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Abstract. We introduce a class of causal video understanding mod-
els that aims to improve efficiency of video processing by maximising
throughput, minimising latency, and reducing the number of clock cycles.
Leveraging operation pipelining and multi-rate clocks, these models per-
form a minimal amount of computation (e.g. as few as four convolutional
layers) for each frame per timestep to produce an output. The models are
still very deep, with dozens of such operations being performed but in a
pipelined fashion that enables depth-parallel computation. We illustrate
the proposed principles by applying them to existing image architectures
and analyse their behaviour on two video tasks: action recognition and
human keypoint localisation. The results show that a significant degree
of parallelism, and implicitly speedup, can be achieved with little loss in
performance.
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1 Introduction

There is a rich structure in videos that is neglected when treating them as a set
of still images. Perhaps the most explored benefit of videos is the ability to im-
prove performance by aggregating information over multiple frames [1–3], which
enforces temporal smoothness and reduces the uncertainty in tasks that are tem-
poral by nature, e.g., change detection [4], computing optical flow [5], resolving
action ambiguities (standing up/sitting down) [6] etc. An underexplored direc-
tion, however, is the ability to improve the processing efficiency. In this paper,
we focus on this aspect in the context of the causal, frame-by-frame operation
mode that is relevant for real-time applications, and show how to transform slow
models to ones that can run at frame rate with negligible loss of accuracy.

Most existing state-of-the-art computer vision systems, such as object de-
tectors [7–9], process video frames independently: each new frame goes through
up to one hundred convolutional layers before the output is known and another
frame can be processed. This sequential operation in both depth and time can
pose several problems: it can limit the rate at which predictions can be made,
it can increase the minimum latency with which good predictions are available,
and it can also lead to under-utilisation of hardware resources.
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General-purpose computer processors encounter the same challenge when ex-
ecuting sequences of program instructions and address it with efficient pipelining
strategies, that enable parallel computations. This also resembles the operation
mode of biological neurons, which are not tremendously fast, but come in large
numbers and operate in a massively parallel fashion [10].

Our proposed design employs similar pipelining strategies, and we make four
contributions: first, we propose pipelining schemes tailored to sequence models
(we call this predictive depth-parallelism); second, we show how such architec-
tures can be augmented using multi-rate clocks and how they benefit from skip
connections. These designs can be incorporated into any deep image architec-
ture, to increase their throughput (frame rate) by a large factor (up to 10x in our
experiments) when applied on videos. However they may also negatively impact
accuracy. To reduce this impact, and as a third contribution, we show that it
is possible to get better parallel models by distilling them from sequential ones
and, as a final contribution, we explore other wiring patterns – temporal filters

and feedback – that improve the expressivity of the resulting models. Collectively,
this results in video networks with the ability to make accurate predictions at
very high frame rates.

We will discuss related work in the next section. Then, we will move on to
describe predictive depth-parallelism, multi-rate clocks and our other technical
contributions in sec. 3. In sec. 4 we present our main experiments on two types of
prediction tasks with different latency requirements: human keypoint localisation
(which requires predicting a dense heatmap for each frame in a video); and action
recognition (where a single label is predicted for an entire video clip), before the
paper concludes.

2 Related work

The majority of existing video models rely on image models [11–13] executed
frame-by-frame, the main challenge being to speed up the image models to pro-
cess sequentially 25 frames per second. This can be achieved by simplifying
the models, either by identifying accurate architectures with fewer parameters
[14], by pruning them post-training [15], or by using low-bit representation for-
mats [16]. All of these can be combined with our approach.

A different type of model incorporates recurrent connections [17–19] for prop-
agating information between time steps [18, 19]. One simple propagation scheme,
used by Zhu et al [20] proposed periodically warping old activations given fresh
external optical flow as input, rather than recomputing them. Our pipelining
strategy has the advantage that it does not require external inputs nor special
warping modules. Instead, it places the burden on learning.

There are also models that consider the video as a volume by stacking the
frames and applying 3D convolutions to extract spatio-temporal features [21,
6]. These models scale well and can be trained on large-scale datasets [22–24]
due to the use of larger temporal convolution strides at deeper layers. Although
they achieve state-of-the-art performance on tasks such as action recognition,
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Fig. 1. Illustration of a standard sequential video model that processes frames inde-
pendently, and depth-parallel versions. The horizontal direction represents the time
and the vertical direction represents the depth of the network. The throughput of the
basic image model depicted in (a) can be increased for real-time video processing us-
ing depth-parallelisation, shown in (b). This makes it possible to, given a new frame,
process all layers in parallel, increasing throughput if parallel resources are available.
But this also introduces a delay of a few frames – in this example, the output at time t

corresponds to the input at time t− 3. It is possible to train the network to anticipate
the correct output in order to reduce the latency (c). This task can be made easier if
the model has skip-connections, as illustrated in (d) – this way the model has access
to some fresh features (albeit these fresh features have limited computational depth).
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these methods still use purely sequential processing in depth (all layers must
execute before proceeding to a next input). Moreover, they are not causal – the
3D convolutional kernels extract features from future frames, which makes it
challenging to use these models in real-time.

