612

spikes and then calls every element on that bus to report its spike. Every SbS inference population has613

a programmable list which defines the spike producing elements it listens to. This allows user-defined614

changes of the network architecture on the fly. Also it allows to remove broken elements (which might615

be e.g. a result of production failures) from the network and to reallocate – if available – other resources616

to take its place. The lists contains additional information to allow for changes of the ǫ parameter for the617

21

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted June 14, 2019. ; https://doi.org/10.1101/500280doi: bioRxiv preprint

https://doi.org/10.1101/500280

Rotermund & Pawelzik SbS FPGA

h-dynamic and the γ parameter for online learning depending on the source of the spike. This feature618

is essential for more complex networks. In the same spirit, we introduced a ’mailbox system’ into the619

framework. It allows to make processing a given pattern for a user-defined number of spikes independent620

from external sources. Sometimes it may be necessary to change the ǫ parameter after a given number621

of spikes. Without the mailbox system, an external controller would need to determine the state of the622

network (i.e. are the required number of spikes already processed?), then change the parameters, and tell623

the network to continue for another amount of spikes. This would obviously waste time. In comparison,624

with the mailbox system the network distributes the pre-defined messages about the parameter change625

automatically in the moment a pre-defined number of spikes have been processed. Obviously, the same is626

true for the required random numbers for producing spikes. Thus it is also essential that random numbers627

are sent to the consumers of these random number with as small as possible pauses. For this reason it was628

necessary to add a random number generator (Mersenne Twister 19937) to the overall message controller629

with its mailbox system. The message controller also takes care that the correct number of spikes is630

processed and that any external system is informed that the network finished the pre-programmed number631

of spikes.632

As a second type of spike producing element in the network, we designed input populations. These input633

populations take a probability distribution, where every value is represented by a 32 bit fixed point number,634

as well as 32 bit random numbers and produces spikes from this information. For programming these635

probability distributions as well as configuring any other parameter or variable in the whole framework636

(or network) two data buses (one for incoming and one for outgoing data) with a pre-defined set of637

commands are introduced into the design. The aforementioned message controller receives commands638

from the incoming data bus but can also introduce its own commands into this data stream that is seen by639

all the elements of the network.640

The presented design was transferred into a FPGA firmware written in VHDL. It was taken care that641

no special FPGA vendor proprietary modules (except block RAM) were used, for allowing re-using the642

design for developing a custom ASIC. For proof of feasibility, we integrated the VHDL code into an643

example firmware for the 4DSP FM680 cards which hosts a Xilinx Virtex 6 FPGA from 2009. We644

successfully generated a binary firmware bit file for this card, tested it under Linux and compared it645

with the results from Matlab simulations. Small differences in our simple example simulation were found,646

which were expected due to the difference in precision (floating point numbers: 5 more bits representing647

the mantissa for the FPGA implementation compared to Matlab) as well as a different handling of648

rounding during the mathematical operation of division. We decided that the differences through rounding649

are not relevant, especially when compared to the required increase in the amount of components and650

processing stages necessary for reaching a perfect match with the Matlab simulations. While the pure SbS651

network would have been able to run with over 200MHz on an otherwise empty Virtex 6, combining it652

with the existing card manufacturer’s firmware unexpectedly forced us to reduce the clock speed down to653

125MHz. Isolating the network into a separate 200MHz clock domain didn’t work out. Since the VHDL654

code was optimized for a 200MHz stand-alone implementation on a Virtex 6 LX550T FPGA, several655

buffering steps in the pipeline architecture were added which are unnecessary for a 125MHz operation. A656

second SbS inference population was added to the firmware’s network and tested out fine. Extrapolating657

from the number of required components for one SbS inference population, we expected that we could658

increase the number of SbS inference populations to 7 or 8 for floating point number on this Xilinx Virtex659

6 LX550T. However, the generation of these firmwares failed in the Xilinx ISE design tool. Our guess660

is that the reason lies in the fixed placement of the some components (especially block RAM) on the661

FPGA. Increasing the number of SbS inference populations produces distances between components that662

