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Abstract

Background: Virus-associated cell membrane proteins acquired by HIV-1 during budding may give information on the cellular

source of circulating virions. In the present study, by applying immunosorting of the virus and of the cells with antibodies

targeting monocyte (CD36) and lymphocyte (CD26) markers, it was possible to directly compare HIV-1 quasispecies archived

in circulating monocytes and T lymphocytes with that present in plasma virions originated from the same cell types. Five

chronically HIV-1 infected patients who underwent therapy interruption after prolonged HAART were enrolled in the study.

The analysis was performed by the powerful technology of ultra-deep pyrosequencing after PCR amplification of part of the env

gene, coding for the viral glycoprotein (gp) 120, encompassing the tropism-related V3 loop region. V3 amino acid sequences

were used to establish heterogeneity parameters, to build phylogenetic trees and to predict co-receptor usage.

Results: The heterogeneity of proviral and viral genomes derived from monocytes was higher than that of T-lymphocyte origin.

Both monocytes and T lymphocytes might contribute to virus rebounding in the circulation after therapy interruptions, but

other virus sources might also be involved. In addition, both proviral and circulating viral sequences from monocytes and T

lymphocytes were predictive of a predominant R5 coreceptor usage. However, minor variants, segregating from the most

frequent quasispecies variants, were present. In particular, in proviral genomes harboured by monocytes, minority variant

clusters with a predicted X4 phenotype were found.

Conclusion: This study provided the first direct comparison between the HIV-1 quasispecies archived as provirus in circulating

monocytes and T lymphocytes with that of plasma virions replicating in the same cell types. Ultra-deep pyrosequencing

generated data with some order of magnitude higher than any previously obtained with conventional approaches. Next

generation sequencing allowed the analysis of previously inaccessible aspects of HIV-1 quasispecies, such as co-receptor usage

of minority variants present in archived proviral sequences and in actually replicating virions, which may have clinical and

therapeutic relevance.
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Background
The error prone nature of HIV-1 reverse transcriptase,
combined with the high replicative activity of the virus,
results, in each infected individual, in the formation of
many genetically related viral variants referred to as qua-
sispecies, in which most viral sequences differ from all
others. This variability is the substrate for the selective
pressure exerted by drugs or by the immune system, lead-
ing to the continuous evolution of HIV-1 in the infected
host [1,2]. The most variable part of the HIV-1 genome is
the region coding for the V3 loop of HIV-1 surface glyco-
protein (gp120) that is involved in the coreceptor binding
[3]. Shortly after primary infection, viral heterogeneity is
relatively low and progressively increases in the absence of
treatment [4,5]. During the natural history of the infec-
tion, compartmentalized viral replication in different cell
types may contribute to virion diversity, and ultimately
may determine the segregation of viral clusters in different
body sites [6-9]. While recent reports show that in patients
treated with antiviral drugs HIV-1 quasispecies present in
monocytes may evolve in clusters segregated from viral
quasispecies harboured by lymphocytes [10,11], most
HIV-1 compartmentalization studies have focused mainly
on proviral DNAs in lymphomonocyte populations [10-
16].

However, HIV-1 proviral DNA represents an archive of
viral variants, including those acquired in the past, that
may not necessarily reflect the viral population replicating
at every given time, which makes the evaluation of how
the different cell sources impact the circulating HIV-1 qua-
sispecies rather difficult.

Cell-derived antigens acquired during the budding proc-
ess serve as markers of the virus cellular origin [17-21].
Consequently, using cell type-specific antibodies when

studying plasma virions may aid in identifying viral pop-
ulations originating in vivo from different cellular sources
[19-22]. In the present study, we analyzed five patients
who experienced therapy interruptions after prolonged
periods of highly active antiretroviral therapy (HAART).
Stringent inclusion criteria are detailed in the Materials
and Methods section. Considering that, as recently
shown, both activated immature monocyte/macrophage
(CD36 positive) and CD4 T cell (CD26 positive) compart-
ments contribute to viral load [22], proviral V3 quasispe-
cies harboured by these cells at therapy interruption (T0)
were compared to quasispecies present in circulating viral
RNA genomes one month later (T1). Monocyte- and lym-
phocyte-enriched cell sources were obtained by immuno-
sorting with anti-CD36 and anti-CD26 monoclonal
antibodies; the same antibodies were used to sort circulat-
ing virions originated from the same cell lineages as previ-
ously described [19].

To study the V3 quasispecies, an innovative and powerful
technology was used: the ultra-deep pyrosequencing, per-
formed with the 454 Life Sciences platform (GS-FLX, dis-
tributed by Roche). By this approach it is possible to
analyze simultaneously thousands of clonally amplified
PCR amplicons, increasing the probability of identifying
minority variants, as already shown in [23-25] for rare
HIV drug resistance mutations.

