
UC Riverside
UC Riverside Previously Published Works

Title
Massively parallel skyline computation for processing-in-memory architectures

Permalink
https://escholarship.org/uc/item/9c57d0f4

ISBN
9781450359863

Authors
Zois, V
Gupta, D
Tsotras, VJ
et al.

Publication Date
2018-11-01

DOI
10.1145/3243176.3243187

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9c57d0f4
https://escholarship.org/uc/item/9c57d0f4#author
https://escholarship.org
http://www.cdlib.org/

Massively Parallel Skyline Computation For
Processing-In-Memory Architectures

Vasileios Zois
University Of California, Riverside

vzois001@ucr.edu

Divya Gupta
UPMEM SAS

ayvid10feb@gmail.com

Vassilis J. Tsotras
University Of California, Riverside

tsotras@cs.ucr.edu

Walid A. Najjar
University Of California, Riverside

najjar@cs.ucr.edu

Jean-Francois Roy
UPMEM SAS

jeanfrancoisroy@free.fr

ABSTRACT

Processing-In-Memory (PIM) is an increasingly popular architecture
aimed at addressing the ‘memory wall’ crisis by prioritizing the
integration of processors within DRAM. It promotes low data access
latency, high bandwidth, massive parallelism, and low power con-
sumption. The skyline operator is a known primitive used to identify
those multi-dimensional points offering optimal trade-offs within
a given dataset. For large multidimensional dataset, calculating the
skyline is extensively compute and data intensive. Although, PIM
systems present opportunities to mitigate this cost, their execution
model relies on all processors operating in isolation with minimal
data exchange. This prohibits direct application of known skyline
optimizations which are inherently sequential, creating dependencies
and large intermediate results that limit the maximum parallelism,
throughput, and require an expensive merging phase.

In this work, we address these challenges by introducing the first
skyline algorithm for PIM architectures, called DSky. It is designed
to be massively parallel and throughput efficient by leveraging a
novel work assignment strategy that emphasizes load balancing.
Our experiments demonstrate that it outperforms the state-of-the-art
algorithms for CPUs and GPUs, in most cases. DSky achieves 2× to
14× higher throughput compared to the state-of-the-art solutions on
competing CPU and GPU architectures. Furthermore, we showcase
DSky’s good scaling properties which are intertwined with PIM’s
ability to allocate resources with minimal added cost. In addition,
we showcase an order of magnitude better energy consumption
compared to CPUs and GPUs.

KEYWORDS

processing-in-memory, skyline queries, pareto dominance, massive
parallelism, processing-near-memory, load balancing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PACT ’18, November 1–4, 2018, Limassol, Cyprus

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5986-3/18/11. . . $15.00
https://doi.org/10.1145/3243176.3243187

50

150

250

350

0 2 4 6 8 10

P
ri

ce
 (

$
)

Distance (km)

Skyline Points

Dominated Points

Figure 1: Skyline set on toy dataset (hotel price vs distance).

1 INTRODUCTION

Calculating the skyline set is crucial for multi-feature preference
queries, where a user seeks to identify interesting objects consisting
of competing attributes (e.g. price, condition, age, quality) that can-
not produce a strict ordering. A classic example is picking a hotel,
given the hotel’s prices and its distance to the beach. Although users
prefer affordable hotels, those close to the beach are likely expensive.
In this case, the skyline operator would present hotels that are no
worse than any other in both price and distance to the beach (Fig. 1).

Discovering the skyline set from a given collection of items is the
same as finding the Pareto optimal front. The term skyline (inspired
by the Manhattan skyline example) has been introduced in [11] and
has since been used extensively from the database community for
a variety of large scale data processing applications including but
not limited to data exploration [12], database preference queries [4],
route planning [24], web-service support [40], web information [36]
and user recommendation systems [6].

The skyline computation concentrates on identifying the Pareto
front through exploration of a provided data collection which cannot
be formally represented using a single non-linear equation. On the
other hand, Pareto analysis relates to multi-objective optimization
(also known as Pareto optimization), i.e. given a collection of linear
or non-linear equations along with specific constrains, discover all
or some of the Pareto optimal solutions without enumerating a po-
tentially unbounded number of feasible solutions. Multi-objective
optimization has been applied extensively for a number of differ-
ent applications including but not limited to hardware design space
exploration (DSE) [7, 30, 35], high level synthesis [42], compiler
optimization exploration [21, 22], power management [8], portfolio
optimization [33]. In each case, the proposed solutions leverage

https://doi.org/10.1145/3243176.3243187

CPU GPU PIM
Cores (c) 10 3584 2048

Bandwidth (GB/s) 68 480 4096

Power (W/c) 10.5 0.17 0.04

Table 1: Single node specification comparison for CPU (Xeon

E5-2650), GPU (TITAN X) and PIM (UPMEM) architectures.

on either numerical methods (e.g. linear regression), evolutionary
algorithms or heuristics [17] to identify Pareto optimal solutions.

Database management systems are optimized on the basis of
efficient per object access. Therefore, skyline queries where designed
to leverage on the notion of pairwise Pareto dominance between
objects/points in order to identify those points not dominated by
any other point in a given dataset. A point p dominates another
point q, if it is equal or better on all dimensions and there exists at
least one dimension for which it is strictly better (see Section 3). In
order to identify the dominance relationship between two points, it
is common to perform a Dominance Test (DT) [13] by comparing
all their attributes/dimensions.

When the input dataset is large and multidimensional, computing
the skyline is costly, since in theory each unprocessed point needs
to be compared against all the existing skyline points. In order to
reduce this cost, most sequential algorithms rely on established
optimization techniques such as in-order processing [14] and space
partitioning [11], both of which aim at reducing the total number of
point-to-point comparisons.

Modern processors leverage the integration of many compute
cores and deep cache hierarchies on a single chip to mitigate the ef-
fects of processing large dataset. This trend necessitates the redesign
of popular skyline algorithms to take advantage of the additional
hardware capabilities. Recent work on skyline computation relies on
modern parallel platforms such as multi-core CPUs [13] and many-
core GPUs [9]. These solutions attempt to address the unprecedented
challenges associated with maintaining algorithmic efficiency while
maximizing throughput. Despite these efforts, the widening gap be-
tween memory and processor speed contributes to a high execution
time, as the maximum attainable throughput is constrained by the
data movement overhead that is exacerbated by the low computa-
tion to data movement ratio evident in the core (i.e. dominance test,
Section 3) skyline computation. In addition, the skyline operator
exhibits limited spatial and temporal locality because each point in
the candidate set is accessed with varying frequency since it might
dominate only few other points. As a result cache hierarchies will
not be beneficial when processing large amounts of data.

Processing-In-Memory (PIM) architectures [2, 15, 19, 20, 25,
28, 34, 37, 38, 43] present a viable alternative for addressing this
bottleneck leveraging on many processing cores that are embed-
ded into DRAM. Moving processing closer to where data reside
offers many advantages including but not limited to higher process-
ing throughput, lower power consumption and increased scalabil-
ity for well designed parallel algorithms (Table 1). In this paper
we rely on UPMEM’s architecture [25] , a commercially avail-
able PIM implementation that incorporates several of the afore-
mentioned characteristics. Our skyline implementation presents a
practical use case, that captures the important challenges associ-
ated with designing complex data processing algorithms using the

PIM programming model. UPMEM’s architectural implementation
follows closely the fundamental characteristics of previous PIM sys-
tems [2, 15, 19, 20, 25, 28, 34, 37, 38, 43], offering in addition an
FPGA-based testing environment [1].

Computing the skyline using a PIM co-processor comes with
its own set of non-trivial challenges, related to both architectural
and algorithmic limitations. Our goal is to identify and overcome
these challenges through the design of a massively parallel skyline
algorithm, that is optimized for PIM systems and adheres to the
computational efficiency and throughput constraints established on
competing architectures. Our contributions are summarized below:

• We outline the challenges associated with developing an effi-
cient skyline algorithm on PIM architectures (Sections 4, 5.1, 5.2).
• We propose a nontrivial assignment strategy suitable for bal-

ancing the expected skyline workload amongst all available
PIM processors (Section 5.3).
• We present the first massively parallel skyline algorithm

(i.e. DSky), optimized for established PIM architectures (Sec-
tion 5.4).
• We provide a detailed complexity analysis, proving that our al-

gorithm performs approximately the same amount of parallel
work, as in the sequential case (Section 5.4).
• We successfully incorporate important optimizations, that

help maintain algorithmic efficiency without reducing the
maximum attainable throughput (Section 5.4.1).
• Our experimental evaluation demonstrates 2× to 14× higher

throughput (Section 6.5), good scalability (Section 6.6), and
an order of magnitude better energy consumption (Section 6.7)
compared to CPUs and GPUs.

