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Random numbers are widely used for information security, cryptography, stochas-

tic modeling, and quantum simulations. Key technical challenges for physi-

cal random number generation are speed and scalability. We demonstrate a

method for ultrafast generation of hundreds of random bit streams in parallel

with a single laser diode. Spatio-temporal interference of many lasing modes

in a specially designed cavity is introduced as a scheme for greatly accelerated

random bit generation. Spontaneous emission, caused by quantum fluctua-

tions, produces stochastic noise that makes the bit streams unpredictable. We

achieve a total bit rate of 250 Tb/s with off-line post-processing, which is more
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than two orders of magnitude higher than the current post-processing record.

Our approach is robust, compact, energy efficient, and should impact applica-

tions in secure communication and high-performance computation.

The performance and reliability of our digital networked society are based upon the ability

to generate large quantities of randomness. An ever-increasing demand to improve the secu-

rity of digital information has shifted the generation of random numbers from relying solely

on pseudo-random algorithms to employing physical entropy sources. Ultrafast physical ran-

dom number generators are key devices for achieving ultimate performance and reliability in

communication and computation systems (1, 2). One prominent class of high-speed random

number generators are semiconductor lasers that feature chaotic dynamics with tens-of-GHz

bandwidth (3–18). Initially 1.7 Gb/s random bit generation (RBG) was achieved with com-

bined binary digitization of two independent chaotic laser diodes (3). Then from a single chaotic

semiconductor laser, a 12.5 Gb/s RBG was demonstrated (4), and subsequently boosted to 300

Gb/s (5). By coupling several lasers to further increase the bandwidth and employing post-

processing schemes to extract more bits in analog-to-digital conversion (ADC), the RBG rate

was pushed to Tb/s (13–15,18). However, the intrinsic time scales of lasing instabilities impose

an ultimate limit on the entropy generation rate. A further increase in the RBG rate requires a

different physical process with inherently faster dynamics.

Concurrently, parallel RBG schemes can greatly enhance the generation rate and the scala-

bility by producing many bit streams simultaneously. In the spatial domain, parallel generation

of physical random numbers was realized by sampling two-dimensional laser speckle patterns

created by a moving diffuser or a vibrating multimode fiber (19,20). Due to inherently long me-

chanical timescales, the generation rates remain low (Mb/s). Chaotic broad-area semiconductor

lasers were investigated for high-speed parallel-RBG (21), but correlations of intensity fluctua-
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tions at different spatial locations impede independent parallel bit stream generation. Spectral

demultiplexing of amplified spontaneous emission (22, 23) or heterodyning chaotic laser emis-

sion (9) are employed for parallel RBG with rates up to hundreds of Gb/s per channel. So far,

such spectral-domain parallel RBG has been demonstrated with less than 10 channels.

We demonstrate a method that enhances the random bit rate in a single channel and also

provides hundreds of channels for simultaneous generation of independent bit streams. The

spatio-temporal interference of many lasing modes is used to generate picosecond-scale emis-

sion intensity fluctuations in space, so as to massively produce ultrafast random bit streams

in parallel. This is achieved by tailoring the geometry of a broad-area semiconductor laser to

vastly increase the number of transverse lasing modes, suppressing characteristic dynamical

instabilities such as filamentation. Specifically, we design a chip-scale laser diode to enable

a large number of spatial modes lasing simultaneously with incommensurate frequency spac-

ings, so that their interference patterns are complex and aperiodic. Spontaneous emission adds

stochastic noise to make the intensity fluctuations unpredictable and non-reproducible.

A conventional broad-area edge-emitting semiconductor laser has a stripe geometry with

two flat facets (Fig. 1A). Characteristically, lasing occurs only in the low-order transverse

modes. Nonlinear interactions between the light field and the gain material entail irregular pul-

sation and filamentation (24) (Fig. 1B). The spatio-temporal correlation function of the inten-

sity fluctuations (25, 26) C(∆x,∆t) reveals non-local correlations in space and time (Fig. 1C).

On one hand, long-range temporal correlation reflects memory which degrades the quality of

random bits generated at one spatial location. On the other hand, due to long-range spatial cor-

relation, the random bit streams generated at different locations are not completely independent,

thus impeding parallel RBG (21).

To achieve massively parallel ultrafast RBG, we enhance the number of transverse lasing

modes by increasing the cavity width and curving the end facets (Fig. 1D), effectively sup-
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pressing modulational instabilities. High-order transverse modes are well confined inside such

a cavity, and their optical gain is enhanced by tailoring the top metal contact shape (26). The

number of transverse lasing modes is maximized by fine-tuning the cavity geometry (27). Las-

ing on small length-scales of transverse-wavelengths of high-order modes prevents lensing and

self-focusing effects (28) that would normally cause filamentation and instabilities (Fig. 1E). In

turn, the absence of filaments and pulsations eliminates long-range spatio-temporal correlations

in the lasing intensity (Fig. 1F). It is this dramatically shortening of the correlation lengths in

space and time, that paves the ground for a significant increase in the number of independent

spatial channels for parallel RBG, and a great enhancement of the RBG rate of every individual

spatial channel.

With lasing instabilities suppressed, the dynamic variations of the emission intensity are

orchestrated by the interference of lasing modes with different frequencies. The characteristic

time scale of such intensity fluctuations is inversely proportional to the spectral width of the total

emission, and is about 1 ps for the GaAs quantum-well laser (26). We show the spatio-temporal

beat pattern of the intensity emitted at one laser facet in Fig. 2A. The temporal correlation length

is determined by the full-width-at-half-maximum (FWHM) of C(∆x,∆t) in time (Fig. 2B). Its

value of 2.8 ps is limited by the temporal resolution of our detection (26).

Thanks to the ultrafast dynamics of lasing intensity, the power spectrum is extremely broad

(Fig. 2C). Its bandwidth, which contains 80% of the radio-frequency (RF) power, is 315 GHz.

For comparison, the numerically-simulated spectrum is even broader with a bandwidth of 632

GHz (26). After accounting for the temporal resolution of photodetection, the simulated RF

spectrum matches the measured one (Fig. 2C). This agreement confirms that the ultra-broad

power spectrum results from the interference of many transverse and longitudinal modes.

For spatial-multiplexing of RBG, the number of independent parallel channels depends on

the spatial correlation length of the lasing emission. Now with non-local correlations removed,
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the local correlation length estimated from the spatial FWHM of C(∆x,∆t) is 1.5 µm (Fig. 2B),

which is limited by the spatial resolution of our detection. Without the finite experimental reso-

lution, our simulation gives a correlation length of 0.5 µm (26). Thanks to this extremely short

spatial correlation length, hundreds of independent spatial channels are available for parallel

RBG.

As the transverse mode frequency spacing in our cavity design is incommensurate to the lon-

gitudinal mode spacing, the spatio-temporal interference pattern cannot repeat itself (26). More-

over, the spontaneous emission, generated by quantum fluctuations, constantly feeds stochastic

noise into the lasing modes, making their beat pattern unpredictable and irreproducible.

To generate random bits, we divide the laser end facet into 1-µm-wide spatial channels. Due

to the restricted field-of-view of our collection optics, only 254 spatial channels are recorded

simultaneously, which is about half of the number possible with complete collection of emis-

sion. We sample the emission intensity at every spatial channel in τ = 1.46 ps long intervals

(sampling rate 683 GHz, left inset of Fig. 3A) (26). The emission intensity integrated over

one sampling period In has an asymmetric probability density function (PDF), which would

yield biased bits (26). We adopt the procedure from Ref. (4) to acquire the differential intensity

∆In = In+4 − In, which has a symmetric PDF (Fig. 3A). The differential intensity ∆In is

digitized to 6 bits (Fig. 3A), and three least significant bits (LSBs) are used for RBG (4). All

8 combinations for 3 LSBs have almost equal probability (Fig. 3B). We remove the residual

bias by performing exclusive-OR (XOR) on two bit streams from distant spatial channels (26),

which reduces the number of parallel bit streams to 127. Figure 3C reveals the correlation be-

tween bits in a single bit stream reaches the limit 1/
√
N given by the bit stream length N . This

leads to a single-channel bit generation rate of 2 Tb/s, which is twice the current record with

off-line post-processing (13–15).

We evaluate the quality of the generated random bits with two standard statistical test suites -
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NIST SP 800-22 and Diehard (26). Fig. 3E provides the test results for 127 parallel bit streams.