After sequencing, heterogeneity parameters were calcu-
lated for both proviral and circulating virion amino acid
sequences. Phylogenetic analysis was performed to iden-
tify the genetic relationship between viral genomes from
different sources. Co-receptor usage was deduced from the
V3 region sequence of each variant.

Table 1: Demographic, clinical and virological features of the study patients

Patient Age
(yrs)

Gender* Time of
Infection

(yrs)

Total time on
HAART

(yrs)

NADIR CD4
(cells/

microliter

CD4
T0**
(cells/

microliter)

HIV-RNA
T0**

(Log10cp/ml)

CD4
T1***
(cells/

microliter)

HIV-RNA
T1***

(Log10cp/ml)

Pt.1 48 F 18 6 312 569 <1.7 598 3,30

Pt.2 37 M 11 10 438 1093 <1.7 1162 1,92

Pt.3 52 M 8 7 336 699 <1.7 520 > 5,70

Pt.4 41 M 10 9 246 697 <1.7 428 5,25

Pt.5 50 F 17 9 223 792 <1.7 511 5,60

* M, male; F, female.
** T0: at the time of HAART interruption
*** T1: one month after HAART interruption
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Materials and methods
Patients

The enrolled subjects were 5 chronically HIV-1 infected
patients who underwent therapy interruption after pro-
longed treatment with effective HAART (overall extent ≥ 5
years, with at least 2 consecutive years before enrollment).
Therapeutic regimens included combinations of two
NRTIs and either an NNRTI or a ritonavir-boosted PI. Pt.
2 underwent a therapy interruption cycle 3 years before
the present study.

The eligibility criteria to interrupt HAART were:
CD4+>350/microliter; nadir CD4+>100/microliter;
absence of virological failure during the last HAART
course (≥ 2 years); CDC classification: A or B. The project
was approved by the Institutional Ethics Committee, and
the patients agreed to participate by signing an informed

consent. Demographic, clinical and virological data are
reported in Table 1. Plasma viremia was determined using
the Versant HIV RNA test, version 3.0 (Siemens Medical
Solutions).

All patients were infected with HIV-1 subtype B, as deter-
mined by sequence analysis of env region, according to the
Los Alamos genotyping algorithm.

Immunosorting of lymphomonocyte subpopulations and of 

HIV-1 virions

Monocytes and T lymphocyte cells were purified by
immunomagnetic sorting (Miltenyi Biotec, Bologna,
Italy) from freshly isolated peripheral blood mononuclear
cells (PBMC) by positive selection using anti-CD36 (clone
CLB-703, Monosan) antibody for monocytes and anti
CD26 (clone M-A261, Pharmingen) antibody for T-cells.

Table 2: Amino acid heterogeneity of V3 region of HIV-1 proviral quasispecies harboured by monocytes (CD36) and T lymphocytes 

(CD26) and of plasma virions replicating in the two cell types after HAART interruption.

Patient Sample type N. of unique variants* Diversity** Complexity***

Pt.1 Provirus CD36 161 0.0795 ± 0.0005 0.3798

CD26 226 0.0197 ± 0.0001 0.2119

Pt.2 Provirus CD36 231 0.1446 ± 0.0005 0.3620

CD26 59 0.0031 ± 0.0001 0.0919

Pt.3 Provirus CD36 46 0.0508 ± 0.0003 0.3042

CD26 3 0.0084 ± 0.0002 0.0738

Virus CD36 26 0.0428 ± 0.0010 0.2979

CD26 158 0.0298 ± 0.0003 0.3293

Pt.4 Provirus CD36 76 0.0226 ± 0.0007 0.1127

CD26 14 0.0457 ± 0.0003 0.1755

Virus CD36 15 0.0113 ± 0.0002 0.1138

CD26 41 0.0208 ± 0.0002 0.1222

Pt.5 Provirus CD36 157 0.0585 ± 0.0003 0.2756

CD26 120 0.0411 ± 0.0004 0.4233

Virus CD36 305 0.0728 ± 0.0005 0.3664

CD26 38 0.0042 ± 0.0001 0.0870

Sequences obtained by ultra-deep pyrosequencing were filtered through the correction algorithm and amino acid sequences obtained were 
analyzed to establish diversity and complexity, as described in the Materials and Methods section.
* Number of unique sequences obtained after dereplication
** Diversity: p distance ± SEM
*** Complexity: normalized Shannon entropy
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HIV-1 virions from patients' plasma, originating from
either monocytes or T lymphocytes, were sorted by immo-
bilized antibody capture (IAC), using the same antibodies
used for PBMC sorting (anti CD36 and anti CD26 anti-
bodies) as described elsewhere [21]. To rule out the possi-
bility that soluble molecules present in the fluids could
inhibit virus binding to specific MAbs, IAC was performed
on HIV-1 purified according to published procedures [19]
by applying 50 μl of purified virion preparations, diluted
as appropriate to contain 50,000–100,000 RNA copies/
ml, on 96 wells PRO-BIND Assay Plates (Becton Dickin-
son) coated with the specific Mabs. As IAC yield for each
antibody ranged between 5 and 10% of input virus, to
obtain sufficient amounts of virions to undergo ultra-
deep pyrosequencing, HIV-1 captured by 10 different
wells coated with either anti-CD36 and or anti-CD26 were
pooled.