2 RELATED WORK

The skyline operator was first introduced by Borzsony et al. [11],
who also proposed a brute-force algorithm known as Block Nested
Loop (BNL) to compute it. Sort-Filter-Skyline (SFS) [14] relied on
topological sorting to choose a processing order, that maximizes
pruning and reduces the overall work associated with computing
the skyline set. Related variants such as LESS [18] and SALSA [5]
proposed the use of optimizations like pruning while sorting the data
or determining when to stop early.

Sort-based solutions are optimized towards maximizing domi-
nance and reducing the overall work by half. However, on certain
distributions where the majority of points are incomparable [27],
they are proven to be less effective. In contrast, space partitioning
strategies [27] have been proven to perform better at identifying
incomparability.

The BSkyTree [26] algorithm facilitates index-free partitioning by
using a single pivot point. This point is calculated iteratively during
processing through the use of a heuristic that aims at achieving a bal-
ance between maximizing incomparability and dominance. BSkyTree

is the current state-of-the-art sequential algorithm for computing the
skyline regardless of the dataset distribution.

Despite their proven usefulness, previous optimizations cannot
be easily adapted on modern parallel platforms. Related research
concentrated mainly on developing parallel skyline algorithms that
are able to maintain the same level of efficiency as their sequential
counterparts. The PSkyline algorithm [31] is based on the Branch

2

& Bound Skyline (BBS) and exploits multi-core architectures to
improve performance of the sequential BBS. For data distributions
that are more challenging to process, it creates large intermediate
results that require merging which causes a noticeable drop in perfor-
mance. BSkyTree-P [26] is a parallel variant of the regular BSkyTree

algorithm. Although, generally more robust on challenging data dis-
tributions, BSkyTree-P is also severely restricted during the merging
of intermediate results, an operation that entails lower parallelism.

The current state-of-the-art multi-core algorithm is Hybrid [13]
and is based on blocked processing, an idea used extensively for a
variety of CPU-based applications to achieve good cache locality.
Sorting based on a monotone function is used to reduce the total
workload by half. For more challenging distributions, the algorithm
employs a simple space partitioning mechanism, using cheap filter
tests which effectively reduce the cost for identifying incomparable
points. Hybrid is specifically optimized for multi-core platforms, the
performance of which depends heavily on cache size and memory
bandwidth. Data distributions that generate an arbitrarily large sky-
line limit processing performance. Therefore, multi-core CPUs are
limited when it comes to large scale skyline computation.

Accelerators present the most popular solution when dealing with
data parallel applications such as computing the skyline set. Previous
solutions include using GPUs [9] or FPGAs [41]. The FPGA solu-
tion relies on streaming to implement a variant of BNL. Although,
it showcases better performance compared to an equivalent soft-
ware solution, it is far from the efficiency achieved by Hybrid. On
GPUs, the current state-of-the-art algorithm is SkyAlign [9]; it aims
at achieving work-efficiency through the use of a data structure that
closely resembles a quad tree. SkyAlign strives towards reducing the
overall workload at the expense of lower throughput that is caused
by excessive thread divergence. Furthermore, load balancing issues
and irregular data accesses coupled with restrictions in memory size
and bandwidth result in significant performance degradation when
processing large dataset.

Our solution is based on PIM architectures which rely on inte-
grating a large collection of processors in DRAM. This concept
offers higher bandwidth, lower latency and massive parallelism. In
short, it is perfectly tailored for computing the skyline, a data inten-
sive application. In UPMEM’s PIM architecture, each processor is
isolated having access only to their local memory. This restriction
makes previously proposed parallel solutions and their optimizations
nontrivial to apply. In fact, our initial attempts to directly apply
optimizations used in the state-of-the-art CPU and GPU solutions
on UPMEM’s PIM architecture, resulted in noticeable inferior per-
formance (Figure 2). We attribute this behavior to low parallelism,
unbalanced workload assignment and a high communication cost.
In the following sections, we discuss these challenges in detail and
describe how to design a parallel skyline algorithm suitable for this
newly introduced architecture.

3 SKYLINE DEFINITIONS

We proceed with the formal mathematical definition of the skyline
operator. Let D be a set of d-dimensional points such that p ∈ D and
p[i] ∈ R, ∀i ∈ [0,d − 1]. The concept of dominance between two
points is used to identify those that are part of the skyline set. As
mentioned, a point p dominates a point q, if it has “better" or equal

Cardinality

T
im

e
(s
)

Naïve DSky

𝟐𝟐𝟕 𝟐𝟐𝟖 𝟐𝟐𝟗

107105103101
Figure 2: Runtime snapshot for 16 dimension skyline.

value for all dimensions and there exists at least one dimension where
its value is strictly “better". The meaning of “better" corresponds to
the manner in which we choose to rank the values for each dimension,
being smaller or larger, although the ranking should be consistent
amongst all dimensions. For this work, we regard smaller values as
better, therefore the mathematical definition of dominance becomes:

Dominance: Given p,q ∈ D, p dominates q, written as p ≺ q if
and only if ∀i ∈ [0,d − 1] p[i] ≤ q[i] and ∃j ∈ [0,d − 1] such that
p[j] < q[j].

Any point that is not dominated from any other in the dataset, will
be part of the skyline set (see Fig. 1) and can be identified through a
simple comparison called Dominance Test (DT).

Skyline: The skyline S of set D is the collection of points S =
{∀p ∈ D |∄q ∈ s.t q ≺ p}.

Clearly S ⊆ D. The definition of dominance acts as the basic
building block for designing skyline algorithms. The BNL algorithm
relies naïvely on brute force to compute the skyline set. This method
is quite inefficient, resulting inO(n2) DTs and a proportional number
of memory fetches. To avoid unnecessary DTs, previous solutions
used in-order processing based on a user defined monotone function.
It considers all query attributes, reducing the point to a single value
that can be used for sorting. Such a function is formally defined as:

Monotone Function: A monotone scoring function F with re-
spect to Rd takes as input a given point p ∈ D and maps it to R using
k monotone increasing functions (f1, f2, ... fk). Therefore, for p ∈ D,
F (p) =

∑k
i=1 fi (p[i]).

The ordering guarantees that points which are already determined
to be part of the skyline, will not be dominated by any other which
are yet to be processed. This effectively reduces the number of DTs
by half.

ps = argmin
pi ∈S

{
max

j ∈[0,d−1]
{pi [j]}

}
(1)

Another important optimization aimed at reducing the total num-
ber of DTs uses a so-called stopping point [5] to determine when it
is apparent that no other point is going to be added in the skyline.
Thus a number of DTs are avoided by stopping early. Each time a
new point is added to the skyline, it is checked to see if it can be used
as a stopping point. Regardless of the chosen monotone function, we
can optimally select that point using the MiniMax [5] update rule
depicted in Eq. 1.

4 ARCHITECTURE OVERVIEW &

IMPLEMENTATION CHALLENGES

UPMEM’s Processing-In-Memory (PIM) technology promotes inte-
gration of processing elements within the memory banks of DRAM

3

Figure 3: UPMEM’s PIM Architecture Overview

modules. UPMEM’s programming model assumes a host processor
(CPU), which acts as an orchestrator performing read/write oper-
ations directly to each memory module. Once the required data is
in-place, the host may initiate any number of transformations to
be performed on the data using the embedded co-processors. This
data-centric model favors the execution of fine grained data-parallel
tasks [25]. Figure 3 illustrates the UPMEM’s PIM architecture.

A 16 GBs UPMEM DIMM contains 256 embedded processors
called Data Processing Units (DPUs). Depending on the number of
DIMMs, it is possible to have hundreds of DPUs operating in parallel.
Each one owns 64 MBs which are part of the DRAM, referred to as
Main RAM(MRAM). The UPMEM DPU is a triadic RISC processor
with 24 32-bits registers per thread. The DPU processors are highly
multi-threaded, supporting a maximum of 24 threads. Fast context
switching allows for effective masking of memory access latency1.
Dedicated Instruction RAM (IRAM) allows for individual DPUs

to execute their own program as initiated by the host. Additionally,
each DPU has access to a fast working memory (64 KB) called
Work RAM (WRAM), which is used as a cache/scratchpad memory
during processing and is globally accessible from all active threads
running on the same DPU. This memory can be used to transfer
blocks of data from the MRAM and is managed explicitly by the
application.

