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Abstract

Massively parallel signature sequencing (MPSS) is one of the newest tools available for
conducting in-depth expression profiling. MPSS is an open-ended platform that analyses the
level of expression of virtually all genes in a sample by counting the number of individual mMRNA
molecules produced from each gene. There is no requirement that genes be identified and
characterised prior to conducting an experiment. MPSS has a routine sensitivity at a level of a
few molecules of MRNA per cell, and the datasets are in a digital format that simplifies the
management and analysis of the data. Therefore, of the various microarray and non-microarray
technologies currently available, MPSS provides many advantages for generating the type of
complete datasets that will help to facilitate hypothesis-driven experiments in the era of digital

biology.

INTRODUCTION

Recent developments in the sequencing of
many vertebrate, invertebrate, plant and
microbial genomes have prompted an
Increasing interest in using genomics
reagents to study patterns of gene
expression. Building large relational
databases filled with content that includes
in-depth gene expression profiles from
multiple cell types will undoubtedly make
an enormous contribution to any
experimental effort in digital biology.
Several DNA microarray platforms 1o
serial analyses of gene expression
(SAGE),”® cDNA sequencing and a
variety of other technologies are available
for analysing the expression of hundreds to
thousands of genes simultaneously. Each of
these existing technologies has limitations
when it comes to generating complete
datasets for building relational databases. In
this paper, one of the newest tools for
evaluating gene expression is reviewed,

called massively parallel signature
sequencing (MPSS),>1°
many of the limitations of the current
technologies. MPSS is a novel microbead
technology that is totally unlike other
bead-based operations such as those

which overcomes

developed by Illumina'' or Luminex."?

MPSS AS A TOOL FOR
QUANTITATIVE GENE
EXPRESSION PROFILING
Unlike most microarray technologies that
capture data that are analogue in nature,
MPSS is one of the few technologies that
produces data in a digital format. MPSS
captures data by counting virtually all
mRNA molecules in a tissue or cell
sample. All genes are analysed
simultaneously, and bioinformatics tools
are used to sort out the number of mRNAs
from each gene relative to the total
number of molecules in the sample. At
least one million molecules are typically
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Use of MPSS for
expression profiling
involves counting
mRNA molecules in the
sample

counted in any given sample, so even
genes that are expressed at low levels can
be quantified with high accuracy. The fact
that the data are of a digital nature provides
an ideal format for building databases
where the temporal/spatial expression
profiles for all genes can be deduced by
comparing results from multiple cell types
electronically.

Counting mRNAs with MPSS is based
on the ability to identify uniquely every
mRNA in a sample. This is done by
generating a 17-base sequence for each
mRINA at a specific site upstream from its
poly(A) tail (first Dpnll site in double-

mRNA
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stranded (ds) cDNA, see below). The 17-
base sequence is then used as an mRINA
identification ‘signature’. To measure the
level of expression of any given gene, the
total number of signatures for that gene’s
mRNA is counted.

CLONING AND
SEQUENCING cDNA
FRAGMENTS ON BEADS
MPSS signatures for mRINAs in a sample
are generated by sequencing ds cDNA
fragments cloned onto microbeads using
the Lynx Megaclone technology (Figure
1). The Megaclone technology has

Figure I: Summary of the Megaclone
technology. Poly(A) mRNA molecules are
converted into double-stranded cDNA
molecules, which are digested with Dpnll and
cloned into a specially designed plasmid
vector containing a 32 base pair (bp)
oligonucleotide tag. There are 16.8 X 10°
million different 32-base sequences available
in the reference tag library, and each cDNA
clone contains a different sequence.I3 A
library of cDNA inserts, along with their
adjacent 32 bp oligonucleotide tags, are
polymerase chain reaction (PCR) amplified,
and the resulting linear molecules are
partially treated with an exonuclease to
make the 32-base tag single stranded. The
32-base tags at the end of each of the cDNA
molecules are hybridised to 32-base
complementary tags that are covalently
linked to 5 um microbeads. There are 16.8
million different complementary tags, each of
which corresponds to one of the 16.8 million
different 32-base tags;I3 therefore, for every
tag on a cDNA molecule, there will be one
bead with a complementary 32-base tag
available for hybridisation. Each bead
contains a vast excess of one particular 32-
base complementary tag sequence. Once the
cDNA molecules are hybridised to the
beads, the nicks are sealed enzymatically.
The end-product is a microbead with
approximately 100,000 identical cDNA
molecules covalently attached to the surface
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previously been described in detail."”

