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Mapping reads to a reference genome represents the critical first step in analyzing NGS data. Yet when aligning short sequences of
imperfect quality to large reference genomes, it is important to realize that a considerable fraction of reads maps incorrectly or not at
all. While longer read lengths (~75–100 bp) and read pairing information will help address this issue, the improvements will be
marginal. Currently, as many as 5–15% of reads from a high quality paired-end sequencing run cannot be uniquely mapped to the
human genome. An obvious approach to improving read alignment rates is to use a more sensitive aligner, such as Novoalign for
Illumina data or SHRiMP (http://www.compbio.cs.toronto.edu/shrimp) for ABI SOLiD data. Unfortunately, more sensitive aligners
also increase computational load and execution time. A better solution might be a two-step mapping strategy, in which a fast aligner
(Bowtie or BWA) quickly places 70–80% of reads in a dataset, and then a more sensitive aligner is applied to the remaining unplaced
reads. The output of most aligners can be converted to SAM/BAM format and merged together using SAMtools (http://
www.samtools.sourceforge.net).

Reads that map incorrectly to the reference sequence are a more difficult and potentially more worrisome problem to address. Many
aligners now provide a “mapping quality” score, a log-scaled numerical representation of the confidence that a read is correctly
mapped. Filtering reads by mapping quality may remove alignment-related artifacts. In our experience with Illumina data, 45 and 70
make good cutoffs for BWA and Maq, respectively. Another approach to remove misaligned reads prior to SV detection is to identify
and remove troublesome regions of the reference sequence, such as centromeres, telomeres, and regions enriched for tandem
duplications. The disadvantage of this approach, of course, is that such regions are often enriched for structural variation (28, 44).

CNV detection using read depth (RD) and SV detection with PEM each have different advantages and limitations. RD-based methods
can utilize both fragment-end and paired-end data to infer CNVs, and often detect certain classes of SV – segmental duplications, for
example – that are refractory to PEM. In contrast, PEM approaches can identify copy-number-neutral events (e.g., inversions) and
novel insertions to the reference genome that would be missed by RD approaches alone. Both approaches are limited in their ability to
characterize variation in highly repetitive regions, where short reads cannot be uniquely mapped with high accuracy. Ultimately, a
combined approach of RD and PEM methods yields the most comprehensive information about structural variation in a sequenced
genome.

While traditional ESP approaches have the advantage of sequencing an entire clone to resolve complex structural events, they are also
costly and labor-intensive compared to massively parallel sequencing. As the range of available insert sizes for paired-end sequencing
(250 bp–3 kbp) continues to grow, so too does the sensitivity for SVs. Currently, as many as 90% of large deletions detected by ESP
of BACs on capillary sequencers are detectable with long insert libraries on next-generation platforms. Of course, long insert libraries
typically require more input DNA, which is disadvantageous when samples are in limited supply. This practical reality, combined with
statistical analyses of the contributions of various insert sizes to SV detection, suggest that a combined library approach of small and
large insert sizes offers the greatest probability of resolving SVs on NGS platforms (6).

Some classes of SVs, such as inversions and translocations, are more difficult to detect and validate using current technologies.
Furthermore, studies of structural variation in humans have shown that SV events are enriched near duplicated or repetitive regions of
the human genome (28, 44) that are refractory to accurate mapping of short NGS reads. Detecting these variants with high specificity
require further analysis and filtering.

To remove false positives from alignment artifacts, and to precisely define the breakpoints of predicted SVs, we perform de novo
assembly of all read pairs that have at least one end mapped to the predicted intervals. Our internally developed short read assembler
TIGRA (Chen et al. unpublished) returns the exact locations of SVs and the nucleotide sequences that span each SV’s breakpoint(s).
TIGRA has achieved confirmation rates as high as 93%.

Validating SVs predicted by NGS is a necessary step, but can be difficult because these variants are often flanked by repetitive
sequence and encompass hundreds or thousands of base pairs. The first phase of the Human Genome Structural Variation (HGSV)
Project (28), while reliant on traditional ESP approaches, employed multiple validation strategies that are suitable for SVs predicted
from NGS data.

First, discordant fosmids whose apparent insert sizes suggested the presence of underlying SV were subjected to four complete
restriction digests and resequenced via ESP. In NGS, this is analogous to sequencing multiple paired-end libraries with varying insert
sizes, an approach which statistical theory suggests is most likely to resolve SV breakpoints (6).