From a programing point of view, two different implementations
must be specified: (1) the host program that will dispatch the data
to the co-processors’ memory, sends commands, and retrieves the
results, and (2) the DPU program/kernel that will specify any trans-
formations that need to be performed on the data stored in memory.
The UPMEM architecture offers several benefits over conventional
multi-core chips including but not limited to increased bandwidth,
low latency and massive parallelism. For a continuously growing
dataset, it can offer additional memory capacity and proportional
processing throughput since new DRAM modules can be added as
needed.

PIM systems promote a data-centric processing model [16] that
offers the potential to improve performance for many data parallel
applications. However, this technology is rather an enabler than a
solution, especially in the context of computing the skyline. The
best practices established for CPU- or GPU-centric processing are

1Switching is performed at every clock cycle between threads

not directly applicable to PIM systems [38]. For example, in-order
processing, although useful for reducing complexity, creates depen-
dencies that limit parallelism and subsequently lower throughput.
Furthermore, relying on globally accessible space partitioning data
structures [13], results in excessive communication with the host
CPU nullifying any benefits offered by PIM systems.

Although PIM architectures resemble a distributed system, they
are far from being one since they do not allow for direct communi-
cation between DPUs (i.e. slave-nodes). For this reason, algorithms
relying on the MapReduce framework [32] are not directly appli-
cable since they will involve excessive bookkeeping to coordinate
execution and necessary data exchange for each DPU. Additionally,
the MapReduce framework involves only a few stages of computa-
tion (i.e. chained map-reduce transformations) which may not be
enough to effectively mask communication latency when the inter-
mediate results between local skyline computations are prohibitively
large. Despite these limitations, we can still rely on Bulk Synchro-
nous Processing (BSP) to design our algorithm, giving greater em-
phasis on good partitioning strategies that provide opportunities to
mask communication latency and achieve load balancing. The most
prominent solutions in that field include the work of Vlachou et
al. [39] and Kø̈hler et al. [23]. Both advocate towards partitioning
the dataset using each points’ hyperspherical coordinates. Although,
this methodology is promising, it does not perform well on high
dimensional data (i.e. d > 8), because it creates large local skylines,
resulting in a single expensive merging phase [29]. Additionally,
calculating each points’ hyperspherical coordinates is a computa-
tionally expensive step [23]. For this reasons, we purposefully avoid
using the aforementioned partitioning schemes. Instead, we present
a simpler partitioning scheme which emphasizes load balancing and
masking communication latency during the merging of all interme-
diate results.

In order for PIM systems to operate at peak processing through-
put, all participating embedded processors are required to operate
in isolation with minimal data exchange. It is important to note that
different PIM system configurations that exhibit varying levels of
isolation are possible and can be classified accordingly. UPMEM’s
PIM is an example of physical isolation, not allowing direct commu-
nication between compute nodes requiring instead for the host CPU
to be involved. PIM configurations based on 3D stacked memory
(known also as Processing Near Memory(PNM) systems) utilize a
Network-On-Chip(NoC) to enable support for direct access to neigh-
boring physical memory partitions without any involvement from
the host CPU [16]. Each physical memory partition can be classified
as local or remote partition depending on their proximity to the cor-
responding embedded processor [16]. This organization indicates
a form of logical isolation between the corresponding processors
affecting memory access latency since local memory partitions are
significantly faster to access than a remote one [16]. Our algorithmic
solution is structured around the provision of an efficient partitioning
schema that enables opportunities for masking the communication
overhead associated with either types of logical or physical isolation
which are apparent in most PIM systems, regardless of configuration
specifics.

4

3

7

6

2

5

011

111

110

010

101

0 1

2 3

0 1

2 5

111

110

101

0 1

1 2

0 1

1 3

111

110

0 1

1 1

0 1

1 2

𝟏𝒔𝒕 𝒅𝒊𝒈𝒊𝒕𝑘 = 4, 𝑣𝑘 = 𝑋𝑋𝑋 𝑘 = 2, 𝑣𝑘 = 1𝑋𝑋 𝑘 = 0, 𝑣𝑘 = 1𝑋𝑋𝟐𝒏𝒅 𝒅𝒊𝒈𝒊𝒕 𝟑𝒓𝒅 𝒅𝒊𝒈𝒊𝒕
𝐶𝑜𝑢𝑛𝑡

𝑃𝑟𝑒𝑓𝑖𝑥 𝑆𝑢𝑚 𝑃𝑟𝑒𝑓𝑖𝑥 𝑆𝑢𝑚
𝐶𝑜𝑢𝑛𝑡

𝑃𝑟𝑒𝑓𝑖𝑥 𝑆𝑢𝑚
𝐶𝑜𝑢𝑛𝑡

Figure 4: Radix-select example using radix-1.

5 DSKY ALGORITHM OVERVIEW

We present a high level overview of our novel algorithm which
we call DPU Skyline (DSky), followed by a detailed complexity
analysis. The algorithm operates in two stages, the preprocessing

stage where points are grouped into blocks/partitions and assigned
to different DPUs, and a main processing stage spanning across
multiple iterations within which individual blocks are compared in
parallel against other previously processed blocks.

5.1 Parallel Radix-Select & Block Creation

Maintaining the efficiency of sequential skyline algorithms, requires
processing points in-order based on a user-defined monotone func-
tion. Due to architectural constraints, sorting the input to establish
that order, contributes to a significant increase in the communication
cost between host and DPUs. Our algorithm relies on parallel radix-
select [3] to find a set of pivots which can be used to split the dataset
into a collection of blocks/partitions. Radix-select operates on the
ranks/scores that are generated for each point from a user defined
monotone function. In our implementation, we assume the use of
L1 norm. Computing the rank of each point is relatively inexpen-
sive, highly parallel and can be achieved by splitting the data points
evenly across all available DPUs.

Radix-select closely resembles radix-sort, in that it requires group-
ing keys by their individual digits which share the same significant
position and value. However, it differs as its ultimate goal is to dis-
cover the k-th largest element and not sort the data. This can be
accomplished by building a histogram of the digit occurrences, for
each significant position across multiple iterations, and iteratively
construct the digits for the k-th largest element. An example for
k = 4 is shown in Fig. 4. The digits are examined in groups of 1
(i.e. radix-1) starting from the most significant digit (MSD). At the
first iteration, there are 2 and 3 occurrences of 0 and 1, respectively.
The prefix sum of these values indicates that the 4-th element starts
with 1. We update k by subtracting the number of elements at the
lower bins. This process repeats at the next iteration for elements
that match to 1XX . After 3 iterations the k-th largest value will be
vk = 110.

The pseudocode for the DPU kernel corresponding to radix-select
is shown in Algorithm 1. In our implementation, we use radix-4 (i.e.
examine 4 digits at a time) which requires 16 bins per thread. For
32-bit2 values, we require 8 iterations that consist of two phases.
First, each DPU thread counts the digit occurrences for a given
portion of the data. At a given synchronization point the threads
cooperate to accumulate partial results into a single data instance.

2Floating-point types can be processed through a simple transformation to their IEEE-
754 format.

In the second phase, the host will gather all intermediate results
and calculate the corresponding digit of the k-th value while also
updating k . The new information is then made available to all DPUs

at the next iteration. This whole process is memory bound, although
highly parallel and with a low communication cost (i.e. only few KB
need to be exchanged), fitting nicely to the PIM paradigm. Therefore,
it is suitable for discovering the splitting points between partitions.

Algorithm 1 Radix-select Kernel

R = Precomputed Rank vector.

K = Splitting Position.

Vk = Digits of Current Pivot.

1: for diдit ∈ [7, 0] do

2: Set Bt = {0} ▷ Set thread bins to zero.
3: for all r ∈ R in parallel do

4: if pre f ix(r ,Vk) then ▷Match prefix.
5: Bt [diдit] + +

6: end if

7: end for

8: B = sum(Bt) ▷ Aggregate Partial Counts.
9: (Vk ,K) = search(B,K) ▷ Update P & K.

10: end for

Assuming a partition size, denoted with Psize , and N number
of points, we require Pvt = P − 1 = N

Psize
− 1 pivots to create

partitions {C0,C1,C2...CP−2,CP−1}. In Algorithm 2, we present the
pseudocode for assigning points to their corresponding partitions.
As indicated in Line 3, we concentrate on the rank of a given point
to identify the range of pivots that contain it, after which we assign
it to the partition with the corresponding index. The presented par-
titioning method guarantees that no two points p, q exist, such that
p ∈ Ci and q ∈ Cj , where i < j and F (p) > F (q). Points within a
partition do not have to be ordered with respect to their rank, given
a small partition which allows for parallel brute force point-to-point
comparison.