Briefly, complementary DNA (cDNA) is
prepared from poly(A) RNA using a
biotin-labelled oligo-dT primer. The
oligo-dT is designed to prime each
mRNA molecule exactly at the poly(A)
junction. The cDNA fragments are then
Megaclone is the digested with Dpnll (recognition

z’;og‘;:sesn:: ::)I::omg DNA sequence, GATC), and the 3’'-most

microbeads

Dpnll-poly(A) fragments are purified
utilising the biotin label at the end of each
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Figure 2: Summary of the sequencing reactions for MPSS. Encoded
adaptors are ligated to the ends of the cDNA molecules attached to the
microbeads. Sixteen different fluorescent-labelled decoder probes are
then sequentially hybridised to the encoded adaptor ends in order to
deduce the first four nucleotides at the end of each molecule. The
encoded adaptor from the first round is then removed by digestion with
Bbvl, which exposes the next four nucleotides as a four-base single-
stranded overhang. The process is repeated several times in order to
generate a total of |7 bases of sequence

molecule. The fragments are subsequently
cloned onto 5 pm diameter microbeads
using a set of 32-base tag/anti-tags
developed at Lynx (see Brenner ef a
details). This process yields a library of
beads where one starting mRNA
molecule is represented by one
microbead, and each microbead contains
approximately 100,000 identical cDNA
fragments from that mRNA. Therefore,
starting with one million mRNA

1B for

molecules from a particular cell or tissue
sample, Megaclone will produce one
million beads, each containing 100,000
cloned copies of cDNA from each
mRNA molecule. All molecules are
covalently attached to the microbeads at
their poly(A) ends, so the Dpnll end is
available for the sequencing reactions.

The sequencing process is initiated by
ligation of an adaptor molecule and
digestion with a type IIs restriction
enzyme. Approximately one million
microbeads are then loaded into a
specially designed flow-cell in a way that
allows them to stack together along
channels and form a tightly packed
monolayer in the flow-cell. The flow-cell
is connected to a computer-controlled
microfluidics network that delivers
different reagents for the sequencing
reactions. A high-resolution CCD camera
is positioned directly over the flow-cell in
order to capture fluorescent images from
the microbeads at specific stages of the
sequencing reactions. Details on the
instrumentation used for MPSS is
described in detail in Brenner et al.”

The actual DNA sequencing reaction
involves an automated series of adaptor
ligations and enzymatic steps and has
previously been described in detail’
(Figure 2). The process is initiated by
ligating an adaptor molecule to the
GATC (Dpnll) ss overhangs, and then
digesting the samples with Bbvl, which is
a type IIs restriction enzyme that cuts the
DNA at a position nine to 13 nucleotides
away from the recognition sequence. This
produces molecules with a four base
single-stranded (ss) overhang immediately
adjacent to the Dpnll recognition
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Sequencing with MPSS
produced a | 7-base
signature sequence for
each cDNA molecule

MPSS datasets are
digital in nature where
mRNA abundance is
expressed as transcripts
per million (TPM)

sequence. Another set of adaptors, called
encoded adaptors, are hybridised and
ligated to the four base overhangs on each
molecule. The encoded adaptors contain
a four base ss overhang with all possible
nucleotide combinations at one end, and
a ss coded sequence at the other end. One
member of the encoded adaptor set will
find a partner on the DNA molecules
attached to the beads in the flow-cell.
The exact sequence of the four base ss
overhang on each encoded adaptor that
hybridises to the DNA on a microbead is
decoded through a series of 16 different
sequential hybridisation reactions with a
set of fluorescent decoder probes. This
process yields the first four nucleotides at
the end of each molecule. To collect
additional sequence, the encoded adaptor
from the first round is removed by
digestion with Bbvl, and the process is
repeated several times. In the end, a 17-
base signature sequence is generated for
each bead in the flow-cell.