A second validation strategy is to design custom high-density oligonucleotide arrays targeting specific insertions and deletions. Such
custom arrays not only offer tools for validation, but also offer the opportunity to screen for validated SVs in other samples or
populations. Orthogonal datasets, such as those described in Subheading 2 offer a third avenue of SV validation. High-density SNP
arrays, spectral karyotyping, and even cytogenetic screens can provide evidence of large structural variants to corroborate predictions
from NGS data.
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Abstract
The emergence of next-generation sequencing (NGS) technologies offers an incredible
opportunity to comprehensively study DNA sequence variation in human genomes. Commercially
available platforms from Roche (454), Illumina (Genome Analyzer and Hiseq 2000), and Applied
Biosystems (SOLiD) have the capability to completely sequence individual genomes to high
levels of coverage. NGS data is particularly advantageous for the study of structural variation (SV)
because it offers the sensitivity to detect variants of various sizes and types, as well as the
precision to characterize their breakpoints at base pair resolution. In this chapter, we present
methods and software algorithms that have been developed to detect SVs and copy number
changes using massively parallel sequencing data. We describe visualization and de novo
assembly strategies for characterizing SV breakpoints and removing false positives.
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1. Introduction
Massively parallel sequencing technologies have fundamentally changed the study of
genetics and genomics. New instruments from Roche (454), Illumina (Genome Analyzer
and Hiseq 2000), and Applied Biosystems (SOLiD) generate millions of DNA sequence
reads in a single run, enabling researchers to address questions with unprecedented speed
(1). These next-generation sequencing (NGS) technologies make it feasible to sequence
entire genomes to high levels of coverage in a matter of weeks. Indeed, the complete
genomes of several individuals have been sequenced on new platforms (2–9), and ambitious
efforts like the 1,000 Genomes Project (http://www.1000genomes.org) aim to add thousands
more, offering an unprecedented survey of DNA sequence variation in humans.

NGS has enabled powerful new approaches for the detection of copy number variation
(CNV) and structural variation (SV) in the human genome. Compared to array-based
methods, NGS has demonstrated higher sensitivity, in terms of the types and sizes of
variants that can be detected. Furthermore, sequencing enabled the precise definition of SV
breakpoints, information that is critical for assessing functional impact and inferring likely
mutational mechanisms of origin.

Most current approaches to sequence-based SV detection extend seminal work by Volik et
al. (10) and Raphael et al. (11). Their method, first presented in 2003, applied end-sequence
profiling (ESP) of bacterial artificial chromosomes to map structural rearrangements in
cancer cell lines. The ESP method requires sequencing both ends of a genomic fragment of
known size (e.g., a 200-kb BAC insert) and then mapping the end-sequence pair to a
reference sequence. Fragments overlapping SV events result in paired sequences that map to
different parts of the reference genome, possibly another chromosome entirely. In 2005,
Tuzun et al. (12) used this approach to systematically discover SVs in a human genome,
reporting hundreds of intermediate-sized variants, including insertions, deletions, and
inversions.

Paired-end sequencing on NGS platforms has enabled detection of CNV and SV in the
human genome at unprecedented scale and throughput, and at a substantially reduced cost.
Korbel et al. (13) developed a paired-end mapping (PEM) approach for the Roche/454
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platform and used it to fine-map more than 1,000 SVs in two human genomes. Campbell et
al. (14) used Illumina paired-end sequencing to characterize genomic rearrangements in
cancer cell lines. Massively parallel sequencing has since been employed to systematically
characterize large-scale variation in individual (2, 6, 8, 13) and cancer (14–17) genomes.

Although NGS platforms are well-suited to CNV and SV detection, analysis of NGS data
presents substantial bioinformatics challenges due to the relatively short read lengths (36–
250 bp) and the unprecedented volume of data. In this chapter, we discuss the tools and
methods that have been developed for NGS data analysis – including alignment, assembly,
variant detection, and visualization – for the characterization of CNV and structural
variation.

2. Materials
2.1. Massively Parallel Sequencing Data

Three commercially available NGS platforms have been successfully applied to the
discovery of CNV/SV in humans, and will be the focus of this review: the 454 platform
(Roche), the GenomeAnalyzer/HiSeq2000 platform (Illumina), and the SOLiD platform
(Life Technologies).