Blocked processing has been used before for CPU based skyline
computation [13] to improve cache locality. Our solution differs,
since it supports blocking while avoiding the high cost of completely
sorting the input data. Furthermore, we utilize blocking to introduce
a nontrivial work assignment strategy which enables us to design
a highly parallel and throughput optimized skyline algorithm for
PIM architectures. This strategy aims at maximizing parallel work
through maintaining good load balance across all participating DPUs,
as compared to the optimal case.

Algorithm 2 Radix-select Partitioning

D = Input dataset

Rp = Pivots vector

1: Rp = radix_select(D) ▷ Calculate pivots.
2: for all p ∈ D do

3: if Rp [j] < F (p) ≤ Rp [j + 1] then

4: Cj = Cj ∪ {p} ▷ Assign p to Cj .
5: end if

6: end for

5

5.2 Horizontal Partition Assignment

In this section, we concentrate on introducing a simple horizontal
assignment strategy, the performance of which motivates our ef-
forts to suggest a better solution. Our goal is to establish the lower
bound associated with the parallel work for computing the skyline,
measured in partition-to-partition (p2p) comparisons, and suggest a
strategy along with the algorithm that is able to attain it.

We start by introducing some definitions. Given a partitionCj , we
define its pruned equivalent partition, the set of all points that appear
in Cj which will be eventually identified as being part of the final
skyline set. We denote this pruned partition as C̃j ⊆ Cj . Assuming a
collection of P partitions, which can be ordered using radix-select
partitioning, such that for i, j ∈ [0, P − 1] and i < j, then Ci ≺ Cj

(i.e. Ci precedes Cj), it is possible to compute P pruned partitions
iteratively:

a. C̃0 = p2p(C0,C0)

b. C̃1 = p2p(C̃0,p2p(C1,C1))

c. C̃2 = p2p(C̃0,p2p(C̃1,p2p(C2,C2)))

The p2p function denotes a single partition-to-partition compar-
ison operation, checking if any points exist in Ci that dominate
those in Cj . More details related to the implementation of p2p, are
presented in Section 5.4.1. We observe that using the pruned parti-
tion definition, we can calculate the skyline set using the following
formula:

S = ∪
i ∈[0,P−1]

(
C̃i

)
(2)

Eq. 2, indicates that it is possible to compute the skyline using the
union of all pruned partitions. Therefore, it is possible to maintain
and share information about the skyline without using a centralized
data structure. Additionally, once C̃j is generated, all remaining par-
titions with index larger than j may use it to prune points from their
own collection. In fact, performing this work is “embarrassingly"
parallel and depending on the partition size and the input dataset size,
it can be scaled to utilize thousands of processing cores. However,
we observe that assigning work to DPUs naïvely could potentially
hurt performance, due to the apparent dependencies between parti-
tions and the fact that latter partitions require more p2p comparisons
to be pruned.

Assuming all partitions are processed in sequence, we can cal-
culate the number of total p2p comparisons by examining each
partition separately. For example, C0 will need 1 self-comparison
(i.e. p2p(C0,C0)), C1 will need 2 p2p comparisons, C2 3 and so on.
In fact, the total number of p2p comparisons, assuming P partitions
is given by the following equation:

Mseq =
P · (P + 1)

2
(3)

Ideally, with Dp DPUs at our disposal, we would like to evenly
distribute the workload among them, maintaining a p2p comparison

count which is roughly equal to
Mseq

Dp
. A fairly common and easily

implementable strategy, is to divide the partitions (PD =
P
Dp

per

DPU) horizontally across DPUs as indicated in Figure 5. However,
if we attempt to follow this strategy, the DPU responsible for the
last collection of partitions will have to perform at least (P − PD) ·

PD +
PD ·(PD+1)

2 p2p comparisons a number P · PD times higher than
the DPU responsible for the first collection of partitions. Obviously,

𝐷𝑃𝑈0

Horizontal Assignment

𝐷𝑃𝑈1𝐶0𝐶1𝐶2𝐶3
𝐶4𝐶5𝐶6𝐶7

𝐷𝑃𝑈0

Spiral Assignment

𝐷𝑃𝑈1𝐶0𝐶3𝐶4𝐶7
𝐶1𝐶2𝐶5𝐶6

Figure 5: Assignment strategies of 8 partitions on 2 DPUs.

this assignment mechanism suffers from several issues, the most
important of which is poor load balancing. In fact during processing,
the majority of the participating DPUs will be idle waiting for pruned
partitions to be calculated and transmitted. Additionally, the limited
memory space available to each DPU, makes it hard to amortize
the cost of communication, since processing needs to complete
before exchanging any data. To overcome the problems set forth by
horizontal partitioning, we introduce the concept of spiral partition

assignment.

5.3 Spiral Partition Assignment

Commonly, data intensive algorithms rely on Bulk Synchronous
Processing (BSP) to iteratively apply transformations on a given
input across many iterations, between which a large portion of the
execution time is dedicated to processing rather than communica-
tion. This process aims to maintain good load balance and reducing
communication to effectively minimize each processor’s idle time.
In this section, we introduce a nontrivial assignment strategy which
allows for the design of an iterative algorithm that follows the afore-
mentioned properties.

Our assignment strategy relies on the observation that for a col-
lection of 2 · Dp ordered partitions with respect to a user-provided
monotone function, we can always group them together creating
non-overlapping pairs, all of which when processed individually,
require the same p2p comparison count. The pairing process con-
siders partitions in opposite locations with respect to the monotone
function ordering, resulting in the creation of Dp pairs in total. For

example, assuming the existence of partitions
{
C0,C1...,C2·Dp−1

}
,

we will end up with the following pairs:

{〈
C0,C2·Dp−1

〉
,

〈
C1,C2·Dp−2

〉
...,

〈
CDp−1,CDp

〉}
(4)

In Figure 5, we showcase our novel assignment strategy, which
we call spiral partitioning, next to the naïve horizontal partitioning
scheme. In contrast to the horizontal partitioning mechanism which
requires 4 · 4 + 4·5

2 = 26 p2p comparisons from a single DPU, our
spiral partitioning scheme requires only 18 (i.e., (1+4+5+8) = DPU0,
(2 + 3 + 6 + 7) = DPU1) most of which can be performed in parallel.

This number is equivalent to
Mseq

Dp
=

36
2 , indicating that our spiral

partitioning strategy splits evenly the expected workload across all
participating DPUs.

In our analysis, we assumed the number of partitions P to be equal
to 2 · Dp . In the general case, we can choose P and Dp , in order
for P to be expressed as multiple of 2 · Dp such that K = P

2·Dp
. For

each one of the K collections, we can individually apply the spiral

6

partitioning algorithm and assign one pair from each collection to
a distinct DPU. Following this assignment process, we calculate
the total p2p comparison count per DPU based on the following
formula:

Mopt = (1 + 2 · Dp) + (1 + 6 · Dp)+

(1 + 10 · Dp) + ... = Dp · (2 + 6 + 10 + 14...)+

PD

2
= Dp ·

(4 + 4 · (
PD
2 − 1))

2
·
PD

2
+

PD

2
=

PD

2
·

[
2 ·

PD

2
· Dp + 1

]
=

P

2 · Dp
[P + 1] ⇒

Mopt =
P · (P + 1)

2 · Dp

(5)

The aforementioned formula is based on the observation that for
each collection, the number of p2p comparisons per DPU is equal
to the p2p comparisons required for the first and last partition of
that collection. Therefore, for the first collection we need 1 + 2 · Dp

p2p comparisons, for the second 2 · Dp + 1 + 4 · Dp , for the third
4 · Dp + 1 + 6 · Dp and so on.

In theory, it is possible to utilize at most P
2 DPUs for processing

when using spiral partitioning. However, in practice, it might not
be beneficial to reach this limit, since at that point the work per-
formed within each DPU will not be enough to amortize the cost of
communication or minimize the idle time. Additionally, due to the
existing dependencies between partitions, increasing the number of
DPUs will result in less work being performed in parallel. In the next
section, we present more details regarding these issues and present
the intrinsic characteristics of our main algorithm.

