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Abstract 

 

Understanding complex tissues requires single-cell deconstruction of gene 
regulation with precision and scale. Here we present a massively parallel droplet-based 
platform for mapping transposase-accessible chromatin in tens of thousands of single 
cells per sample (scATAC-seq). We obtain and analyze chromatin profiles of over 
200,000 single cells in two primary human systems. In blood, scATAC-seq allows marker-
free identification of cell type-specific cis- and trans-regulatory elements, mapping of 
disease-associated enhancer activity, and reconstruction of trajectories of differentiation 
from progenitors to diverse and rare immune cell types. In basal cell carcinoma, scATAC-
seq reveals regulatory landscapes of malignant, stromal, and immune cell types in the 
tumor microenvironment. Moreover, scATAC-seq of serial tumor biopsies before and after 
PD-1 blockade allows identification of chromatin regulators and differentiation trajectories 
of therapy-responsive intratumoral T cell subsets, revealing a shared regulatory program 
driving CD8+ T cell exhaustion and CD4+ T follicular helper cell development. We 
anticipate that droplet-based single-cell chromatin accessibility will provide a broadly 
applicable means of identifying regulatory factors and elements that underlie cell type and 
function. 
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Introduction 

 

Tissues are comprised of a complex collection of cell types, each type specialized 
to its functional role. Understanding this inherent functional complexity often requires 
technologies that measure properties of single cells, rather than of the system as a whole. 
This concept is exemplified in the immune system, where effective responses to a wide 
array of pathogens or cancer are orchestrated by the sequential activity of more than a 
hundred specialized cell types. While recent studies have developed a number of robust 
technologies to measure RNA or protein expression in single cells, technologies for 
assessing chromatin accessibility in single cells are comparatively lacking. 
 

Cell type-specific gene expression in eukaryotic cells is regulated by millions of 
cis-acting DNA elements (e.g. enhancers and promoters) and thousands of trans-acting 
factors (e.g. transcription factors [TFs] and regulatory RNAs)1. Functionally distinct cell 
types exhibit distinct gene expression programs that are brought about by changes in the 
activity of cis-elements through their interplay with trans-factors. We previously developed 
the assay for transposase-accessible chromatin using sequencing (ATAC-seq), which 
enables the enumeration of active DNA regulatory elements by direct transposition of 
sequencing adapters into accessible chromatin with the hyperactive transposase Tn52. 
This method can reveal several layers of gene regulation in a single assay, including the 
genome-wide identification of cis-elements, inference of TF binding and activity, and 
nucleosome positions2–4. Importantly, ATAC-seq is applicable to low-cell number 
samples5, and even single cells6,7, which has enabled epigenomic profiling of primary 
samples with newfound precision. In studies to date, single-cell ATAC-seq (scATAC-seq) 
has been used to map cell-to-cell variability and rare single-cell epigenomic phenotypes 
across diverse biological processes, including in healthy and malignant immune cells8–12. 
However, the widespread adoption of this technique has been hindered by the difficulty 
and cost of performing the assay at scale while maintaining high data quality.  
 

Here we report a method to perform scATAC-seq in nanoliter-sized droplets, which 
enables the generation of high-quality single-cell chromatin accessibility profiles at 
massive scale. To demonstrate the performance and utility of this method, we analyzed 
primary cells in two biological contexts. First, we mapped the single-cell chromatin 
accessibility landscape of blood formation in bone marrow and blood samples from 
healthy humans. This landscape revealed diverse chromatin states of progenitor cells and 
the regulatory trajectories of their differentiation into effector cell types. Second, we 
performed scATAC-seq in primary tumor biopsies from patients with basal cell carcinoma 
(BCC) receiving anti-programmed cell death protein 1 (PD-1) immunotherapy (PD-1 
blockade). Single-cell deconvolution of the tumor microenvironment (TME) revealed 
distinct types of immune, stromal, and malignant cells, and analysis of intratumoral T cells 
identified epigenetic regulators of therapy-responsive T cell subtypes, including CD8+ 
exhausted (TEx) and CD4+ T follicular helper (Tfh) cells. Altogether, we report scATAC-
seq profiles of over 200,000 cells, demonstrating that this platform enables the unbiased 
discovery of cell types and regulatory DNA elements across diverse biological systems. 
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Results 

 

Droplet-based platform for measuring single-cell chromatin accessibility 

 
We developed a method to perform scATAC-seq in droplets using the Chromium 

platform (10X Genomics) previously employed to measure single-cell transcriptomes13 or 
paired single-cell transcriptomes and T cell- or B cell- receptor sequences14 (Fig. 1a, 
Supplementary Fig. 1a). In this scATAC-seq approach, nuclei are first isolated from a 
single-cell suspension and transposed in bulk with the transposase Tn5. Transposed 
nuclei are then loaded onto an 8-channel microfluidic chip for Gel bead in Emulsion (GEM) 
generation. Each gel bead is functionalized with newly-designed single-stranded 
barcoded oligonucleotides that consists of: (1) a 29 basepair (bp) sequencing adapter, 
(2) a 16bp barcode selected from ~750,000 designed sequences to index GEMs, and (3) 
the first 14bp of Read 1N, which serves as the priming sequence in the linear amplification 
reaction to incorporate barcodes to transposed DNA (Supplementary Fig. 1a). In each 
channel, ~100,000 GEMs are formed per experiment, resulting in the encapsulation of 
tens of thousands of cells in GEMs per microfluidic chip. Approximately 80% of GEMs 
contain a single gel bead, and nuclei are loaded at a limiting dilution to minimize co-
occurrence of multiple cells in the same GEM. After GEM generation, gel beads are 
dissolved, and the oligonucleotides are released for linear amplification of transposed 
DNA. Finally, the emulsion is broken, and barcoded DNA is pooled for PCR amplification 
to generate indexed libraries, which are compatible with high-throughput sequencing. In 
the sequencing reaction, reads 1N and 2N contain the DNA insert, while the index reads, 
i5 and i7, capture the cell barcodes and sample indices, respectively. 
 

To assess the performance of this method, we generated scATAC-seq libraries 
from species-mixing experiments, in which we pooled human (GM12878) and mouse 
(A20) B cell nuclei. The nuclei from each cell type were first transposed in bulk, and then 
an even mixture of each cell type was loaded at various loadings onto microfluidic chips. 
The resulting libraries were sequenced and processed through a single-cell analysis 
pipeline to de-multiplex reads, assign cell barcodes, align fragments to the human or 
mouse reference genome, and de-duplicate fragments generated by PCR amplification 
(Cell Ranger ATAC; Methods). We first evaluated the quantity and quality of all scATAC-
seq data, regardless of species of origin, and used previously described cut-offs of 1,000 
unique nuclear fragments per cell and a transcription start site (TSS) enrichment score of 
8 to exclude low-quality cells from further downstream analysis (Methods)15. Single cells 
passing filter yielded on average 23.24 x 103 unique fragments mapping to the nuclear 
genome, and approximately 40.5% of Tn5 insertions were within peaks present in 
aggregated ATAC-seq profiles from all cells, comparable to previously published high-
quality scATAC-seq and bulk ATAC-seq profiles (Fig. 1b-c and Supplementary Fig. 

1b)6,10,15. Accordingly, scATAC-seq profiles exhibited fragment size periodicity and a high 
enrichment of fragments at TSSs, and aggregate profiles from multiple independent 
experiments were highly correlated (Fig. 1d and Supplementary Fig. 1c). Finally, 
analysis of mouse and human fragments in single cells confirmed a low-rate of estimated 
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multiplets (12/1,159 cells, ~1%; Fig. 1e). A cell titration experiment with four different cell 
loading concentrations showed a linear relationship between the observed multiplet rate 
and the number of recovered cells (~1% multiplets per 1,000 cells recovered), consistent 
with Poisson loading of nuclei and similar observations for single-cell transcriptomes in 
droplet platforms (Fig. 1e)13,16. Therefore, to minimize potential multiplets, we typically 
aimed to capture <6,000 nuclei per channel. 
 
Validation of rare cell detection and performance in complex archival samples 

 
We next sub-sampled scATAC-seq data in silico to assess the technical 

performance of scATAC-seq with different data quantity (fragments/cell) and cell number 
(Supplementary Fig. 1d-e). A comparison of each sub-sampled profile to the aggregate 
profile from all data demonstrated that a relatively complete list of cis-elements could be 
identified by aggregating ~200 cells and at least 10,000 fragments/cell. Aggregate profiles 
from ~200 cells could achieve the confident discovery of ~80% of ATAC-seq peaks from 
total profiles, and an overall Pearson correlation of r~0.9 for all reads in peaks 
(Supplementary Fig. 1d). With this information in mind, we devised a data analysis 
workflow for peak calling and clustering (Supplementary Fig. 1f, Methods). In this 
workflow, single-cell libraries were first processed with Cell Ranger and filtered. Next, we 
performed an ‘initial’ clustering analysis by partitioning the genome into 2.5 kb windows 
and counting Tn5 insertions in each window, as described previously7,9. We then 
performed single-cell Latent Semantic Indexing (LSI) and clustered cells using Shared 
Nearest Neighbor (SNN) clustering (SNN; Seurat17) with the top 20,000 accessible 
windows, requiring that each cluster contain at least 200 cells. These ‘initial’ clusters were 
then used to identify confident ATAC-seq peaks (using MACS218) in single-cell clusters 
and to generate a merged peak set that represented the full epigenetic diversity of all 
cells. Finally, a cell-by-peak counts matrix was created and used for ‘final’ single-cell 
clustering and downstream analysis, in which each cluster could contain any number of 
cells (Methods).  
 

We tested this analysis approach with two quality-control experiments. First, we 
generated a series of synthetic cell mixtures, in which human monocytes were isolated 
from peripheral blood mononuclear cells (PBMCs) and mixed with sorted human T 
lymphocytes in various ratios spanning a 1,000-fold detection range (Supplementary 

Fig. 2a-b, Supplementary Table 1). We then performed scATAC-seq and determined 
whether we could resolve each population in an unsupervised analysis. As expected, 
scATAC-seq analysis of 50:50 mixtures identified two distinct populations of cells, which 
demonstrated high accessibility of open chromatin regions linked either to monocyte-
specific genes (i.e. CD14, CSF1R, TREML4), or to T cell-specific genes (i.e. CD3E, CD4, 
CD8A; Supplementary Fig. 2a and Methods). Importantly, this analysis could also 
resolve small populations, which represented either 1/100 or 1/1,000 of total cells, 
demonstrating that even rare cell-types could be identified in this manner 
(Supplementary Fig. 2b). Second, we compared the performance of scATAC-seq 
analysis in fresh versus frozen PBMCs (Supplementary Fig. 2c-f). We isolated nuclei 
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from either fresh PBMCs, viably-frozen PBMCs, or viably-frozen PBMCs that were sorted 
for live cells and performed scATAC-seq (Methods). As seen in previous datasets, we 
confirmed that scATAC-seq profiles passing filter yielded approximately the same 
quantity and quality of ATAC-seq data, regardless of sample origin, and that aggregate 
profiles from fresh and frozen cells were highly correlated (Supplementary Fig. 2c-d)11. 
Importantly, cell type-specific clusters from each PBMC sample clustered together, and 
frozen samples recapitulated the majority of ATAC-seq peaks discovered in fresh 
samples (AUC: 0.809; Supplementary Fig. 2e-f). Altogether, these results quantify the 
high similarity of scATAC-seq data generated in different batches and across different 
sample preparation conditions and demonstrate the ability to discover rare single cells in 
heterogeneous mixtures. 
 
Unbiased single-cell accessible chromatin landscape of human hematopoiesis 

 
To further demonstrate this method in primary samples, we performed experiments 

in human immune cells. The immune system relies on the continuous differentiation of 
hematopoietic stem cells (HSCs) into functionally-specialized cell types, a process which 
is tightly controlled by the expression of cell-type-specific genes and maintained by 
epigenetic programs (Fig. 2a). Since this system has been extensively studied using 
single-cell methods, we reasoned that it might be an ideal system to validate the 
interpretation of scATAC-seq data at scale. We generated scATAC-seq libraries from 
peripheral blood (PB) and bone marrow (BM) cells from 16 healthy individuals and 
sampled cells both in an unbiased fashion, analyzing total PB and BM cells, or after cell 
sorting to enrich for certain cell phenotypes (Supplementary Fig. 3a and 

Supplementary Table 2). The purpose of this sampling strategy was two-fold: (1) to 
validate scATAC-seq-defined cluster identities by standard cell surface marker 
phenotypes, and (2) to uncover additional heterogeneity within surface-marker defined 
populations with single-cell measurements. In total, we generated high-quality scATAC-
seq profiles from 61,806 cells, and cells passing filter yielded on average 15.6 x 103 

fragments mapping to the nuclear genome, and approximately 40.5% of Tn5 insertions 
were within peaks identified in the aggregate ATAC-seq profile from all cells 
(Supplementary Fig. 3b-c). Importantly, the quality of scATAC-seq profiles was highly 
uniform across individuals, samples, and cell types, and the number of fragments per cell 
and TSS enrichment scores were on par with high-quality scATAC-seq datasets in 
primary immune cells generated with other technologies (Supplementary Fig. 3d-e)11,12. 
 

We clustered scATAC-seq profiles with LSI followed by SNN clustering and 
visualized clusters with uniform manifold approximation and projection (UMAP), a 
nonlinear dimensionality-reduction technique that preserves local and aspects of global 
inter-cluster relationships19. We identified 31 scATAC-seq clusters, which we classified 
using three parallel approaches: (1) chromatin accessibility of individual cis-elements 
(ATAC-seq peaks), (2) gene activity scores, which were computed from the accessibility 
of several enhancers linked to a single gene promoter20, and (3) TF activity, as computed 
from the accessibility of thousands of TF binding sites genome-wide in each single cell4. 
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All three approaches are based on a ‘bottom-up’ analysis of scATAC-seq data and do not 
require prior knowledge from RNA-seq datasets or reference bulk ATAC-seq profiles.  
 