2.1.1. Roche (454) Data—The Roche (454) Genome Sequencer FLX (18) utilizes
massively parallel pyrosequencing of DNA fragments that are amplified en masse by
emulsion PCR (1). The current FLX Titanium chemistry produces up to 1.25 million reads
per run, with read lengths of ~400 bp. A single run yields almost half a billion base pairs
(0.5 gb) of high-quality sequence. While the 454 platform is prone to indel errors near runs
of multiple nucleotides (homopolymers), the substitution error rate is very low, and the
relatively long reads are well-suited to alignment or de novo assembly.

2.1.2. Illumina (Solexa) Data—The Illumina (Solexa) Genome Analyzer IIx utilizes
sequencing-by-synthesis of surface-amplified DNA fragments (3). While the reads produced
on the Illumina platform were initially quite short (~32–40 bp), the current instrument yields
~500 million 100-bp reads (50 gb) per run. The astonishing sequence throughput of Illumina
machines present substantial informatics challenges, particularly the alignment of short
sequences of imperfect quality to large reference sequences. Indeed, an entire generation of
novel algorithms (Maq, BWA, Novoalign, Bowtie, and others) has been developed to
address the analysis challenges of Illumina sequencing.

2.1.3. ABI SOLiD Data—The Applied Biosystems SOLiD sequencer uses a unique
process catalyzed by DNA ligase, in which oligo adapter-linked DNA fragments are coupled
to magnetic beads and amplified by emulsion PCR (6). The current instrument (SOLiD 3)
produces up to 50 gb of high-quality sequence per slide in the form of 35- or 50-bp reads. A
unique advantage of the ABI SOLiD platform is its di-base encoding scheme, in which each
base is effectively called twice in a sequencing read. The availability of two calls per base
makes it possible to distinguish between sequencing errors and true variation, thereby
improving the overall accuracy of reads from this platform.

2.1.4. Paired-End Libraries—The optimal dataset for SV detection is paired-end
sequence data, produced by sequencing both ends of randomly sheared DNA fragments that
have been size-selected by gel electrophoresis or other techniques. Because both reads in a
pair come from a linear DNA fragment of known (approximate) size, their relative distance
and orientation when mapped to a reference sequence can indicate the presence of
underlying structural variation.

Koboldt et al. Page 3

Methods Mol Biol. Author manuscript; available in PMC 2013 June 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



2.2. Bioinformatics Resources
Most NGS platforms include basecalling software from the manufacturer. Systematic
mapping and/or assembly of NGS data require additional software. A selection of the tools
available for short read alignment, assembly, and data handling is provided in Table 1.

2.2.1. Computing Resources—It should be noted that the processing of large massively
parallel sequencing datasets, even with advanced algorithms, requires substantial
computational resources. At the very least, a dedicated Linux/UNIX/MacOSX server
(preferably 64-bit) with at least 2 GB of RAM will be required for data processing.
Alignment of just a single lane of Illumina paired-end data (25–30 million read pairs) to the
human genome takes anywhere from 4 to 24 h, depending on the hardware, data quality,
read length, and mapping parameters.

2.2.2. Short Read Aligners—The critical first step to analysis of NGS data is alignment
to a reference sequence. Several short read mapping tools have been developed to address
the relatively short read lengths and sheer volume of data produced by NGS platforms.
These have been reviewed extensively elsewhere (19); a selection of short read aligners is
provided in Table 1. Widely used aligners for Illumina and ABI SOLiD data include Maq
(20), BWA (21), Bowtie (22), BFAST (23), and SHRiMP (24). For longer reads generated
on the Roche/454 platform, SSAHA2 (25) and BWASW (26) are widely used. Perhaps the
most important consideration in selecting an alignment algorithm is its compatibility with
the SAM format specification, which is described below.

2.2.3. SAM/BAM Format Specification—The specification of the sequence alignment/
map (SAM) format and its compressed binary equivalent (BAM) has simplified NGS data
analysis dramatically (27). In essence, SAM format (http://www.samtools.sourceforge.net/
SAM1.pdf) enables storing large numbers of sequences (reads), along with their alignments
to a reference genome or assembly, in a single file. SAM/BAM files are compact, but
flexible enough to accommodate multiple NGS data types and software algorithms. The
SAM specification has been widely adopted by the NGS bioinformatics community; many
aligners can output directly into SAM/BAM, and a number of freely available tools,
including SAMtools ((27), http://www.samtools.sourceforge.net) and Picard (http://
www.picard.sourceforge.net) provide the functions to view, merge, sort, index, filter,
assemble, and perform other operations on SAM/BAM files.