5.4 DSky Main Processing Stage

Leveraging on spiral partitioning, we introduce a new algorithm for
computing the skyline set on PIM architectures. Once each parti-
tion has been assigned to their corresponding DPU, we can start
calculating each pruned partition within two distinct phases as in-
dicated in Algorithm 3. In the first phase, each DPU performs a
“self-comparison" for all partitions assigned to it. This step is “em-
barrassingly" parallel and does not require any data to be exchanged.
The second phase consists of multiple iterations across which the
pruned partitions are computed. At iteration i, the pruned partition
C̃i has already been computed and is ready to be transmitted across
all DPUs. Once the broadcast is complete, all DPUs have access
to C̃i which they use as a window to partially prune any of their
own Cj partitions in parallel, where j > i is based on the established
ordering of partitions.

Our implementation uses a collection of flags, denoted with Fi for
partition C̃i , to mark which points have been dominated during pro-
cessing. We indicate with 0 those points that have been pruned away
and with 1 those that are still tentatively skyline candidates. The
whole process is orchestrated by the host (CPU), who keeps track of
which partition needs to be transmitted at the end of each iteration.
It is important to note that broadcasting individual partitions can be
expensive. For this reason, we need to carefully choose the partition
size in order to overlap data exchange with actual processing. Ad-
ditionally, we propose to further reduce this cost by preemptively
broadcastingm partitions at each iteration before they are actually
needed, thus increasing the computation-communication overlap

window. Nevertheless, we still need to wait for the Fi bit-vector to
become available before starting the next iteration. However, once
the corresponding Fi bit-vector is calculated we can inexpensively
transmit it to all DPUs, since it is inversely proportional to the point
dimensions and partition size.

Assuming an optimal p2p kernel, we measure the complexity of
DSky in terms of p2p comparisons per DPU. For the first phase,
each DPU is responsible for self-comparing their assigned partitions,
requiring PD comparisons to complete. The second stage is slightly
more complex. Within iteration i, the corresponding partition C̃i
will be compared against all Cj partitions having a higher index.
Starting from C̃0 and for the next Dp − 1 iterations, each DPU will

perform PD comparisons. Once C̃Dp
is computed, only partitions

with index larger than Dp will need to be considered, resulting in at
most PD −1 comparisons for iterations Dp to 2 ·Dp −1. This process
is repeated multiple times until all partitions within each DPU have
been checked. Adding the complexity of each phase together, we
end up with the following formula:

Mpar = [(Dp − 1) · PD + Dp · (PD − 1)+

Dp · (PD − 2) ... + Dp · 1] + PD ⇒

Mpar = Dp · [
PD · (PD + 1)

2
]

(6)

Algorithm 3 DSky Algorithm

Bj = Region bit vectors for Cj .
Fj = Flags indicating active skyline points for Cj .

1: for all DPUs in parallel do

2: for all Cj ∈ DPUi do

3: P2P(Cj ,Bj ,Cj ,Bj) ▷ Self compare partitions.
4: end for

5: end for

6: for all i ∈ [0, P − 1] do

7: copy(C̃i , B̃i , Fi) ▷ Broadcast pruned partition info.
8: for all DPUs in parallel do

9: for all j > i do

10: P2P(C̃i , B̃i ,Cj ,Bj) ▷ Prune Cj using C̃i
11: end for

12: end for

13: end for

From Eq. 6 and Eq. 5, if we replace PD =
P
Dp

, we get the follow-

ing ratio:

Mpar

Mopt
=

1 +
Dp

P

1 + 1
P

(7)

From Eq. 7, we can observe how different values for P and Dp

affect the complexity of DSky with respect to the optimal case. When

P →∞, then
Mpar

Mopt
→ 1. Intuitively, when the number of partitions

assigned per DPU is significantly larger than its collective number,
the observed idle time constitutes a smaller portion of the actual
processing time. In Figure 6 using two DPUs, we present an example
where 2 or 4 partitions are assigned per DPU. In the first case, we
require 3 p2p comparisons and within iterations i = 0, 2, DPU0 or
DPU1 will do 1 less comparison than the other, respectively. There-
fore, 1

4 of the time each DPU will be idle. In the second case, the
7

Partitions/Iteration 𝑖 = 0 𝑖 = 1 𝑖 = 2 𝑖 = 3 𝑖 = 4 𝑖 = 5 𝑖 = 6{𝐶0, 𝐶3, 𝐶4, 𝐶7} ሚ𝐶0: (𝐶3, 𝐶4, 𝐶7) ሚ𝐶1: (𝐶3, 𝐶4, 𝐶7) ሚ𝐶2: (𝐶3, 𝐶4, 𝐶7) ሚ𝐶3: (𝐶4, 𝐶7) ሚ𝐶4: (𝐶7) ሚ𝐶5: (𝐶7) ሚ𝐶6: (𝐶7){𝐶1, 𝐶2, 𝐶5, 𝐶6} ሚ𝐶0: (𝐶1, 𝐶2, 𝐶5, 𝐶6) ሚ𝐶1: (𝐶2, 𝐶5, 𝐶6) ሚ𝐶2: (𝐶5, 𝐶6) ሚ𝐶3: (𝐶5, 𝐶6) ሚ𝐶4: (𝐶5, 𝐶6) ሚ𝐶5: (𝐶6) −

Partitions/Iteration 𝑖 = 0 𝑖 = 1 𝑖 = 2{𝐶0, 𝐶3} ሚ𝐶0: (𝐶3) ሚ𝐶1: (𝐶3) ሚ𝐶2: (𝐶3){𝐶1, 𝐶2} ሚ𝐶0: (𝐶1, 𝐶2) ሚ𝐶1: (𝐶2) −
(A)

(B)

Figure 6: Number of comparisons across iterations when assigning (A) 2 partitions per DPU vs (B) 4 partitions per DPU

𝑝3
𝑝6𝑝7

𝑝2
𝑝1 𝑝5

𝑝4 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 𝑝6 𝑝710 01 10 01 10 11 0100 01 11 00 10 01 11𝐿𝑒𝑣𝑒𝑙2𝐿𝑒𝑣𝑒𝑙1

Figure 7: Median pivot multi-level partitioning example.

total comparisons across iterations will be 14 and the corresponding
idle time within iterations i = 0, 2, 4, 6 is 2. Hence, the idle time per
DPU will be 2

16 , half of what was observed for the previous example.
At this point, it is important to note that creating more partitions does
not depend on the input size, but instead on the number of pivots
calculated during radix-select partitioning. Although, this may seem
like having a partition size equal to 1 is the best case, in practice
there are several trade-offs to consider, such as the preprocessing
time required to calculate each partition and the communication
overhead when small data are transmitted frequently and not in bulk.
Through experimentation, we are able to identify the specific param-
eters contributing to these trade-offs, allowing us to successfully fine
tune the partition size.

5.4.1 P2P Kernel. In this section, we discuss three specific
optimizations that can be integrated into our p2p kernel to ensure
algorithmic efficiency. Although, their application on PIM systems
created unprecedented challenges, our novel assignment strategy
made possible to overcome them.

Optimization I: The points within each partition are sorted based
on their rank. This optimization can be embarrassingly parallel and
less expensive than globally sorting all the points. It aims at reducing
the expected number of DTs for each DPU by half [13].

Optimization II: For more challenging distributions (i.e. anti-
correlated), space partitioning is preferable since it can help with
identifying incomparable point through cheap filter tests [13]. Simi-
larly to previous work [9], we exploit a recursive space partitioning
scheme to detect incomparability. This technique requires calcu-
lating bit-vectors for each point, indicating the region of space it
resides. They are determined through a virtual pivot, constructed
from the median value of its subspace.

An example of this is shown in Figure 7. There, we determine the
values for the median level virtual pivot by taking the projection of p1
in the x-axis and p4 in the y-axis. Each point is assigned a bit vector
based on its relative position to the virtual point. For example, p1 is
assigned 10 because it is ≥ and < in the x and y-axis, respectively,

Algorithm 4 P2P Function Kernel

Rj = Rank vector for Cj .
Bj = Region bit vectors for Cj .
Fj = Flags indicating active skyline points for Cj .
(дs ,ps) = Global stop level and point.