DATA HANDLING AND
CALCULATION OF RNA
ABUNDANCE
A typical MPSS experiment with about
one million microbeads will yield
250,000—400,000 high quality 17-base
signature sequences. Two or more flow-
cells with microbeads initiated with either
of two different adaptors (to address issues
of palindromes, as discussed in Brenner
et al.’) are used for each experiment.
Additionally, MPSS datasets are additive
in nature, which means that datasets from
multiple analyses with the same starting
mRNA sample can be combined. In
many instances, this has been done at
Lynx to produce datasets that involve in
excess of one million mRNAs counted
per sample (see below). This ability to
combine datasets in an additive manner
leads to an increased sensitivity for all
genes being analysed, particularly those
that are expressed at very low levels
within the sample.

Each signature sequence in an MPSS
data set is analysed, compared with all
other signatures and all identical signatures

are counted. The level of expression of
any single gene is calculated by dividing
the number of signatures from that gene
by the total number of signatures for all
mRNAs present in the dataset. The data
for each gene are usually reported as the
transcripts per million (TPM). Analysis of
a complete MPSS dataset makes it possible
to calculate the numbers of genes that are
expressed at varying levels within the
sample. For example, it is possible to
calculate readily the genes that are
expressed at greater than 1,000,
100—1,000, 10 to 100 and less than 10
TPM. From this type of analysis of many
datasets over the past several years, it
appears that most genes are expressed at a
level of 1 to 100 TPM (data not shown).

For any specific library of cDNA
fragments loaded onto beads, there is a
high degree of reproducibility between
MPSS runs. To illustrate this point, two
MPSS datasets involving a total of
306,884 counted mRNAs were analysed
(Figure 3A). A total of 10,799 different
signatures was identified in the dataset,
and the abundance of over 99 per cent of
these signatures in the duplicate runs was
not significantly different (p < 0.001). In
other words, the level of expression for
the vast majority of the genes was not
statistically different in the two runs.
Using independent libraries of cDNA
fragments introduces what is likely to be
some biological variability in the data,
although the overall reproducibility of the
process is still very high — usually being
greater than 90 per cent similarity (T.
Burcham, unpublished data).

MPSS signature sequences can be
connected to known genes by comparison
with data in the available genomic
sequence and expressed sequence tag
(EST) databases. This is usually an
efficient process, although occasionally it
is not possible to find a signature for a
gene known to be expressed in a
particular sample. This can happen when
a gene does not contain a Dpnll site, or
when there is a sequence polymorphism
in the Dpnll site. These problems can be
easily overcome by digesting the cDNA
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Figure 3: Reproducibility and statistical analysis of MPSS data. (A) Dot plot showing the reproducibility between MPSS
runs. Each dot or X represents one of a total of 10,799 signatures that were generated from two independent MPSS runs
from the same starting cDNA library loaded on to beads. The X and Y coordinates represent the number of each signature
found in each of the two MPSS runs. Each signature represented by a dot occurs within a 0.99 confidence interval, while
those represented with an X occur outside this interval. (B) Plot of the level of gene expression (MPSS signatures/million)
versus the fold difference that can be detected between two independent samples. Each curve corresponds to a different p-
value for the fold difference on the X axis that relates to a signature abundance on the Y axis