95 of them pass all NIST tests, yielding a pass rate of 75%. Compared to the pass rates reported

previously for pseudo-RBG and physical RBG, our pass rate is within the acceptable range

for reliable random bit generators (16, 29). In addition, we perform the Diehard tests on all

bit streams (26). The average pass rate over 10 separate tests with different data sets is 93%,

comparable to the pass rate of pseudo-RBG.

To investigate the effect of photodetection noise on RBG, we define the signal-to-noise-ratio

(SNR) as the bin size s for digitization of ∆In divided by 2σ of the background fluctuation in

a channel. With the SNR significantly higher than 1 for all spatial channels, the random bits

are generated predominately by the laser emission, and a numerical estimation of the noise

contribution is presented in (26). Figure 3F shows that the percentage of all 188 subtests that

every bit stream passes is uncorrelated with the SNR for the pair of spatial channels XOR’ed to

create it, indicating the level of detection noise does not affect the random bit quality.

To confirm the absence of correlations among the parallel bit streams, Fig. 3D shows that

the mutual information (MI) between any pair of bit streams (26) is as small as the MI of

uncorrelated bit streams from different lasers. Moreover, to exclude short-term correlations, we

combine odd bits from one stream and even bits from another to generate new sequences. The

NIST tests of such combined bit sequences yield a pass rate of 72%− 73% (26), demonstrating

that all the original parallel bit streams are truly independent.

All these test results certify the randomness of our parallel random bits generated at a cu-

mulative rate of 2 Tb/s ×127 = 254 Tb/s. The very high RBG rate that we obtain indicates an

enormous amount of entropy created by our laser. To establish its physical origin, we consider

a simple model including only the interference of transverse and longitudinal lasing modes and

spontaneous emission noise (26). Using the Cohen-Procaccia algorithm (1), we estimate the

entropy rate hCP for a bit stream generated from the simulated intensity fluctuations of a single
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spatial channel. Figure 4A shows the convergence of hCP for different embedding dimensions

d. Both the interference of a large number of lasing modes and the spontaneous emission noise

contribute to entropy generation (26). Due to stochastic intensity fluctuations, hCP increases

linearly with the number of digits Ndigit. The fact that hCP reaches the information theoretical

limit h0 (1, 26) indicates that the maximal possible bit rate for a single channel is achieved.

This rate exceeds the experimentally obtained value, due to the limited temporal resolution and

dynamic range of the photodetector.

To determine how many independent spatial channels are available for parallel RBG, we

investigate the effective spatial degrees of freedom (DoFs) of the emission pattern of our laser.

Intuitively, the number of spatial DoFs in the total intensity pattern is expected to be 2M , where

M is the number of transverse lasing modes (26). However, the mode amplitudes are not uni-

formly distributed due to gain competition and saturation, effectively reducing the spatial DoFs.

Applying the Karhunen-Loeve decomposition to the intensity pattern I(x, t), we compute the

Shannon entropy H to obtain the complexity as a function of the number of transverse modes

M (26, 30). In Fig. 4B, the number of effective DoFs 2H grows linearly with M , but with a

slope smaller than 2. By maximizing M with our cavity design, the maximal number of spatial

channels is available for parallel RBG. Keeping only three LSBs after digitizing the emission

intensity further reduces the spatial correlation length, and the number of independent channels

is thus further increased (26).

In this proof-of-concept experiment, we demonstrate parallel RBG in 127 independent chan-

nels with a rate of 2 Tb/s per channel. Both the single-channel bit rate and the number of spatial

channels are limited by the resolution and efficiency of our experimental apparatus. Improving

the temporal resolution and the dynamic range of photodetection can double the single-channel

bit rate to about 4 Tb/s. If all the emission is collected with finer spatial resolution, our laser

can produce approximately 500 independent bit streams (26). Then the cumulative bit rate will
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reach 2 Pb/s.

It is possible to create a compact parallel-RBG system by integrating fast photodetectors

with the laser in a single chip (26). Alternatively, commercially-available linear arrays of pho-

todiodes may be butt-coupled to the laser chip on both ends. Although current photodiodes

are not fast enough to fully resolve the temporal intensity dynamics, spatial multiplexing with

hundreds of channels alone will drastically increase the RBG rate.

Compared to existing RBG schemes, our method, based on a single laser diode without

optical feedback or optical injection, is extremely simple yet highly efficient. It does not ne-

cessitate any fine-tuning of operation parameters, and its performance is robust against fabri-

cation defects. In our current experiments, the random bit streams are generated by a com-

puter through off-line post-processing including XOR of bit streams from different locations.

Real-time streaming of parallel random bits to a computer by conducting the post-processing

(including XOR) “on the fly” remains a major technological challenge (16, 17).

Besides the application of RBG, the extraordinary spatio-temporal complexity of our laser

facilitates rich, diverse dynamical behavior, which can be remarkably tailored via the cavity ge-

ometry. By varying the spatial structure of cavity modes and tuning their characteristic length

scale, we could effectively manipulate their nonlinear interactions with the gain medium to

create deterministic spatio-temporal structures on demand. Such ability of controlling the num-

ber of active modes and their nonlinear interactions promotes our laser as a model system to

study many-body phenomena and for harvesting spatio-temporal quantum fluctuations. Since

our laser possesses a variety of temporal and spatial scales, it may also be useful for studying

optical turbulence with high Reynolds numbers. While having a high-dimensional phase space

with a complex landscape, our laser is yet compact and may be employed for reservoir comput-

ing and for creating physical unclonable functions (PUFs).
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Figure 1: Reducing spatio-temporal correlations of the lasing emission. (A) A wide-stripe

edge-emitting semiconductor laser with planar facets supports only low-order transverse modes

with the typical spatial profile shown (not to scale). (B) Emission intensity I(x, t) at one

facet of a 100-µm-wide, 1000-µm-long GaAs quantum-well laser, measured by a streak cam-

era, features filamentation and irregular pulsations. (C) The spatio-temporal correlation func-

tion C(∆x,∆t) of the emission intensity in (B) reveals long-range spatio-temporal correla-

tions. (D) Our specially-designed laser cavity with curved facets confines high-order transverse

modes. The spatial intensity distribution of an exemplary high-order transverse mode is plot-

ted. (E) The measured spatio-temporal trace of the lasing emission from our cavity of length

400 µm, width 282 µm and facet radius 230 µm is free of micron-sized filaments and GHz oscil-

lations as seen in (B). (F) The spatio-temporal correlation function C(∆x,∆t) of the emission

intensity in (E) shows no long-range spatio-temporal correlations.
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in (A) at x = 0 (red) is much higher than the background (gray) with the laser turned off.

The simulated power spectrum (black) is broader, but becomes narrower when the temporal

resolution of our detector is taken into account (blue), in agreement with the measured one

(red).

14



Frequency

Block frequency

Cumulative sums

Runs

Longest run

Rank

FFT

Nonoverlapping template

Overlapping template

Universal

Approximate entropy

Random excursions

Random excursions variant

Serial

Linear complexity

0

2

4

6

8

10

0 20 100

Channel index

S
N

R
 s

/2
σ

P
e
rc

e
n

ta
g

e
 o

f
1
8
8
 s

u
b

te
s
ts

 p
a
s
s
e
d

 (
%

)

94

96

98

100

40 60 80 120

Channel index

0 20 10040 60 80 120

E

F

0

0.1

0.2

8 combinations for 3 LSBs
P

ro
b

a
b

il
it

y

0
0
0

0
0
1

0
1
0

0
1
1

1
0
0

1
0
1

1
1
0

1
1
1

B

-1500 -1000 0 1000 1500

Differential intensity (count)
-500 500

P
ro

b
a
b

il
it

y
 d

e
n

s
it

y

0

1

x10
-3

-30 0 30
0

0.1

Differential 
noise (count)

Bin size s

2σ

A

Inter-cavity

Intra-cavity

0

M
u

tu
a
l 
in

fo
rm

a
ti

o
n

 (
b

it
)

10
-6

-3
10

10

Channel separation Δx (μm) 

0 1 52 3 4

DC

Time delay Δt (ps)

0 10 20 30 40 50

B
it

 c
o

rr
e
la

ti
o

n

0
10

-4
10

-2
10

0

0 2

10

-3
10

4

0 10 20
0

1

2
x10

3

In
te

n
s
it

y
 (

c
o

u
n

t)

Time (ps)

Background

 

Figure 3: Parallel random bit generation and evaluation. (A) Left inset is a segment of intensity

time trace of a single spatial channel (red line), sampled at intervals τ = 1.46 ps (red dots).