1: if stop(дs ,ps ,Rj [0],Cj [0]) then

2: return Fj ← 0 ▷ Prune partition.
3: end if

4: for all q ∈ Cj in parallel do

5: if Fj [q] , 0 then ▷ q is alive.
6: for all p ∈ Ci do

7: if Fi [p] , 0 then ▷ p is alive.
8: if Bi [p] ⊀ Bj [q] then ▷ Incomparable.
9: continue

10: end if

11: if p ≺ q then

12: Fj [q] ← 0 ▷ Set flag for q to zero.
13: break

14: end if

15: end if

16: end for

17: end if

18: if Fj [q] = 1 then ▷ Point is not dominated.
19: ls [id] = MiniMax(q,ls [id]) ▷ Thread stop level.
20: ps [id] = q ▷ Thread stop point.
21: end if

22: end for

23: (дs ,ps) =update_ps(ls [id] , ps [id]) ▷ DPU stop info.
24: merge Fj

compared to the pivot. For each quartile, we can repeat this process
multiple times. However, it has been shown empirically [9] that
doing it twice is sufficient to gain good algorithmic efficiency. We
use radix-select to calculate the median value for each subspace and
construct the corresponding pivots.

In related work [9], a centralized data structure is used to manage
the bit vectors and establish a good order of processing. Due to
architectural limitations (i.e. expensive global access), our imple-
mentation uses a flat array to pack both bit vectors in a single 32-bit
value for each point. Our spiral partitioning scheme is responsible
for maintaining the good order of processing. Additionally, it is
designed around optimizing local access and minimizing communi-
cation while, also, promoting the seamless incorporation of the bit
vector information within a partition.

8

Optimization III: Based on the work in [5], we use Eq. 1 to up-
date the stopping level and point, and then compare this information
with the point of the smallest rank within each partition to determine
if it is dominated. Due to lack of space, we omit details on why this
optimization works, although we discuss how it can be applied in our
paradigm. The stopping information is updated locally within each
DPU. The host is responsible for merging the local results at each
step of DSky’s second stage (Algorithm 3). This process requires
only a few KBs to be exchanged, thus its communication overhead
is low.

Algorithm 4 presents the implementation of our p2p kernel. Each
DPU allocates memory for PD partitions, plus two remote partitions
to support double buffering. In Line 1, we compare the smallest rank
within the given partition to the global stopping value to determine
if the whole partition is dominated. When this test fails, we need to
check all the points within the partition. For each point in the local
partition, we only examine the points that are still skyline candidates
(Line 5) against those of the remote partition that satisfy the same
property (Line 7). Using the corresponding bit vectors, if the two
points are incomparable (Line 8) we skip to the next point in the
remote partition, otherwise we need to perform a full DT (Line 11).
For all points in the local partition that are not dominated (Line
18), we update the local stop point information. At the end of the
for-loop (Lines 23 − 24), we merge the local stop point information
and update the local partition’s flags to indicate which points have
been dominated.

6 EXPERIMENTAL EVALUATION

In this section, we present an in-depth analysis of DSky, comparing
against the state-of-the-art sequential [26], multi-core [13] and many-
core [9] algorithms.

6.1 Setup Configuration

CPU Configuration: For the CPU algorithms, we conducted exper-
iments on an Intel Xeon E5-2650 2.3 GHz CPU with 64 GB memory.
We used readily available C++ implementations of BSkyTree [26]
and Hybrid [10].

GPU Configuration: For the GPU, we used the latest NVIDIA
Titan X (Pascal) 1.53 GHz 12 GB main memory GPU with CUDA
8.0. We conducted experiments using the readily available C++
implementation of SkyAlign [10] which is the current state-of-the-art
algorithm for GPUs. For a fair comparison, we present measurements
using clock frequencies 0.75 and 1.53 GHz.

DPU Configuration: We implemented both phases of DSky, in-
cluding the preprocessing steps, using UPMEM’s C-based develop-
ment framework [1] and dedicated compiler. Our experiments were
performed on UPMEM’s Cycle Accurate Simulator (CAS) using the
binary files of the corresponding implementation. The simulation
results were validated using an FPGA implementation [1] of the
DPU pipeline. Based on the reported clock cycle count that includes
pipeline stalls associated with the corresponding data accesses, and
a base clock of 0.75 GHz for each DPU, we calculated the exact
execution time for a single node system using 8 to 4096 DPUs. For
a fair comparison against the GPU, we limit the number of DPUs in
accordance to the available cuda cores (i.e. 3584).

6.2 Dataset

Similarly to previous work [9], we rely on the standard skyline
dataset generator [11] to create common data distributions (i.e.,
correlated, independent, anticorrelated). We compare against the
CPU and GPU implementations using queries with dimensional-
ity d ∈ {4, 8, 16} and for dataset of cardinality n ∈

[
220, 226

] 3.
Additional experiments are presented on PIM only for cardinality
n ∈

[
220, 229

]
.

6.3 Experiments & Metrics

For all implementations, our measurements include the cost of pre-
processing and data transfer (where it is applicable) across PCIE
3.0 (i.e. GPU) or broadcast between DPUs. We benchmarked the
aforementioned algorithms with all of their optimizations enabled.
For the performance evaluation, we concentrate on the following
metrics:

Runtime Performance: This metric is used to evaluate at a high
level the performance of DSky against previous solutions. It show-
cases the overall capabilities of the given architecture coupled with
the chosen algorithm.

Algorithmic Efficiency & Throughput: Due to several hidden
details within the runtime performance, we focus on the algorith-
mic efficiency by studying the number of full DTs conducted by
each algorithm. Our ultimate goal is to showcase the ability of DSky

to successfully incorporate known skyline optimizations and indi-
cate their contribution towards achieving high throughput on the
UPMEM-PIM architecture.

Scaling: An important property of the UPMEM-PIM architecture
is the ability to easily increase resources when the input grows be-
yond capacity. However, doing so requires a well designed parallel
algorithm that avoids any unnecessary overheads caused by exces-
sive communication or load imbalance. With this metric, we indicate
DSky’s ability to scale when resources increase proportionally to the
input size.

In addition, our experiments on comparing the system utilization
between GPU and PIM architectures, indicated an upward trend
of 75% for PIM against 40% for GPUs (figures omitted due to lack
of space). Moreover, we provide measurements indicating superior
energy efficiency when comparing our solution to state-of-the-art
algorithms on CPUs and GPUs (Section 6.7).

6.4 Run-Time Performance

Correlated data contribute to a smaller skyline set which contains
only a few dominator points. Therefore, during processing the main
performance bottleneck is the memory bandwidth. Figure 8 illus-
trates the runtime performance for all algorithms on correlated data.
DSky outperforms previous state-of-the-art algorithms for all tested
query dimensions. This happens because it relies on radix-select,
an inherently memory bound operation, to lower the preprocessing
cost. Moreover, the main processing stage terminates early due to
the discovery of a suitable stopping point. BSkyTree and Hybrid

under-utilize the available bandwidth, since a single point requires
only few comparisons to be pruned away. Therefore, prefetching
data into cache will result in lower computation to communication

3Due to restrictions in GPU memory, the maximum dataset for comparison purposes
was set to 226.

9

104
103
102
101 1 16 32 48 64

104
103
102
101 1 16 32 48 64

105
104
103
102
101 1 16 32 48 64

T
im

e
(m

s)

D=16D=8D=4

Cardinality (Millions)

BSkyTree Hybrid SkyAlign (1.5 GHz) SkyAlign (0.75GHz) DSky

Figure 8: Execution time (log(t)) using correlated data.

107
106
105
104
1031021 16 32 48 64

BSkyTree Hybrid SkyAlign (1.5 GHz) SkyAlign (0.75GHz) DSky

105
104
103
1021 16 32 48 64

106
105
104
103
1021 16 32 48 64

T
im

e
(m

s)

D=4 D=8 D=16

Cardinality (Millions)

Figure 9: Execution time (log(t)) using independent data.

ratio and higher execution time. SkyAlign is limited by the overhead
associated with launching kernels on the GPU, which in this case is
high relative to the cost of the processing and preprocessing stages.

Figure 9 presents the runtime performance for all methods using
independent data. We observe that DSky outperforms previous im-
plementations for query dimensions (i.e. d ={4, 8}) that reflect the
needs of real-world applications. Hybrid and BSkyTree are restricted
by the cache size, since increasing dimensionality contributes to a
larger skyline. This results in a higher number of direct memory
accesses leading to higher runtime. Compared to DSky, SkyAlign

exhibits higher runtime on 4 and 8 dimension queries, due to achiev-
ing lower throughput as a result of irregular memory accesses and
thread divergence. On 16 dimensions, these limitations have a lesser
effect on runtime, due to the increased workload which contributes
towards masking memory access latency when more threads execute
in parallel. However, concentrating on measurements using 0.75

GHz clock frequency, we observe that DSky outperforms SkyAlign

approximately by a factor of 2. Intuitively, this indicates that DSky

is throughput efficient compared to SkyAlign, as the latter fails to
sustain same runtime for equal specification. In fact, experiments
with higher frequency indicate a trend that predicts better perfor-
mance for DSky on sufficiently large input (beyond 16 million points
SkyAlign would crash, probably due to implementation restrictions
and limited global memory).