22

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted June 14, 2019. ; https://doi.org/10.1101/500280doi: bioRxiv preprint

https://doi.org/10.1101/500280

Rotermund & Pawelzik SbS FPGA

are too long for even 125MHz on this FPGA from 2009. We didn’t pursued the increase in the number663

of SbS inference populations any further, because we found that the 4DSP firmware, driver and software664

framework for this card is optimized for continuously streaming of large bandwidth of data. However, in665

our application the data is send in a stop-and-go fashion which doesn’t ensure that data is always available.666

Thus it was necessary to probe the cards for available data via blindly trying to read data from the card667

and to rely on slow timeouts of the Linux driver if there was no data available at that exact moment.668

Furthermore we had to fill up our data streams with zeros (up to 31x bit in zeros for filling up compared669

to the payload) to conform to the required data format. In the end we decided to focus on transferring the670

design onto a custom ASIC instead of optimizing the FPGA firmware.671

The computationally attractive aspect of a SbS neuron based network is the property that populations672

of neurons only communicate via spikes. Thereby every population of neurons operates independently673

from all the other populations. The internal computation of any given population is based exclusively674

on the incoming spikes and its internal variables. After finishing its computations every population of675

neurons also only sends out spikes as a signal to other populations. This locality property is true for676

updating the h(i) values as well as for learning the weights p(s|i). Thus the locality of its populations is677

the key ingredient for massively parallelizing networks with such elements (populations). The optimal way678

for parallelizing such networks is to provide independent memory and computational circuitry for every679

individual population of neurons. With the specialized processors proposed in this paper one update cycle680

in a large network of such populations does not scale significantly with the number of populations. This681

stands in stark contrast to running such networks on clusters of computers where one would experience682

latencies and transmission delays that scale much worse with the number of nodes due to the creation of683

network packages, their transmission and their analysis by soft- and hardware.684

In future we will design a custom ASIC for networks with larger numbers of SbS inference populations.685

The desire for using ASICs compared to continuing using FPGAs stems from several reasons: The goal is686

to realize as many SbS inference populations as possible and give every SbS population in a network its687

own SbS inference population. However, this might require a network of ASICs. The main limiting factor688

with FPGAs is the amount of available memory (block RAM) and the corresponding routing problems.689

Every SbS inference population needs its own dual port memory, at least for its latent variables. On690

a FPGA this kind memory comes in block RAM modules and these are fixed resources which are at691

certain manufacturer defined positions. These RAM blocks are spread over the whole FPGA die. If a692

SbS inference population needs more memory than one of these RAM modules can provide, several of693

these RAM modules are connected. This is a big problem for routing and timing which can be strongly694

experienced in our Virtex 6 FPGA design. It is a major factor in limiting the clock speed if several SbS695

inference populations are realized on the FPGA. The required logical components and the block RAMs696

are still available but the timing is too problematic due to the long distances. Furthermore, FPGAs are697

general purpose chips and the SbS inference populations have different requirements: The ration of logic698

circuitry to block RAM seems not to fit into the exception for general purpose case. Using ASICs allows699

us to place what we want in such a way that everything that needs to interact in a fast way is in close700

proximity (i.e. everything that is part of one SbS inference population) and everything that communicates701

over the spike bus can be placed further apart (and this communication can be on a much slower clock702

rate).703

As a preparation we made sure that the design doesn’t use any special 3rd-party intellectual property704

cores. For improving the processing speed of the SbS inference population, it might be interesting for a705

custom ASIC to use different clock domains for exchanging spike information between populations and706

23

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted June 14, 2019. ; https://doi.org/10.1101/500280doi: bioRxiv preprint

https://doi.org/10.1101/500280

Rotermund & Pawelzik SbS FPGA

doing the calculations inside the SbS inference population. This would also ensure that the SbS inference707

populations can retain high computational speeds even if the distances between the populations on the708

chips for exchanging spike information increase. This even allows to extend the data bus for exchanging709

the spikes over a multitude of chips. Furthermore, it is also not necessary that all SbS inference population710

run at the same speed. It is enough that only the part of a population responsible for communicating with711

the data bus for exchanging spike information is in sync.712

The area on chip required for memory may be an issue for the custom ASIC. Concerning the weights,713

in a convolution setting all populations in a layer use the same weight values. Thus in such an application714

it could be suitable to use a common RAM for all populations in that layer. The requirement with shared715

convolutional weights is as follows: For every update of the latent variables h, every SbS inference716

population gets a spike st. For performing the required computations for the update, the weight vector717

p(st|i) for all i ∈ [1, ..., NH] is required. For example in the MNIST example, the convolutional weight718

matrix between the input and the first hidden layer has the size NS = 50 x NH = 32. Thus p(st|i)719

is a vector with 32 numbers. However, there are only 50 different versions of this 32 number vector.720