2.3. Ancillary CNV/SV Data
To fine-tune and evaluate the performance of SV detection, a set of known structural events
can be valuable. Spectral karyotyping data and even cytogenetic analysis can reveal
chromosomal deletions, duplications, or translocations that should manifest in the sequence
data. Copy number changes and structural variants inferred from high-resolution array data
(SNP or CGH), if available, serve as true positive controls; studies have shown that
sequence-based approaches are highly sensitive for identifying SVs detected by array-based
methods (28).

3. Methods
Massively parallel sequencing technologies have enabled genome-wide characterization of
CNV and structural variation in a single experiment (Fig. 1). It begins with the alignment of
sequence reads to a reference sequence. In paired-end sequencing, the alignment process
yields three smaller datasets: (1) reads mapped with “correct” pairing, with expected
orientation and distance between mates, (2) reads mapped in pairs deemed “discordant” in
terms of distance and/or orientation, or where only one read is mapped, and (3) reads that
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are not mapped at all. Once all possible reads have been mapped, the resulting read depth
(after some normalization) serves as a quantitative measure of genome-wide copy number.
Segmentation algorithms and other methods have been developed to call copy number
variants (CNVs) from read depth. For SV detection, most approaches first examine reads in
set (2) above whose discordant mapping suggests the presence of underlying variation.

3.1. Copy Number Analysis
Massively parallel sequencing data can be used to infer DNA CNVs throughout the genome.
Most sequencing-based approaches for CNV detection partition the genome into
nonoverlapping bins and use the read depth (RD) to look for regions that differ in copy
number. In contrast to methods for SV detection, estimates of copy number typically utilize
read pairs that map uniquely to the genome with correct spacing and orientation. Fragment-
end (unpaired) reads may also be used.

3.1.1. Addressing Mapping Bias—To address issues related to read mapping bias, it is
important to correct for varying levels of uniqueness across the genome. Campbell et al. (14)
performed this correction after in silico simulations of Illumina 2 × 35 bp paired-end reads,
which were mapped to the genome using Maq (20). The genome was divided into
nonoverlapping windows of varying widths such that each window contained a 425 uniquely
mapped reads, equivalent to ~15 kb of mapped sequence.

3.1.2. Addressing GC Content Bias—Sequencing coverage on NGS platforms is
influenced by G + C content. On the Illumina platform, average sequence coverage is
significantly reduced for regions with particularly low (<20%) or high (>60%) G + C
content (3). Yoon et al. (29) addressed G + C bias by segmenting the genome into 100-bp
windows, and adjusting each window’s read counts based on the observed deviation in
coverage for a given G + C percentage.

3.1.3. Circular Binary Segmentation—The GC-adjusted read depth within defined
windows serves as a quantitative measurement of genome copy number. Thus, copy number
changes can be detected using the same types of segmentation algorithms that were
developed for SNP or CGH microarray data. Campbell et al. adapted a circular binary
segmentation algorithm for SNP array data to detect statistically significant copy number
changes. Their adapted algorithm, implemented in R as the “DNAcopy” library of the
Bioconductor project (http://www.bioconductor.org), takes the normalized read count for
each window as input and estimates both the copy number in each region and the boundaries
(change points) defining the copy number change. To evaluate the accuracy of their method,
Campbell et al. compared CNV calls based on uniquely mapped, correctly paired reads to
predictions of structural variants from aberrantly mapped read pairs. Their CNV algorithm
identified all nine tandem duplications in a cancer cell line (ranging in size from <1 kb to 2.7
Mb) and correctly predicted the breakpoints to within 30 kb (14).

3.1.4. Event-Wise Testing—Yoon et al. developed a novel three-step algorithm, called
event-wise testing (EWT), to identify CNVs from read depth data (29). First, EWT rapidly
searches the genome for specific classes of small events that meet predefined criteria for
statistical significance. Then, clusters of small events with a copy number changed in the
same direction are merged together into a single CNV call. Events with a low absolute
difference in read depth (between 0.75 and 1.25 times the mean) are removed. Finally, the
significance of each merged event is assessed with a one-sided Z-test. Application of EWT
to simulated data, as well as real data from the 1,000 Genomes Project, suggested a good
sensitivity for events larger than 1 kb, and high specificity (75–89%) for CNV calls that
were polymorphic in multiple individuals (29).
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3.1.5. SegSeq—Chiang et al. (30) applied massively parallel sequencing to map copy
number alterations in tumor cell lines. Their method, called SegSeq, combines local change-
point analysis with a merging procedure that joins adjacent segments. Tumor and normal
read counts for the full segments are used to determine statistical significance. When applied
to three tumor cell lines, their algorithm identified 194, 126, and 15 copy number alterations,
compared to 153, 93, and 18 alterations identified from SNP array data. The results from
both methods were highly concordant, but the sequencing approach yielded better
breakpoint resolution and a higher dynamic range for copy number estimation (30).