The blue curve is the background count. Main panel shows the PDF of the differential intensity,

∆In = In+4−In, which is digitized to 6 bits by binning the range [-1740, 1740] counts (vertical

red dashed lines) into 64 equally spaced intervals. 3 LSBs are taken from each sample. The

gray scale of the bars represents their 8 combinations. Right inset is the PDF of the differential

background count with a standard deviation σ = 3.9 counts much smaller than the bin size

s = 54 for ∆In. (B) The probability for all 8 combinations of 3 LSBs is almost equal. (C) A

bit stream with length N = 220 has a bit correlation (red squares) around the lower limit 1/
√
N

(black line). Inset is zoom on short delay times. (D) The mutual information between bit streams

in two channels with varying separation (Intra-cavity) is equal to that between the streams from

two independent lasers (Inter-cavity). (E) The NIST SP800-22 test results include 15 kinds of

statistical tests, in total 188 subtests for 127 parallel bit streams. The green (red) color denotes

one stream passing (failing) one test. 95 bit streams pass all subtests, yielding a pass rate of

75%, which is considered acceptable for a reliable RBG. (F) The percentage of all 188 subtests

that every bit stream passes (green) is uncorrelated with the SNR s/2σ of the corresponding

pair of spatial channels (red dashed and dotted lines).
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Figure 4: Information capacity of spatio-temporal intensity pattern of simulated lasing emis-

sion. (A) The entropy rate hCP in a single spatial channel converges for different embedding

dimensions d, and reaches the information theoretical limit h0 (black dashed line), indicating

the maximum possible RBG rate is reached. (B) The effective number of spatial degrees of

freedom 2H in the emission pattern grows linearly with the number of transverse lasing modes

M . The black solid line is a linear fit. The blue dashed line is the naively expected number of

spatial degrees of freedom 2M , which exceeds 2H .
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Materials and methods

Device fabrication

We fabricate edge-emitting semiconductor lasers with a commercial GaAs/AlGaAs quantum

well (QW) epiwafer (Q-Photonics QEWLD-808). The cavities with curved facets are defined

by photolithography and etched by an inductively coupled plasma reactive ion etcher. The etch

depth is 4 µm. The top metal contacts are fabricated by photolithography, Ti/Au deposition, and

lift-off (see Ref. (27) for details). A scanning electron microscope (SEM) image of a fabricated

device is presented in Fig. S1B.

The cavity length L varies from 400 µm to 800 µm. The transverse width W scales with L

as W = L/
√
2. The radius of the curved facets R is also proportional to L, so that the cavity

stability factor g = 1− L/R is fixed to −0.74. In Figs. 1E, 2, and 3, the cavity lengths are L =

400 µm, 600 µm, and 800 µm, respectively.

The wide-stripe lasers with planar facets (g = 1) in Fig. 1B are made by wafer cleaving.

Device testing

The diode laser is mounted on a copper plate. A tungsten needle (Quater Research H-20242)

is placed on the top contact for electric current injection. To reduce sample heating, we use a

diode driver (DEI Scientific, PCX-7401) to generate 150-ns-long current pulses at a repetition

rate of 7 Hz.

In Fig. 1B, the electric current injected to the stripe laser is 600 mA, where the lasing

threshold current is 320 mA. In Figs. 1E, 2, and 3, the pump currents are set at two times the

lasing thresholds, where the threshold currents are 400 mA, 600 mA, and 800 mA, respectively.

As schematically shown in Fig. S1C, the lasing emission on one end facet is imaged by a

20× microscope objective (NA = 0.4) and a lens (focal length 150 mm) onto the entrance slit

of a streak camera (Hamamatsu C5680). The fast sweep unit (M5676) of the streak camera
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Figure S1: Schematic of a chip-scale parallel random bit generator. (A) Sketch of a many-

mode electrically-pumped semiconductor laser with curved end facets. Its emission is measured

by two arrays of photodetectors for parallel RBG. (B) Top-view SEM image of a fabricated

laser with cavity length L = 400 µm, width W = 282 µm, and end facet radius R = 230 µm.

(C) Sketch of our experimental setup. The lasing emission at one end facet is imaged onto a

streak camera that records the temporal fluctuation of the emission intensities at many spatial

locations simultaneously.

records the spatio-temporal traces of the emission intensity. Due to the limited field of view of

the imaging optics, only the emission from the central part of the laser facet is collected.

Because the facet is curved, the regions near the boundary of the field of view are out of

focus when imaged onto the entrance slit of the streak camera. Thus the measured intensity of

emission from these regions is lower than that from the central region of the facet.

In the streak images shown in Figs. 1B&E, the time window is 5-ns-long, and the tempo-

ral resolution is about 12 ps. Shortening the measurement time window to 0.5 ns in Fig. 2A

increases the temporal resolution to 1.2 ps.

Due to the finite temporal measurement range of the streak camera, we concatenate one
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million streak images from consecutive pulses to obtain a 0.5-ms-long time trace for each spatial

position. This process does not artificially increase the entropy generation rate according to our

numerical simulation detailed in the supplementary text.

The emission spectrum is measured by an imaging spectrometer (Acton SP300i) equipped

with an intensified CCD (ICCD) camera (Andor iStar DH312T-18U-73).

Spatio-temporal cross-correlation

We calculate the correlation function C(∆x,∆t) of the spatio-temporal emission intensity pat-

tern I(x, t),

C(∆x,∆t) =
〈δI(x0 +∆x, t+∆t)δI(x0, t)〉t
√

〈δI2(x0 +∆x, t)〉t 〈δI2(x0, t)〉t
(S1)

where δI(x, t) = I(x, t) − 〈I(x, t)〉t represents the temporal fluctuation of emission intensity

at the transverse position x on the end facet, and x0 denotes the center of the facet (25). In

Figs. 1C&F, C(∆x,∆t) is averaged over 10 measurements.

Radio-frequency (RF) spectrum

We calculate the RF spectrum of the emission intensity by performing the Fourier transform of

a time trace at the spatial location x = 0. In Fig. 2C, the measured RF spectra of the lasing

emission and background noise are averaged over 10 measurements. To be comparable to the

experimental data, the simulated RF spectra are averaged over 10 realizations with different

random phases (see the section Numerical modeling).

Random bit generation

The lasing emission intensity in every spatial channel is temporally sampled at intervals of

length τ (left inset of Fig. 3A). Faster temporal sampling will give a higher bit rate, but adjacent

bits are correlated if the sampling period τ becomes shorter than the correlation time of the
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fluctuations. The optimal sampling period of τ is found at 1.46 ps (see Fig. S8 and related

discussion).

For spatial multiplexing, a smaller channel width ∆x yields a larger number J of spatial

channels. However, correlated bit streams will be produced if ∆x is shorter than the spatial

correlation length of the lasing emission. A larger width also increases the signal in every

channel. We find the optimal width ∆x = 1 µm (see Fig. S13 and related discussion).

In a 2D streak image of the spatio-temporal intensity of the laser emission, each spatial

channel of width ∆x = 1 µm contains 4 spatial pixels. The temporal sampling period τ = 1.46

ps corresponds to 3 temporal pixels. We sum the intensities of 4 × 3 = 12 pixels in a streak

image to obtain one intensity value In.

The streak camera background counts fluctuate on the spatial scale of a single pixel. The

noise contribution to RBG is determined by its fluctuation, not its mean value which cancels out

in the differential intensity. The standard deviation σ of the differential background count (with

the laser turned off) is 1.1. When summing over 12 pixels, the standard deviation is increased

√
12 = 3.46 times to σ = 3.9.

Since σ is much smaller than the bin size s = 54 of differential intensity ∆In in Fig. 3A, the

random bits are determined predominately by the laser emission. However, if the value of ∆In

is close to the boundary of one bin, the noise could alter the bit extraction. This is estimated

to happen for 3.3% of the bits in the spatial channel shown in Fig. 3A. The percentage can be

reduced by increasing the signal strength with better collection of the laser emission.