Connecting MPSS
signatures with genes is
usually a
straightforward process

with an alternative enzyme. Incomplete
sequence representation of a particular
gene in the current EST and ¢cDNA clone
databases can also complicate the process
of assigning a signature sequence to a
gene. Not all cDNA clones that have
been sequenced extend all the way to the
poly(A) addition site, so the sequence that
corresponds to an MPSS signature for a
specific gene may not be represented in
an EST sequence database. For example,
the signature sequence for the T-cell
transcription factor NFATc¢ did not
appear to be included at any significant

level in the Lynx Human T-cell-related
MPSS datasets using the RefSeq database
entry NM_006162. When the RefSeq
entry is extended towards the 3’ end with
another independent cDNA clone in
GenBank (eg with entries like U80917),
the signature
‘GATCCAATAAAGCCGTA’ was
identified, which was found in all of the
appropriate MPSS T-cell datasets.
Therefore, careful and thoughtful analysis
of the available data may be necessary
during the process of assigning an MPSS
signature to a gene.
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Figure 3: (Continued)

MPSS data can be
treated as categorical
data for statistical
analyses

STATISTICAL ANALYSIS OF
MPSS DATA
One of the most important attributes of
MPSS data over those produced by other
technologies like microarrays relates to
the fact that MPSS data can be treated as
‘categorical’ from a statistical point of
view. This makes it possible to capitalise
on the large number of measurements of a
given signature in the dataset (typically
ten to 1,000 or more, depending on the
gene) as well as the size of the entire
dataset (typically over one million) to
calculate whether the gene giving rise to
this signature is differentially expressed in
multiple different samples. This compares
with data from microarrays, where only
two or three measurements, generated
from the number of replicate microarrays
performed for any given experiment,
would be factored into the calculation.
To test whether a gene is differentially

expressed between two samples, a normal
approximation test for difference in
binomial proportions is used (also
described as the Z-test, which has been
independently employed for analysis of
SAGE data sets'™). If x; and x, represent
the abundance of a specific signature in
samples 1 and 2, respectively, and n; and
n represent the total number of
signatures generated for all mRNAs in
samples 1 and 2, the proportions

p1 = x1/n1 and p» = x2/ ny each follow a
binomial distribution. Since ny and ny are
large in MPSS (typically in the order of
10°), the difference (p; — p») follows an
approximate normal distribution defined
by formula (1)

1 1
N (p1 — p2), PQ<H—]+H—) O

2

where the unknown parameters p and q
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MPSS datasets are ideal
for building relational
databases for systems
biology applications

can be estimated as p = (x; + x2)/
(n1 + np) and § = 1 — p, respectively.
The test statistic defined by equation

follows a standard normal distribution and
can be used to test whether expression of
the gene bearing the signature between
the two samples could be due to chance
alone. Standard statistical tables can be
employed to determine the p-value of this
influence based on values of 4.

Theoretical calculations based on
equation (2) show an inverse relationship
between the level of expression and size
of the difference that can be evaluated

(anti-CD3)

anergic T cell
[1 501 866]

O

resting T cell
[1611915]
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Figure 4: The immunology focus programme at Lynx in Heidelberg,
Germany is dedicated to the analysis of important immunological and
haematopoietic cell populations using MPSS. Several immunologically
important cell populations were analysed, including resting, anergic,
immunosuppressed and activated T cells. Additionally, monocytes,
immature dendritic cells and mature dendritic cells (DC) were prepared.
All cell types were generated from blood-derived monocytes or resting T
cells by in vitro treatments summarised in the figure. Given in squared
brackets is the total number of MPSS signature sequences that were
generated for each cell type. The MPSS datasets are formatted into a
relational database, termed GeneCat

between samples (Figure 3B). For
example, for p << 0.001, it is possible to
detect a two-fold change for a gene that is
expressed at a level of 30—40 copies per
million. For genes that are expressed at a
higher abundance, it is possible to detect a
substantially smaller difference. A 40 per
cent difference can be ascertained for
genes that are expressed at about 200
copies per million. These characteristics
are in contrast to the analyses for gene
expression data generated by
hybridisation-based methods, such as
microarrays, where a significance test is
possible only if the experiment is
replicated several times,”” and where
difterential expression can usually be
detected only for genes with relatively
high levels of expression' and with a large
difference between samples.”