Finally, Figure 10 illustrates the measured runtime for anticorre-
lated distributions. As before, DSky outperforms CPU-based meth-
ods which are restricted by the cache size. The only noticeable

BSkyTree Hybrid SkyAlign (1.5 GHz) SkyAlign (0.75GHz) DSky

106
105
104
103
1021 16 32 48 64

107
106
105
104
103
1021 16 32 48 64

108
107
106
105
104
1031 16 32 48 64

D=16D=8D=4

Cardinality (Millions)

T
im

e
 (

m
s)

Figure 10: Execution time (log(t)) using anticorrelated data.

difference relates to the runtime of SkyAlign which is closer to that
of DSky on 8 and 16 dimensions for higher clock frequency. The in-
creased workload associated with anticorrelated distributions makes
optimizing for work-efficiency a good strategy but only for a rela-
tively small number of points.

6.5 Algorithmic Efficiency & Throughput

Figure 11 illustrates the number of full DTs performed by all algo-
rithms. We concentrate on independent and anticorrelated distribu-
tions and omit DTs performed on correlated data as their limited
number has a lesser impact on throughput. Our experiments indicate
that DSky exhibits remarkable efficiency for queries on 8 dimen-
sions, outperforming the state-of-the-art parallel algorithms. In fact,
its performance is closer to BSkyTree in terms of total DT count,
indicating its ability to achieve balance between efficient pruning
and detecting incomparability. This results from the optimizations
related to in-order processing, early stopping and cheap filter tests
using space partitioning. On 16 dimensions, DSky remains as effi-
cient or slightly better than the CPU-based methods. In contrast to
SkyAlign, DSky requires more DTs to compute the skyline, since the
former relies on a centralized data structure to decide the ordering
in which points are processed. Avoiding such a data structure comes
at a trade-off, which offers opportunities for high parallelism and
subsequently high throughput at the expense of doing more work.

In order to support our claims, we present in Figure 12 the through-
put measured in million DTs per second for all implementations.

D=16

D=8

D=16

D
T

 C
o

u
n

t
D

T
 C

o
u

n
t

CardinalityCardinality

D=8

Independent Anticorrelated

BSkyTree Hybrid SkyAlign Dsky

Figure 11: Number of executed DTs per algorithm.

10

0

300

600

900

1200

220 221 222 223 224 225 226

0

300

600

900

1200

220 221 222 223 224 225 226

BSkyTree Hybrid SkyAlign Dsky

Independent
M
D
Ts
/s
e
c

Anticorrelated

M
D
Ts
/s
e
c

Cardinality

Figure 12: MDTs/sec for each algorithm on 16 dimensions.

D=8

Cardinality

T
im

e
 (

m
s)

106104102100 220 221 222 223 224 225 226 227 228 229

106104102100 220 221 222 223 224 225 226 227 228 229
D=16

T
im

e
 (

m
s)

Correlated Independent Anticorrelated

Figure 13: Execution time scaling with additional DPUs.

We focus on the higher workload 16 dimension queries that allow
for accurate throughput measurements. In our experiments, we ob-
serve that DSky is able to consistently maintain a higher throughput
than previous state-of-the-art algorithms. Despite requiring a higher
number of DTs, DSky maintains a higher processing rate relative to
SkyAlign when using the same clock frequency. Intuitively, this can
be attributed to a less rigid parallel execution model which allows
for irregular processing, and higher bandwidth achieved through
processing-in-memory. DSky leverages on these two properties to-
wards being throughput efficient.

6.6 Scaling

We evaluate scalability by measuring the execution time, while the
number of available DPUs increases proportionally (i.e. 8 to 4096)
to the input size. Figure 13 contains the results of our experiments
for all distributions. We focus on 8 and 16 dimension queries, which
are the most compute and communication intensive case studies.
Experiments with correlated data demonstrate a constant increase
in execution time regardless of the query dimensions. We attribute
this behavior to the higher cost of communication relative to pro-
cessing. In practice, doubling the number of DPUs will improve

performance only when the computation cost is sufficiently large.
Low processing time offers minimal improvements over the increase
in communication which dominates the overall execution time.

Independent and anticorrelated distributions require more time
for processing than transmitting data, thus adding resources con-
tributes to a higher reduction of the total execution time. In fact,
as we increase the number of DPUs proportionally to the number
of points, the execution time remains fairly constant regardless of
the distribution or query dimension. This showcases the ability of
DSky to scale comfortably with respect to growing input. It is also
noteworthy to mention that selecting a suitable partition size, con-
tributes to achieving good scalability. This offers more opportunities
for parallelism, while minimizing the work overhead associated with
dependencies which arise from in-order processing.

CPU GPU PIM
Independent 0.715 1.124 0.140

Anticorrelated 1.562 2.177 0.153

Table 2: Energy per unit of work (µJ/DT).

6.7 Energy Consumption

As seen from our experimental evaluation, in most cases DSky

achieves same or better execution time than state of the art solutions
while being more throughput efficient and easily scalable. Moreover,
DSky runs on an architecture that uses around 25% of the energy
requirements (Table 1). Overall, this translates to more than an order
of magnitude better energy consumption per unit of work in com-
parison to the corresponding CPU and GPU solutions, as seen in
Table 2.

7 CONCLUSION

In this work, we presented a massively parallel skyline algorithm
for PIM architectures, called DSky. Leveraging on our novel work
assignment strategy, we showcased DSky’s ability to achieve good
load balance across all participating DPUs. We proved that by fol-
lowing this methodology, the total amount of parallel work is asymp-
totically equal to the optimal case. Furthermore, combining spiral
partitioning with blocking enabled us to seamlessly incorporate opti-
mizations that contribute towards respectable algorithmic efficiency.
Our claims have been validated by an extensive set of experiments
that showcased DSky’s ability to outperform the state-of-the-art im-
plementations for both CPUs and GPUs. Moreover, DSky maintains
higher processing throughput and better resource utilization. In addi-
tion, we showcased that DSky scales well with added resources, a
feature that fits closely the capabilities of PIM architectures. Finally,
our solution improves by more than an order of magnitude the energy
consumption per unit of work, as compared to CPUs and GPUs.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their construc-
tive comments which contributed to the improvement of this paper.
We would like also to thank UPMEM for providing the SDK and re-
lated simulation tools to evaluate our algorithms. This research was
partially supported by NSF grants: IIS-1447826 and IIS-1527984.

11

REFERENCES
[1] 2015. UPMEM SDK. http://www.upmem.com/wp-content/uploads/2017/02/

20170210_SDK_One-Pager.pdf.
[2] Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi.

2015. A scalable processing-in-memory accelerator for parallel graph processing.
In ISCA. IEEE, 105–117.

[3] Tolu Alabi, Jeffrey D Blanchard, Bradley Gordon, and Russel Steinbach. 2012.
Fast k-selection algorithms for graphics processing units. JEA 17 (2012), 4–2.

[4] Wolf-Tilo Balke and Ulrich Güntzer. 2004. Multi-objective query processing for
database systems. In VLDB. VLDB Endowment, 936–947.

[5] Ilaria Bartolini, Paolo Ciaccia, and Marco Patella. 2008. Efficient sort-based
skyline evaluation. TODS 33, 4 (2008), 31.

[6] Christian Beecks, Ira Assent, and Thomas Seidl. 2011. Content-based multimedia
retrieval in the presence of unknown user preferences. Advances in Multimedia

Modeling (2011), 140–150.
[7] Giovanni Beltrame, Luca Fossati, and Donatella Sciuto. 2010. Decision-theoretic

design space exploration of multiprocessor platforms. TCAD 29, 7 (2010), 1083–
1095.

[8] Luca Benini, Alessandro Bogliolo, and Giovanni De Micheli. 2000. A survey of
design techniques for system-level dynamic power management. VLSI 8, 3 (2000),
299–316.

[9] Kenneth S Bøgh, Sean Chester, and Ira Assent. 2015. Work-efficient parallel
skyline computation for the GPU. VLDB 8, 9 (2015), 962–973.