To validate the method used to sort the viral quasispecies
originating from the two cellular sources, two HIV-1
strains, genetically distinct and with different co-receptor
usage (i.e. the reference R5 strain HIV-1 BaL and a clinical
X4 isolate) were grown on monocytes derived macro-
phages (MDM) and on PHA activated CD4+ T lym-
phocytes, respectively. The R5 and the X4 viral
preparations were mixed at a ratio of 1:9 and applied to 2
sets of immuno-capture wells, coated with anti-CD36 and
anti-CD26 antibodies, respectively. Then the immuno-
captured virions were analyzed by ultra-deep pyrose-
quencing. By this approach, only 0.51% of virions cap-
tured by anti-CD36 actually represented virions with a V3
sequence matching that of the X4 strain grown on CD4+
T lymphocytes; in parallel, only 0.12% of virions captured
by anti-CD26 segregated with the R5 strain grown on
MDM. These results indicate that the cell lineage-specific
antibodies in fact captured the virions originating from
the corresponding cellular subpopulation, with high spe-
cificity (see Additional file 1).

To further establish the specificity of the virion immuno-
capture method, binding to the control antibody anti-
CD19 was evaluated. The proportion of virions captured
by anti-CD19 was <0.001% for R5 strain grown on MDM
and 0.195% for the X4 strain grown on CD4+ T lym-
phocytes. The proportion of plasma virions from the
study patients captured by the control antibody was con-
sistently low (in the range of 0.3–0.7%).

Nucleic acid extraction, RT and PCR conditions

Total DNA extraction from CD36 and CD26 cells was per-
formed by using a DNA blood kit (Qiagen, Hilden, Ger-
many). HIV-1 RNA from immunocaptured virions
underwent extraction using the QIAamp Viral RNA kit
(Qiagen). Retrotranscription was performed by random
hexamer extension with M-MuLV Reverse Transcriptase
(Roche) for 1 h at 42°C followed by 15 min at 65°C.

For V3 region amplifications, two rounds of 35 cycles
(95°C for 2 min, 95° for 30 sec, annealing at 60°C for 30
sec, extension at 72°C for 45 sec and final elongation at
72°C for 5 min.) were carried out using a proof-reading
enzyme (Fast Start High fidelity enzyme, Roche): outer
sense primer ATGGGATCAAAGCCTAAAGCCATGTG
(position 6556–6581 in HXB2), outer antisense primer
AGTGCTTCCTGCTGCTCCCAAGAACCCAAG (position
7822–7792 in HXB2), inner sense primer GCCTC-
CCTCGCGCCATCAG TGGCAGTCTAGCAGAAGAAG
(position 7010 to 7029 in HXB2) and inner antisense
primer GCCTTGCCAGCCCGCTCAGCTGGGTCCCCTC-
CTGAGG (position 7332 to 7315 in HXB2). The inner
primers included 5' extensions (underlined) which pro-
vided binding sites for pyrosequencing (see below).

To maximize the number of templates undergoing ultra-
deep pyrosequencing, we pooled a number of 2 to 10 dif-
ferent PCR reactions for each sample type.

In addition, in order to avoid possible cross-contamina-
tion of the amplicons, each sample was handled in sepa-
rate time frames, and accurate decontamination was
performed after each manipulation of the nucleic acids.

Ultra-deep pyrosequencing

Ultra-deep pyrosequencing was carried out with the 454
Life Sciences platform (GS-FLX, Roche Applied Science).
PCR products were clonally amplified on capture beads in
water-in-oil emulsion micro-reactors, and pyrosequenc-
ing was performed by using one of 16 lanes of a 70 × 75
mm PicoTiterPlate for each sample, following the stand-
ard approach for PCR amplicons sequencing. For each
sample an SFF file was obtained, from which nucleotide
sequence data were extracted.

UDPS error rate estimation and correction algorithm

To measure the accuracy of the ultra-deep pyrosequenc-
ing, a plasmid clone containing the region of interest was
sequenced in parallel by ultra-deep pyrosequencing and
by the Sanger method. The plasmid clone was obtained
from a patient's sample by inserting a PCR amplicon
spanning nucleotide positions 6,989 to 7,667 (reference
strain HXB2) into a pCR4-TOPO vector (Invitrogen
Corp.). Sanger sequencing of the clone was performed on
ABI Prism 310, using the BigDye Terminator cycle
sequencing kit, following the manufacturer's instructions
(Applied Biosystems Warrington, UK). Any differences
between the two methods were considered to be a GS-FLX
sequencing error. Because it has been previously reported
that the pyrosequencing error rate is higher in regions
with nucleotide repeats of three or more identical bases,
defined as homopolymeric [26], we determined the error
rates separately in homopolymeric and in non-homopol-
ymeric regions. The error rate in homopolymeric regions
(3 to 5 identical nucleotides) was 0.0097 ± 0.0056 (mean



Retrovirology 2009, 6:15 http://www.retrovirology.com/content/6/1/15

Page 5 of 13

(page number not for citation purposes)

± SEM), whereas in non-homopolymeric regions it was
0.0024 ± 0.0009; the overall error rate was 0.0043 ±
0.0016.