Using the first approach, we identified a total of 571,400 equal-width non-
overlapping cis-elements across all scATAC-seq clusters, and approximately 20.4% of 
elements (116,713) exhibited significant cell-type specific accessibility in a single cluster 
(mean 6,208 peaks per cluster, FDR < 0.01; Methods). Annotation of cell types through 
the identification of neighboring genes to cluster-specific cis-elements demonstrated that 
scATAC-seq profiles spanned the continuum from early hematopoietic progenitors to end-
stage cell types (Fig. 2b-c). For example, Clusters 2-4 demonstrated accessibility at cis-
elements neighboring key myeloid progenitor genes, including KIT, GATA1, TAL1, and 
SPI1, while Clusters 14-16 demonstrated accessibility at cis-elements neighboring B cell 
genes, including CD19, EBF1, and LYN (Fig. 2c and Supplementary Fig. S4a). 
Importantly, clustering of scATAC-seq profiles could identify relatively rare cell types, 
such as basophils, as well as known cell type distinctions and subsets, such as the 
distinction between CD4+ and CD8+ T cells, and the presence of phenotypically-distinct T 
cell subsets, such as regulatory CD4+ T cells (Treg; Fig. 2b-c). Moreover, scATAC-seq 
analysis identified unique cell-type specific regulatory elements even within a single gene 
locus. For example, although the transcription factor IRF8 is critical for the function of 
many immune cell types, we observed unique accessibility of the +85kb and +87kb 
enhancers in the IRF8 locus in myeloid cells, and of the +54kb and +56kb enhancers in 
plasmacytoid dendritic cells (pDCs), while the +37kb enhancer was accessible in nearly 
all immune lineages (Fig. 2d). These findings are in line with previously-identified Irf8 
super-enhancers in dendritic cells21, and potentially inform the cellular impact of genetic 
variants associated with autoimmune disease present in this locus22.  
 

Although cis-element analysis can be informative, this measurement is naturally 
sparse in single cells, as it is limited by the DNA copy number (2 alleles per element in a 
diploid genome). Therefore, in the second analysis approach, we asked whether we could 
further support cluster identities using gene activity scores (henceforth referred to as 
‘gene scores’), which are computed as the normalized aggregate accessibility of several 
enhancers linked to a single gene promoter20. We first identified all enhancer-promoter 
(E-P) connections genome-wide with Cicero, an algorithm that links pairs of DNA 
elements based on co-accessibility in scATAC-seq data20. This method identified 149,309 
total E-P connections across all scATAC-seq clusters, with a median of 6 enhancers 
linked to each gene promoter (Methods). We independently validated E-P connections 
obtained from this analysis using two orthogonal datasets from primary human immune 
cells. First, we compared E-P connections identified with Cicero to chromosome 
conformation signal obtained from H3K27ac HiChIP experiments in T cells23 and found 
that enhancers linked to gene promoters showed significant enrichment for HiChIP 
enhancer interaction signal (EIS), compared to neighboring genomic regions 
(Supplementary Fig. 4b). Second, we compared Cicero E-P contacts to expression 
quantitative trait loci (eQTLs; Genotype-Tissue Expression [GTEx] database24) and found 
enrichment of eQTLs in linked contacts, particularly when eQTLs were also identified in 
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immune cells (Supplementary Fig. 4c; Methods). Together, these results confirm that 
globally, E-P contacts identified with this method are supported by three-dimensional 
genome conformation and by functional perturbations of enhancers.  
 

We next calculated single-cell accessibility at E-P connections for each gene and 
projected gene scores for immune lineage-defining genes onto scATAC-seq clusters (Fig. 

2e and Methods). Indeed, we found that gene scores supported prior cis-element-
defined cluster identities, and that many of these scores were relatively robust in each 
cell within a cluster. For example, the CD34 gene score identified hematopoietic 
progenitors, the CD14 gene score identified monocyte and myeloid dendritic cells 
(mDCs), and the CD20 gene score identified B cells (Fig. 2e and Supplementary Fig. 

S4d-e). Again, this analysis robustly identified rare cell types, for example demonstrating 
high IL13 gene scores in basophils, and immune cell subsets, for example identifying high 
FOXP3 scores in Tregs (Fig. 4e). Across all single cells, we identified 5,977 gene scores 
that exhibited scATAC-seq cluster-specific activity, reflecting known and novel markers 
for each cell type (Supplementary Fig. 4d).  
 

Finally, in the third analysis approach, we measured chromatin accessibility at all 
cis-elements sharing a common feature (such as a TF binding motif) using chromVAR4. 
To demonstrate the viability of this method, we analyzed aggregate scATAC-seq cluster 
profiles for expected differences at binding sites for known cell type-specific TFs. Indeed, 
genome-wide accessibility at binding sites for GATA2, a lineage-determining factor for 
megakaryocyte, erythrocyte, and basophil lineages25, was increased in megakaryocyte-
erythroid progenitors (MEPs), in basophils, and in common myeloid progenitors (CMPs), 
as expected (Fig. 2f). Similarly, the accessibility of binding sites for EBF1, the lineage-
determining factor for B cells26, was increased in naïve, memory, and plasma B cells, as 
well as in early B cell progenitors (Fig. 2f). Since DNA bound by TFs is protected from 
transposition by Tn5, visualization of each TF profile showed local chromatin accessibility 
changes surrounding the binding ‘footprint’ (Fig. 2f and Supplementary Fig. 5a). Next, 
we computed the genome-wide accessibility for all TF motifs in each single cell using 
chromVAR (referred to as ‘chromVAR TF deviation’), which revealed shared and unique 
regulatory programs across immune cell types (Fig. 2g-h and Supplementary Fig. 5b). 
For example, mDCs and B cells shared activity at sites containing BCL11A, SPI1, and 
IRF factor motifs, but demonstrated unique activity at sites containing motifs for CEBP 
factors and EBF1, respectively (Fig. 2g-h). Similarly, TBX21- and EOMES-bound sites 
were active in both NK and T cell populations; however, only T cells showed accessibility 
at sites containing motifs for the T cell lineage-determining factor TCF7 (Fig. 2g-h)27.  
 

We asked whether we could similarly group cis-elements according to the 
presence of disease-associated genetic variants, rather than TF motifs, in order to 
nominate cellular determinants of autoimmune disease. To achieve this, we used a list of 
fine-mapped causal variants associated with 21 autoimmune diseases and 18 non-
immune diseases22 and generated a feature set for each disease that consisted of variant-
containing ATAC-seq peaks. To increase the statistical power of this analysis, we also 
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included all co-accessible elements to those containing causal variants (identified using 
Cicero; Supplementary Fig. 5c). We then measured chromatin accessibility change in 
all variant-associated regions genome-wide in each single cell to nominate potentially 
causal cell types in each disease (chromVAR; Supplementary Fig. 5c-d). Strikingly, this 
analysis revealed several distinct patterns of cell type-specific accessibility change 
among autoimmune diseases. As previously observed, several diseases, such as celiac 
disease, Type 1 diabetes, Crohn’s disease, and juvenile arthritis, primarily showed high 
accessibility of variant-containing putative enhancers (henceforth termed ‘variant-
enhancers’) in T cell populations (Supplementary Fig. 5d)22. Other diseases, such as 
Kawasaki disease, multiple sclerosis, and systemic lupus erythematosus, showed high 
accessibility of variant-enhancers in B cells – either specifically, or in addition to 
accessibility in T cells – as previously described (Supplementary Fig. 5d)22. However, 
the comprehensive scale of scATAC-seq cell types enabled the discovery of novel 
patterns. For example, variant-enhancers associated with systemic sclerosis showed 
high accessibility in mature NK cells and pDCs, and variant-enhancers associated with 
ulcerative colitis showed high accessibility in mDCs and monocytes, consistent with the 
suggested impact of these cell types in murine models of each disease28,29. Additional 
diseases with high variant-enhancer signals in myeloid cells included a number of 
metabolic traits and diseases, such as fasting glucose and HDL cholesterol levels, and 
Type 2 diabetes, suggesting that cell-specific enhancers nominate regulatory roles for 
immune cells in these processes as well. The association of individual disease variants 
with cell type-specific enhancers could be confirmed by H3K27ac HiCHIP measurements 
in primary cells (Supplementary Fig. 5e). Altogether, these results demonstrate that 
scATAC-seq data may be analyzed without guidance from bulk data to identify cell types 
and their associated chromatin accessibility landscapes, and to examine the enrichment 
of these landscapes for polymorphisms associated with human disease.  
 
Regulatory trajectories of immune lineages 

 
Since this dataset included progenitor and effector cell types, we asked whether 

the density of scATAC-seq data could be used to reconstruct cellular developmental 
trajectories in an unbiased manner, without the use of pre-defined markers. As a test 
case, we aimed to reconstruct the lineage trajectory of plasma B cell differentiation, since: 
(1) the entirety of this developmental program occurs in the bone marrow and blood and 
thus ought to be captured in our dataset, and (2) the regulatory mechanisms of this 
process are relatively well-defined for comparison (Fig. 3a). To achieve this, we used a 
nearest-neighbor approach on existing cluster definitions (Fig. 3a). We started with the 
plasma B cell cluster (Cluster 16) and attempted to return to the HSC cluster (Cluster 1) 
by sequentially selecting precursor-cell relationships with the most epigenetic similarity to 
the cluster of interest (computed from Euclidean distances of ATAC-seq profiles; 
Methods). For example, the nearest neighbor to the memory B cell cluster (Cluster 15) 
was the naïve B cell cluster (Cluster 14). The nearest neighbor to naïve B cells was the 
Pre-B cell cluster, and so on (Fig. 3b). Indeed, this reverse reconstruction process 
correctly identified the well-established cellular trajectory of plasma B cell development 
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as the most significant trajectory among all tested trajectories (p<0.0002; 5,000 
permutations). Finally, we generated an ordering of single cells (henceforth referred to as 
‘pseudotime’) along this trajectory by computing a pseudotime vector across lineage 
clusters and aligning each cell to the vector in the UMAP projection (Fig. 3c and 
Methods). 
 
 We next utilized this single-cell pseudotime to identify stage-specific activities of 
cis-elements and trans-factors during plasma B cell differentiation. An analysis of ~10,000 
cis-elements with dynamic accessibility patterns across the trajectory revealed specific 
dynamic regulatory elements near several known regulators of every stage of B cell 
development (Fig. 3d). For example, cis-elements that were accessible early in the 
trajectory included enhancers for EBF1, RUNX1, IL7R, RAG2, and MEF2C, factors that 
are critical for B cell lineage specification and diversity (Fig. 3d)26,30,31. Conversely, 
~3,500 cis-elements that were accessible late in the trajectory included elements proximal 
to PRDM1, a critical transcription factor for plasma cell fate, and the plasma cell-specific 
marker SDC1 (CD138). We also determined whether examination of chromVAR deviation 
scores across this developmental ordering of trans-factors could identify critical TFs 
involved in B cell development. Since chromVAR TF deviation scores calculated from 
scATAC-seq data can reflect the potential activity of many TFs with similar DNA-binding 
motifs, we integrated chromVAR deviations with dynamic cis-element gene scores to 
prune the data for the activity of specific TFs within a motif family (Fig. 3e). Indeed, this 
method accurately identified several previously-identified TFs that are critical for B cell 
differentiation (Fig. 3e). More importantly, this method could resolve fine differences in 
the timing of TF activity. For example, MEF2C activity was observed early in B cell 
development – at the stage of common lymphoid progenitors (CLPs) – consistent with its 
demonstrated role in lymphoid versus myeloid fate specification31. Immediately after the 
induction of MEF2C activity, we observed the sequential activity of EBF1, PAX5, and 
IRF4, recapitulating the known order of their physiological functions in pro-B cells, pre-B 
cells, and naïve B cells, respectively (Fig. 3f)26. Altogether, these results indicate that 
pseudotime ordering of scATAC-seq data can be used to accurately identify cis- and 
trans-regulatory factors controlling cellular differentiation. 
 
 We next applied trajectory analysis to the early stages of hematopoiesis to identify 
TF regulators of myeloid fate decisions, particularly of dendritic cells (DCs) – a relatively 
rare population of cells sparsely sampled in prior epigenomic studies. We first re-clustered 
16,015 progenitor and DC scATAC-seq profiles (defined in Fig. 2) and 2,074 profiles of 
surface marker-defined progenitors, generated in a previous study (Fig. 3g)11. We 
identified 16 sub-clusters, and the projection of the sorted scATAC-seq profiles onto de 

novo-defined clusters revealed regulatory relationships between progenitors and 
significant heterogeneity in marker-defined states (Fig. 3h-i). Globally, immune lineages 
appeared to diverge early via three distinct branches to: (1) megakaryocyte/erythroid 
(Meg/E) and basophil/eosinophil (Bas/Eo) fates, (2) lymphoid fates, or (3) 
neutrophil/monocyte/DC fates. However, sorted progenitors did not always occupy a 
single de novo-defined regulatory state. For example, classically-defined CMPs (Lineage-
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CD34+CD38+CD10-CD45RA-CD123mid) were present in four de novo-defined clusters, 
including in committed pathways leading to either neutrophil/monocyte/DC fates (Clusters 
2 and 11), Meg/E fates (Clusters 4-5), or Baso/Eo fates (Clusters 3-4; Fig. 3h-i). This 
result suggests that CMPs are heterogeneous, and that while CMPs as a population 
contain lineage potential for all myeloid fates, the vast majority of single cells within this 
population are already biased toward specific lineages. Similarly, granulocyte-
macrophage progenitors (GMPs; Lineage-CD34+CD38+CD10-CD45RA+CD123mid) 
demonstrated a similar phenomenon and were present in four clusters downstream of the 
CMP (Clusters 11-14), including those leading to neutrophil differentiation, as well as 
previously unrecognized clusters leading to mDC and pDC fates (Fig. 3h-i).  
 