MPSS DATASETS AND
DEVELOPMENT OF
RELATIONAL DATABASES
Many of the experiments that have used
gene expression profiling tools were
designed to simply compare one sample
with another. This often produces a list of
differentially expressed genes which, by
itself, is less than complete for extracting
biologically useful information. Given the
right experimental design, in-depth
expression profiling has the potential to
revolutionise experiments in systems
biology where the object is to study and
ultimately understand complex biological
processes at the molecular level. For
example, investigators at Lynx GmbH
(Heidelberg, Germany) have collected
gene expression data by MPSS from many
difterent purified cell samples from the
human immune system (Figure 4). This
substantial dataset forms truly relational
database content, where meaningful
comparisons and biological questions and
hypotheses can be addressed at the
keyboard.

The key to building relational databases
for useful experiments in systems biology
is to ensure that all genes in a sample are
represented within a dataset, and that the
level of expression for each gene is
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MPSS has many
advantages over other
technologies for
analysing gene
expression

digitised in a manner that truly reflects its
relative expression in the sample. This is
not an issue with MPSS, since virtually all
genes are represented in a dataset and the
level of expression of each gene is
represented by a number that reflects the
number of transcripts per million in the
sample.

In contrast, there are many noteworthy
issues relating to the use of microarray
data for building expression databases.
First of all, and probably most critical, is
the fact that not all genes are represented
on any given microarray. The Affymetrix
human U95 set contains elements to study
the expression of more than 60,000 genes
and ESTs. It is not clear whether these
sets contain elements for all human genes.
Also, high-density microarrays are not
available for many organisms that are of
interest to the biological community,
which limits the use of microarrays for
experiments in many non-human systems.
Secondly, strong claims have been made
about the detection sensitivity of some
arrays, eg detection sensitivities in the
range of one in 100,000 or better.” Many
variables associated with the manufacture
and use of microarrays must be optimised
to reach this level of sensitivity routinely.
Whether it is possible to reproduce these
detection sensitivities on a consistent basis
is an issue that needs to be addressed by
each investigator using a microarray.
What 1s clear is that the vast majority of
genes are expressed at levels which are less
than 1:10,000 to 1:100,000; therefore,
achieving the highest level of sensitivity is
critical for all of the genes in a sample.
Thirdly, Aach ef al.'® nicely articulated the
issues related to building databases with
data generated with non-Aftymetrix
microarrays. Experiments with these
microarrays report data as a ratio of the
fold change in an experimental, relative to
a control, condition in order to
compensate for several sources of bias and
noise in the intensity results (outlined well
in Zhou et al.’). Converting this ratio into
a value for quantitative expression is
complicated by many variables and is not
straightforward to achieve.!” Developing

strategies to overcome these limitations
will be essential if gene expression data
produced with the microarray formats are
to be used for applications in systems
biology.

COMPARISON OF MPSS
WITH cDNA SEQUENCING,
SAGE AND MICROARRAY
TECHNOLOGIES

Several other technologies are available
for conducting gene expression
experiments. Most are based primarily on
an analogue format where the relative
level of gene expression is established by
quantifying the hybridisation of a labelled
probe to a solid support. Some other
(cDNA, SAGE) technologies are similar
to MPSS in that they are digital in nature
and count mRNA molecules in the
sample. This paper will compare MPSS
with cDNA sequencing, serial analysis of
gene expression (SAGE) and the
microarray chip technologies. These
comparisons capture most of the
advantages and disadvantages of MPSS
over the other gene expression profiling
technologies that are currently in use.