To be noted, the plasmid used for the evaluation con-
tained a highly polymeric region of 6 adjacent adenines
(A), that was read as an incomplete extension of 5 A-
homopolymer (Additional file 2). However, this particu-
lar pattern was present only in CD36-virus from one
patient, where it represented 21% of the total clones from
this source. Of these, only 3% were read well, whereas the
remaining 18% showed a 5 A-homopolymer. The latter
situation introduced a stop codon in the sequences, deter-
mining their elimination during the subsequent correc-
tion process of the sequences. Therefore the error
appeared to have no consequence on the overall results.

Based on these considerations, and with the aim of con-
sidering only the sequences leading to functional prod-
ucts, we adopted the following correction algorithm.
Nucleotide sequences from each sample were divided into
two separate files, one for the forward reads and one for
the reverse ones. These sequences were then translated
into amino acids with EMBOSS [27] using all possible
frames; only those translated with the right open reading
frame (ORF) were retained.

Multiple alignments of the amino acid sequence files were
then constructed using the software MUSCLE [28]
(default options) and trimmed at the 5' and 3' termini to
include only a region potentially covered by both forward
and reverse reads. The env region resulting from this trim-
ming consisted of about 66 amino acids and encom-
passed the V3 loop (-16 before and +15 after V3 loop).

To reduce the error rate, sequences containing ambiguous
bases (Ns) were also discarded; this reduced the error rate
due to the possible presence of reads coming from multi-
templated beads [29]. Then, for each sample we com-
pared the forward sequence datasets with the reverse ones
and clustered them, reporting only identical matches
between the two.

The application of the correction algorithm led to a reduc-
tion in the number of sequences for each sample type that
underwent quasispecies analysis (see Additional file 3);
the unique variants for each sample type obtained after
de-replication were used for the construction of the phyl-
ogenetic trees.

All the sequences obtained from the patients have been
compared to the sequences of reference HIV strains
present in the laboratory to rule out possible contamina-
tion with these amplicons.

Heterogeneity parameters calculation and construction of 

phylogenetic trees

After the application of the above mentioned sequence
correction algorithm, the resulting amino acid sequences
were used for quasispecies analysis. Although nucleotide
sequences provide more information to the end of heter-
ogeneity and phylogenetic analyses, the choice to use
amino acid sequences was forced by the limitation of
existing bioinformatic tools, designed for medium-small
scale size of data sets. However, we were able to perform
a limited phylogenetic analysis based on nucleotide
sequences from the patient displaying the smallest
number of unique variants (i.e. pt 4), obtaining a tree
shape substantially equivalent to that based on amino
acid sequences (not shown). To assess diversity, the mean
genetic distance of amino acid sequences was calculated
by PROTDIST using Jones-Taylor-Thornton matrix and
with an in-house written code. Quasispecies complexity
was calculated using normalized Shannon (S) entropy
[21]. The neighbor-joining method was used to construct
individual phylogenetic trees for each patient. Bootstrap
analysis of 1,000 replicates was used to place approximate
confidential limits on individual branches. All the algo-
rithms for quasispecies analysis were included in the
MEGA package Version 4.0.1. Although the individual
patients' trees are built using only unique variants in each
sample type (CD36-provirus, CD26-provirus, CD36-
virus, CD26-virus), the relative abundance of sequences
included in the clusters and their mean PSSM score were
referred to all the variants in each sample type.

Prediction of coreceptor usage by position specific score 

matrices (PSSM)

PSSM analysis for HIV-1 subtype B was applied to the V3
amino acid sequences obtained by ultra-deep pyrose-
quencing to obtain a score for co-receptor usage predic-
tion as described elsewhere [30]. In general, the higher the
score, the higher the probability that the given V3
sequence uses CXCR4 co-receptor. The 95th and 5th per-
centiles for X4 and R5 tropism are > -2.88 and < -6.96,
respectively. As reference, the score of the R5 strain HIV-1
BaL is -12.96, while the score of the X4 strain HIV-1 HXB2
is +3.47.