We used pseudotime ordering to identify TF trajectories in progenitor clusters, 
again with a specific focus on DC development (Fig. 3j). This analysis revealed both 
shared and unique TF programs across myeloid fates. For example, while Meg/E and 
Bas/Eo progenitors shared accessibility at GATA2 motifs, Bas/Eo commitment was 
characterized by SPI1 (PU.1) and CEBPA motif activity, while Meg/E commitment was 
characterized by MYB, GATA1, and KLF1 motif activity, as previously described (Fig. 

3k)32,33. Similarly, while neutrophil progenitors shared increased accessibility at SPI1 
motifs with Bas/Eo progenitors, neutrophil commitment was accompanied by additional 
activity of AP-1 and CEBP motifs, and of RARA (Fig. 3k). Finally, the analysis of 
trajectories towards DC fates revealed three distinct possible developmental trajectories. 
The mDC pathway transitioned through CMP and GMP clusters, and then to Cluster 13 
(monocyte-dendritic cell progenitor; MDP) and Cluster 14 (common dendritic progenitor; 
CDP), prior to terminal mDC differentiation. This trajectory showed accessibility at IRF8, 
IRF4, BCL11A, SPI1, KLF4, AP-1, and RBPJ motifs, consistent with critical roles of each 
of these factors in DC differentiation34. Importantly, there was a clear ordering of each 
factor’s activity in early versus late differentiation; IRF8, BCL11A, and SPI1 motifs 
exhibited accessibility early in CDPs, while AP-1 and RBPJ factors increased in 
accessibility late in terminal differentiation (Fig. 3k). For pDCs, two possible trajectories 
could be observed, supporting previous reports that this lineage can arise from both 
myeloid- and lymphoid-committed progenitors35–37. A first pDC trajectory transitioned 
directly from lymphoid-primed multipotent progenitors to differentiated pDCs, while a 
second trajectory traversed CMP, GMP, MDP, and CDP stages prior to pDC 
differentiation (Fig. 3k). Analysis of TF deviations revealed that each pathway relied on 
the same regulatory program, which included RUNX, IRF8, SPIB, BCL11A, and TCF4 
factors, as previously demonstrated in murine and human pDCs34. Importantly, we did 
not observe significant epigenomic heterogeneity within terminal pDCs, suggesting that 
divergent cellular trajectories can achieve nearly identical cell states through activation of 
a common regulatory program. 
 

Single-cell chromatin landscape of intratumoral immunity 

 
We next applied this method to primary solid tumor biopsies from BCC patients 

receiving PD-1 blockade. BCC is the most common cancer in humans worldwide, and 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 18, 2019. ; https://doi.org/10.1101/610550doi: bioRxiv preprint 

https://doi.org/10.1101/610550
http://creativecommons.org/licenses/by/4.0/


 12 

recent studies demonstrated that a subset of patients with advanced BCC show 
significant clinical benefit from immunotherapies based on blocking the T cell inhibitory 
receptor PD-138. However, as in many other cancers, PD-1 blockade is clinically 
ineffective in more than half of BCC patients39,40. Thus, our goal was to identify cell types 
that were responsive to therapy and the regulatory mechanisms controlling their activity 
in responder versus non-responder patients. In addition, these experiments 
demonstrated the feasibility of applying this method to sparse samples (as low as 500 
sorted cells) from clinical biopsies. 
 

We performed scATAC-seq on serial tumor biopsies pre- and post-PD-1 blockade 
(pembrolizumab) from 5 patients, plus post-therapy biopsies from 2 additional patients 
(total of 7 patients; 14 timepoints sampled; Fig. 4a and Supplementary Table 3). All 
patients had histologically-verified locally advanced or metastatic BCC and were poor 
candidates for surgical resection. To minimize non-therapy-related immune cell variation, 
we excluded patients with prior exposures to checkpoint blockade, or to systemic immune 
suppressants within 4 weeks of biopsy. We dissociated tumors into single-cell 
suspensions using enzymatic dissociation and sampled cells both in an unbiased fashion, 
analyzing total cells, or after cell sorting to enrich for T cells (CD45+CD3+), non-T immune 
cells (CD45+CD3-) and/or stromal and tumor cells (CD45-; Supplementary Fig. 6a and 

Methods). To enable pre- and post-therapy cell comparisons, biopsies were site-matched 
in each patient, and when possible, cells were sampled in the same manner at each 
timepoint. In total, we generated high-quality scATAC-seq profiles from 37,818 cells. Cells 
passing filter yielded on average 15 x 103 unique fragments mapping to the nuclear 
genome, and approximately 62.5% of Tn5 insertions were within peaks present in the 
aggregate ATAC-seq profile from all cells, demonstrating that we could obtain high-quality 
scATAC-seq profiles from solid tumor biopsies (Fig. 4b and Supplementary Fig. 6b-d).  
 
 We clustered scATAC-seq profiles with LSI followed by SNN clustering and 
visualized clusters with UMAP, and identified 20 scATAC-seq clusters (Fig. 4b-c). 
Classification of clusters using cis-element accessibility and gene scores revealed a 
diverse ecosystem of cell types in the BCC TME, including 9 T cell clusters (high 
accessibility of CD3E, CD8A, and CD4 enhancers), 2 natural killer (NK) cell clusters (high 
accessibility of KLRC1 and NCR1 enhancers), B cells and plasma cells (high accessibility 
of CD19 and SDC1 enhancers, respectively), myeloid cells that comprised mDCs and 
tissue macrophages (high accessibility of CD86, CSF1R, and FLT3 enhancers), stromal 
endothelial cells and fibroblasts (high accessibility of CD31 and COL1A2 enhancers, 
respectively), and 4 tumor cell clusters (high accessibility of KRT14 enhancers; Fig. 4b-

d and Supplementary Fig. 6e). Notably, stromal and immune cells from different patients 
clustered together, demonstrating that these clusters did not represent patient-specific 
cell states or batch effects. In contrast, tumor cell clusters were largely patient-specific, 
consistent with prior single-cell RNA-seq studies in melanoma and head and neck 
cancer41,42, and perhaps reflecting cell state changes driven by patient-specific genome 
alterations (Fig. 4c). To identify potential genome alterations driving each tumor cell state, 
and to further support the distinction of malignant and non-malignant cells, we estimated 
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copy number variation (CNV) from scATAC-seq data (Fig. 4e and Methods). This analysis 
revealed CNVs in Clusters 17-20, compared to other stromal cell populations. For 
example, tumor cells in patient SU010 showed ATAC-seq signal consistent with 
amplifications of regions of chromosomes 3 and 6, which were present in both pre- and 
post-therapy samples (Fig. 4e). Finally, we analyzed TF activity in each cell type and 
found distinct patterns of activity in immune cells, compared to stromal or tumor cells (Fig. 

4f). Immune cells displayed high accessibility of TBX21, EOMES, RUNX, BCL11A, SPI1, 
and IRF motifs, while stromal and tumor cells displayed high accessibility of NFkB, CEBP, 
p63, and AP-1 motifs (Fig. 4f and Supplementary Fig. 7a-b). Moreover, tumor cells 
showed high accessibility of GLI1 motifs, consistent with the critical role of the Hedgehog 
signaling pathway in BCC (Supplementary Fig. 7b)43.  
 
Epigenetic landscape of T cell exhaustion after PD-1 blockade 

 
We asked whether TME chromatin landscapes could identify epigenetic regulators 

of the anti-tumor T cell response. Since T cells can be activated by targeting either T cell 
inhibitory receptors (such as PD-1) or by targeting inhibitory receptor ligands (such as 
PD-L1) expressed on stromal cells, we examined this question in the context of both T 
and stromal cell populations. First, we analyzed cis-elements near genes encoding the 
known inhibitory ligands, CD47, TGFb, and PD-L1 (Fig. 4g)44–46. Analysis of scATAC-seq 
clusters identified distinct cis-element patterns for each gene across stromal and tumor 
clusters. For example, we identified 3 differentially-accessible cis-elements (-35kb, 
+97kb, and +103kb) in the CD47 locus, consistent with previously identified functional 
enhancers controlling CD47 expression (Fig. 4g)47. Importantly, the tumor necrosis 
factor- and NFkB-responsive +97kb and +103kb enhancers were specifically accessible 
in tumor cells, and not stromal cells, supporting previous reports that CD47 expression 
on tumor cells is responsive to inflammatory signals and may mediate escape from 
immune surveillance47.  Similarly, in the TGFB1 locus, we identified 3 cis-elements 
(+29kb, +30kb, and +32kb) that were primarily accessible in stromal cells (endothelial 
cells and fibroblasts), consistent with the expression pattern of this gene in primary tumors 
(Fig. 4g)45. We also identified 3 cis-elements in the PDL1 locus (+5kb, +9kb, and +43kb), 
which were previously shown to be active in 23 human cancers types in The Cancer 
Genome Atlas48. scATAC-seq data demonstrated the accessibility of these sites in tumors 
cells, stromal cells, and myeloid and B cells, supporting the broad expression pattern of 
this ligand, and suggesting that its expression may rely on the identical cis-regulatory 
elements in each cell type (Fig. 4g).  
 
 We next examined regulatory landscapes of intratumoral T cells. We first re-
clustered 23,274 T cells (defined in Fig. 4) and identified 19 sub-clusters of intratumoral 
T cell states, revealing a rich diversity of T cell phenotypes in the TME (Fig. 5a). 
Classification of clusters using cis-element accessibility and gene scores for CD8A and 
CD4 showed that 6 clusters represented CD8+ T cell states and 13 clusters represented 
CD4+ T cell states (Fig. 5b). CD8+ T cell states included naïve T cells (high accessibility 
of CCR7 and TCF7 enhancers), effector T cells (high accessibility of EOMES and IFNG 
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enhancers), memory T cells (high accessibility of EOMES enhancers, but low accessibility 
of effector gene enhancers), and exhausted T cells (TEx; high accessibility of cis-
elements proximal to inhibitory receptor genes PDCD1, CTLA4, and HAVCR2, and to T 
cell dysfunction genes CD101 and CD3849; Fig. 5b and Supplementary Fig. 8a-b). We 
also identified a cluster consistent with an intermediate TEx cluster (Cluster 16), that 
exhibited gene score patterns of both TEx and memory T cells (Fig. 5b). CD4+ T cell 
states included naïve T cells and several T helper cell phenotypes, such as Tregs (high 
accessibility of FOXP3 and CTLA4 enhancers), T helper 1 (Th1) cells (high accessibility 
of IFNG and TBX21 enhancers), T helper 17 (Th17) cells (high accessibility of IL17A and 
CTSH enhancers), and T follicular helper (Tfh) cells (high accessibility of CXCR5, IL21, 
and BTLA enhancers; Fig. 5b and Supplementary Fig. 8a-b). 
 

We focused on CD8+ TEx cells because previous studies demonstrated that this 
population is enriched for clonally-expanded tumor-specific T cells41,50, and that 
irreversibility of the TEx epigenetic state may limit the re-invigoration of tumor-specific T 
cells after PD-1 blockade51. Indeed, a comparison of pre- and post-PD-1 blockade profiles 
in our dataset showed that TEx cells were the most highly-expanded T cell cluster (Cluster 
17) after therapy (Fig. 5c). More than 90% of TEx cells were derived from post-therapy 
biopsies, whereas memory and effector CD8+ clusters (Clusters 12 and 14) were equally 
derived from both timepoints. Notably, compared to other CD4+ T cell types, we observed 
an expansion of CD4+ Tfh cells post-therapy – nearly to the same extent as TEx cells – 
compared to other CD4+ T cell types, suggesting that PD-1 blockade impacts both CD4+ 
and CD8+ cell states in the TME (Fig. 5c). We first analyzed cis-regulatory landscapes in 
TEx cells to: (1) measure global changes in chromatin accessibility in TEx cells, and (2) 
nominate individual cis-elements that may regulate TEx-specific inhibitory receptor 
expression. Across all T cell states, we identified 35,147 cis-elements that were 
specifically accessible only in a single cluster (mean: 3,361 peaks per cluster, range: 979 
peaks (naïve CD8+ T)-10,808 peaks (Tregs), FDR < 0.01; Supplementary Fig. 8d). In 
TEx cells, we identified 4,598 such elements, demonstrating that human T cell exhaustion 
is accompanied by substantial global remodeling of the chromatin accessibility landscape, 
and that the epigenetic state occupied by this cell state is as distinct as most other 
recognized T cell states, consistent with prior studies in mice49,51,52. Analysis of individual 
TEx-specific enhancers identified novel regulatory elements in inhibitory receptor loci 
(Fig. 5d). For example, the PDCD1 locus (encoding PD-1) contained an intragenic cis-
element (+5kb) with specific accessibility in TEx cells, suggesting that the persistent 
expression of PD-1 in exhausted human T cells is controlled by a single state-specific 
enhancer, and that the regulation of persistent PD-1 expression may be different in 
humans and mice53. In contrast, the CTLA4 and HAVCR2 loci showed TEx-specific 
activity of several distal cis-elements, compared to other CD8+ T cell states (Fig. 5d).  
 