[10] Kenneth S Bøgh, Sean Chester, Darius Šidlauskas, and Ira Assent. 2017. Tem-
plate Skycube Algorithms for Heterogeneous Parallelism on Multicore and GPU
Architectures. In SIGMOD. ACM, 447–462.

[11] Stephan Borzsony, Donald Kossmann, and Konrad Stocker. 2001. The skyline
operator. In ICDE. IEEE, 421–430.

[12] Sean Chester, Michael L Mortensen, and Ira Assent. 2014. On the Suitability of
Skyline Queries for Data Exploration.. In EDBT/ICDT. IEEE, 161–166.

[13] Sean Chester, Darius Šidlauskas, Ira Assent, and Kenneth S Bøgh. 2015. Scalable
parallelization of skyline computation for multi-core processors. In ICDE. IEEE,
1083–1094.

[14] Jan Chomicki, Parke Godfrey, Jarek Gryz, and Dongming Liang. 2005. Skyline
with presorting: Theory and optimizations. In IIPWM. Springer, 595–604.

[15] Jeff Draper, Jacqueline Chame, Mary Hall, Craig Steele, Tim Barrett, Jeff LaCoss,
John Granacki, Jaewook Shin, Chun Chen, Chang Woo Kang, et al. 2002. The
architecture of the DIVA processing-in-memory chip. In ICS. ACM, 14–25.

[16] Mario Drumond, Alexandros Daglis, Nooshin Mirzadeh, Dmitrii Ustiugov, Javier
Picorel, Babak Falsafi, Boris Grot, and Dionisios Pnevmatikatos. 2017. The
Mondrian Data Engine. In ISCA. ACM, 639–651.

[17] Jiunn-Der Duh and Daniel G Brown. 2007. Knowledge-informed Pareto simulated
annealing for multi-objective spatial allocation. Computers, Environment and

Urban Systems 31, 3 (2007), 253–281.
[18] Parke Godfrey, Ryan Shipley, and Jarek Gryz. 2007. Algorithms and analyses for

maximal vector computation. VLDB 16, 1 (2007), 5–28.
[19] Maya Gokhale, Bill Holmes, and Ken Iobst. 1995. Processing in memory: The

Terasys massively parallel PIM array. Computer 28, 4 (1995), 23–31.
[20] Qi Guo, Nikolaos Alachiotis, Berkin Akin, Fazle Sadi, Guanglin Xu, Tze Meng

Low, Larry Pileggi, James C Hoe, and Franz Franchetti. 2014. 3D-stacked memory-
side acceleration: Accelerator and system design. In WoNDP.

[21] Kenneth Hoste and Lieven Eeckhout. 2008. Cole: compiler optimization level
exploration. In CGO. ACM, 165–174.

[22] Herbert Jordan, Peter Thoman, Juan J Durillo, Simone Pellegrini, Philipp
Gschwandtner, Thomas Fahringer, and Hans Moritsch. 2012. A multi-objective

auto-tuning framework for parallel codes. In SC. IEEE, 1–12.
[23] Henning Köhler, Jing Yang, and Xiaofang Zhou. 2011. Efficient parallel skyline

processing using hyperplane projections. In SIGMOD. ACM, 85–96.
[24] Hans-Peter Kriegel, Matthias Renz, and Matthias Schubert. 2010. Route skyline

queries: A multi-preference path planning approach. In ICDE. IEEE, 261–272.
[25] Dominique Lavenier, Jean Francois Roy, and David Furodet. 2016. DNA mapping

using Processor-in-Memory architecture. In BIBM. IEEE, 1429–1435.
[26] Jongwuk Lee and Seung-won Hwang. 2010. BSkyTree: scalable skyline computa-

tion using a balanced pivot selection. In EDBT. ACM, 195–206.
[27] Ken CK Lee, Baihua Zheng, Huajing Li, and Wang-Chien Lee. 2007. Approaching

the skyline in Z order. In VLDB. VLDB Endowment, 279–290.
[28] Lifeng Nai, Ramyad Hadidi, Jaewoong Sim, Hyojong Kim, Pranith Kumar, and

Hyesoon Kim. 2017. GraphPIM: Enabling instruction-level PIM offloading in
graph computing frameworks. In HPCA. IEEE, 457–468.

[29] Aziz Nasridinov, Jong-Hyeok Choi, and Young-Ho Park. 2017. A two-phase data
space partitioning for efficient skyline computation. Cluster Computing 20, 4
(2017), 3617–3628.

[30] Gianluca Palermo, Cristina Silvano, and Vittorio Zaccaria. 2009. ReSPIR: a
response surface-based Pareto iterative refinement for application-specific design
space exploration. TCAD 28, 12 (2009), 1816–1829.

[31] Sungwoo Park, Taekyung Kim, Jonghyun Park, Jinha Kim, and Hyeonseung Im.
2009. Parallel skyline computation on multicore architectures. In ICDE. IEEE,
760–771.

[32] Yoonjae Park, Jun-Ki Min, and Kyuseok Shim. 2017. Efficient processing of
skyline queries using mapreduce. TKDE 29, 5 (2017), 1031–1044.

[33] Antonin Ponsich, Antonio Lopez Jaimes, and Carlos A Coello Coello. 2013. A
survey on multiobjective evolutionary algorithms for the solution of the portfolio
optimization problem and other finance and economics applications. TEVC 17, 3
(2013), 321–344.

[34] Patrick Siegl, Rainer Buchty, and Mladen Berekovic. 2016. Data-centric comput-
ing frontiers: A survey on processing-in-memory. In MEMSYS. ACM, 295–308.

[35] Cristina Silvano, William Fornaciari, Gianluca Palermo, Vittorio Zaccaria, Fab-
rizio Castro, Marcos Martinez, Sara Bocchio, Roberto Zafalon, Prabhat Avasare,
Geert Vanmeerbeeck, et al. 2010. Multicube: Multi-objective design space explo-
ration of multi-core architectures. In VLSI. Springer, 47–63.

[36] Dimitrios Skoutas, Dimitris Sacharidis, Alkis Simitsis, and Timos Sellis. 2008.
Serving the sky: Discovering and selecting semantic web services through dynamic
skyline queries. In ICSC. IEEE, 222–229.

[37] Linghao Song, Xuehai Qian, Hai Li, and Yiran Chen. 2017. PipeLayer: A pipelined
ReRAM-based accelerator for deep learning. In HPCA. IEEE, 541–552.

[38] Ed Upchurch, Thomas Sterling, and Jay Brockman. 2004. Analysis and modeling
of advanced PIM architecture design tradeoffs. In SC.

[39] Akrivi Vlachou, Christos Doulkeridis, and Yannis Kotidis. 2008. Angle-based
space partitioning for efficient parallel skyline computation. In SIGMOD. ACM,
227–238.

[40] Shangguang Wang, Qibo Sun, Hua Zou, and Fangchun Yang. 2013. Particle swarm
optimization with skyline operator for fast cloud-based web service composition.
Mobile Networks and Applications 18, 1 (2013), 116–121.

[41] Louis Woods, Gustavo Alonso, and Jens Teubner. 2013. Parallel computation of
skyline queries. In FCCM. IEEE, 1–8.

[42] Sotirios Xydis, Gianluca Palermo, Vittorio Zaccaria, and Cristina Silvano. 2015.
SPIRIT: spectral-aware pareto iterative refinement optimization for supervised
high-level synthesis. TCAD 34, 1 (2015), 155–159.

[43] Dongping Zhang, Nuwan Jayasena, Alexander Lyashevsky, Joseph L Greathouse,
Lifan Xu, and Michael Ignatowski. 2014. TOP-PIM: throughput-oriented pro-
grammable processing in memory. In HPDC. ACM, 85–98.

12

http://www.upmem.com/wp-content/uploads/2017/02/20170210_SDK_One-Pager.pdf
http://www.upmem.com/wp-content/uploads/2017/02/20170210_SDK_One-Pager.pdf

	Abstract
	1 Introduction
	2 Related Work
	3 Skyline Definitions
	4 Architecture Overview & Implementation Challenges
	5 DSky Algorithm Overview
	5.1 Parallel Radix-Select & Block Creation
	5.2 Horizontal Partition Assignment
	5.3 Spiral Partition Assignment
	5.4 DSky Main Processing Stage

	6 Experimental Evaluation
	6.1 Setup Configuration
	6.2 Dataset
	6.3 Experiments & Metrics
	6.4 Run-Time Performance
	6.5 Algorithmic Efficiency & Throughput
	6.6 Scaling
	6.7 Energy Consumption

	7 Conclusion
	Acknowledgments
	References