Results
V3 loop heterogeneity in HIV from monocytes and T 

lymphocytes

The characteristics of the 5 study patients are reported in
Table 1. Four types of samples were analyzed: 1) proviral
DNA from monocytes (CD36-provirus); 2) proviral DNA
from T lymphocytes (CD26-provirus); 3) viral RNA from
anti CD36-captured virions (CD36-virus); 4) viral RNA
from anti CD26-captured virions (CD26-virus). For 2
patients (Pt. 1 and Pt. 2) the analysis was restricted to pro-
virus, since the rebounding HIV-1 viremia was too low to
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perform immuno-capture and subsequent quasispecies
analysis.

The GS-FLX sequencing platform generated an average of
13,456 reads per sample, determining a median coverage
of 12,609 reads per nt. A correction algorithm, substan-
tially based on the translation in amino acid sequences
and on the retention of only coding sequences, was
applied. The number of filtered amino acid sequences
used for quasispecies analysis is reported in Additional
file 3. The application of this algorithm restricted the anal-
ysis only to sequences with a phenotypic significance and
at the same time reduced the computational burden,
allowing us to use conventional softwares for phyloge-
netic analysis.

The number of unique variants, diversity and complexity
of HIV-1 V3 loop for CD36-provirus, CD26-provirus,

CD36-virus and CD26-virus are shown in Table 2. Diver-
sity was significantly correlated with complexity (r = 0.72,
p = 0.0017, in Pearson correlation test). All these parame-
ters in the monocyte compartment (including proviral
and viral HIV-1) were generally higher than those found
in T-lymphocytes. In fact, with the exception of one
patient (Pt.1), in all patients unique proviral sequences
deriving from CD36 cells were more numerous than those
harboured by CD26 cells; similarly, with the exception of
one patient (Pt 4), the diversity was higher in CD36 pro-
virus as compared to CD26 provirus. Concerning circulat-
ing virions, the situation was more variable. On the
whole, mean diversity of proviral+viral sequences of
CD36-derived HIV-1 was significantly higher than CD26-
derived HIV-1 (0.060 ± 0.015 vs 0.022 ± 0.006, p = 0.027
in Student's t test).

Individual phylogenetic analysis of HIV-1 env region from 

monocytes and T lymphocytes

The repertoire of V3 amino acid sequences from each
patient was also used to build individual phylogenetic
trees that are shown in Figures 1, 2, 3, 4 and 5.

On the whole, consistent with heterogeneity data, the
phylogenetic trees showed a more heterogeneous quasis-
pecies in provirus harboured by CD36 cells than in provi-
rus harboured by CD26 cells. Both monocytes and T
lymphocytes might contribute to virus rebounding in the
circulation after one month from therapy interruptions,
although other virus sources might be also involved. In 3
out of 5 patients (Fig. 1, 2 and 4) monophyletic clusters of
sequences deriving from each of the cell source could be

Individual phylogenetic tree of HIV-1 V3 amino acid sequences from Pt.2Figure 2
Individual phylogenetic tree of HIV-1 V3 amino acid 
sequences from Pt.2. Proviral quasispecies harboured by 
monocytes (red circle = CD36-provirus) and T lymphocytes 
(green circle = CD26-provirus) of Pt.2 were analyzed, as in 
Fig. 1.

Individual phylogenetic tree of HIV-1 V3 amino acid sequences from Pt.1Figure 1
Individual phylogenetic tree of HIV-1 V3 amino acid 
sequences from Pt.1. Proviral quasispecies harboured by 
monocytes (red circle = CD36-provirus) and T lymphocytes 
(green circle = CD26-provirus) of Pt.1 were analyzed after 
long term suppression of viremia. Nucleotide sequences 
obtained by ultra-deep pyrosequencing were translated in 
amino acid sequences and filtered through the correction 
algorithm described in the Material and Methods section. 
Unique sequences for each sample type were used to build 
phylogenetic trees with the neighbour-joining method. Boot-
strap values ≥ 80% are shown. The cellular sources of provi-
ral and viral sequences are indicated by coloured bullets. 
Sample type-specific cluster with bootstrap values ≥ 80% are 
encircled with the corresponding colours. PSSM score was 
calculated for each of these clusters, and the corresponding 
values are included in the insert, together with their relative 
abundance in the corresponding sample type. Bars indicate p 
distance scale.
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highlighted. On the basis of the phylogenetic relation-
ships between virions shed into the circulation and the
proviral sequences archived in the two cellular sources, 3
distinct situations could be identified in the 3 patients
where this analysis could be performed: i) in Pt. 4 (Fig. 4)
the circulating virus (carrying either CD26 or CD36 on its
surface) segregated with provirus harboured by T lym-
phocytes, implying that, apparently, the provirus har-
boured by monocytes before therapy interruption did not
contribute to viremia rebound, at least at this time point;
ii) in Pt. 3 (Fig. 3) both archived and replicating virus
sequences were interspersed, preventing the identification
of reservoir-specific proviral clusters; iii) in Pt. 5 (Fig. 5),
the situation was similar to Pt. 3, but in addition, a segre-
gating cluster of circulating virions displaying the CD36
surface marker could be identified that seemed not to be
related to the provirus harboured by either circulating cell
compartment. It is possible that the lack of separation of
proviral quasispecies from CD36 and CD26 cells in