On the other side, we have 576 individual SbS inference populations in the hidden layer 1, hence, 576721

different spikes to process in every time step of the simulation with only 50 allowed values. The idea722

for the shared RAM is that all 50 vectors are sequentially recalled from RAM and broadcast to the 576723

SbS inference populations. Every one of these 576 SbS inference populations know their own spike st724

and filter their 32 number vector from this common data stream. Obviously it takes 50x longer to do725

this broadcast procedure compared to the case where every SbS inference population has its own weight726

matrix. However, this reduction in speed in traded in for reducing the requirement for weight memory727

by a factor of 576. Furthermore, this would allow to use faster external memory modules which would728

allow a broader broadcast bus (e.g. two or more vectors are broadcast in parallel). Or using custom RAM729

that delivers the p(s|i) values for all s during one read cycle in parallel would be beneficial, which would730

create NS streams of weight values in parallel. In this scenario, every SbS inference population would731

have a multiplexer connected to the output stream of the RAM and would, according to the value of st,732

switch between the different weight value streams.733

The performance we can achieve in the MNIST benchmark (Rotermund and Pawelzik, 2019a) is 99.3%734

classification correct by using an error-back-propagation & momentum based learning rule developed for735

SbS networks which takes the requirements non-negativity and normalization into account. The learning736

rate was modulated by the expected remaining error estimated from the training data set. In addition,737

the fully connected layer H5 was subjected to a drop-out variant during learning. This learning rule is738

compatible with the presented hardware design. Using the same network architecture for a non-spiking739

neural network (Rotermund and Pawelzik, 2019a) we found 99.2%. These performance values are also740

reported to be comparable with traditional non-spiking convolutional neuronal networks (Tavanaei et al.,741

2018).742

Using the presented SbS MNIST network with a local learning rule which is directly based on the743

gradient – like it is used in the supplemental materials – we still yield a performance of 97.3%. This744

is roughly the same performance we got using a classical non-spiking convolutional neuronal networks745

using the same network structure and as well with only the gradient (without any additional optimizers)746

(Rotermund and Pawelzik, 2019a).747

Comparing our performance values with other networks (e.g. see for a list of MNIST networks748

(Tavanaei et al., 2018) and http://yann.lecun.com/exdb/mnist) is not as simple as comparing749

the values. In our case we didn’t optimized our network structure for the use of SbS inference populations.750

24

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted June 14, 2019. ; https://doi.org/10.1101/500280doi: bioRxiv preprint

http://yann.lecun.com/exdb/mnist
https://doi.org/10.1101/500280

Rotermund & Pawelzik SbS FPGA

We rather choose to re-use the network structure associated with a Tensor Flow Tutorial because this751

gave us a base-line for a network design which our computer cluster was just been able to simulate.752

Furthermore, we didn’t used any input distortion methods (e.g. shifting, scaling, or rotating the input753

pictures) for increasing the size of the training data set. The reason was that this would have been to much754

for our computer cluster, like it would have been to optimize the parameters used in the SbS MNIST755

network. Or in other words: The performances shown for the MNIST SbS network doesn’t reflect what756

a fully optimized SbS network might be capable to deliver. Typically the performance values shown for757

neuronal networks are for an fully optimized network, like performances of 99.8% (Wan et al., 2013).758

Due to the communication problem with the FPGA cards and the limited number of FPGA cards we759

have available (we own two of those cards and their price was 16,000+ Euros each), we had to perform760

the analysis of the MNIST network on a cluster of computer with Intel CPUs. It took our cluster 19 days761

with shy of 400 cores to perform the presented MNIST simulations. On the two FPGA cards with one SbS762

IP each, this would have taken approximately over a decade. This shows that the number of parallel cores763

is key in operating SbS networks in a fast fashion.764

Obviously this raises the question why we are not just continue to use normal CPUs or migrate to GPUs765

instead of developing a special ASIC for that task. The two main aspects of the answer are parallelization766