We used pseudotime ordering to identify TF trajectories in TEx differentiation, 
compared to effector or memory CD8+ T cells (Fig. 5e). Since we also observed an 
expansion of CD4+ Tfh cells post-therapy, we included this cell type in our comparison. 
As expected, the differentiation of naïve CD8+ T cells to either effector or memory cells 
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identified the critical roles of EOMES and TBX21 (T-bet) motifs in effector and memory 
cell formation, once again supporting the validity of this analysis54–56 (Fig. 5f). Effector 
cell pseudotime also demonstrated the late accessibility of other known regulators, 
including TFAP4 and YY1, among others57,58. Similarly, memory cell pseudotime also 
showed accessibility at HIF1A and E protein sites59. In contrast, TEx cells showed a 
distinct regulatory program, which progressed through two stages of differentiation (Fig. 

5g). The first stage (intermediate TEx) showed new accessibility of cis-elements near 
inhibitory receptors, as well as elements near genes associated with tissue residency, 
such as ITGAE (CD103)60. Accordingly, this stage of differentiation was accompanied by 
accessibility of NR3C1 and NR4A1 motifs, factors immediately downstream of T cell 
receptor (TCR) signaling61, as well as the RUNX3 motif, a factor that programs tissue 
residency of CD8+ T cells in tumors (Fig. 5g)62. The second stage (terminal TEx) showed 
new accessibility of cis-elements near genes associated with terminal T cell dysfunction, 
such as CD101 and TOX49,51, as well as of new elements in stage 1 gene loci, such as 
CTLA4 (Fig. 5g). Importantly, this stage was accompanied by accessibility of a core set 
of TF motifs, which included NFKB1 and NFKB2, BATF, IRF4, and NFATC1, factors that 
are all directly downstream of TCR signaling, and three of which have been demonstrated 
to play crucial roles in T cell exhaustion in mice63–65.  

 
Finally, we examined the epigenetic relationship between TEx and Tfh cells. Tfh 

cells have previously been observed in tumors and have been proposed as a prognostic 
indicator of patient survival and response to checkpoint blockade66–68.The inferred 
differentiation trajectory from CD4+ naïve T cells to Tfh cells showed new accessibility of 
cis-elements neighboring Tfh-specific genes, such as IL21 and BTLA, but also of 
elements near genes typically associated with TEx cells, such as inhibitory receptors, 
consistent with the known, but unexplained, expression of these genes in human Tfh cells 
(Fig. 5h and Supplementary Fig. 8c-e)69. Strikingly, differentiation was accompanied by 
the accessibility of Tfh regulators, but also of the same core set of TF motifs associated 
with TEx differentiation, including NFKB2, BATF, IRF4, and NFATC1, suggesting a 
common program driving the development of TEx and Tfh cells downstream of PD-1 
blockade (Fig. 5h-i and Supplementary Fig. 8f). Indeed, the abundance of TEx and Tfh 
cells was similar in all patients post-therapy, and in our small cohort, was associated with 
therapy response (Fig. 5j). Altogether, these results map the epigenetic landscape of 
intratumoral TEx cells in humans and suggest that chronic TCR signals drive a shared 
regulatory program in TEx and Tfh cells after PD-1 blockade (Fig. 5k).  
 
Discussion 

 

Recent advances in high-throughput single-cell profiling have driven new insights 
into cell types, RNA expression, and protein markers underlying biological processes. 
However, to date, single-cell chromatin accessibility profiling has been constrained by 
trade-offs between data quality, throughput in cell numbers, and cost per cell. Here we 
report a droplet-based solution for highly multiplexed single-cell chromatin accessibility 
profiling. The ATAC-seq profiles generated using this method are high-quality and enable 
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an unbiased deconvolution of cis- and trans-regulatory elements underlying chromatin 
states with single-cell resolution. This massive scale of cell type and cell state 
reconstruction affords three key advantages: (1) comprehensive deconvolution of all cells 
in a tissue, including rare cell types and states, (2) unbiased reconstruction of cellular 
developmental trajectories, without the use of pre-defined markers, and (3) analysis of 
active regulatory DNA down to the level of individual genes and elements in single cells. 
The droplet-based scATAC-seq library cost is ~$0.4 per cell, has a lower multiplet rate 
compared to prior methods, and does not require cell sorting or non-commercial reagents. 

 
Chromatin accessibility states of regulatory DNA encode and presage cell fates8,70. 

scATAC-seq is thus well-suited to track trajectories of cell differentiation, which can occur 
either as discrete steps or as a continuum of similar states. We developed a bottom-up, 
data-driven approach to iteratively group single cells together based on their accessible 
genomes, used groups of highly similar cells to reconstruct detailed cell type-specific cis-
and trans regulatory maps, and highlighted disease-associated enhancers that are 
uniquely active in specific cell types. Moreover, the dense single-cell clusters enabled 
unbiased computational inference of sequential cell state transitions that could 
reconstruct the developmental trajectories of individual cell types, for example 
recapitulating decades of research on B cell and DC development. Importantly, scATAC-
seq of tumor-infiltrating lymphocytes from patient biopsies identified new regulatory 
programs controlling T cell exhaustion and a previously unrecognized shared program 
with T follicular helper cells. It is tempting to speculate that this shared program may 
reflect an evolutionarily conserved pathway to synchronize CD4+ and CD8+ T cell 
responses to chronic pathogen infection, such that CD4+ Tfh cells support antibody 
formation as well as long-term activation of CD8+ T cells, perhaps through IL-2171–73. 
Nevertheless, future studies targeting these regulatory pathways may nominate 
therapeutic interventions that synergize with PD-1 blockade in cancer. In summary, we 
describe a method for generating large-scale single-cell chromatin accessibility profiles 
on a widely-distributed single-cell investigation platform, enabling unbiased discovery of 
cell types and regulatory DNA elements in complex tissues. 
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Methods 

 
Human subjects 

This study was approved by the Stanford University Administrative Panels on Human 
Subjects in Medical Research, and written informed consent was obtained from all 
participants. 
 

Cell lines and PBMC/BM samples 

Human (GM12878) and Mouse A20 (ATCC TIB-208) B Lymphocytes were acquired and 
cultured according to guidelines from Coriell and ATCC, respectively. Fresh PBMCs, 
GM12878, and A20 cells were frozen according to the instructions outlined here: 
https://assets.ctfassets.net/an68im79xiti/2ptJYphPcPGfSPisq0cVuu/c8a83f93383c2fd1c
e7cc49abc837992/CG000169_DemonstratedProtocol_NucleiIsolation_ATAC_Sequenci
ng_Rev_B.pdf. Briefly, PBMCs were cryopreserved in IMDM + 40% FBS + 15% DMSO. 
GM12878 and A20 cells were cryopreserved in RPMI + 15% FBS + 5% DMSO. For the 
monocyte and T cell mixing experiments, nuclei were first extracted and transposed, then 
mixed at indicated ratios. To avoid pipetting errors, a large number of nuclei were mixed 
after nuclei extraction and transposition, and a smaller number of nuclei were loaded onto 
the microfluidics chip for scATAC library generation. We also performed a similar mixing 
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experiment using naïve and memory T cells (Supplementary Table 1), which performed 
similarly and is included in the available data section. 
 
Healthy volunteer PBMC and BM samples were obtained from AllCells or the Stanford 
Blood Center (SBC). Mononuclear cells from each sample were isolated by Ficoll 
separation, resuspended in 90% FBS + 10% DMSO, and cryopreserved in IMDM + 40% 
FBS + 15% DMSO. Samples were then thawed at 37°C for 5 min and resuspended in 

media prior to cell enrichment using magenetic-activated cell sorting (MACS) or FACS 
(Supplementary Table 2). All MACS-enriched populations were obtained from AllCells 
and isolated per manufacturer recommendations (as outlined in Supplementary Table 

2). FACS-isolated populations were obtained from AllCells or SBC and sorted as follows. 
CD4+ T helper cells were sorted as naive T cells (CD4+CD25-CD45RA+) or memory T 
cells (CD4+CD25-CD45RA-) using the following antibodies: anti-human CD45RA-
PERCPCy5.5 (Clone HI100, Biolegend), anti-human CD4-APC-Cy7 (Clone OKT4, 
Biolegend), and anti-human CD25-FITC (Clone BC96, Biolegend). Dendritic cells and 
basophils were sorted as CD3-CD19-CD11c+HLA-DR+ (DCs) and CD3-CD19-CD123+ 

(basophils) using the following antibodies: CD11C-PECy7 (Clone B-ly6, BD), HLA-DR-
APCCy7 (Clone G46-6, BD), CD123-BV421 (Clone 6H6, Biolegend), CD3-FITC (Clone 
UCHT1, BD), and CD19-AlexaFluor 488 (Clone HIB19, Biolegend). All antibodies were 
validated by the manufacturer in human peripheral blood samples, used at a 1:200 
dilution, and compared to isotype and no staining control samples. 
 
BCC sample collection and cell sorting 

Fresh BCC biopsies were digested in 5 mL DMEM/F12 media + 250 µg/mL Liberase TL 
and 200 U/mL DNAse I with the gentleMACS Octo system at 37°C for 3 hours at 20 rpm. 
After tissue pieces were fully digested, 50 µL of 500 mM EDTA was added and samples 
were collected by centrifugation at 300xg for 5 minutes. Single-cell suspensions were 
filtered through 70 µm mesh and pelleted by centrifugation at 300xg at 4°C for 10 minutes. 
Finally, cells were then resuspended in 1 mL of RPMI media and cryopreserved in FBS 
supplemented with 10% DMSO. 
 

Cells were gently thawed at 37°C for 5 min and resuspended in media prior to FACS. 
Cells were stained with anti-CD45 V500 (clone HI30, cat. no. 560779, BD Biosciences), 
anti- CD3 FITC (clone OKT3, cat. no. 11-0037-41, Invitrogen), anti-CD8 Pacific Blue 
(clone 3B5, cat. no. MHCD0828, Invitrogen), anti-PD-1 APC/Cy7 (clone EH12.2H7, cat. 
no. 329921, BioLegend), and anti-HLA-DR eVolve 605 (clone LN3, cat. no. 83-9956-41, 
Affymetrix-Ebioscience). All antibodies were used at a 1:200 dilution, with the exception 
of anti-CD45 and anti-HLA-DR antibodies, which were used at a 1:100 dilution. Propidium 
iodine (cat. no. P3566, Invitrogen) was used for live/dead staining at a final concentration 

of 2.5 µg/mL. PI-negative live cells were sorted as T cells (CD45+CD3+), non-T immune 
cells (CD45+CD3-), or tumor/stromal cells (CD45-CD3-) and further processed using 
scATAC-seq. 

 
Single-cell ATAC-Seq using the 10x Chromium platform 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 18, 2019. ; https://doi.org/10.1101/610550doi: bioRxiv preprint 

https://doi.org/10.1101/610550
http://creativecommons.org/licenses/by/4.0/


 19 

All protocols to generate scATAC-seq data on the 10x Chromium platform, including 
sample prep, library prep, instrument and sequencing settings, are described below and 
are also available here: https://support.10xgenomics.com/single-cell-atac. 
  
Nuclei Isolation 

The isolation, washing, and counting of nuclei suspensions were performed according to 
the Demonstrated Protocol: Nuclei Isolation for Single Cell ATAC Sequencing (10x 
Genomics). Briefly, anywhere from 100,000 to 1,000,000 cells were added to a 2 ml 
microcentrifuge tube and centrifuged (300 rcf for 5 min at 4°C). The supernatant was 
removed without disrupting the cell pallet and 100 µl chilled Lysis Buffer (10 mM Tris-HCl 
(pH 7.4); 10 mM NaCl; 3 MgCl2; 0.1% Tween-20; 0.1% Nonidet P40 Substitute; 0.01% 
Digitonin and 1% BSA) was added then pipette mixed 10 times. The microcentrifuge tube 
was then incubated on ice, with the length of time optimized for each cell type: GM12878 
and A20 cell lines were 5 min; PB and BM cells were 3 min. Following lysis, 1 mL of chilled 
Wash Buffer (10 mM Tris-HCl (pH 7.4); 10 mM NaCl; 3 MgCl2; 0.1% Tween-20 and 1% 
BSA) was added and the resulting solution and pipette mixed 5 times. Nuclei were 
centrifuged (500 rcf for 5 min at 4°C) and the supernatant removed without disrupting the 
nuclei pellet. Based on the starting number of cells and desired final nuclei concentration, 
an appropriate volume of chilled Diluted Nuclei Buffer (10x Genomics; 2000153) was 
used to resuspend nuclei. The resulting nuclei concentration was determined using a 
Countess II FL Automated Cell Counter. Nuclei were then immediately used to generate 
single cell ATAC-seq libraries as described below. 

Library Construction 

scATAC-seq libraries were prepared according to the Chromium Single Cell ATAC 
Reagent Kits User Guide (10x Genomics; CG000168 Rev B). Briefly, the desired number 
of nuclei were combined with ATAC Buffer (10x Genomics; 2000122) and ATAC Enzyme 
(10x Genomics; 2000123/2000138), to form a Transposition Mix which was then 
incubated for 60 min at 37°C. A Master Mix comprising of Barcoding Reagent (10x 
Genomics; 2000124), Reducing Agent B (10x Genomics; 2000087) and Barcoding 
Enzyme (10x Genomics; 2000125/2000139) was then added to the same tube as 
Transposed Nuclei. The resulting solution was loaded onto a Chromium Chip E (10x 
Genomics; 2000121) in a Chip Holder (10x Genomics; 330019). Vortexed Chromium 
Single Cell ATAC Gel Beads (10x Genomics; 2000132) then Partitioning Oil (10x 
Genomics; 220088) were also loaded onto the same Chromium Chip E before attaching 
a 10x Gasket (10x Genomics; 370017/3000072) and placing into on a ChromiumTM Single 
Cell Controller instrument (10x Genomics, Pleasanton, CA, USA). Resulting single-cell 
GEMs were collected at the completion of the run (~7 min) and linear amplification was 
performed in a C1000 Touch Thermal cycler with 96-Deep Well Reaction Module (Bio-
Rad; 1851197): 72°C for 5 min, 98°C for 30 s, cycled 12 x: 98°C for 10 s, 59°C for 30 s 
and 72°C for 1 min. Emulsions were coalesced using tje Recovery Agent (10x Genomics; 
220016) then subjected to Dynabeads (2000048) and SPRIselect reagent (Beckman 
Coulter; B23318) bead clean-ups. Indexed sequencing libraries were constructed by 
combining the barcoded linear amplification product with a Sample Index PCR Mix 
comprising of SI-PCR Primer B (10x Genomics; 2000128), Amp Mix (10x Genomics; 
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2000047/2000103) and Chromium i7 Sample Index (10x Genomics; 3000262). 
Amplification was performed in a C1000 Touch Thermal cycler with 96-Deep Well 
Reaction Module: 98°C for 45 s, cycled variable amounts depending on cell load: 98°C 
for 20 s, 67°C for 30 s, 72°C for 20 s with a final extension of 72°C for 1 min. The barcode 
sequencing libraries were subjected to a final bead clean-up SPRIselect reagent and 
quantified by quantitative PCR (KAPA Biosystems Library Quantification Kit for Illumina 
platforms; KK4824). Sequencing libraries were loaded on an Illumina sequencer with 2 × 
50 paired-end kits using the following read length: 50 bp Read 1N, 8 bp i7 Index, 16 bp i5 
Index and 50 bp Read 2N. 
 