3.2. Mapping Segmental Duplications
Duplicated regions play important roles in genetic and phenotypic variation, but have been
refractory to characterization due to their repetitive structure and high copy number in the
human genome. Alkan et al. (31) developed an approach to comprehensively map these
regions using NGS. Their algorithm, mrFAST, places NGS reads to all possible locations in
the reference genome, which is critical to accurately determine the copy number of
duplicated sequences. When applied to three human genomes, this approach revealed that
individuals differ in copy number for 73–87 genes on average, differences that largely
correspond to segmental duplications (31).

3.3. Detection of Structural Variation
Numerous algorithms have been developed in recent years to identify and characterize SVs
from massively parallel sequencing data. Many of these leverage paired-end sequencing, in
which a fragment of known size is sequenced at both ends. Read pairing information not
only improves the accuracy of read mapping (32), but can be used to infer the presence of
underlying structural variation (33) (see Fig. 2). Several diverse yet robust methods have
been successfully applied to SV detection using paired-end sequencing datasets.

3.3.1. Geometric Analysis—Raphael et al. (34) have introduced a geometric approach to
the detection, classification, and comparison of SVs from sequencing data. Their method,
called Geometric Analysis of Structural Variants (GASV), represents putative SVs as
polygons in a plane, and employs a computational geometry algorithm to merge read pairs
supporting the same event. When applied to the genomes of nine individuals already
characterized for SVs, GASV provided better localization of SV breakpoints. The authors
also applied GASV to data from several cancer cell lines, and compared these results to
those from normal individuals to distinguish germline and somatic variants.

3.3.2. Pindel—Pindel (35) employs a pattern growth approach to detect the breakpoints of
large insertions and deletions using NGS data. First, all reads are mapped to the reference
genome using SSAHA2 (25). The mapping results are examined to identify read pairs for
which only one end was placed in the reference. Using the mapped location as an anchor
point, Pindel splits the unmapped read into two (for deletions) or three (for insertions)
fragments and attempts to map them individually to the anchored subregion of the reference
genome. The maximum deletion size is a user-provided parameter that decides the size of
the region that will be searched (typically 1–10,000 bp), while the maximum insertion size
corresponds to read length (16 bp for 36-bp reads).

3.3.3. BreakDancer—Our group has developed a discovery pipeline for SVs that
conducts de novo prediction and in silico confirmation using Illumina paired-end data. The
de novo prediction program, BreakDancer (36), consists of two complementary algorithms.

The first algorithm (BreakDancerMax) identifies anomalously mapped read pairs (ARPs)
whose ends are mapped in unexpected distances or orientations. It searches for genomic
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regions that anchor significantly more ARPs than expected by chance, and derives putative
SVs from one or more regions that are interconnected by at least two ARPs. The confidence
score for each SV prediction is estimated using a Poisson model that takes into consideration
the number of supporting ARPs, the size of the anchoring regions, and the coverage of the
genome. BreakDancerMax outputs five types of SVs: insertions, large deletions (>100 bp),
inversions, intrachromosomal rearrangements, and interchromosomal translocations.

The second algorithm (BreakDancerMini) predicts small indels 10–100 bp by examining the
normally mapped read pairs (NRPs) that are ignored by BreakDancerMax. It employs a
Kolmogorov-Smirnov test to identify indel-containing regions and makes SV predictions
using procedures similar to BreakDancerMax. Both BreakDancerMax and BreakDancerMini
can be applied to a pool of DNA samples to identify common and novel variants. To further
resolve breakpoints and reduce false positives, we perform de novo assembly on all
predicted SVs (see Subheading 5).