(i.e. as many cores as possible) and memory bottleneck.767

In the case of CPUs, the results of the timing measurements showed that as long as the required768

memory stays within the CPU’s L1/L2/L3 cache, the multitude of available cores can be efficiently used769

to simulating SbS IPs. The moment when the amount of memory required exceeds the CPU’s cache,770

the situation starts to change. Now the memory bandwidth to the external memory modules starts to771

limit the SbS performance and the effective number of cores usable in every point of time dwindles.772

Thus even if a large number of cores is available on a CPU, only a few cores can be supplied with the773

required information continuously while the rest of the cores wait. This problem is amplified if one core is774

responsible for simulating several SbS IPs. In this use-case the information for the different SbS IPs (latent775

variables and weight matrices) need to be switched and loaded into the CPU’s cache continuously. Thus776

the memory bandwidth becomes the limiting factor again. In summary, CPUs are an excellent solution to777

simulate SbS IPs as long as the number of SbS IPs don’t exceed the core count of the CPU and as long as778

the required data fits into the CPU’s cache. For SbS IPs with large number of neurons and/or large weights779

matrices CPUs are especially a good choice because of the integration of CPU caches with several dozens780

of MByte.781

There are special multi-core CPU ASICs with large core counts available. Examples are the Epiphany-782

IV (Olofsson et al., 2014) 64 RISC cores with 2 MB on-chip distributed memory (presumably 32 kByte783

per core) or the Epiphany-V (Olofsson, 2016) 1024 RISC cores with 64 MB on-chip distributed memory784

(presumably 64 kByte per core). As long as the latent variables and the corresponding weight matrix fit785

into the core’s local memory such an approach can be an interesting alternative for simulating SbS IPs.786

However, these types of ASICs are optimized for their amount of cores but were not designed to access787

external memory with high memory bandwidth. Thus, these multi-core CPU ASICs are a good alternative788

as long as everything necessary can be stored within the core’s memory. In the case of 32 bit floating789

point numbers this allows to store only one or two thousand values per core. Assuming 128 neurons in790

an IP, this would allow to connect every one of these neurons to only 15 input neurons. This back-on-the-791

envelope calculation excluded all the required auxiliary memory and space for program code necessary792

for an efficient computation which needs to be deducted from the available storage for the weights and793

25

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted June 14, 2019. ; https://doi.org/10.1101/500280doi: bioRxiv preprint

https://doi.org/10.1101/500280

Rotermund & Pawelzik SbS FPGA

latent variables too. However, the next generation of CPU from AMD are expected to contain core counts794

in the region of the Epiphany-IV but with much more on-chip memory.795

Modern GPUs on the other hand are optimized for the use in memory and computational demanding796

applications, like e.g. deep non-spiking networks. The nvidia TU 102 GPU (see nvidia turing GPU797

architeture whitepaper WP-09183-001 v01 on http://www.nvidia.com) contains 72 (or 68 when798

on a RTX 2080 Ti graphics card) streaming multi-processors (SM) with 96 KByte of L1 cache / shared799

memory each. These 96 KByte can be configured as 64 KByte L1 cache & 32 KByte shared memory800

or 32 KByte L1 cache & 64 KByte shared memory. This is similar to the specifications of the Epiphany801

CPUs. However, the TU 102 has – compared to the Epiphany chips – a 384 bit wide memory bus with a802

clock rate of up to 14 gigabit per second to external GDDR6 memory modules (672 gigabyte per second803

or 168 giga-words per second for 32 bit floating point numbers). It needs to be noted that these 2.3804

giga-words per second of 32 bit floating point numbers per SM can only be achieved if special care is805

taken in correctly aligning the memory access (see CUDA Toolkit Documentation – Best Practices Guide806

v10.1.168 https://docs.nvidia.com/cuda/index.html).807

For the timing tests in the results section, one of the used systems contains Intel Xeon E5-2640v3 CPUs.808

Such a CPU has 8 cores with a 2.6 GHz clock rate (in a multi-core task) and 59 gigabyte per second of809

memory bandwidth. A nvidia TU 102 GPU has 72 SMs. For the following calculation it is assumed that810

this corresponds roughly to 9 x 8 CPU cores. Following this assumption, this can be translated into 9 x811