patients 3 and 5 simply reflects a mere artefact. However,
in our opinion, the contamination of CD36 provirus with
lymphocyte-derived viruses is unrealistic, since data from
Table 2 suggest that CD36 provirus from these two
patients had greater variability (as both n. of variants and
diversity) than the corresponding CD26 provirus, thereby
ruling out that the CD36 provirus was contaminated by
CD26 provirus. The proportionally fewer proviral
sequences in monocytes is a more likely explanation. In
fact, in the present study as in a previous one from our
group [31], proviral load in monocytes was about 1/5 of
that present in T lymphocytes. However, also to this
regard the higher variability of CD36 provirus renders
unlikely that a mere disproportion between the proviral
quasispecies from the two cell compartments may fully
explain the lack of separation.

Co-receptor usage prediction of viral quasispecies

The sequence repertoire obtained by ultra-deep pyrose-
quencing was also used to obtain a prediction of co-recep-
tor usage, by PSSM analysis of V3 loop amino acid
sequences. The distribution of variants according to their
score value for each patient is shown in Figures 6, 7, 8, 9
and 10. Some general findings could be identified. For
both proviral and circulating viral genomes in monocytes
and T lymphocytes, the results indicated a predominant
CCR5 coreceptor usage (R5 phenotype). However, the

Individual phylogenetic tree of HIV-1 V3 amino acid sequences from Pt.4Figure 4
Individual phylogenetic tree of HIV-1 V3 amino acid 
sequences from Pt.4. Proviral quasispecies harboured by 
monocytes (red circle = CD36-provirus) and T lymphocytes 
(green circle = CD26-provirus), virions rebounding into the 
circulation one month after therapy interruption (blue circle 
= CD36-virus) and CD26 (purple circle = CD26-virus), from 
Pt.4 were analyzed as in Fig. 3.

Individual phylogenetic tree of HIV-1 V3 amino acid sequences from Pt.3Figure 3
Individual phylogenetic tree of HIV-1 V3 amino acid 
sequences from Pt.3. Proviral quasispecies harboured by 
monocytes (red circle = CD36-provirus) and T lymphocytes 
(green circle = CD26-provirus) of Pt.3 were analyzed as in 
Fig. 1. In addition the analysis also included from the same 
patient virions rebounding into the circulation one month 
after therapy interruption and sorted by immunocapture 
with monoclonal antibodies to CD36 (blue circle = CD36-
virus) and CD26 (purple circle = CD26-virus).
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intra-patient range of PSSM score values was rather wide,
particularly in the archived proviral sequences, highlight-
ing the presence of minority sequences (from <0.1% to
4.2%) with a clear CXCR4 coreceptor usage (X4 pheno-
type) only in archived sequences from at least one cellular
reservoir in 4 patients (Fig 6, 7, 9, 10), while only one
patient (Pt. 3, Fig. 8) harboured exclusively R5 popula-
tions. None of the patients showed X4 variants in circulat-
ing virus, as the minimum value obtained by PSSM
prediction was -2.99.

In addition, we calculated the mean score for the sample-
specific clusters segregating with bootstrap values ≥ 80%
to see if the phylogenetic segregation could be associated
with different biological properties, namely coreceptor
usage. Individual scores of segregating clusters from each
sample type are shown in the inserts of Fig. 1, 2, 3, 4, 5,
together with their relative abundance in the correspond-
ing sample type. It is noteworthy that two clusters of
CD36-provirus, identified in Pt. 2 and Pt. 4 (Fig. 2 and 4),
displayed PSSM scores clearly predicting X4 phenotype
(+3.73 and +3.76). However, these clusters represented
only 1.4% and 4.2%, respectively, of all CD36-provirus
sequences in the corresponding patients. We also found a
single cluster of CD26-provirus in Pt. 4, including only
1.2% of CD26-provirus sequences, with a mean PSSM
score of -3.75, when mean CD26 provirus score was -8.40.

PSSM score distribution of V3 amino acid sequences from Pt.1Figure 6
PSSM score distribution of V3 amino acid sequences from Pt.1. The PSSM score distribution of all the detected vari-
ants from CD36- and CD26-provirus present in Pt.1 at the moment of therapy interruption are shown. Vertical orange lines 
indicate 95th and 5th percentiles for CXCR4 and CCR5 predicted co-receptor usage (> -2.88 and < -6.96 respectively).