Instrument Loading Concentration 

(pM) 
PhiX (%) 

NextSeq 500 1.7 1 
HiSeq 2500 (RR) 11 1 
HiSeq 4000 180 1 
NovaSeq 250 1 

 
Oligonucleotide sequences 

Name Sequence (5ʹ-3ʹ) 

Read1N TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG 

Read2N GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG 

Gel Bead Oligo Primer (PN-
2000132) 

AATGATACGGCGACCACCGAGATCTACAC-
NNNNNNNNNNNNNNNN-TCGTCGGCAGCGTC 

SI-PCR Primer B (PN-
2000128) 

AATGATACGGCGACCACCGAGA 

i7 Sample Index Plate N, Set 
A (PN-3000262) 

CAAGCAGAAGACGGCATACGAGAT-NNNNNNNN-
GTCTCGTGGGCTCGG 

 
Availability of Data Processing and Analysis Software 

All data processing steps and methods used in the manuscript are described in detail 
below. We also have designed and made the following tools freely available: 
 
Cell Ranger ATAC: This software performs initial data processing of scATAC sequencing 
reads (including de-multiplexing, genome alignment, and read de-duplication), as 
described below and used in this manuscript. This software will also perform additional 
downstream analysis, including the identification of open chromatin regions, motif 
annotations, and differential accessibility analysis, similar to what was performed in this 
manuscript and described below. 
https://support.10xgenomics.com/single-cell-atac/software/pipelines/latest/what-is-cell-
ranger-atac 
 
Loupe Cell Browser: This is an interactive visualization software that shows ATAC-seq 
peak profiles for scATAC-seq cell clusters, similar to the analysis done in this manuscript 
and described below. 
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https://support.10xgenomics.com/single-cell-atac/software/visualization/latest/what-is-
loupe-cell-browser 
 

Data Processing using Cell Ranger ATAC Software 

The Cell Ranger (CR) Software (version 1.0; https://support.10xgenomics.com/single-
cell-atac/software/pipelines/latest/algorithms/overview) was used for alignment, de-
duplication, and identification of transposase cut sites. First, the 16bp barcode sequence 
was processed to fix the occasional sequencing error in barcodes. Barcode sequences 
were obtained from the I2 index reads. An observed barcode not present in the whitelist 
of barcodes can be corrected to a whitelist barcode if it is within 2 hamming distance 
away, and has >90% probability of being the real barcode (based on the abundance of 
the barcode and quality value of incorrect bases). Then, the cutadapt tool was used to 
identify and trim any adapter sequence in each read. Third, the trimmed read pairs were 
aligned to a reference using BWA-MEM with default parameters. Reads less than 25bp 
are not aligned and flagged as unmapped. Fragments are identified as read pairs with 
MAPQ>30, non-mitochondria reads and not chimerically mapped. The start and end of 
the fragments are adjusted (+4 for + strand and -5 for - strand) to account for the 9bp 
region the transposase enzyme occupies during the transposition. Lastly, fragments with 
identical start and end positions were counted once. The most common barcode 
sequence is assigned to the fragments, with ties broken by picking the barcode sequence 
with the highest read counts. One of the read-pairs with that barcode sequence is labeled 
as the ‘original’ and the other read-pairs in the group are marked as duplicates of the 
fragment in the BAM file.  
 
scATAC-seq Data Analysis 
Filtering Cells by TSS Enrichment and Unique Fragments 

Enrichment of ATAC-seq accessibility at TSS was used to quantify data quality without 
the need for a defined peak set. Calculating enrichment at TSS was performed as 
previously described48, and TSS positions were acquired from the Bioconductor package 
from “TxDb.Hsapiens.UCSC.hg19.knownGene”. Briefly, Tn5 corrected insertions were 
aggregated +/- 2,000 bp relative (TSS strand-corrected) to each unique TSS genome 
wide. Then this profile was normalized to the mean accessibility +/- 1,900-2,000 bp from 
the TSS and smoothed every 51bp in R. The calculated TSS enrichment represents the 
max of the smoothed profile at the TSS. We then filtered all single cells that had at least 
1,000 unique fragments and a TSS enrichment of 8 for all data sets. 
 
Generating a Counts Matrix 

To make a cell by feature counts matrix, we first read each fragment into R using readr. 
Next, we converted these fragment GenomicRanges into Tn5 insertion GenomicRanges 
by concatenating GenomicRanges for each “start” and “end” of the fragments (1bp width). 
Next, we used “findOverlaps” to find all overlaps with the feature by insertions. Then we 
added a column with the unique id (integer) cell barcode to the overlaps object and fed 
this into a sparseMatrix in R. To calculate the fraction of Tn5 insertions in peaks, we used 
the colSums of the sparseMatrix and divided it by the number of insertions for each cell 
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id barcode using “table” in R. The counts matrix was then log-normalized by using 
edgeR’s “cpm(matrix , log = TRUE, prior.count = 3)” in R. The prior count is used to lower 
the contribution of variance from elements with lower count values as previously 
described. This normalization assumes that global differences in accessibility are minor 
to relative differences by depth normalizing within accessible regions. 

 
Generating Union Peak Sets with Latent Semantic Indexing 

We created a union peak set by adapting a previous workflow as follows12. Prior to calling 
peaks, we constructed 2.5kb windows that were tiled across the genome by using 
“tile(hg19chromSizes, width = 2500)” in R. Next, a cell by window sparse matrix was 
computed by counting the Tn5 insertion overlaps for each cell using “findOverlaps” in R 
as described above. This matrix was then binarized and pruned to the top 20,000 most 
accessible sites across all cells. We then reduced the dimensionality as previously 
described by computing the term frequency-inverse document frequency (“TF-IDF”) 
transformation9. Briefly we divided each index by the colSums of the matrix to compute 
the cell “term frequency”. Next we multiplied these values by log(1 + ncol(matrix) / 
rowSums(matrix)) which represents the “inverse document frequency”. This 
normalization resulted in a TF-IDF matrix that was then used as input to irlba’s singular 
value decomposition (SVD) implementation in R. We then retained only the 2nd-25th 
dimensions (1st dimension is associated with cell read depth12) and created a Seurat 
object and identified crude clusters using Seurat’s SNN graph clustering (v2.3) with 
“FindClusters” with a default resolution of 0.8. If the minimum cluster size was below 200 
cells, the resolution was decreased until this criterion was reached leading to a final 
resolution of 0.8N (where N represents the iterations until the minimum cluster size is 200 
cells). 
 
Peak calling for each cluster was performed independently to get high-quality, fixed-width 
peaks that represent the epigenetic diversity of all samples based on previous work48. For 
each cluster, peak calling was performed on Tn5-corrected single-base insertions (each 
end of the Tn5-corrected fragments) using the MACS2 callpeak command with 
parameters “--shift -75 --extsize 150 --nomodel --call-summits --nolambda --keep-dup all 
-q 0.05.” The peak summits were then extended by 250bp on either side to a final width 
of 501bp, filtered by the ENCODE hg19 blacklist  
(https://www.encodeproject.org/annotations/ENCSR636HFF/), and then filtered to 
remove peaks that extend beyond the ends of chromosomes. 
 
Overlapping peaks called within a single sample were handled using an iterative removal 
procedure as previously described48. First, the most significant peak is kept and any peak 
that directly overlaps with that significant peak is removed. Then, this process iterates to 
the next most significant peak and so on until all peaks have either been kept or removed 
due to direct overlap with a more significant peak. This was performed on each cluster’s 
peak set and then the top 100,000 extended summits (ranked by MACS2 score) were 
kept to arrive at a “cluster-specific peak set” for each cluster. We then normalized the 
MACS2 peak scores (-log10(q-value)) for each sample and converted them to a “score 
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quantile” by converting each individual score to a quantile using “trunc(rank(v))/length(v)” 
in R (where v represents the vector of MACS2 peaks scores). This normalization allows 
for direct comparison of peaks across clusters, enabling the generation of a union peak 
set for each dataset. 
 
We next compiled a union peak set containing the important peaks observed across all 
clusters. First, all cluster peak sets were combined into a cumulative peak set and 
trimmed for overlap using the same iterative procedure mentioned above. Again, this 
procedure keeps the most significant (in this case, score quantile) peak and discards any 
peak that overlaps directly with the most significant peak. Lastly, we removed any peaks 
that spanned a genomic region containing “N” nucleotides and any peaks mapping to the 
Y chromosome.  
 
Reads-in-peaks-normalized bigwigs and sequencing tracks 

To visualize ATAC-seq cluster data genome-wide, we created ATAC-seq signal tracks 
that have been normalized by the number of reads in peaks, as previously described48. 
Briefly, we created fragment files that contained all cells belonging to a specific cluster 
and then counted the number of Tn5 insertions in the corresponding peak set. The 
number of Tn5 insertions were computed in windows genome-wide using 
“slidingWindows(chromSizes,100,100)”. Next, we created a run-length encode using 
“coverage” in R and normalized the total reads to a scale factor that normalizes the reads-
in-peaks to 10 million reads within peaks. This object was then converted into a bigwig 
using rtracklayer “export.bw” in R. For plotting tracks, the bigwigs were read into R using 
rtracklayer “import.bw(as=”Rle”)” and plotted within R or visualized with WashU 
Epigenome browser. All track figures in this paper show groups of tracks with matched 
normalized y-axis scales. 
 
To visualize scATAC-seq data, we read the fragments into a GenomicRanges object in 
R. We then computed sliding windows across each region we wanted to visualize every 
100 bp “slidingWindows(region,100,100)”. We computed a counts matrix for Tn5-
corrected insertions as described above and then binarized this matrix. We then returned 
all non-zero indices from the matrix (cell x 100bp intervals) and plotted them in ggplot2 in 
R with “geom_tile”.  
 
ATAC-seq-centric Latent Semantic Indexing clustering and visualization 

We clustered scATAC-seq data using an approach that does not require bulk data or prior 
knowledge. To achieve this, we adopted the strategy by Cusanovich et. al9, to compute 
the term frequency-inverse document frequency (“TF-IDF”) transformation. Briefly we 
divided each index by the colSums of the matrix to compute the cell “term frequency.” 
Next, we multiplied these values by log(1 + ncol(matrix) / rowSums(matrix)), which 
represents the “inverse document frequency.” This resulted in a TF-IDF matrix that was 
used as input to irlba’s singular value decomposition (SVD) implementation in R. We then 
used the first 50 reduced dimensions as input into a Seurat object and then crude clusters 
were identified by using Seurat’s (v2.3) SNN graph clustering “FindClusters” with a default 
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resolution of 0.8. We found that there was detectable batch effect that confounded further 
analyses. To attenuate this batch effect, we calculated the cluster sums from the binarized 
accessibility matrix and then log-normalized by using edgeR’s “cpm(matrix , log = TRUE, 
prior.count = 3)” in R. Next, we identified the top 25,000 varying peaks across all clusters 
using “rowVars” in R. This was done on the cluster log-normalized matrix vs the sparse 
binary matrix because: (1) it reduced biases due to cluster cell sizes, and (2) it attenuated 
the mean-variability relationship by converting to log space with a scaled prior count. 
These 25,000 variable peaks were then used to subset the sparse binarized accessibility 
matrix and recomputed the “TF-IDF” transform. We used singular value decomposition 
on the TF-IDF matrix to generate a lower dimensional representation of the data by 
retaining the first 50 dimensions. We then used these reduced dimensions as input into 
a Seurat object and then crude clusters were identified by using Seurat’s (v2.3) SNN 
graph clustering “FindClusters” with a default resolution of 0.8. These same reduced 
dimensions were used as input to Seurat’s “RunUMAP” with default parameters and 
plotted in ggplot2 using R. 
 
For sub-clustering analyses (Hematopoiesis: CD34+ BM and DCs; Tumor: T cells), we 
computed the cluster sums again and log-normalized using edgeR’s “cpm(matrix , log = 
TRUE, prior.count = 3)” in R. We identified the top 10,000 and 5,000 varying peaks for 
CD34+ cells and T cells, respectively. These variable peaks were then used to subset the 
sparse binarized accessibility matrix and recompute the “TF-IDF” transform. We then 
used singular value decomposition on the TF-IDF matrix to generate a lower dimensional 
representation of the data by retaining the first 25 dimensions. We then used these 
reduced dimensions (1-25 and 2-25, respectively) as input into a Seurat object, and then 
crude clusters were identified by using Seurat’s (v2.3) SNN graph clustering 
“FindClusters” with a default resolution of 0.8. These same reduced dimensions were 
used as input to Seurat’s “RunUMAP” and plotted in ggplot using R. 
  