Intel Xeon E5-2640v3 with a combined memory bandwidth of 531 gigabyte per second. Even though the812

memory on the GPU is a bit faster, the problems encountered with the multi-core CPUs can be assumed813

to occur with GPUs too. Even more so if the complex requirements of GPUs for memory alignment can814

not be fulfilled for all 72 simulations processes at the same time.815

The proposed design for the SbS IPs is optimized with respect to the number of memory accesses. The816

pipelined structure of the computations requires only a minimum of memory read and write transactions.817

For example the update of N latent variables in one IP requires to read 4N values from memory and to818

write N values back to memory. In the case of a normal CPU, basic mathematical operations are combined819

and for every mathematical operation transactions with the memory are required. First, for N sets of two820

numbers are multiplied which need to read from memory. Then the resulting N numbers need to be stored821

into N auxiliary variables within memory. The auxiliary variables are read from memory and summed822

up. The result of this summation is inverted and multiplied with ǫ. Again the N auxiliary variables are823

read from memory, multiplied with the former result and written back into memory. Now the N auxiliary824

variables as well as the N latent variables are read from memory, summed and written back into memory.825

These resulting N values are read from memory, multiplied by a constant, and written back into memory826

as the result of the update of the latent variables. This sums up to roughly 7N read operations and 4N write827

operations. In summary 5N memory transaction are required for the pipeline design and 11N memory828

operations for the general purpose CPU.829

The question remains for which number of neurons per SbS IPs, the propose design shines. We expect830

that neuron numbers of 1024 and smaller are the optimal use-case. Larger number of neurons are more831

prone to be simulated by modern CPU with their large & densely integrated caches. Optimally, for every832

SbS IP with 1024 neurons we aim for a weight matrix with 100 x 1024 values. However, during the833

planned transfer of the presented design to an ASIC, we will evaluate if it will be beneficial to have a834

mixture of sizes of SbS IPs on that chip. It is expected that this question will be dominated by the area835

required for the supporting circuitry for the IP’s memory. It is not expected that one ASIC will be able to836

accommodate a whole SbS network. Thus we focus on networks of ASICs as substrate for SbS networks,837

26

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted June 14, 2019. ; https://doi.org/10.1101/500280doi: bioRxiv preprint

http://www.nvidia.com
https://docs.nvidia.com/cuda/index.html
https://doi.org/10.1101/500280

Rotermund & Pawelzik SbS FPGA

where the individual ASICs communicate with spikes (i.e. the index of the firing neurons and identifier838

for their IP). If this approach will work out and how the details will look like in the end will be the target839

of our future research.840

Once available the proposed ASICs will not only serve to investigate neuronal networks based on the841

SbS framework for AI applications where it can serve to develop both, feed foreward deep convolutional842

networks as well as generative models (as e.g. deterministic auto-encoders: (Ghosh et al., 2019)) but also843

allow investigations of large scale models of the brain (as e.g. the visual system in cortex where many844

retinotopic areas are mutually connected (Van Essen et al., 1992).845

ACKNOWLEDGMENTS

This manuscript has been released as a Pre-Print at www.biorxiv.org (Rotermund and Pawelzik,846

2018).847

REFERENCES

Azkarate Saiz, A. (2015). Deep learning review and its applications848

Brette, R. (2006). Exact simulation of integrate-and-fire models with synaptic conductances. Neural849

Computation 18, 2004–2027850

Brette, R. (2007). Exact simulation of integrate-and-fire models with exponential currents. Neural851

Computation 19, 2604–2609852

Bruckstein, A. M., Elad, M., and Zibulevsky, M. (2008). On the uniqueness of nonnegative sparse853

solutions to underdetermined systems of equations. IEEE Transactions on Information Theory 54,854

4813–4820855

Burkitt, A. N. (2006a). A review of the integrate-and-fire neuron model: I. homogeneous synaptic input.856

Biological cybernetics 95, 1–19857

Burkitt, A. N. (2006b). A review of the integrate-and-fire neuron model: Ii. inhomogeneous synaptic input858

and network properties. Biological cybernetics 95, 97–112859

Candes, E. J., Romberg, J. K., and Tao, T. (2006). Stable signal recovery from incomplete and inaccurate860

measurements. Communications on Pure and Applied Mathematics: A Journal Issued by the Courant861