To further remove any residual bias in the parallel bit streams from 254 spatial channels, we

divide the 254 spatial channels into two groups, and perform an XOR between the j-th spatial

channel in the first group and the (j + 127)-th spatial channel in the second group, where j is

an integer ranging from 1 to 127. Thus the total number of parallel bit streams is 127.
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Mutual information

We calculate the mutual information between a pair of bit streams, Yi and Yj , generated in

parallel,

hij =

〈

∑

Yi,Yj

p(Yi, Yj) log2
p(Yi, Yj)

p(Yi)p(Yj)

〉

. (S2)

Here p(Yi) is the probability density function (PDF) of a random bit stream Yi, p(Yi, Yj) is the

joint PDF of two random bit streams Yi and Yj , and 〈...〉 denotes an average over all pairs of

channels i and j with a constant distance.

NIST tests of random bits

The NIST SP800-22 Random Bit Generator test suite consists of 15 different kinds of statistical

tests, some of which include subtests (31). Each test returns a single or multiple p-values.

When the p-value exceeds a significance level of α = 0.01, the bit stream is considered random,

as recommended by NIST. For k bit streams, we examine if they pass or fail each statistical

test. The pass proportion should be within (1− α)± 3
√

α(1− α)/k. For each spatial channel,

we use k = 1000 bit sequences, each having 220 bits, in total over 109 bits. As an example,

Fig. S15 shows the test results for one bit stream. In panel A, the pass proportions are all above

the criterion indicated by the red line.

For a good random bit generator, the p-values from the k bit streams should be uniformly

distributed. The composite P-value (p-value of the p-values) is a measure of uniformity of the

p-values. The distribution of p-values is considered as uniform when the composite P-value is

larger than a significance level of 10−4. The example in Fig. S15B shows that the composite

P-values of all subtests are above the significance level indicated by the red line.
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Diehard tests of random bits

The Diehard battery of randomness tests consists of 18 different kinds of statistical tests (32).

Each test returns a single or multiple p-values. Some of the tests return a large number of

p-values, and a composite p-value is calculated by the Kolmogorov-Smirnov (KS) test to de-

termine if the p-values are uniformly distributed in [0,1). A bit sequence is considered random

when p-values from all the tests are within the 95% confidence interval of [0.0001, 0.9999] (33).

These tests require about 100 Mbit per channel, and we acquire sufficient data to perform the

tests 10 times. The pass rates for all bit streams are listed in Table S1.

Numerical modeling

The cavity resonances are calculated with the eigenmode solver module of COMSOL Multi-

physics. To investigate the mode competition for optical gain, we calculate the lasing modes

with the single pole approximation steady-state ab-initio lasing theory (SPA-SALT) (34,41,42).

To maximize the number of transverse lasing modes, we optimize the cavity geometry: the ratio

of cavity length to width L/W = 1.41, and the radius of the end facets R/L = 0.58 (27). The

refractive index n is set to 3.37. The total emitted field is a sum of fields in numerous transverse

and longitudinal modes with frequencies within the GaAs QW gain spectrum. The intensity

pattern at one facet can be written as

I(x, t) =

∣

∣

∣

∣

∣

M−1
∑

m=0

∑

q

Am,qe
iφm,q(t)ψm(x)e

i2πνm,qt

∣

∣

∣

∣

∣

2

, (S3)

where νm,q is the frequency of a mode with the transverse index m and longitudinal index q,

ψm(x) represents its transverse field profile on the end facet, and Am,q and φm,q denote its

global amplitude and phase. Due to spontaneous emission, φm,q(t) fluctuates in time, following

a Wiener process,

∆φ(t) = φ(t+∆t)− φ(t) =
√
2πδν∆t Z(t), (S4)
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where δν is the lasing mode linewidth, ∆t is a discrete time step, and Z(t) is a normal-

distributed random number with a standard deviation of 1. For each mode, the initial phase

φ(t = 0) is randomly chosen in the interval [0, 2π) with a uniform probability density.

Entropy rate calculation

Using the Cohen-Procaccia algorithm (1,35), we compute the entropy rate hCP as a function of

the bin size ǫ for intensity digitization and the temporal sampling period τ . For a time trace of

emission intensity I(t) at a single position of the laser facet, we construct d-dimensional data

sets by introducing time delays: I1 = I(t), I2 = I(t + τ), ... , Id = I(t + (d − 1)τ). Then

we randomly select N reference points in the d-dimensional space. For each reference point

j, we compute fj(ǫ), the fraction of other points within a d-dimensional box of width ǫ. The

d-dimensional pattern entropy estimate is given by

Hd(ǫ, τ) = − 1

N

N
∑

j=1

log2[fj(ǫ)]. (S5)

The Cohen-Procaccia entropy rate estimate is then obtained by

hCP(ǫ, τ, d) = τ−1[Hd(ǫ, τ)−Hd−1(ǫ, τ)]. (S6)

Here ǫ = (Imax−Imin)/2
Ndigit , with Imax and Imin being the maximum and minimum intensities.

In Fig. 4A, hCP is plotted as a function of Ndigit for different d. The time trace of emission

intensity in a single channel is numerically calculated with the cavity parameters identical to

the experimental ones (L = 600 µm, W = 424 µm, R = 345 µm). There are 8 longitudinal mode

groups within the emission spectrum. The number of transverse modes is M = 200. The optical

linewidth of each mode is δν = 100 MHz. The sampling period is τ = 1.5 ps. The temporal

range is 1.5 µs, yielding a time trace of 106 samples. To have the same dynamic range as the

experimental data, the intensity values are rounded to an integer number with a mean of 60, a
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minimum of 0, and a maximum of 300. The information theoretical limit h0 is given by (1,36),

h0 = min(τ−1, 2fBW ){Ndigit −DKL[p(I)||u(I)]} (S7)

where fBW denotes the signal bandwidth, and DKL[p(I)||u(I)] =
∑

I p(I) log2[p(I)/u(I)] is

the Kullback-Leibler divergence (37) between the intensity PDF p(I) and the uniform PDF u(I)

within the same range of digitization.

Karhunen-Loeve decomposition

We perform a Karhunen-Loeve decomposition of the simulated lasing intensity pattern I(x, t) in

a cavity of length L = 40 µm, widthW = 28.2 µm, radius of end facetsR = 23 µm and refractive

index n = 3.37. The mode frequencies νm,q and spatial field profiles ψm(x) are obtained from the

COMSOL calculation of cavity resonances. The amplitudesAm,q of individual lasing modes are

calculated with the SPA-SALT. Their phases φm,q are random numbers in the range of [0,2π).

From the intensity fluctuation δI(x, t) = I(x, t) − 〈I(x, t)〉t, the spatial covariance matrix

Cab = 〈δI(xa, t)δI(xb, t)〉t is constructed and its eigenvalues λα are computed (38). λα is sorted

from high to low with the index α, and it reflects the amplitude of the corresponding eigenmode

in I(x, t). The value of λα has a sudden drop at α = 2M , where M is the number of transverse

lasing modes. Hence, the spatial degrees of freedom is 2M , where the factor 2 stems from the

independent degrees of freedom in the amplitude and phase of the field of one mode.

Applying the Karhunen-Loeve decomposition to the simulated intensity pattern I(x, t), we

quantify the spatial complexity by the Shannon entropy of the eigenvalues (30)

H = −
∑

α

pα log2 pα, (S8)

where pα = λα/
∑

α λα is the normalized eigenvalue. The effective degree of freedom 2H is

less than 2M due to the different amplitudes of individual eigenmodes.
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Supplementary Text

1. Experimental measurement

1.1. Device characterization

We test lasing in the broad-area semiconductor lasers with curved facets. Similar LI curves

and emission spectra are obtained for multiple lasers of identical geometry but varying size.

Fig. S2A shows the measured LI curve for a cavity of length L = 600 µm, width W = 424 µm,

and radius of the curved facets R = 345 µm. The lasing threshold current is 570 mA. At a pump

current of 1200 mA, the power of lasing emission collected by the objective lens (NA = 0.4)

from one end facet of the cavity is 93 mW. The collection efficiency is estimated to be about

20%, with the divergence angle of the lasing emission, the transmission and numerical aperture

of the objective lens, and the collection from a single facet of the cavity all taken into account.

Thus the total emission power is about 470 mW, which corresponds to a quantum efficiency of

0.74 W/A. We record the far-field speckle pattern created by the output beam passing through

a diffuser and calculate its intensity contrast (27). The number of transverse lasing modes M

estimated from the measured speckle contrast of 0.07 is about 200. Hence the emission power

per transverse mode is on the order of 1 mW.