Inferring copy number amplification 

To infer DNA copy number amplifications from scATAC-seq data, we first tiled the 
genome into 10-Mb windows using “slidingWindows” of GenomicRanges for chromosome 
sizes in R with a step size of 2Mb. These window positions were then filtered against 
regions with known artefactual mapping issues using the ENCODE hg19 blacklist with 
the “setdiff” function in R. Then, a cell by window binarized matrix was constructed, as 
described above. Next, the insertions per bp was determined within each filtered 10-Mbp 
window. The percent GC content was computed for each filtered 10-Mbp window using 
the hg19 BSgenome in R. To estimate if a region is amplified, we identified the 100 
nearest neighbors based on GC content and computed the average log2(fold change). If 
this was above 1 we considered this region as a candidate for amplification. By looking 
at the median log2(fold change) for each patient across each cluster we tried to identify 
amplified regions. 
 
Transcription factor footprinting 
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We wanted to characterize relative TF occupancy through TF footprints, as previously 
described48. For each peak set, we used CIS-BP motifs (from chromVAR motifs 
human_pwms_v1) to calculate motif positions using motifmatchr “matchMotifs(positions 
= “out”)”. Next, we computed the Tn5 bias for each sample by constructing hexamer bias 
table using “oligonucleotidefrequency” function from Biostrings in R. Then, we calculated 
a hexamer table for each TF by counting the hexamers relative to each stranded motif 
position +/-250 bp from the motif center. Using the sample’s hexamer frequency table, 
we could then compute the expected Tn5 insertions by multiplying the hexamer position 
frequency table by the observed/expected Tn5 hexamer frequency. 
 
To assess the reproducibility of footprints, we subsampled each cluster fragments 2 times 
at a sampling rate of 60% to have maximum variability. To calculate the insertions around 
these sites, we converted the Tn5-corrected insertions GenomicRanges (see above) into 
a coverage run-length encoding using “coverage”. For each individual motif, we iterated 
over the chromosomes, computing a “Views” object using “Views(coverage, motif 
positions)”. This “Views” object was converted to a matrix using “as.matrix” which was 
then used to calculate the following and the colSums for “- stranded” motifs were reversed 
and the colSums for NOT “- stranded” motifs were summed. To better compare footprints 
across samples, we normalized these footprints by the mean values +/-200-250 bp from 
the motif center. Next, we divided the footprints by the expected Tn5 bias to attempt to 
account for the inherent Tn5 bias. While this strategy is effective, it does not fully account 
for all of Tn5’s sequence bias. We then plot the mean and standard deviation for each 
footprint pseudo-replicate. 
 
ChromVAR 

In addition to TF footprinting, we measured global TF activity using chromVAR4. We used 
as input the raw insertion counts for all peaks and the CIS-BP motif (from chromVAR 
motifs “human_pwms_v1”) matches within these peaks from motifmatchr. We then 
computed the GC bias-corrected deviation scores using the chromVAR “deviationScores” 
function. All plots used the “deviationScores” in R and variability was computed by using 
“rowVars” in R. 
 
Computing Gene Activity Scores using Cicero Co-Accessibility 

We calculated gene activities using the R package Cicero as previously described20. We 
first used the sparse binary matrix and created a cellDataSet, detectedGenes, and 
estimatedSizeFactors. Next, we created a “cicero_cds” with k=50 and the 
“reduced_coordinates” being the corresponding UMAPs. This function returns 
aggregated accessibility across groupings of cells based on nearest-neighbor rules. We 
then identified all peak-peak linkages that were within 250 kb by resizing the peaks to 250 
kb and then overlapping them with the peak summits/centers. We removed all duplicates 
and same peak-peak links. Next, we calculated the pearson correlation for each peak-
peak link and created a connections data.frame where the first column is peaki and the 
second column is peakj and third coaccessibility (pearson correlation). We then created 
a gene data.frame by getting genes from the TxDb  
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“TxDb.Hsapiens.UCSC.hg19.knownGene” in R. We altered the start of “MEF2C” to 
88014057 because this alternative transcript start site is where we see strong promoter 
accessibility. We then resized each gene to its TSS and created a window +/- 2.5 kb from 
the TSS and then annotated our “cicero_cds” using “annotate_cds_by_site”. We then 
calculated gene activities by using “build_gene_activity_matrix” with a coaccess cutoff of 
0.35. Lastly we normalized the gene activities by using “normalize_gene_activities” and 
the read depth of the cells. We wanted to adapt these activity scores to be more 
interpretable as pseudo RNA-seq so we further log normalized them by computing 
“log2(GA*1000000 +1)” which we refer to as further in the text as log2(GA + 1) (analogous 
to logCPM transformation). This conversion made the scores more interpretable and 
allowed them to be used further in TF deduplication and cell annotations. 
 
GWAS PICs Causal Autoimmune Variants using Cicero Co-Accessibility and chromVAR 

We sought to characterize cell-type specific enrichments in known disease associated 
regulatory elements. To do this analysis, we downloaded the causal SNPs for 39 diseases 
from http://pubs.broadinstitute.org/pubs/finemapping/dataportal.php. We then converted 
these into a GenomicRanges object and overlapped them with ATAC-seq peaks. We 
wanted to increase our power beyond direct overlaps, thus we used our cicero co-
accessibility links to extend direct overlaps to peaks that are also co-accessible. To do 
this analysis, for every peak that had an overlap, we took all peaks that were co-
accessible above 0.35 and then marked them as overlapping. We then created an overlap 
matrix for every group of SNPs partitioned by disease. We then used this as input to 
chromVAR’s “computeDeviations” with the scATAC-seq raw insertion counts for all 
peaks. We then used the “deviationScores” from chromVAR and plotted the median score 
across each cluster in R. 
 
HiChIP MetaV4C support for Cicero Co-Accessibility Links 

We wanted to further support predicted Cicero co-accessibility links using previously 
published 3D chromosome conformation data as previously described48. Briefly, we used 
published histone H3K27ac HiChIP data from primary T cell subsets23 (Naive, Th17, and 
Treg) to support our predicted Cicero co-accessibility links. First, we converted our links 
to 10kb resolution by flooring each coordinate (gene start and peak center) to the nearest 
10kb window and deduplicated. To make distance-scaled Meta-Virtual 4C plots, each 
chromosome was retrieved from the “.hic” interactions file using juicer dump at 10-Kb 
resolution and read into a “sparseMatrix” in R (each coordinate in the matrix 
corresponding to a 10-Kb interaction bin). Then, for each peak-to-gene link longer than 
100kb, the upstream or downstream window (depending on the peak’s location relative 
to the TSS) was identified and then interpolated linearly using the “approx” function to get 
the value at each 0.1%. This was then summed for each predicted interaction and divided 
by the total number of predicted interactions. Replicate reproducibility was visualized with 
the mean profile shown as a line and the shading surrounding the mean representing the 
standard deviation between replicates. Lastly, we wanted to test the specificity of our 
scATAC-seq T cell clusters in Naïve, Th17 and Treg H3K27ac HiChIP. We computed the 
cluster sums for each cluster from the binarized accessibility matrix for clusters 21 
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(Naïve), 24 (Memory) and 25 (Treg), log-normalized and computed the row-wise z-
scores. We then took the top 25,000 peaks by Z-score for each cluster and then 
overlapped these with the cicero links. We then plotted the metav4C for each of the 3 
subtypes with replicate reproducibility as described above. 
 
Overlap of Cicero Co-Accessiblity Links with GTEx eQTLs 

eQTLs from the Genotype-Tissue Expression project were used to support the ATAC-seq 
defined Cicero co-accessibility links as previously described48. First, we identified all gene 
starts from gencode v19 (https://gtexportal.org/home/datasets) and extended them +/- 
2.5kb, as we did when computing the gene activities, and then overlapped all peaks with 
these regions using findOverlaps. We then labeled peaks that overlapped with the 
extended gene starts as a promoter peak and identified all ATAC-seq peak-to-promoter 
links. We chose to do this analyses with gencode v19 because we wanted the genes to 
match with the eQTL data set. GTEx eQTL data (version 7) was downloaded from 
https://gtexportal.org/home/datasets and the *.signif_variant_gene_pairs.txt.gz files were 
used. All eQTLs located more than 250kb away from the predicted gene pair were 
removed to maintain consistency with the 250kb window used in predicting ATAC-seq 
peak-to-promoter links. Next, the nearest genes for each eQTL were determined using 
“distanceToNearest” with the eQTL regions to all gene starts in gencode v19 in R. Then, 
all eQTLs that were paired with the nearest gene were removed to better test the 
predictive power of the non-nearest gene peak-to-gene link predictions. All peak-to-gene 
links were then overlapped with these filtered eQTLs using “findOverlaps” and then 
matched based on the predicted linked gene. To assess the significance of these 
overlaps, we created 250 random peak-to-gene link sets by taking all peaks from the 
hematopoiesis union peak set and randomly assigning these peaks to any gene within 
250 kb of the peak summit. Then, we calculated the z-score and enrichment of our 
determined peak-to-gene links compared to the randomized peak sets. We then 
calculated the adjusted p-value using the Benjamini-Hochberg correction. 
 
Constructing ATAC-seq Pseudo-Bulk Replicates of Maximal Variance 

We wanted to perform analyses that treated each cluster as a bulk ATAC-seq sample, 
but required a method that could create replicates that convey close to the true population 
variance within a cluster and potential batch effects. For each cluster, we first checked 
whether each cluster contained 2 or more individual 10x runs that had at least 100 cells 
within the cluster. If true, then individual 10x runs cells were summed from the binarized 
matrix (maximum of 500 cells randomly sampled) to create pseudo-bulk replicates. If this 
condition was not true for the cluster, and there was at least one 10x run that had at least 
100 cells and the remaining cells were at least 100 cells then one 10x run was summed 
from the binarized matrix (maximum of 500 cells randomly sampled) to create a pseudo-
bulk replicate. Then for the remaining cells a pseudo-bulk replicate was constructed by 
randomly sampling 100 cells from the remaining cells 250 times and we kept the sampling 
that produced the highest within cluster total log-variance (cpm(mat, log=TRUE, 
prior.count=3) then summed “rowVars” with the 1 10x run replicate). If neither of these 
conditions were met, then two replicates of 100 cells were randomly sampled 250 times 
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and we kept the sampling that produced the highest within cluster total variance 
(cpm(mat, log=TRUE, prior.count=3) then summed “rowVars” with the both sampled 
replicates). Lastly, if the cluster was smaller than 150 total cells, the number of cells 
sampled was 2/3 the size of the cluster. This workflow was designed to construct pseudo-
replicates from single-cell clusters that produced high variance to attempt to capture true 
biological variation. In general, this approach is still an underestimate of variation when 
fully simulating replicates, so it’s important to be conservative when using these pseudo-
replicates in further analyses. 
 
Constructing Gene Activity Pseudo-Bulk Replicates of Maximal Variance 

We wanted to perform analyses that treated each cluster as a bulk ATAC-seq sample, 
but required a method that could create replicates that convey close to the true population 
variance within a cluster and potential batch effects. For each cluster, we first checked if 
within each cluster there were 2 or more different 10x runs cells that had at least 100 cells 
within the cluster. If this condition was true, then these individual 10x runs cells were 
averaged from the log(GA + 1) matrix (maximum of 500 cells randomly sampled) to create 
pseudo-bulk replicates. If this condition did not satisfy for the cluster, and there was at 
least 1 10x run that had at least 100 cells and the remaining cells were at least 100 cells 
then the 1 10x run was averaged from the log(GA + 1) (maximum of 500 cells randomly 
sampled) to create a pseudo-bulk replicate. Then for the remaining cells a pseudo-bulk 
replicate was constructed by randomly sampling 100 cells from the remaining cells 250 
times and we kept the sampling that produced the highest within cluster total log-variance 
(summed “rowVars” with the 1 10x run replicate). If that condition was not met then two 
replicates of 100 cells were randomly sampled 250 times and we kept the sampling that 
produced the highest within cluster total variance (summed “rowVars” with the both 
sampled replicates). Lastly if the cluster was smaller than 150 total cells the number of 
cells sampled was 2/3 the size of the cluster. This workflow was designed to construct 
pseudo-replicates from single-cell clusters that had high variance to attempt to capture 
real biological variation. In general, this approach is still an underestimate of variation 
when fully simulating replicates, so it’s important to be conservative when using these 
pseudo-replicates in further analyses. 
 
Identification of cluster-specific peaks and gene activities through feature binarization 

Once we had determined clusters from scATAC-seq data, we sought to identify peaks 
that were uniquely present within each cluster or combination of clusters. We modified a 
previously described approach to binarize each feature and then identify unique features 
in a simplistic manner48. For ATAC-seq, we used bulk pseudo-replicates and log-
normalized the matrix using “edgeR::cpm(mat,log=TRUE,prior.count=3)”. For gene 
activities, we used bulk pseudo-replicates and re-normalized the matrix by first converting 
to gene activities and then converting back to log by computing 
“log2(edgeR::cpm(2^logMat-1)+1)”. Next we computed the mean and sd for each cluster 
using “rowMeans” and “rowSds” respectively in R. Next, for each feature peak or gene 
we ranked the clusters by their intra-cluster mean. Then, we iterated from the second 
lowest cluster asking whether the mean of that cluster: (1) is greater than the maximum 
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intra-cluster mean plus the 0.5 times the intra-cluster standard deviation of the next-
lowest cluster (1 sd for sub-cluster binarization), and (2): is greater than log2FC to the 
maximum intra-cluster mean of 0.25. This process was continued and the last time this 
criterion was met, the break point is labeled and all clusters above this intra-cluster mean 
were marked with a “1” and below a “0”. If a peak does not have a break point, it is 
discarded. This binarization will capture peaks that are unique to multiple groups. Next, 
all classified peaks/genes that correspond to more than a total of the floor of a third the 
clusters used as input. Next, for each peak/gene a t-test was computed comparing all 
“1’s” and “0’s” and the p-values were adjust for multiple hypothesis through the Benjamini-
Hochberg correction by “p.adjust(method=“fdr”)”. All peaks/genes that had an adjusted p-
value below 0.01 were kept. Lastly, we filtered out all binarization patterns that were 
classified less than 25 times. These were then plotted in R using the package 
ComplexHeatmap. 
 