3.4. Detection of Fusion Transcripts by RNA-Seq
Gene fusion events that result from chromosomal rearrangements are a common form of
somatic mutation in human cancers (37). Massively parallel sequencing of cDNA libraries,
or RNA-Seq, enables the identification of gene fusions despite the high background of
abundant housekeeping genes. Maher et al. (38) developed pipeline for gene fusion
discovery that utilizes data from two NGS platforms: long fragment-end reads from the
Roche/454 platform and short paired-end reads from the Illumina GAII platform. This
hybrid approach proved a powerful system for gene fusion discovery by transcriptomes
sequencing, as exemplified by the detection of multiple gene fusions in cancer cell lines and
tissues. Levin et al. (39) applied targeted RNA-Seq to 467 cancer-related genes in K-562, a
well-characterized chronic myeloid leukemia (CML) cell line. Using paired-end Illumina
sequencing, they identified the known BCR-ABL fusion transcript as well as several novel
gene fusions.

3.5. Visualization
Although many methods for SV detection have been published for NGS data, there remains
a paucity of tools for visualizing predicted SVs in the context of supporting data and
relevant genome annotations.

3.5.1. Integrative Genomics Viewer and Savant—The Integrated Genomics Viewer
(IGV, http://www.broadinstitute.org/igv) is a BAM-driven visualization tool for NGS data
that displays read depth at each position, and color-codes reads according to the
chromosome of their mate pairs; as such, it can be used to infer translocations and SNP/indel
variants. The Savant Genome Browser ((40), http://www.compbio.cs.toronto.edu/savant)
offers similar features, but also provides a novel representation of paired end reads to assist
the identification of structural variation.

3.5.2. LookSeq and Circos—The Web-based application LookSeq (41) offers
visualization of NGS data by sorting paired reads according to insert size; apparent valleys
and peaks in the visualization indicate insertions and deletions, respectively. Currently,
LookSeq does not support the visualization of other SVs, such as translocations and
inversions. These variants (along with insertions and deletions) can be visualized using the
circular graphing tool Circos (42), but require preformatting by the user.

3.5.3. Pairoscope—We recently developed a visualization tool (Pairoscope, http://
www.pairoscope.sourceforge.net) to display inversions, duplications, and translocations
detected in NGS data. Pairoscope accepts standard sequence BAM format files as input, as
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well as an “annotation BAM” file containing gene/transcript information. Using mate-pair
information embedded in the sequence BAM file, Pairoscope generates three plots for each
region that is requested (Fig. 3). First, it displays an auto-scaled graph of read depth per base
to show the sequencing coverage across the region. SVs associated with copy number
changes (insertions, deletions, and duplications) are indicated by changes in read depth.
Second, Pairoscope plots a “bar-code” graph indicating the aberrantly mapped read pairs in
the region. Each aberrant read is represented as a vertical bar, color-coded by aberration
class. If both reads in a pair are present in the region, they are linked by a line arc. When
visualized in Pairoscope, translocations are apparent as a series of mate-pair arcs linking the
regions of two separate chromosomes. Inversions are apparent as two separate clusters of
arcs at the breakpoints of the inverted sequence whose colors indicate aberrant orientation of
read pairs. Because mapping quality can play a large part in determining the veracity of an
SV prediction, Pairoscope allows the user to filter displayed read pairs according to mapping
quality. Third, Pairoscope displays exon information for a region of interest. The required
input is an annotation BAM file with custom tags indicating transcript-specific information.
By displaying predicted SVs in the context of protein-coding genes, Pairoscope allows for
the analysis and interpretation of how variants may affect gene structure. This feature is
particularly valuable for identifying translocations that create fusion genes, which are
prevalent in many cancers (43).

4. Conclusions
In summary, NGS technologies have become powerful tools for the characterization of copy
number and structural variation in human genomes. Sequence-based detection of CNV and
SV is particularly appealing for tumor genomes. Somatic rearrangements resulting in fusion
genes (e.g., BCR-ABL) are both common to many tumor types, and promising as candidates
for targeted therapy. Ambitious efforts like the Cancer Genome Atlas project (TCGA) will
sequence hundreds of tumor genomes in the coming years; detection of somatic structural
and copy number alterations in such datasets will be critical for characterizing the full set of
acquired genetic changes underlying tumor development and growth.