Figure S2B shows the measured emission spectrum at two times of the lasing threshold inte-

grated over a 0.6-µs-long pulse. Individual lasing modes cannot be resolved, as the wavelength

separation between adjacent modes is smaller than the resolution of the spectrometer. The full-

width-at-half-maximum (FWHM) of the emission spectrum is 1.3 nm. The spectrum S(λ) is

fitted by a Gaussian function centered at λ0 = 800 nm with a standard deviation of 0.55 nm. The

free spectral range (longitudinal mode spacing) of the 600-µm-long cavity is λFSR = λ20/2nL

= 0.16 nm, where the effective refractive index n = 3.37 is calculated from optical confine-

ment in the direction perpendicular to the cavity plane for transverse electric (TE) polarization,
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Figure S2: Many-mode laser characteristics. (A) LI curve: total emission power (from both

facets of the laser) as a function of the electric current injected into the 600-µm-long cavity.

The lasing threshold current is 570 mA. The inset is a double-logarithmic plot of the LI curve,

exhibiting the S-shape that is a hallmark of lasers. (B) Time-integrated spectrum of lasing

emission at a pump current of 1200 mA (gray solid line). The FWHM is 1.3 nm. The spectrum

S(λ) is fitted by a Gaussian function (red dashed line).

i.e., electric field parallel to the cavity plane. Hence the emission spectrum S(λ) contains 8

longitudinal modal groups within its FWHM.

1.2. Lasing dynamics

In a conventional broad-area edge-emitting semiconductor laser, lasing occurs only in the lower

order transverse modes because the higher order ones experience stronger diffraction losses

and less gain. Furthermore, modulational instabilities induced by nonlinear interactions of the

lasing modes with the gain material entail irregular pulsation and filamentation (25, 39). As

shown in Fig. 1B, the emission from a wide-stripe GaAs quantum well (QW) laser is spatially

concentrated at multiple locations, forming wire-like streaks called filaments. They originate

from carrier depletion in a transverse region of high lasing intensity, which leads to a local

increase in the refractive index. The ensuing lensing effect causes self-focusing of the optical

field, which evolves into a filament with a transverse size of several microns. The filaments are

inherently unstable, and their intensities oscillate irregularly on a sub-nanosecond time scale.
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Since the spatio-temporal scales of these self-organized structures are determined by intrinsic

properties of the active gain medium (24, 40), they fundamentally limit the parallel RBG rate.

To achieve massively parallel ultrafast RBG, we greatly increase the number of transverse

lasing modes and eliminate the long-range spatio-temporal correlations of the emission intensity

by tailoring the cavity geometry. In a cavity of increased width and curved facets, high-order

transverse modes are effectively confined. The spatial overlap of these modes with the injected

carriers is increased by adapting the shape of the top metal contact. Fine tuning of the facet

curvature maximizes the number of transverse lasing modes (27). The higher order transverse

modes have a transverse wavelength λt ∼ 1µm, which reduces the lateral width of spatial holes

burnt in the carrier density. The resulting refractive index changes induce optical lenses that

are too small to focus light and create filaments. In addition, the spatial modulations of the

refractive index on such short scales supersede and disrupt the large lenses induced by lower

order transverse modes and thus prevent filamentation (28). Consequently, long-range spatio-

temporal correlations disappear in C(∆x,∆t) (Fig. 1F).

2. Numerical modeling

2.1. Cavity resonances

We calculate the resonances of the passive cavity with the COMSOL eigenfrequency solver

module. Since the laser emission is purely TE polarized, we compute only TE-polarized modes

which are the solutions of the scalar Helmholtz equation

[∇2 + k2n2(x, y)]Hz(x, y) = 0 (S9)

with outgoing wave boundary conditions, where k is the free-space wave number, n is the

effective refractive index, and Hz is the z-component of the magnetic field. As light can escape

in the transverse direction, absorptive boundary conditions are imposed on the lateral sides of
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Figure S3: Cavity resonances and lasing modes. (A) Calculated Q factors and wavelengths

of the resonant modes (black open squares) in a cavity with length L = 40 µm, width W =
28.2 µm, curvature radius of the end facets R = 23 µm, and effective refractive index n = 3.37.

The transverse mode number m is written next to each mode. The longitudinal mode spacing

(free spectral range) ∆λq and the transverse mode spacing ∆λm are indicated by arrows. The

modes that lase for pumping at two times the lasing threshold are marked by red solid squares.

(B) The cavity resonances (black open squares) and lasing modes (red solid squares) shown

in (A) are arranged in terms of their longitudinal and transverse mode numbers. Almost all

transverse modes lase even in the presence of gain competition.

the cavity using perfectly matched layers. Since numerical modeling of a cavity as large as

the fabricated lasers (L = 600 µm, W = 424 µm) is too computationally expensive, we instead

simulate a smaller cavity of the same geometry (L = 40.0 µm, W = 28.2 µm). The refractive

index n is equal to 3.37. We calculate the resonant modes with wavelengths around 800 nm

which is similar to the measured laser wavelength (Fig. S2B). However, since the smaller cavity

has a larger mode spacing, we extend the wavelength range of simulation to 795−805 nm in

order to increase the number of modes, covering 4 longitudinal mode groups.

Figure S3A shows the quality (Q) factors and wavelengths of the passive cavity modes. The

transverse mode numbers are indicated. In Fig. S3B, the modes are arranged in terms of their

transverse and longitudinal mode indices. Although its size is relatively small, the simulated

cavity exhibits about 50 transverse modes. The number of transverse modes scales linearly with

the cavity size (27).

14



2.2. Lasing modes

Mode competition for optical gain tends to reduce the number of transverse lasing modes.

We calculate the lasing modes using the single pole approximation steady-state ab-initio laser

theory (SPA-SALT) (34, 41, 42), taking gain saturation fully into account. We assume a spa-

tially uniform distribution of the pump and a flat gain spectrum within the wavelength range of

795−805 nm.

The modes that lase in the simulation are marked by red squares in Fig. S3. When the pump

is two times the lasing threshold, the number of transverse lasing modes M is 46. Hence, most

of the transverse modes in the cavity can lase in spite of gain competition.

2.3. Many-mode interference

With spatio-temporal instabilities and filamentation suppressed in our laser, the lasing modes

correspond to the high-Q resonances of the passive cavity. To simulate a large cavity of size

equal to the fabricated one (L = 600 µm), we compute the mode frequencies νm,q = c/λm,q

with the analytical expression for Hermite-Gaussian modes (43),

νm,q =
c

2nL

[

q +
1

π

(

m+
1

2

)

arccos(g)
]

(S10)

where g ≡ 1 − L/R is the cavity stability parameter, which is g = −0.74 for the lasers

considered here.

The longitudinal mode spacing is ∆νq = νm,q+1 − νm,q = c/2nL, and the transverse

mode spacing is ∆νm = νm+1,q − νm,q = (c/2nL) arccos(g)/π. Their ratio is ∆νm/∆νq =

arccos(g)/π. It is an irrational number for g = −0.74, making the longitudinal mode spacing

incommensurate with the transverse mode spacing. This result is confirmed by our numerical

simulation of cavity resonances with COMSOL. We note that the frequency spacings are cal-

culated for the modes of the passive cavity. Experimentally with electric current injection, the
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spatially inhomogeneous distribution of carriers can cause non-uniform changes of the refrac-

tive index, making the lasing mode frequencies deviate from the passive cavity mode frequen-

cies. Nevertheless, the experimentally measured RF spectrum of the lasing emission in Fig. 2C

remains broad and smooth, similar to the numerically simulated spectrum of the passive cav-

ity. Due to the presence of hundreds of lasing modes with many different frequency spacings

between them, there is an almost continuous distribution of time scales in their interference

pattern, so even if some of the time scales were by chance commensurate, the effect would be

lost in the sea of other incommensurate ones. Therefore, we ignore such possible deviations in

the following calculation.

Summing over all lasing modes, the emission intensity at one spatial position, e.g., the center

of the end facet x0, is

I(t) =

∣

∣

∣

∣

∣

M−1
∑

m=0

∑

q

Am,qe
i[2πνm,qt+φm,q(t)]

∣

∣

∣

∣

∣

2

(S11)

with Am,q approximated by
√

S(λm,q), where S(λm,q) is the fit of the measured emission spec-

trum in Fig. S2B. The total number of transverse modes is M = 200 as in the experiments (27).