Direct sequencing of cDNAs was the
first digital technology for measuring gene
expression. Both MPSS and direct cDNA
sequencing involve the generation of a
cDNA library as the first step of analysis.
Once the cDNA library is made,
sequencing of cDNA clones involves the
purification and sequencing of DNA
using standard procedures that are both
costly and time consuming. With
Megaclone, at least one million cDNA
molecules are cloned onto beads, and,
with MPSS, over one million clones are
sequenced simultaneously. The time,
effort and cost to generate data from one
million mRNAs in a sample with MPSS is
a small fraction of that required to
sequence the same number of clones
using conventional technologies.

With respect to SAGE,® MPSS has
two noteworthy advantages. First, SAGE
is also a transcript counting technique that
generates a tag sequence for each mRINA.
The length of the SAGE tag is 14
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MPSS is
complementary with
microarrays for
biological experiments

nucleotides for the current SAGE
procedure, which compares with a
17-nucleotide signature with MPSS.
From a theoretical standpoint, signature
lengths of 14 nucleotides are 80 per cent
unique, while the 17-nucleotide signature
lengths generated with MPSS are
approximately 95 per cent unique on the
human genome. Investigators at Lynx
recently mapped a large number of MPSS
and SAGE tags on the available human
genome sequence and demonstrated that a
much higher percentage of MPSS
signature sequences map to unique
locations on the genome compared with
SAGE tags (T. Burcham, unpublished
data). Therefore, assignment of a signature
sequence or tag to a specific gene on the
genome is much less ambiguous with
MPSS than with SAGE.

Secondly, the automated nature of
MPSS makes it possible to produce
efficiently a very large dataset of signature
sequences. Many SAGE tag sets are
comprised of only 20,000—60,000
sequenced mRNAs. Knowing that a large
percentage of genes are expressed at a
level of 0.01 per cent or less, it is not clear
whether a dataset of 20,000—60,000
sequenced mRNAs has enough depth to
allow the quantitation and analysis of all
genes within a sample, particularly those
that are biologically important and
expressed at very low levels in the cell. An
MPSS dataset of one million or more
signature sequences is more likely to
provide a depth of analysis that will allow
low-level expressed genes to be accurately
quantitated.

In comparison with the various
microarray platforms, all of the issues
described above for database development
apply. Again, MPSS is most notable in
that it is a technology that has the
potential to capture virtually all genes
present within the sample, and not just
those that have been placed on the
microarray. No prior knowledge of a
gene’s sequence is required for MPSS.
While this is most relevant to non-human
species whose genomes have not been
sequenced, it also applies to genes on the

human genome that have not been
identified and annotated. Also microarrays
have the limitation that homologous
genes can cross-hybridise, which makes it
impossible to detect individual members
of highly homologous gene family
members. With MPSS, the signature
sequence, which is often in the 3’
untranslated region, can be different for
individual family members. Therefore, it
is possible, in many cases, to differentiate
highly homologous genes from each
other.

‘While microarrays have limitations for
in-depth gene expression analyses, they
have the advantage of being very useful
for the high throughput analysis of
multiple samples. Therefore, it may be
useful to think of the microarray and
MPSS technologies as being
complementary in nature — different
tools for different types of experiments.
For example, to generate in-depth and
quantitative gene expression data for
building complex relational databases,
MPSS may be the technology of choice.
After these databases are mined for
interesting biological information, it may
be necessary to test whether sets of genes
are differentially expressed in a large
number of samples (eg tumours of a
specific type); here, the microarray
platform would clearly be the technology
of choice. Having access to both MPSS
and at least one of the microarray
technologies would seem to be ideal for
most investigators.

Overall, compared with several existing
technologies, MPSS has the advantage
that it provides in-depth quantitation of
virtually all genes that are expressed in a
sample. Since there is no requirement for
prior knowledge of any gene or genome,
it is possible to generate quantitative gene
expression datasets from any organism.
Additionally, since an MPSS dataset
typically involves one million or more
signature sequences, it has the sensitivity
to quantitate accurately genes that are
expressed at very low levels within a cell.
No other single technology has these
performance characteristics.
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