Institute of Mathematical Sciences 59, 1207–1223862

Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y., Choday, S. H., et al. (2018). Loihi: a863

neuromorphic manycore processor with on-chip learning. IEEE Micro 38, 82–99864

Ernst, U., Rotermund, D., and Pawelzik, K. (2007). Efficient computation based on stochastic spikes.865

Neural computation 19, 1313–1343866

Furber, S. B., Galluppi, F., Temple, S., and Plana, L. A. (2014). The spinnaker project. Proceedings of867

the IEEE 102, 652–665868

Ganguli, S. and Sompolinsky, H. (2010). Statistical mechanics of compressed sensing. Physical review869

letters 104, 188701870

Ganguli, S. and Sompolinsky, H. (2012). Compressed sensing, sparsity, and dimensionality in neuronal871

information processing and data analysis. Annual review of neuroscience 35, 485–508872

Gatys, L. A., Ecker, A. S., and Bethge, M. (2016). Image style transfer using convolutional neural873

networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2414–874

2423875

Ghosh, P., Sajjadi, M. S. M., Vergari, A., Black, M., and Schölkopf, B. (2019). From variational to876

deterministic autoencoders877

27

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted June 14, 2019. ; https://doi.org/10.1101/500280doi: bioRxiv preprint

www.biorxiv.org
https://doi.org/10.1101/500280

Rotermund & Pawelzik SbS FPGA

Guo, Y., Liu, Y., Oerlemans, A., Lao, S., Wu, S., and Lew, M. S. (2016). Deep learning for visual878

understanding: A review. Neurocomputing 187, 27–48879

Hinton, G. E. (2012). A practical guide to training restricted boltzmann machines. In Neural networks:880

Tricks of the trade (Springer). 599–619881

Izhikevich, E. M. (2004). Which model to use for cortical spiking neurons? IEEE transactions on neural882

networks 15, 1063–1070883

Jouppi, N., Young, C., Patil, N., and Patterson, D. (2018). Motivation for and evaluation of the first tensor884

processing unit. IEEE Micro 38, 10–19885

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint886

arXiv:1412.6980887

Lacey, G., Taylor, G. W., and Areibi, S. (2016). Deep learning on fpgas: Past, present, and future. arXiv888

preprint arXiv:1602.04283889

Lagorce, X., Stromatias, E., Galluppi, F., Plana, L. A., Liu, S.-C., Furber, S. B., et al. (2015). Breaking890

the millisecond barrier on spinnaker: implementing asynchronous event-based plastic models with891

microsecond resolution. Frontiers in neuroscience 9, 206892

Lee, D. D. and Seung, H. S. (1999). Learning the parts of objects by non-negative matrix factorization.893

Nature 401, 788894

Lee, D. D. and Seung, H. S. (2001). Algorithms for non-negative matrix factorization. In Advances in895

neural information processing systems. 556–562896

Lustig, M., Donoho, D. L., Santos, J. M., and Pauly, J. M. (2008). Compressed sensing mri. IEEE signal897

processing magazine 25, 72–82898

Maass, W. and Bishop, C. M. (2001). Pulsed neural networks (MIT press)899

Moore, S. W., Fox, P. J., Marsh, S. J., Markettos, A. T., and Mujumdar, A. (2012). Bluehive-a900

field-programable custom computing machine for extreme-scale real-time neural network simulation.901

In 2012 IEEE 20th International Symposium on Field-Programmable Custom Computing Machines902

(IEEE), 133–140903

Naylor, M., Fox, P. J., Markettos, A. T., and Moore, S. W. (2013). Managing the fpga memory904

wall: Custom computing or vector processing? In 2013 23rd International Conference on Field905

programmable Logic and Applications (IEEE), 1–6906

Olofsson, A. (2016). Epiphany-v: A 1024 processor 64-bit risc system-on-chip. arXiv preprint907

arXiv:1610.01832908

Olofsson, A., Nordström, T., and Ul-Abdin, Z. (2014). Kickstarting high-performance energy-efficient909

manycore architectures with epiphany. In 2014 48th Asilomar Conference on Signals, Systems and910

Computers (IEEE), 1719–1726911

Olshausen, B. A. and Field, D. J. (2006). What is the other 85 percent of v1 doing. L. van Hemmen, & T.912

Sejnowski (Eds.) 23, 182–211913

Pfeiffer, M. and Pfeil, T. (2018). Deep learning with spiking neurons: Opportunities and challenges.914