As the throughput and number of NGS platforms continues to grow, so too does the set of
tools for sequence alignment, variant detection, de novo assembly, visualization of high-
throughput sequencing data. These and other analysis tools, in conjunction with the
availability of hundreds or thousands of individual genome sequences, will undoubtedly
shed light on the full spectrum of genetic variation in humans, from single base changes
(SNPs) to structural events spanning millions of base pairs.
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Fig. 1.
Detection of copy number variation (CNV) and structural variation (SV) by massively
parallel sequencing. When aligned to a reference sequence, read pairs are classified as
mapped normally, mapped discordantly, or unmapped. Both classes of mapped reads are
used for inference of read depth and then CNV calling. Discordant pairs are utilized for
prediction of SVs, which are further resolved by de novo assembly using both discordant
and unmapped reads.
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Fig. 2.
Detecting structural variants by paired-end mapping. The distance between and relative
orientation of associated read pairs suggests specific classes of SVs. Deletions produce reads
that map more distant from one another than expected while insertions have the opposite
effect. Read pairs spanning breakpoints of inversions and duplications have altered distance
and orientation while read pairs spanning translocations (not shown) will map to different
chromosomes.
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Fig. 3.
Pairoscope graph of predicted inversion and translocation. The top two tracks show the read
depth for these regions. The second two show color-coded read pairs indicating the
orientation of abnormal read pairs. Single bars in yellow represent reads whose mate did not
map. The cyan arcs support a translocation between chromosomes 1 and 4. The red and blue
arcs indicate reads oriented in a forward–forward and reverse–reverse orientation,
respectively. The gene model shown in the last track indicate this translocation occurs
upstream of the translocation start site of an open reading frame.
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Table 1

Software tools and algorithms for alignment, SAM/BAM integration, copy number estimation, SV detection,
and de novo assembly using NGS data

Software Description URL

Read alignment/mapping

Maq Widely used mapping algorithm for short NGS reads http://www.maq.sourceforge.net

BWA/BWASW Burrows-Wheeler Aligner for mapping short (bwa) or long
(bwasw) reads

http://www.bio-bwa.sourceforge.net

Bowtie Ultrafast short read aligner for Illumina data http://www.bowtie-bio.sourceforge.net

BFAST Customizable BLAT-like read mapping tool for NGS data http://www.genome.ucla.edu/bfast

SHRiMP Efficient Smith-Waterman aligner for short read data http://www.compbio.cs.toronto.edu/shrimp

SOAP Short oligo analysis package for alignment and variant
calling

http://www.soap.genomics.org.cn/

mrFAST Maps read to all possible locations for duplication/CNV
detection.

http://www.mrfast.sourceforge.net

SSAHA2 Sequence Search and Alignment by Hashing Algorithm http://www.sanger.ac.uk/resources/software/ssaha2

SAM/BAM file operations

SAMtools A suite of tools for manipulating NGS data in SAM/BAM
format

http://www.samtools.sourceforge.net

Picard A suite of Java tools for validating and de-duplicating SAM/
BAM files

http://www.picard.sourceforge.net

Copy number estimation

EWT CNV calling with event-wise testing (EWT) http://www.genome.cshlp.org/content/19/9/1586

SegSeq CNV calling with local changepoint analysis and merging http://www.broad.mit.edu/cancer/pub/solexa_copy_numbers

CMDS Recurrent CNA calling in sample populations https://www.dsgweb.wustl.edu/qunyuan/software/cmds

Structural variation detection

BreakDancer SV prediction tool for paired-end Illumina data http://www.genome.wustl.edu/tools/cancer-genomics

GASV Geometric method for SV detection http://www.cs.brown.edu/people/braphael/software.html

Pindel Indel prediction tool for paired-end NGS data http://www.ebi.ac.uk/~kye/pindel

De novo assembly

ABySS A de novo, parallel, paired-end sequence assembler for short
reads

http://www.bcgsc.ca/platform/bioinfo/software/abyss

Velvet A de novo sequence assembler for short reads http://www.ebi.ac.uk/~zerbino/velvet

TIGRA De novo assembly of SV breakpoints http://www.genome.wustl.edu/

Visualization

Circos Circular visualization of genome and comparative genomics
data

http://www.mkweb.bcgsc.ca/circos/

IGV BAM-driven integrative genomics viewer for NGS data http://www.broadinstitute.org/igv

LookSeq Web-based tool for visualization and analysis of sequence
alignments

http://www.sanger.ac.uk/resources/software/lookseq

Pairoscope BAM-driven visualization of predicted structural variants http://www.pairoscope.sourceforge.net

Savant Desktop visualization tool that represents paired-end reads
for SV identification.

http://www.compbio.cs.toronto.edu/savant
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