To account for the spontaneous emission, we introduce a stochastic fluctuation to the phase

φm,q(t) of each lasing mode (44). The mode linewidth is set to δν = 100 MHz, which is typical

for a GaAs/AlGaAs QW edge-emitting laser (45,46). The corresponding coherence time, given

by the inverse of the linewidth, is about 10 ns. We set the discrete time step ∆t to 0.1 ps. As

shown in Fig. S4A, the phase of each mode undergoes a random walk. The optical spectrum

of a single lasing mode, calculated via the temporal Fourier transform of its field, exhibits a

Lorentzian-shaped line with FWHM equal to δν as shown in Fig. S4B.

2.4. Single-channel dynamics

Figure S5A shows a portion of the simulated time trace I(t) for a single spatial channel. The

sampling period is set to 0.5 ps, corresponding to the temporal pixel size of our streak camera.

16



-200 -100 0 100 200
0

1

Detuning (MHz)

S
p

e
c
tr

a
l 
in

te
n

s
it

y
 (

a
.u

.)

  

BA

0 5 10
0

 
2 

Time (ns)

P
h

a
s

e
 (

ra
d

)   
0 1t (ps)

       

Figure S4: Modeling of phase noise. (A) Simulated random phase drift in time for two lasing

modes. The inset shows the phase change ∆φt after a single time step ∆t. (B) The simulated

optical spectrum of a lasing mode is fitted by a Lorentzian function with a FWHM of 96 MHz,

which is close to the mode linewidth δν = 100 MHz.

We compute the temporal correlation function for I(t) defined as

C(∆t) =
〈δI(t)δI(t+∆t)〉t

〈δI2(t)〉t
, (S12)

where δI(t) = I(t) − 〈I(t)〉t is the intensity fluctuation around the mean 〈I(t)〉t. As shown in

Fig. S5B, the half-width-at-half-maximum (HWHM) of the correlation function is 0.5 ps. This

is smaller than the measured correlation width (HWHM) of 1.4 ps due to the finite temporal

resolution of the streak camera.

To take into account the temporal resolution, we convolve the simulated time trace with

a temporal point spread function (PSF). The PSF of the streak camera is approximated by

a Lorentzian function with a FWHM of 1.2 ps. The convolution smoothens the time trace

(Fig. S5A), and increases the temporal correlation width to 1.4 ps, in agreement with the exper-

imental value (Fig. S5B).
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Figure S5: Temporal fluctuations and correlation function. (A) The time trace of numeri-

cally simulated emission intensity in a single spatial channel (blue dotted line) is smoothed by

convolution with the PSF of the streak camera (red solid line). The symbols represent sampling

points separated by 0.5 ps. (B) Temporal correlation functions for the two traces in (A). The

HWHM values are indicated. The black dashed line is the experimentally measured temporal

correlation function.

2.5. Power spectra

To simulate the radio frequency (RF) spectra shown in Fig. 2C, we calculate the Fourier trans-

form of the simulated intensity I(t). The time trace is 500-ps-long, and the sampling period is

0.5 ps. The power spectra are averaged over 10 time traces with different realizations of phase

noise to be consistent with the measurements.

To understand how the broad RF spectrum is formed, we vary the number of transverse

modes M while keeping the number of longitudinal mode groups constant. This corresponds to

changing the width of a laser cavity while keeping its length fixed. With only the fundamental

transverse mode M = 1 (Fig. S6A), the RF spectrum features multiple peaks separated by the

longitudinal mode spacing (free spectral range) ∆νFSR = c/2nL. With increasing M , each

peak becomes a group of peaks that originate from the beating of transverse modes. For the

cavity with g = −0.74 considered here, the transverse mode spacing is incommensurate with

the free spectral range because arccos(g)/π in Eq. (S10) is an irrational number. As a result,

the additional beating frequencies that appear when increasing the number of transverse modes
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Figure S6: Simulated power spectrum. Fourier transform of the simulated emission intensity

with the number of transverse modes (A) M = 1, (B) M = 6, and (C) M = 200. The number

of longitudinal mode groups is fixed at 8. The power spectrum becomes more and more densely

packed with increasing M .

eventually fill the entire frequency range. With M = 200 transverse modes in Fig. S6C, the

power spectrum becomes continuous and featureless, in agreement with the experimental data

in Fig. 2C. The dense packing of the power spectrum increases the entropy generation as will

be shown in the next subsection.

2.6. Entropy rate

To understand how the number of transverse modes M and the spontaneous emission noise af-

fect entropy generation, we varyM and turn on/off the phase noise when calculating the entropy

rate. The number of longitudinal mode groups is fixed at 8 as before. We calculate the original

entropy created by multimode interference using a time trace of intensity without accounting

for the finite temporal measurement resolution. The length of the simulated time traces is 1.5

µs. With only one transverse mode and without spontaneous emission noise, the intensity trace
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Figure S7: Cohen-Procaccia entropy rate of simulated time traces. (A) A portion of the

simulated intensity time trace I(t) with only the fundamental transverse modes (M = 1), and

without spontaneous emission noise. (B) I(t) with M = 3 and without spontaneous emission

noise. (C) I(t) with M = 3 and with spontaneous emission noise (δν = 100 MHz). (D) Entropy

rate hCP for the time traces in (A)-(C) with embedding dimension d = 3. The sampling period

τ is 1.5 ps.

is periodic in time (Fig. S7A). The periodic modulation results from the temporal beating of the

longitudinal modes with equal frequency spacing. Fig. S7D shows the Cohen-Procaccia entropy

rate hCP versus the number of digits Ndigit for embedding dimension d = 3. As Ndigit increases,

hCP first rises then drops, as the intensity trace repeats itself in time and no additional entropy is

created eventually. With M = 3 transverse modes, the intensity trace in Fig. S7B exhibits more

complex and aperiodic modulations. Since the transverse and longitudinal mode spacings are

incommensurate, the temporal beating of 24 modes produces an intensity trace that will never

repeat itself. Consequently, hCP keeps increasing with Ndigit, first linearly then sublinearly in

Fig. S7D. Adding the spontaneous emission noise (Fig. S7C) contributes to entropy generation

as can be seen in a further increase of hCP in Fig. S7D. Moreover, hCP grows linearly with

Ndigit as a result of the stochastic noise.
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We note that the entropy rate is an average quantity obtained from a long time trace. There-

fore, it cannot certify the randomness in any short time window, which is required to pass the

NIST and Diehard tests. The details of randomness verification of our experimentally generated

bit streams are presented in section 4.

3. Random bit generation

3.1. Temporal sampling rate

The black curve in Fig. S8A is the emission intensity at one spatial position of the laser facet

that is recorded by the streak camera. The temporal pixel size of the streak camera corresponds

to 0.49 ps, and the sampling points are denoted by black dots. The temporal correlation function

(Eq. S12) for this trace in Fig. S8B reveals significant correlations among neighboring sampling

points. To create independent bits, we must choose a longer sampling period τ , which reduces

the sampling rate and hence bit generation rate, however.

In order to find the optimal sampling period, we calculate the Cohen-Procaccia entropy rate

per sample for the experimental bit streams generated with different τ . The sampled intensity

is binned into 2Ndigit equally spaced intervals to create Ndigit bits. As shown in Fig. S8C, the

entropy rate per sample first increases with the sampling period τ , then levels off for τ ≥ 1.46

ps. This trend is similar for different Ndigit. Hence we set the sampling period to be 3 times the

streak camera pixel size, τ = 1.46 ps, to extract the maximal entropy per sample with the fastest

possible sampling rate.

3.2. Intensity PDF

Figure S9A shows the probability density function (PDF) of the sampled intensity In in one

spatial channel. The PDF exhibits an exponentially decaying tail, which is a characteristic of

Rayleigh speckle pattern. The PDF is not a perfect exponential function due to the finite spatial
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Figure S8: Selection of temporal sampling period. (A) Measured time trace of the emission

intensity with a sampling period of τ = 0.49 ps (black), corresponding to a single pixel of the

streak camera. To reduce the temporal correlation of sampled intensity, τ is increased to 1.46

ps (red). The intensity is integrated within the sampling period τ to increase the signal-to-noise

ratio. (B) The temporal correlation functions for the two traces in (A) as a function of the time

lag in units of the sampling period τ show a faster decay for the longer sampling period τ .