Frontiers in Neuroscience 12, 774. doi:10.3389/fnins.2018.00774915

Rolinek, M. and Martius, G. (2018). L4: Practical loss-based stepsize adaptation for deep learning. arXiv916

preprint arXiv:1802.05074917

Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage and organization in918

the brain. Psychological review 65, 386919

Rotermund, D. and Pawelzik, K. R. (2018). Massively parallel fpga hardware for spike-by-spike networks.920

bioRxiv doi:10.1101/500280921

28

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted June 14, 2019. ; https://doi.org/10.1101/500280doi: bioRxiv preprint

https://doi.org/10.1101/500280

Rotermund & Pawelzik SbS FPGA

Rotermund, D. and Pawelzik, K. R. (2019a). Back-propagation learning in deep spike-by-spike networks.922

bioRxiv doi:10.1101/569236923

Rotermund, D. and Pawelzik, K. R. (2019b). Biologically plausible learning in a deep recurrent spiking924

network. bioRxiv doi:10.1101/613471925

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning representations by back-propagating926

errors. nature 323, 533927

Salakhutdinov, R. (2015). Learning deep generative models. Annual Review of Statistics and Its928

Application 2, 361–385929

Saraf, N. and Bazargan, K. (2017). A memory optimized mersenne-twister random number generator.930

In 2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS). 639–642.931

doi:10.1109/MWSCAS.2017.8053004932

Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural networks 61, 85–117933

Serrano-Gotarredona, T., Linares-Barranco, B., Galluppi, F., Plana, L., and Furber, S. (2015). Convnets934

experiments on spinnaker. In 2015 IEEE International Symposium on Circuits and Systems (ISCAS)935

(IEEE), 2405–2408936

Shirazi, N., Walters, A., and Athanas, P. (1995). Quantitative analysis of floating point arithmetic on fpga937

based custom computing machines. In fccm (IEEE), 0155938

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., et al. (2016). Mastering939

the game of go with deep neural networks and tree search. nature 529, 484940

Spanne, A. and Jörntell, H. (2015). Questioning the role of sparse coding in the brain. Trends in941

neurosciences 38, 417–427942

Sze, V., Chen, Y.-H., Yang, T.-J., and Emer, J. S. (2017). Efficient processing of deep neural networks: A943

tutorial and survey. Proceedings of the IEEE 105, 2295–2329944

Tavanaei, A., Ghodrati, M., Kheradpisheh, S. R., Masquelier, T., and Maida, A. (2018). Deep learning in945

spiking neural networks. Neural Networks946

Thakur, C. S. T., Molin, J., Cauwenberghs, G., Indiveri, G., Kumar, K., Qiao, N., et al. (2018). Large-947

scale neuromorphic spiking array processors: A quest to mimic the brain. Frontiers in neuroscience 12,948

891949

Tian, X. and Benkrid, K. (2009). Mersenne twister random number generation on fpga, cpu and gpu. In950

Adaptive Hardware and Systems, 2009. AHS 2009. NASA/ESA Conference on (IEEE), 460–464951

Van Essen, D. C., Anderson, C. H., and Felleman, D. J. (1992). Information processing in the primate952

visual system: an integrated systems perspective. Science 255, 419–423953

Wan, L., Zeiler, M., Zhang, S., Le Cun, Y., and Fergus, R. (2013). Regularization of neural networks954

using dropconnect. In International conference on machine learning. 1058–1066955

Wang, R. and van Schaik, A. (2018). Breaking liebig’s law: an advanced multipurpose neuromorphic956

engine. Frontiers in neuroscience 12957

Wiedemann, T., Manss, C., and Shutin, D. (2018). Multi-agent exploration of spatial dynamical processes958

under sparsity constraints. Autonomous Agents and Multi-Agent Systems 32, 134–162959

Wunderlich, T., Kungl, A. F., Müller, E., Hartel, A., Stradmann, Y., Aamir, S. A., et al. (2019).960

Demonstrating advantages of neuromorphic computation: A pilot study. Frontiers in Neuroscience961

13, 260. doi:10.3389/fnins.2019.00260962

29

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which wasthis version posted June 14, 2019. ; https://doi.org/10.1101/500280doi: bioRxiv preprint

https://doi.org/10.1101/500280