Individual phylogenetic tree of HIV-1 V3 amino acid sequences from Pt.5Figure 5
Individual phylogenetic tree of HIV-1 V3 amino acid 
sequences from Pt.5. Proviral quasispecies harboured by 
monocytes (red circle = CD36-provirus) and T lymphocytes 
(green circle = CD26-provirus), virions rebounding into the 
circulation one month after therapy interruption (blue circle 
= CD36-virus) and CD26 (purple circle = CD26-virus), from 
Pt.5 were analyzed as in Fig. 3.
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Concerning circulating virus, in Pt. 5 less negative score
values were observed for CD26-virus (-4.85) as compared
to CD36-virus (-8.43). In addition, in this patient the seg-
regating cluster of CD36-virus presented a mean score
value (-9.02) (Fig. 5) more negative than the mean values
of CD36-virus. Also in this case, this cluster included only
a minority (6.7%) of all CD36-virus sequences.

Discussion
This study provided a direct comparison between the HIV-
1 quasispecies archived in monocytes and T lymphocytes

with that present in circulating virions replicating in the
same cell types after one month from therapy interrup-
tion, exploiting the presence of cell lineage markers on
viral envelope. In fact, this method proved to be highly
specific in sorting the virions originating from monocytes
and CD4 T lymphocytes, respectively. The amount of
plasma virions captured by anti-CD26 and -CD36 anti-
bodies ranged between 5 and 10%. However, a similar
proportion of virions immuno-captured by these two
antibodies did not necessarily mean that the amount of
virions carrying these molecules was similar. In fact, a

PSSM score distribution of V3 amino acid sequences from Pt.3Figure 8
PSSM score distribution of V3 amino acid sequences from Pt.3. The PSSM score distribution of all variants from 
CD36- and CD26-provirus detected in Pt.3 at the moment of therapy interruption are shown together with those from CD36- 
and CD26- captured virus present one month after therapy stop. Vertical orange lines indicate percentiles for predicted co-
receptor usage as in Fig. 6.

PSSM score distribution of V3 amino acid sequences from Pt.2Figure 7
PSSM score distribution of V3 amino acid sequences from Pt.2. The PSSM score distributions of all the variants from 
CD36- and CD26- provirus detected in Pt.2 at the moment of therapy interruption are shown. Vertical orange lines indicate 
percentiles for predicted co-receptor usage as in Fig. 6.
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number of factors may explain this apparent paradox,
including the asymmetric position of cell-derived mole-
cules on the virion envelope, and the different affinity of
the monoclonal antibodies used for the immuno-capture,
as claimed in previous study [32].

The analysis took advantage of ultra-deep pyrosequencing
based on the powerful technology of massively parallel
sequencing that enabled us to perform a very detailed
analysis of viral quasispecies. The data set obtained for
each patient is some order of magnitude higher than any
previously studied with conventional approaches based
on cloning of PCR products or on limiting dilution PCR
[11,13-15]. This allowed us to analyze previously inacces-
sible aspects of HIV-1 quasispecies, such as coreceptor
usage of minority variants present in archived proviral
sequences and in actually replicating virions.

One of the main findings of this study is that the hetero-
geneity of provirus associated with monocytes/macro-

phages after prolonged HAART is generally higher than
that of T lymphocytes, even though in this study the pro-
viral load in monocytes was about 1/5 of that present in T
lymphocytes, in agreement with our previous findings
[31].

It has been previously shown that during therapy, HIV-1
variants harboured by monocytes may evolve more rap-
idly than those harboured by T cells [11,14], eventually
leading to segregation of viral quasispecies present in the
two different cell types. This is probably due to the fact
that monocytes and T lymphocytes may show different
sensitivity to individual antiviral drugs, with residual
ongoing viral replication in monocytes also in the pres-
ence of suppressive therapy. However, a greater diversity
in HIV quasispecies harboured by monocyte/macro-
phages may be also due to other possibilities, including
larger numbers of locally replicating quasispecies prior to
treatment. In favour of this hypothesis recent data by Joos
et al. [33] showed that rebounding virus after therapy

PSSM score distribution of V3 amino acid sequences from Pt.5Figure 10
PSSM score distribution of V3 amino acid sequences from Pt.5. The PSSM score distribution of all variants from 
CD36- and CD26-provirus detected in Pt.5 at the moment of therapy interruption are shown together with those from CD36- 
and CD26-captured virus present one month after therapy stop. Vertical orange lines indicate percentiles for predicted co-
receptor usage as in Fig. 6.

PSSM score distribution of V3 amino acid sequences from Pt.4Figure 9
PSSM score distribution of V3 amino acid sequences from Pt.4. The PSSM score distribution of all variants from 
CD36- and CD26-provirus detected in Pt.4 at the moment of therapy interruption are shown together with those from CD36- 
and CD26-captured virus present one month after therapy stop. Vertical orange lines indicate percentiles for predicted co-
receptor usage as in Fig. 6.
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interruption was phylogenetically older than virus present
at the moment of therapy start. These findings argued
against the possibility that rebounding virus during ther-
apy interruptions originated from viral populations
undergoing low-level persistent replication during sup-
pressive therapy Instead, they are consistent with the
hypothesis of virus reactivation from latent reservoirs.