Pseudotime Analysis  

To order cells in pseudotime, we sought to create a trajectory that we could align cells to. 
We chose to use UMAP for alignment if cells were part of a continuous substructure, since 
local distances are better preserved. First, we described candidate trajectories by 
ordering clusters. Next, for each cluster we calculated the mean coordinates in both 
dimensions and filtered cells that were in the top 5% euclidean distance to the mean 
coordinates. Next, we computed the distance for each cell from clusteri to the mean 
coordinates of clusteri+1 along the trajectory. We then computed a pseudotime vector by 
calculating the quantiles for each cell by their distance to the next cluster and added the 
current iteration. This allowed us for each of the cells (not filtered), have a UMAP 
coordinate and a time component. Next, we fitted a continuous trajectory to both UMAP 
coordinates using “smooth.spline” with dof =250 and spar = 1. Then, we aligned all cells 
to the trajectory by their euclidean distance to the nearest point along the manifold. We 
then computed then scaled this alignment to 100 and used this as pseudotime for further 
analyses. 
 
To further support longer trajectories in pseudotime, we wanted to test whether the 
trajectory is significant by its ordering. To test our trajectories, we took the latest cluster 
and then ranked the top 10,000 accessible peaks and computed the euclidean distance 
to all other clusters (logCPM). We then continued in this reverse trajectory and computed 
the distance to all other clusters that do not include the previous clusters for directionality. 
To determine the significance of the ordering, we then permuted the ordering of the 
trajectory 5000 times and computed the average rank of the ordering for the permuted 
and input trajectory. This allowed for an empirical p-value calculation that we can then 
assign signified to this reduced dimension trajectory from the original accessibility matrix. 
 
We then sought to create matrices that convey the pseudotime trends across features. 
To do this analysis, we ordered the cells by their pseudotime and fit a smoothed line for 
each feature by using “geom_smooth” with method “gam” and formula “y ~ s(x, bs = "cs")” 
and n = 100. For peaks, this was done on the binarized sparse accessibility matrix, gene 
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activities done using the log-normalized (log(GA + 1)) matrix, and chromVAR deviation 
scores were used in pseudotime analyses. We wanted to de-duplicate chromVAR CIS-
BP motifs by correlating the gene activities of a TF to the inferred activity of chromVAR. 
We correlated TFs and their corresponding gene activities and then using cor.test in R 
kept the associated p-value and adjusted for multiple hypothesis through the Benjamini-
Hochberg correction by “p.adjust(method=“fdr”)”. Next, we computed the quantile for each 
TFs gene activity average and variance. We then averaged these quantiles to equally 
weight the log-average gene activity and log-variance. We then filtered the top 25% of 
TFs by this criterion and then further by TF-motif pairs that were correlated above 0.35 
and FDR < 0.001. These were then used to represent TF-motif pairs identified are more 
likely to be involved in gene regulation across the identified pseudotime. 
 
Barnyard Mixing Analysis  

We sought to assess the rate at which multiplets (more than one cell per droplet) occur 
at different cell loadings to estimate the relative multiplets in our data. To calculate this 
rate, we performed human (GM12878) and mouse (A20) mixing experiments at loadings 
of 500, 1,000, 5,000 and 10,000 cells. We aligned them using 10x Cell Ranger. We then 
filtered cells as described above for both hg19 and mm10 genomes (TSS enrichment of 
8 and 1,000 unique fragments). Next, we determined the effective multiplet rate first by 
computing the fragments to each genome to the combined fragments and then labeled 
multiplets by assigning cells that have fractional fragments less than 0.95 to either hg19 
or mm10.  
 
We then wanted to determine the effect of different numbers of cells and unique fragments 
used for peak calling by down sampling cells and unique fragments. We did this analysis 
by merging all GM12878 and A20 identified fragments from the mixing experiments into 
1 fragments file. Next, we down sampled the fragments file by first the number of cells 
and then the number of fragments to make the unique fragments per cell match the 
desired output. We then called peaks on each of these fragments by creating a bed file 
of the Tn5 insertions (ends of the fragments) with MACS2 callpeak command with 
parameters “--shift -75 --extsize 150 --nomodel --call-summits --nolambda --keep-dup all 
-q 0.05.” The peak summits were then extended by 250bp on either side to a final width 
of 501bp, filtered by the ENCODE hg19 blacklist  
(https://www.encodeproject.org/annotations/ENCSR636HFF/), and then filtered to 
remove peaks that extend beyond the ends of chromosomes. We then took the top 
100,000 non-overlapping extended summits, as previously described48. We repeated this 
on the total fragments file to get a GM12878 and A20 peak set. Next then computed the 
fractional of peaks recovered by using “countOverlaps” and dividing by the extended 
summits of the total fragments file fin R. Lastly, we then counted the number of Tn5 
insertions for each down sampled fragment file within the GM12878 and A20 peak set, 
log-normalized the matrix with “edgeR::cpm(mat, log = TRUE, prior.count = 3)” and 
computed the pearson correlation. We then plotted the results in R using “ggplot”. 
  
Frozen vs Fresh Analysis 
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We wanted to compare the effect of sample preparation on scATAC-seq data quality. 
Thus, we performed scATAC-seq on PBMCs that were freshly isolated, frozen, and frozen 
sorted for live cells. We then filtered the cells as described above (TSS enrichment 8 and 
1,000 unique fragments) and then used our TF-IDF cluster peak calling framework as 
described above to get a peak set for each experiment. We then subsequently used our 
TF-IDF cluster analysis as described above (top 25,000 variable peaks with SVD 
dimensions 1-50) and computed clusters for each experiment. We then computed the 
Receiver Operating Characteristic (ROC) curve for both frozen samples against the fresh 
sample by using “overlapsAny” and ranking the peaks by MACS2 score in R. We then 
computed PCA with “prcomp” and correlations between the identified clusters and entire 
experiment within the fresh samples ATAC-seq peaks. 
 
Spike-Ins Analysis 

We sought to test our sensitivity with our analysis workflow by performing scATAC-seq 
on monocyte and T cell mixtures at various loadings. We then filtered the cells as 
described above (TSS enrichment 8 and 1,000 unique fragments) and then used our TF-
IDF cluster peak calling framework as described above to get a peak set for each 
experiment. We then subsequently used our TF-IDF cluster analysis as described above 
(top 25,000 variable peaks with SVD dimensions 1-50) and computed clusters for each 
experiment. We then used “RunUMAP” with default parameters from Seurat (v2.3) to 
compute a UMAP for each spike-in experiment. We then computed the gene activities 
scores as described above by using the full hematopoiesis peak set, accessibility matrix, 
and co-accessible links and added each sample individually for calculating the gene 
activity scores. We then computed a monocyte score by taking the log(GA+1) average 
for CD14, MAFB, HLA-DRB1, TREML4, CSF1R, CEBPA, TLR4, HLA-DRA, and CD74. 
Lastly, we computed a T cell score by taking the log(GA+1) average for CD3E, CD2, CD5, 
CD7, IL7R, IL2, TCF7, CD3D, and CD3G. 
 
Data Availability 

All single-cell sequencing data have been deposited in the Gene Expression Omnibus 
(GEO) and are awaiting accessioning. 
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Figure Legends 

 
Figure 1. Massively parallel scATAC-seq in droplets. (a) Schematic of scATAC-seq in 
droplets. (b) ATAC-seq data quality control filters in human (GM12878) and mouse (A20) 
B cells at 5,000 cell loading. Shown are the number of unique ATAC-seq nuclear 
fragments in each single cell (each dot) compared to TSS enrichment of all fragments in 
that cell. Dashed lines represent the filters for high-quality single-cell data (1,000 unique 
nuclear fragmentts and TSS score greater than or equal to 8). Data is representative of 4 
independent experiments. (c) Genome tracks showing the comparison of aggregate 
scATAC-seq profiles to bulk Omni-ATAC-seq profiles from GM12878 B lymphoblasts (top 
panel). scATAC-seq profiles were obtained from two independent mixing experiments, in 
which either 4,484 (from 10,000 cell loading) or 282 (from 500 cell loading) cells were 
assayed, as indicated. The bottom panel shows accessibility profiles of 100 random single 
GM12878 cells from each experiment. Each pixel represents a 100bp region. (d) One to 
one plots of log-normalized reads in ATAC-seq peaks in aggregate scATAC-seq profiles. 
Aggregate profiles in GM12878 (left) and A20 (right) cells are derived from two individual 
mixing experiments as in b, in which the indicated number of cells were assayed. ATAC-
seq peaks were identified in Omni-ATAC-seq profiles from 50,000 cells5. (e) Human 
(GM12878)/mouse (A20) cell mixing experiment showing proportion of single-cell libraries 
with both mouse and human ATAC-seq fragments (left). The right panel shows proportion 
of mouse/human multiplets detected when cell loading concentration was varied across 
four independent experiments. Shaded lines indicate 95% confidence interval. 
 
Figure 2. Single-cell chromatin accessibility of human hematopoiesis. (a) Schematic 
of progenitor and end-stage cell types in human hematopoiesis. (b) UMAP projection of 
63,882 scATAC-seq profiles of bone marrow and peripheral blood immune cell types. 
Dots represent individual cells, and colors indicate cluster identity (labeled on the right). 
Bar plot indicates the number of scATAC-seq profiles in each cluster of cells. (c) Heatmap 
of Z-scores of 116,713 cis-regulatory elements in scATAC-seq clusters derived from (b). 
Gene labels indicate the nearest gene to each regulatory element. (d) Single-cell 
chromatin accessibility in the IRF8 locus. Each box shows scATAC-seq profiles from 100 
representative single cells from each cluster. Each pixel represents a 200bp region. The 
top genome track shows the aggregate accessibility profile from all cells combined. (e) 
UMAP projection colored by log-normalized gene activity scores demonstrating the 
accessibility of cis-regulatory elements linked (computed from linked accessibility of distal 
peaks to peaks at gene promoters using Cicero) to the indicated gene. For example, the 
top left plot demonstrates the accessibility score for cis-elements linked to the promoter 
of the hematopoietic progenitor gene CD34. (f) Example TF footprints of GATA2 and 
EBF1 with motifs in the indicated scATAC-seq clusters. The Tn5 insertion bias track is 
shown below. (g) Heatmap representation of ATAC-seq chromVAR bias-corrected 
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deviations in the 250 most variable TFs across all scATAC-seq clusters. Single-cell 
cluster identities are indicated at the top of the plot. (h) UMAP projection of scATAC-seq 
profiles colored by chromVAR TF motif bias-corrected deviations for the indicated factors. 
 
Figure 3. Epigenomic differentiation trajectories of human immune cell types. (a) 
Differentiation trajectory of HSCs to terminal plasma B cells (left). Reverse reconstruction 
of B cell differentiation trajectory using scATAC-seq profiles (right; see Methods). 
Differences between the aggregate plasma B cell scATAC-seq profile and all other 
clusters are calculated. Trajectory is tested against a nearest neighbor approach; the 
cluster with the most similarity (lowest trajectory distance) to the cluster of interest is 
identified as the immediate precursor cluster. (b) Trajectory distance calculations for the 
terminal plasma B cell cluster (Cluster 16). Dots represent comparisons between the 
cluster of interest (labeled at the bottom) and every cluster that has not previously 
identified. P-value < 0.0002 represents 5000 random simulations of trajectory ordering. 
(c) Pseudotime representation of plasma B cell differentiation from HSCs. The dashed 
line represents double-spline fitted trajectory across pseudotime. (d) Pseudotime 
heatmap ordering of the top 10,000 variable cis-regulatory elements across B cell 
differentiation (left). Zoom-in genome tracks show representation behavior of cis-
elements accessible early (top) and late in B cell differentiation (bottom). (e) Pseudotime 
heatmap ordering of chromVAR TF motif bias-corrected deviations across B cell 
differentiation (left). TF motifs are filtered for genes that are highly active (defined as the 
average percentile between total gene activity and variability) that also demonstrate 
similarly dynamic gene scores across differentiation (R > 0.35 and FDR < 0.001). 
Heatmap of TF gene scores is shown on the right. (f) chromVAR bias-corrected deviation 
scores for the indicated TFs across B cell pseudotime. Each dot represents the deviation 
score in an individual pseudotime-ordered scATAC-seq profile. The line represents the 
smoothed fit across pseudotime and chromVAR deviation scores. (g) Sub-clustering 
UMAP projection of 18,489 CD34+ BM progenitors and DCs (Clusters 1-6 and 8-11 from 
full hematopoiesis). scATAC-seq profiles are colored by cluster identity, as labeled on the 
right. (h) UMAP projection of progenitor populations, highlighted are the sorted progenitor 
populations from Buenrostro et al., 201811. Greyed out are the cells assayed in this study. 
(i) Confusion matrix of sorted progenitor populations showing the proportion of each 
population in clusters defined in (g). (j) Lineage trajectories for the indicated cell types, 
calculated as described in (a). Lines represent double-spline fitted trajectories across 
pseudotime. (k) Pseudotime heatmap ordering of chromVAR TF motif bias-corrected 
deviations in the indicated lineage trajectory. TF motifs are filtered for genes as described 
in e.  
  