(C) Cohen-Procaccia entropy rate of a measured time trace for different sampling periods τ and

numbers of digits Ndigit. The embedding dimension d is set to 3.

and temporal resolution of the measurement. This asymmetric PDF can lead to biased bits,

which degrade the quality of random bits generated.

To make the distribution symmetric, we perform a subtraction of sampled intensities. We

obtain a sequence of differential intensities ∆In = In+m − In by subtracting the intensities

separated by a sample distance of m. For a small m, the PDF of ∆In deviates notably from

a Gaussian function, because of the temporal correlation of In. The non-Gaussian PDF will

introduce bias among different combinations of the three LSBs taken for RBG. A large m
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Figure S9: Intensity PDF. (A) The PDF of the measured intensity In of emission in a single

spatial channel. The temporal resolution is 1.46 ps and the spatial resolution is 1 µm. The

black dashed line indicates an exponential decay. (B) The PDF of the differential intensity

∆In = In+4 − In is symmetric and well fitted by a Gaussian function (red dotted line).

produces a bit stream with long-range correlations, which also degrade the random bit quality.

We choose m = 4 as an optimal sample distance. Figure S9B shows the PDF of the differential

intensity from experimental data. It is fit well by a Gaussian function, which leads to the equal

probability of 8 possibilities for 3 LSBs in Fig. 3B.

3.3. Suppressing temporal correlations

As seen in Fig. S8B, even after choosing a sampling period of τ = 1.46 ps, the correlation of

adjacent samples is not completely eliminated. RBG demands negligible correlation between

successive bits. Here digitization and post-processing play a crucial role in removing the re-

maining correlation. During the analog-to-digital conversion (ADC), the measured intensity

is transformed to Ndigit = 6 bits, and only the three least significant bits (LSBs) are kept. In

Fig. S10, we compare the temporal correlation function [Eq. (S12)] of the bit stream to that of

the original intensity trace, averaged over all channels. For long time lags, keeping only the

LSBs reduces the correlation below 10−3, which is the lower limit given by the finite length

of the bit stream (220 samples). For short time lags (Fig. S10B), the correlation for the LSBs
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Figure S10: Temporal correlation of bits in a single channel. (A) The magnitude of the

temporal correlation function |C(∆t)| of the measured intensity trace sampled with τ = 1.46

ps (black circles), after keeping only the 3 LSBs (blue triangles), and after performing the

XOR operation in addition (red squares). The correlation functions are averaged over spatial

channels. The number of data points in time is 220. (B) The magnified view for short time lags

shows the quick decay of correlations for the three LSBs. The small peak at 5.84 ps (= 4τ ) is

attributed to the subtraction of the sampled intensity ∆In = In+4 − In.

decays rapidly with the sample distance, greatly shortening the correlation time. The residual

correlations are then completely removed by the XOR operation with another bit stream from

a distant spatial channel. The correlation remains at the background level for any time delay,

indicating the absence of correlations between successive bits.

3.4. Number of spatial channels

Not all spatial channels are accessible in the current experiment because of the limited field of

view (FoV) of the imaging optics. As shown in Fig. S11A, the FoV is about 254 µm (marked

by the red dashed line), which is less than half of the laser facet width W = 566 µm. For RBG,

we use all spatial channels within the FoV, which is less than half of the total channels available

across one facet of the laser. As the central part of the facet is imaged onto the streak camera,

the curved parts close to the edges of the FoV are away from the object plane (marked by the
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Figure S11: Collection of spatial channels. (A) The curved facet of the laser cavity is imaged

onto the streak camera entrance slit (not shown). The two edges of the facet are away from the

object plane (black dotted line). The field of view (FoV) indicated by the red dashed line is

about half of the facet width. (B) The measured transverse profile of the emission intensity on

the curved facet (red) is compared to the ideal profile from numerical simulations (black). Each

curve is normalized by the intensity at x = 0.

black dotted line in Fig. S11A) and are thus out of focus. Consequently, the emission intensity

drops rapidly near the two edges of the FoV (red curve in Fig. S11B).

In Fig. S11B, we compare the measured emission profile to the ideal one obtained from

numerical simulation. Using SPA-SALT, we calculate the lasing modes in two small cavities

of lengths L = 20, 40 µm with the same geometry as the laser cavities in the experiment.

After rescaling, the calculated intensity distribution on the curved facet is identical for the two

cavities. Hence, the emission profile is universal and scales linearly with the cavity size. The

FWHM of the measured profile is about half of the simulated one. Hence, only half of the

available spatial channels are used for random bit generation in the current experiment.
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Figure S12: Spatial correlation of simulated intensity fluctuations. (A) The fully resolved

spatio-temporal pattern of emission intensity on the end facet of the laser cavity features fine

speckles. (B) The intensity pattern after convolution of (A) with the spatial PSFs of the imaging

optics (NA = 0.4) and the streak camera (Lorentzian with FWHM = 0.47 µm) shows an increase

of the spatial speckle size. (C) The spatial correlation functions C(∆x) for the intensity fluctu-

ations in (A) (blue dotted line) and (B) (red solid line) have a HWHM of 0.25 µm and 0.75 µm,

respectively. The black dashed line denotes the measured spatial correlation.

3.5. Spatial correlation length

The spacing between independent spatial channels is determined by the spatial correlation

length of the emission intensity. To find its relation to the transverse wavelength of the lasing

modes, we simulate the spatio-temporal intensity pattern of the lasing emission from a small

cavity with L = 40 µm, W = 28.2 µm and R = 23 µm (see materials and methods). The num-

ber of transverse lasing modes M at a pump level of two times the lasing threshold is 46 (see

Fig. S3). Figure S12A is a portion of the spatio-temporal intensity pattern at one cavity facet

with full spatial resolution. In the experiment, the numerical aperture (NA) of the imaging op-
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tics is 0.4, and the spatial resolution of the streak camera is about 0.5 µm. The convolution with

the spatial point spread functions (PSF) of imaging optics and streak camera enlarges the spatial

speckle grains (Fig. S12B). In Fig. S12C, we show the correlation of the intensity fluctuations

δI(x, t) = I(x, t)− 〈I(x, t)〉t at spatial locations separated by ∆x,

C(∆x) =

〈

〈δI(x, t)δI(x+∆x, t)〉t
√

〈δI2(x, t)〉t〈δI2(x+∆x, t)〉t

〉

x

. (S13)

The HWHM of C(∆x) is 0.25 µm for the fully resolved pattern in Fig. S12A. The average

speckle grain size (FWHM) is 0.5 µm, which is close to half of the transverse wavelength of

the highest-order transverse lasing mode. The limited spatial resolution of imaging optics and

streak camera enlarges the speckle grain size to 1.5 µm, thus reducing the number of indepen-

dent channels.

3.6. Suppressing spatial correlations

Digitization and post-processing reduce the spatial correlation length, similarly to the suppres-

sion of temporal correlation in Fig. S10. In Fig. 3D, the mutual information of bit streams from

two spatial channels becomes negligible when their separation ∆x exceeds 1 µm. However, the

original intensity pattern in Fig. 2 shows a spatial correlation extending over a distance of 1.5

µm. In Fig. S13 we compare the mutual information (MI) between two bit streams produced

experimentally for three different cases: (i) thresholding Ndigit = 1, the simplest bit-extraction

scheme; (ii) keeping 3 LSBs from analog-to-bit conversion with Ndigit = 6; and (iii) conducting

XOR of (ii) with a bit stream from a spatially distant channel. In comparison to (i), the MI

between neighboring channels (with 1 µm spacing) is reduced by five orders of magnitude in

(ii). Moreover, the MI is further reduced at short-range in (iii). It stays at the residual level of

10−6 and becomes independent of the channel separation. Fig. S13B shows the residual MI is

inversely proportional to the length of the bit stream N . For N = 220, the residual MI is less

than 10−6 (circled in red). It is equal to the MI between any pair of channels in (iii), indicating
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Figure S13: Mutual information between two spatial channels. (A) Mutual information (MI)

of experimental bit streams produced by (i) thresholding (red squares), (ii) keeping 3 LSBs

from Ndigit = 6 bit conversion (blue triangles), (iii) calculating XOR of (ii) with a bit stream

from a spatially distant channel (black circles). The MI is averaged over all channels. The MI

decreases with the channel separation. (B) The residual mutual information of (iii) in (A) at

channel separation ∆x ≥ 1 µm is inversely proportional to the bit stream length N , indicating

it results from the finite stream length. The red circle indicates the length of the bit stream used

in (A).

all channels are statistically independent and their residual MI is a result of the finite bit stream

length.