R5 variants are generally predominant in our patients,
even long after primary infection. This is in accordance
with numerous studies showing that most of the patients'
isolates, even at late stages of infection, are generally R5/
monocytotropic or R5/X4 dual-tropic [34,35]. Further-
more, the results of the present study indicated that circu-
lating monocytes and T lymphocytes may harbour minor
provirus variants predictive of CXCR4 usage, as previously
shown ex vivo for tissue resident macrophages or in vitro
for monocytes-derived-macrophages [36,37]. The fact that
the two patients displaying clusters of sequences predic-
tive of CXCR4 usage in proviral HIV DNA in monocytes
have been on fully suppressive HAART for almost the
entire time of the infection, although intriguing, is not
completely unexpected, as in a recent study where X4
viruses (either pure or dual/mixed R5/X4) were recog-
nized in 17.2% of patients studied early after seroconver-
sion [38].

It is not possible to deduce information on the replicative
competence of archived provirus from these molecular
data. In fact, one limitation of the next generation pyrose-
quencing technology is that the clonal sequences may not
be physically separated from the whole quasispecies.
Hence, it would not be possible to conduct phenotypic
analysis of clones unless the synthetic approach was used
to re-construct the viral genomes to undergo biological
characterization.

The small number of patients under study and the varia-
ble profile of viral quasispecies impair the possibility to
make general conclusions from the present results. Never-
theless, the higher HIV-1 heterogeneity in monocytes and
the presence of distant variants suggests that this compart-
ment, although quantitatively inferior to the CD4 T cell
reservoir [31], may represent a possible source of viral
diversity and contribute to escape mechanisms in regards
to both immunity and antiviral therapy. This idea may be
clinically relevant in the light of the recent therapeutic
approaches involving co-receptor antagonists [39] that
required a deep profiling of the co-receptor usage [40].

Moreover, we could obtain direct evidence that both T
lymphocytes and monocytes do actually contribute to
virus rebounding in the circulation early after therapy
interruption. However, at the same time we found that
minor replicating clusters may derive from cellular

sources different from the main circulating reservoirs. This
is in agreement with the results of a recent study where
quasispecies analysis of residual viremia present in
patients on HAART was established and compared to
those found in resting T CD4 cells [41].

Conclusion
The combined use of immuno-capture of circulating viri-
ons associated with the ultra-deep sequence analysis of
V3-containing env region may be a powerful tool to inves-
tigate viral dynamics, useful for exploring the contribu-
tion of different viral reservoirs to replicating virus along
the natural history of the infection, and for identifying co-
receptor usage in minority viral populations harboured by
different cell lineages.
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Figure S1 – Phylogenetic tree obtained from anti-CD36 and anti-

CD26 immunocapture of an artificial mixture of R5 and X4 labora-

tory strains. Two HIV-1 strains, genetically distinct and with different 

coreceptor usage (i.e. the reference R5 strain HIV-1 BaL and a clinical X4 

isolate, whose V3 loop sequences are CTRPNNNTRKSIHIGPGRAFYTT-

GEIIGDIRQAHC, PSSM score: -12.35, and CTRPNNNTRRRMTAGP-

GRVYYTTGQIVGDIRKAHC, PSSM score: +3.68, respectively) were 

grown the first on monocytes derived macrophages (MDM) and the sec-

ond on PHA activated CD4+ T lymphocytes. The R5 and the X4 viral 

preparations were mixed at a ratio of 1:9 and applied to 2 sets of immu-

nocapture wells, coated with anti-CD36 and anti-CD26 antibodies, 

respectively; then the immunocaptured virions were analyzed by ultra-

deep pyrosequencing. For comparison, the sequences obtained by ultra-

deep sequencing of the R5 and X4 strains (before mixing) were included 

in the tree. The results indicated that >99% of the sequences captured by 

anti-CD36 and anti-CD26 clustered with the R5 and X4 sequences, 

respectively. On the contrary, only one sequence variant, representing 

0.51% of virions captured by anti-CD36, segregated with the X4 

sequences, and only one sequence, representing 0.12% of virions captured 

by anti-CD26, clustered with the R5 sequences, suggesting very low level 

of cross contamination. Symbols: red circle = virions captured by anti-

CD36; green circle = virions captured by anti-CD26; yellow circle = R5 

BaL strain; blue circle = X4 clinical isolate
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Figure S2 – Reference plasmid flowgram. Graphical representation of 
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5' and 3' termini discarded by the correction procedure described in the 

Materials and Methods section are shaded in grey. Coverage of the single 

nucleotides is shown with a cyan line. Homopolymeric regions are shaded 

with pink boxes and sequencing errors are indicated by histogram bars 

with the following colour code: T-red, G-black, C-blue, A-green, Del-grey. 

The sequence obtained by the Sanger sequencing is shown at the bottom.
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