Figure 4. Single-cell regulatory landscape of the BCC TME. (a) Schematic of analysis 
of BCC samples. (b) UMAP projection of 37,818 scATAC-seq profiles of BCC TME cell 
types. Dots represent individual cells, and colors indicate cluster identity (labeled on the 
right). Bar plot indicates the number of cells in each cluster of cells. (c) UMAP projection 
colored by patient of origin, as indicated on the right. (d) UMAP projection colored by log 
normalized gene activity scores demonstrating the accessibility of cis-regulatory elements 
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linked (using Cicero) to the indicated gene. (e) Estimated Copy-Number Variation (log2 
Fold Change to GC matched background) from scATAC-seq data. Stromal cells include 
endothelial cells and fibroblasts. (f) Heatmap representation of ATAC-seq chromVAR 
bias-corrected deviations in the 250 most variable TFs across all scATAC-seq clusters. 
Cluster identities are indicated at the bottom of the plot. (g) Genome tracks of aggregate 
scATAC-seq data, clustered as indicated in (b). Arrows indicate the position and distance 
(in kb) of distal enhancers in each gene locus. 
 
Figure 5. Epigenomic regulators of T cell exhaustion after PD-1 blockade. (a) Sub-
clustering UMAP projection of 28,274 tumor-infiltrating T cells (Clusters 1-9 from tumor 
micro environment). scATAC-seq profiles are colored by cluster identity, as labeled on 
the right. Bar plot indicates the number of cells in each cluster of cells. (b) UMAP 
projection colored by log normalized gene activity scores demonstrating the accessibility 
of cis-regulatory elements linked (using Cicero) to the indicated gene. (c) UMAP 
projection of tumor-infiltrating T cells colored by pre- and post-PD-1 blockade samples. 
(d) Genome tracks of aggregate scATAC-seq data, clustered as indicated in (a). Arrows 
indicate the position and distance (in kb) of intragenic or distal enhancers in each gene 
locus. (e) Lineage trajectories of Tfh and CD8+ T cell states. Lines represent double-spline 
fitted trajectories across pseudotime. (f) Pseudotime heatmap ordering of chromVAR TF 
motif bias-corrected deviations in effector and memory CD8+ T lineage trajectory. TF 
motifs are filtered for genes that are highly active (defined as the average percentile 
between total gene activity and variability > 0.75) that also demonstrate similarly dynamic 
gene scores across differentiation (R > 0.35 and FDR < 0.001). Heatmap of TF gene 
scores is shown on the right. (g) Pseudotime heatmap ordering of cis-regulatory elements 
(left) and chromVAR TF motif bias-corrected deviations (right) in the CD8+ TEx lineage 
trajectory. (h) Pseudotime heatmap ordering of cis-regulatory elements (left) and 
chromVAR TF motif bias-corrected deviations (right) in the CD4+ Tfh lineage trajectory. 
(i) UMAP projection of scATAC-seq profiles colored by chromVAR TF motif bias-
corrected deviations for the indicated factors (j) UMAP projection of tumor-infiltrating T 
cells colored by pre- and post-PD-1 in representative individual responder and non-
responsder patients. (k) Schematic of regulatory modules controlling TEx and Tfh 
differentiation. 
  

Supplementary Figure Legends 

 

Supplementary Figure 1. Droplet-based scATAC-seq workflow and quality control 

measurements. (a) Protocol steps for scATAC-seq in droplets. (b) Genome tracks 
showing the comparison of aggregate scATAC-seq profiles from A20 B lymphocytes (top 
panel). scATAC-seq profiles were obtained from four independent experiments, as 
indicated. The bottom panel shows accessibility profiles of 100 random single GM12878 
cells from two cell mixing experiments. Each pixel represents a 100bp region. (c) Pearson 
correlation heatmaps of log-normalized reads in bulk GM12878 Omni-ATAC-seq peaks 
in aggregate ATAC-seq profiles generated from varying numbers of single cells, or from 
published Omni-ATAC profiles5. (d) Peak recovery analysis with subsampled cells and 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 18, 2019. ; https://doi.org/10.1101/610550doi: bioRxiv preprint 

https://doi.org/10.1101/610550
http://creativecommons.org/licenses/by/4.0/


 38 

unique fragments as determined by x-axis and colors respectively. scATAC-seq cells 
were subsampled to the indicated unique fragments, and the proportion of peaks 
recovered from the aggregate profile was calculated as a function of number of cells 
analyzed. (e) Pearson correlation analysis with subsampled cells and unique fragments 
as determined by x-axis and colors respectively. scATAC-seq cells were subsampled to 
the indicated unique fragments, and pearson correlation to the aggregate profile was 
calculated as a function of number of cells analyzed. (f) Analysis workflow for scATAC-
seq data in this study. 
 

Supplementary Figure 2. scATAC-seq performance in frozen cells and synthetic 

cell mixtures. (a) Synthetic immune cell mixture quality control experiments. Sorted 
human monocytes or T cells were mixed at the indicated ratio and analyzed with scATAC-
seq. Plots show the UMAP of scATAC-seq profiles (top), and gene score activity for 
monocyte- or T cell-associated cardinal genes (see Methods) in each single cell (middle 
and bottom). Dashed circles indicate monocyte and T cell identity of single cells as 
determined by ATAC-seq profiles. Colors indicate cluster identity defined de novo. (b) 
Sorted human monocytes or T cells were mixed at the indicated ratio and analyzed with 
scATAC-seq and analyzed as described in (a). (c) Comparison of data quality from fresh 
and frozen PBMCs, and frozen PBMCs sorted for live cells. Representative ATAC-seq 
data quality control filters by sample source. Shown are the number of unique ATAC-seq 
nuclear fragments in each single cell (each dot) compared to TSS enrichment of all 
fragments in that cell. Dashed lines represent the filters for high-quality single-cell data 
(1,000 unique nuclear fragments and TSS score greater than or equal to 8). (d) One-to-
one plots of log-normalized reads in aggregated scATAC-seq in profiles generated from 
the indicated cell source (fresh, frozen, or frozen sorted PBMCs). Peaks were defined in 
fresh samples. Numbers indicate Pearson correlation value. (e) ROC curve showing 
recovery of fresh PBMC peaks with frozen or frozen sorted cells. (f) PCA of scATAC-seq 
clusters identified in fresh, frozen, or frozen-sorted PBMCs in fresh PBMC peaks. 
 
Supplementary Figure 3. Sample descriptions and quality control of scATAC-seq 

hematopoiesis data. (a) UMAP projection of 63,882 scATAC-seq profiles of bone 
marrow and peripheral blood immune cell types. Dots represent individual cells, and 
colors indicate the experimental source of each cluster, as labeled on the right of the plot 
(see Methods). (b) Bar plots indicate the number of scATAC-seq profiles obtained from 
each experimental source of cells (left), and the median number of unique nuclear 
fragments in single cells (right). (c) UMAP projection of 63,882 scATAC-seq profiles of 
bone marrow and peripheral blood immune cell types. Colors represent the log10 number 
of unique nuclear fragments per single cell. (d) Representative scATAC-seq data quality 
control filters by sample source. Shown are the number of unique ATAC-seq nuclear 
fragments in each single cell (each dot) compared to TSS enrichment of all fragments in 
that cell. Dashed lines represent the filters for high-quality single-cell data (1,000 unique 
nuclear fragments and TSS score greater than or equal to 8). (e) single-cell ATAC-seq 
data quality control filters in profiles generated using the C1 microfluidic system11 
(Fluidigm; left) or sci-ATAC-seq12 (middle and right panels). 
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Supplementary Figure 4. Cis-regulatory elements in hematopoiesis and co-

accessibility validation. (a) Genome tracks of aggregate scATAC-seq data, clustered 
as indicated in Figure 2b. Arrows indicate the position and distance (in kb) of intragenic 
or distal enhancers in each gene locus. (b) MetaV4C plot of H3K27ac HiChIP data 
demonstrating enhancer interaction signal (EIS) at Cicero-identified co-accessible cis-
elements (linked to promoter elements). Each plot shows the aggregate HiChIP signal 
(from 3 T cell types) between two linked cis-elements identified in scATAC-seq data. The 
peak indicates an enrichment of enhancer interaction signal (EIS) at the linked peaks 
compared to surrounding genomic regions. Biased links are identified by differential peak 
analysis in the indicated scATAC-seq clusters. (c) Support for Cicero-identified co-
accessible cis-elements by GTEX eQTL data. Shown is the enrichment of eQTL signal 
(determined in the indicated tissue type) in co-accessible sites linked to promoter 
elements described in GTEX vs 250 permutations of ATAC-seq peak to genes. (d) 
Heatmap of log-normalized gene activity scores for the indicated genes. (e) UMAP 
projection colored by log normalized gene activity scores demonstrating the accessibility 
of cis-regulatory elements linked (using Cicero) to the indicated gene.  
 

Supplementary Figure 5. TF motif accessibility in hematopoiesis and cell type-

specific GWAS enrichment. (a) Example TF footprints and motifs in the indicated 
scATAC-seq clusters identified in Fig 2b. The Tn5 insertion bias track is shown below. (e) 
UMAP projection of scATAC-seq profiles colored by chromVAR TF motif bias-corrected 
deviations for the indicated factors. (c) Analysis workflow for GWAS enrichment scores 
using cicero co-accessibility. (d) Heatmap showing GWAS deviation scores for PICS 
SNPs associated with the indicated diseases. PICS SNPs were identified previously22. 
(e) Example of increased ATAC-seq signal in a GWAS-containing cis-element in NK and 
T cell scATAC-seq clusters. The HiChIP plot (top) demonstrates increased Enhancer 
Interaction Signal (EIS) between the STAT4 promoter and the highlighted cis-elements. 
 
Supplementary Figure 6. Sample descriptions and quality control of scATAC-seq 

profiles of the BCC TME. (a) UMAP projection of 37,818 scATAC-seq profiles of BCC 
TME cell types. Dots represent individual cells, and colors indicate the experimental 
source of each cluster, as labeled on the right of the plot (see Methods). ‘Total’ samples 
were sorted as all live cells in a single BCC biospy. ‘T cell’ samples were sorted as CD3+ 

cells in the biopsy. ‘Immune’ samples were sorted as CD45+CD3- cells in the biopsy. 
‘Stromal’ samples were sorted as CD45-CD3- cells in the biopsy. (b) Bar plots indicate 
the number of scATAC-seq profiles obtained from each experimental source of cells (left), 
and the median number of unique nuclear fragments in single cells (right). (c) UMAP 
projection of 37,818 scATAC-seq TME profiles. Colors represent the log10 number of 
unique nuclear reads per single cell. (d) Representative ATAC-seq data quality control 
filters by sample source. Shown are the number of unique ATAC-seq nuclear fragments 
in each single cell (each dot) compared to TSS enrichment of all fragments in that cell. 
Dashed lines represent the filters for high-quality single-cell data (1,000 unique nuclear 
fragments and TSS score greater than or equal to 8). (e) Genome tracks of aggregate 
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scATAC-seq data, clustered as indicated in Figure 4b. Arrows indicate the position and 
distance (in kb) of intragenic or distal enhancers in each gene locus. 
 

Supplementary Figure 7. TF motif accessibility in the BCC TME. (a) Example TF 
footprints and motifs in the indicated scATAC-seq clusters identified in Fig 4b. The Tn5 
insertion bias track is shown below. (e) UMAP projection of scATAC-seq profiles colored 
by chromVAR TF motif bias-corrected deviations for the indicated factors. 
 
Supplementary Figure 8. Regulatory landscapes of tumor-infiltrating T cell subsets. 

(a) UMAP projection of intratumoral T cell scATAC-seq data colored by log normalized 
gene activity scores, demonstrating the accessibility of cis-regulatory elements linked 
(using Cicero) to the indicated CD8+ T cell signature genes. (b) UMAP projection of 
intratumoral T cell scATAC-seq data colored by log normalized gene activity scores, 
demonstrating the accessibility of cis-regulatory elements linked (using Cicero) to the 
indicated CD4+ T cell signature genes. (c) Genome tracks of Tfh signature genes in 
aggregate scATAC-seq data, clustered as indicated in Figure 5a. Arrows indicate the 
position and distance (in kb) of intragenic or distal enhancers in each gene locus. (d) 
Heatmap of Z-scores of 35,147 cis-regulatory elements in scATAC-seq clusters derived 
from (b). Labels indicate cell type-specific accessibility of regulatory elements. (e) 
Genome tracks of CD8+ TEx signature genes in aggregate scATAC-seq data, 
demonstrating the overlap of TEx and Tfh regulatory elements. Arrows indicate the 
position and distance (in kb) of intragenic or distal enhancers in each gene locus. (f) 
Heatmap representation of ATAC-seq chromVAR bias-corrected deviations in the 250 
most variable TFs across all intratumoral T cell scATAC-seq clusters, as identified in 
Figure 5a. Cluster identities are indicated at the bottom of the plot. 
 
Supplementary Table Legends 

 
Supplementary Table 1. Quality control sample characteristics. Shown are the 
source and single cell numbers for each sample analyzed in QC experiments. Related to 
Fig. 1 and Supplementary Figs. 1-2.  
 
Supplementary Table 2. Hematopoiesis sample characteristics. Shown are the 
source, isolation method, and single cell numbers for each sample analyzed by scATAC-
seq in the study of immune cell development. Related to Figs. 2-3 and Supplementary 
Figs. 3-5. 
 
Supplementary Table 3. BCC sample characteristics. Shown are the patient and cell 
characteristics for all BCC scATAC-seq samples. Response to anti-PD-1 therapy was 
categorized using RECIST scoring, as described in the Methods. Related to Figs. 4-5 and 
Supplementary Figs. 6-8. 
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