3.7. Effect of noise on binning

For every spatial channel, the entire binning range of its differential intensity ∆In, which is

set to 8.2 times the standard deviation of ∆In, is divided into 26 = 64 equally sized bins. If

the value of ∆In is close to the boundary of one bin, the noise can alter the bit extraction.

To examine how strong this effect is, we simulate the streak camera noise and add it to an

experimental intensity trace. We compare the bit stream generated by the noise-altered trace to

the original one. With 3 LSBs extracted from 6 digits, 3.3% of all the bits in the spatial channel

shown in Fig. 3A are altered by the addition of noise. For all 254 spatial channels, the average
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Figure S14: Concatenating time traces. (A) Three continuous time traces of the emission

intensity in a single spatial channel are generated by simulating the many-mode interference

in the laser. The shaded areas represent the temporal range measured by the streak camera.

(B) A time trace is formed by concatenating the shaded parts of the three traces in (A). (C) The

Cohen-Procaccia entropy rate estimate of a single 1.5-µs-long trace as in (A) is equal to that of

the concatenated trace as in (B). The sampling period τ is 1.5 ps, and the embedding dimension

d is 2.

bit error rate is 4.1 ± 1.2%. This percentage can be reduced by increasing the signal strength

with better collection of the laser emission.

3.8. Concatenating time traces

Since the temporal measurement range of our streak camera is limited, it is impossible to mea-

sure a long continuous time trace. Instead we make separate measurements and concatenate the

time traces. Since this process could potentially increase the randomness, we check numerically

whether the entropy generation rate is changed by it.
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Using Eq. (S11) to simulate the many-mode interference, we obtain a 1.5-µs-long time trace

of the emission intensity in a single spatial channel. We repeat this process with different ran-

dom phases for each mode, and obtain 3000 time traces. Short segments of three such traces are

shown in Fig. S14A. Then we extract 500-ps-long segments in consecutive time windows from

each trace, and concatenate these segments together for a trace of length 1.5 µs (Fig. S14B).

We calculate the Cohen-Procaccia entropy rate of the original trace and the concatenated trace.

Fig. S14C shows complete agreement of the two curves, indicating that the process of con-

catenating windows from different time traces does not affect entropy generation. We also

concatenate the same time windows of different traces, and the Cohen-Procaccia entropy rate is

the same as well. As the original time trace already reaches the maximal entropy rate (Fig. 4A),

concatenating separate traces cannot increase the entropy rate any further.

4. Random bit evaluation

4.1. NIST tests

We evaluate the quality of the generated random bits with the NIST SP 800-22 test suite. Fig-

ure S15 shows the results of NIST tests conducted on a single bit stream containing 1000 se-

quences with 1 Mbit length per sequence (in total 1 Gbit). The pass proportions and the com-

posite P-values are all above the criteria recommended by NIST, indicating that the quality of

the experimentally generated random bit stream is acceptable.

Figure 3E shows that 75% of the parallel random bit streams can pass the entire NIST test.

Considering the statistical nature of the NIST tests, the pass rate was previously evaluated for

pseudo-random number generators and physical random number generators. In Ref. (47), the

NIST test was applied to 100 different sample data sets (each set consisting of 1000 segments

of 1 Mbit length), and a pass rate of 41%−56% was obtained for various representative pseudo-
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Figure S15: NIST SP800-22 statistical test results for a single channel. (A) Pass proportions

and (B) composite P-values of 15 kinds of statistical tests for random bits generated experi-

mentally in a single channel (66th channel of Fig. 3E&F). Multiple (short, vertical) blue bars

represent the subtests for each kind of statistical test. The red lines denote the pass criteria

recommended by NIST.

random bit generators. In Ref. (29), a pass rate of 59%−71% was reported for some well-

known pseudo-random number generation algorithms including those recommended by NIST.

In Ref. (16), a pass rate between 65% and 75% was obtained for a physical RBG based on a

chaotic laser. By accounting for the correlations of the sub-tests included in the NIST test suite,

the upper bound of the pass rate was estimated to be 80.99% (29). Compared to the pass rates

in these prior studies, our pass rate of 75% for all channels (Fig. 3E) is considered acceptable

for reliable random bit generators.

To verify the independence of the random bit streams from different spatial locations, we

combine the bit streams that are generated in parallel, using the procedure illustrated in Fig. S16A.

We first test pairs from spatially adjacent locations which have potentially stronger correlations

than non-neighboring pairs. Among all bit streams (after XOR operation on two spatial chan-

nels), the even (or odd) bits from the (2m − 1)-th bit stream and odd (or even) bits from the
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Figure S16: NIST SP800-22 statistical test results for combined bit sequences.

(A) Schematic of combining two bit streams from channels a & b. The odd (even)-indexed

bits from channel a is combined with the even (odd)-indexed bits from channel b. (B) The

NIST test results for combined bit sequences created from neighboring spatial locations. The

random bit streams from two adjacent channels are combined to produce two new bit sequences.

In total 126 combined bit sequences are created from 126 original bit streams. 92 of them pass

all NIST tests, yielding a pass rate of 73%. (C) The test result for combined bit sequences of

randoms pairs of channels. 127 pairs are chosen randomly among the 127 channels, and a new

bit sequence is constructed from each pair. 92 out of 127 pass all NIST tests, yielding a pass

rate of 72%.

2m-th bit stream are combined to create a new bit sequence with 1 Gbit (m = 1, · · · , 63). Out

of 126 combined bit sequences, 92 passed all NIST tests, yielding a pass rate of 73%. Next, to

exclude long-range correlations, we combine bit streams that are not necessarily neighbors, by

randomly picking two and combining the even bits from one with the odd bits from the other.

Out of 127 combined bit sequences, 92 passed all NIST tests, yielding a pass rate of 72%. All

the pass rates are within the acceptable range for reliable RBG. These test results demonstrated

the validity and independence of parallel random bit streams generated by our method.
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Figure S17: Diehard statistical test results. (A) p-values for 18 kinds of statistical tests are

obtained with 100 Mbit from a single channel. Each blue (short, vertical) bar represents one

p-value. (KS) denotes that the Kolmogorov-Smirnov test is performed to obtain the composite

p-value. The red lines denote the minimum and maximum of the acceptable range of p-values:

0.0001 (left panel for p) and 0.9999 (right panel for 1− p). (B) The test results for all channels.

Red color indicates that the random bits fail the test. The black arrow denotes the channel (66th)

used for (A). 118 out of 127 bit streams pass all the tests, yielding a pass rate of 93%.

4.2. Diehard tests

We conduct the Diehard tests to further assess the quality of parallel random bit streams. The

Diehard test suite consists of 18 kinds of statistical tests (32). Each test returns a single or

multiple p-values. Some of the tests return a large number of p-values, and a composite p-value

is calculated by the Kolmogorov-Smirnov (KS) test to determine if the p-values are uniformly

distributed in [0,1). A random bit stream of bad quality returns p-values very close to 0 or 1.

The entire test suite passes with a 95% confidence interval for p-values between 0.0001 and

0.9999 (33). Figure S17A shows the Diehard test results for 100 Mbit from a single channel.

The p-values from all the statistical tests are within the interval [0.0001, 0.9999], thus the entire

test suite is passed.

Figure S17B shows the test results for all channels. Considering the statistical nature of
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Test set 1 2 3 4 5 6 7 8 9 10 Average

Pass rate (%) 94 94 91 93 92 94 93 91 92 95 93 ± 1

Table S1: Pass rate of the Diehard tests. The percentage of parallel bit streams from 127 chan-

nels, each 100 Mbit long, that completely pass the Diehard tests. The same tests are performed

over 10 independent sets of random bits generated by our laser. In total, 127 × 10 × 100 Mbit

are tested.

the Diehard test, we evaluate the pass rate over all bit streams. Among the 127 bit streams,

118 completely pass the Diehard test, yielding a pass rate of 93%. We repeat the tests for 10

different sets of data, and the pass rates are listed in Table S1. They range from 91% to 95%, and

the average pass rate is 93± 1%. As a reference, we repeat the tests with random bits generated

by one of the widely used pseudo-RBG algorithms - Mersenne-Twister. With the same amount

of random bits, the average pass rate over 10 tests is 92± 2%. It is very close to the pass rate of

all bit streams generated by our laser, thus certifying the randomness of our parallel RBG.
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