In the causal category, a number of hierarchical architectures have been pro-
posed around the notion of clocks, attaching to each module a possibly different
clock rate, yielding temporally multi-scale models that scale better to long se-
quences [25]. The clock rates can be hard-coded [26] or learnt from data [27].
Some recent models [28, 29] activate different modules of the network based on
the temporal and spatial variance of the inputs, respectively, yielding adaptive
clocks. There is also a group of time-budget methods that focuses on reducing
latency. If the available time runs out before the data has traversed the en-
tire network, then emergency exits are used to output whatever prediction have
been computed thus far [30, 31]. This differs from our approach which aims for
constant low-latency output.

Ideas related to pipelining were discussed in [28]; a recent paper also pro-
posed pipelining strategies for speeding up backpropagation for faster training
in distributed systems [32–34]. Instead, we focus on pipelining at inference time,
to reduce latency and maximise frame rate.

3 Efficient online video models

Consider the directed graph obtained by unrolling a video model with n lay-
ers over time (see fig. 1), where the layers of the network are represented by
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the nodes and the activations transferred between layers are represented by the
edges of the graph. All the parameters are shared across time steps. Edges cre-
ate dependencies in the computational graph and require sequential processing.
Video processing can be efficiently parallelised in the offline case, by processing
different frames in different computing cores, but not in the online case.

Depth-parallel networks. In basic depth-sequential video models, the input
to each layer is the output of the previous layer at the same time step, and
the network outputs a prediction only after all the layers have processed in
sequence the current frame; see fig. 1 (a). In the proposed design, every layer
in the network processes its input, passes the activations to the next layer, and
immediately starts processing the next input available, without waiting for the
whole network to finish computation for the current frame; fig. 1 (b). This is
achieved by substituting in the unrolled graph the vertical edges by diagonal
ones, so the input to each layer is still the output from the previous layer, as
usual, but from the previous time step. This makes it possible to process all
layers at one time step in parallel, given enough computing cores, since there are
no dependencies between them.

Latency and throughput. We define computational latency, or just latency, as
the time delay between the moment when a frame is fed to the network and the
moment when the network outputs a prediction for that frame. It is the sum of
the execution times of all layers for processing a frame. We consider throughput
as the output rate of a network, i.e. for how many frames does the network
output predictions for in a time unit. For the sequential model, throughput is
roughly the inverse of the computational latency, hence the deeper the model,
the higher the computational latency and the lower the throughput. Here resides
a quality of the proposed depth-parallel models: irrespective of the depth, the
model can now make predictions at the rate of its slowest layer.

It is useful to also consider the concepts of information latency as the number
of frames it takes before the input signal reaches the output layer along the
network’s shortest path. For example, in fig. 1, the information latency for the
video model illustrated in (a) is 0, and for the model in (b) it is equal to 3. We
define prediction latency as the displacement measured in frames between the
moment when a network receives a frame and the moment when the network
tries to emit the corresponding output. The prediction latency is a training
choice and can have any value. Whenever the prediction latency is smaller than
the information latency, the network must make a prediction for an input that
it did not process yet completely.

For most of our experiments with depth-parallel models we used a prediction
latency of zero based on the assumption that videos may be predictable over
short horizons and we train the network to compensate for the delay in its inputs
and operate in a predictive fashion; see fig. 1 (c). But the higher the information
latency, the more challenging it is to operate with prediction latency of zero.
We employ temporal skip connections to minimise the information latency of
the different layers in the network, as illustrated in fig. 1 (d). This provides
fresher (but shallower) inputs to deeper layers. We term this overall paradigm
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Fig. 2. Temporal receptive fields of: (a) standard; (b) causal; and (c) pipelined models.

predictive depth-parallelism. We experimented thoroughly with the setting where
prediction latency is zero and also report results with slightly higher values (e.g.
2 frames).

Pipelined operations and temporal receptive field. Depth-parallelism has
implications regarding the temporal receptive field of the network. In any stan-
dard neural network, by design, the temporal receptive field of a layer, i.e. the
frames its input data comes from, is always a subset of the temporal receptive
field of the next deeper layer in the network, resulting in a symmetric triangu-
lar shape; see fig. 2 (a). Stacked temporal convolutions and pooling layers are
used for increasing the temporal visual field for deeper layers. In causal models
the temporal receptive field is a right-angled triangle – no layer in the network
has access to future frames; see fig. 2 (b). In the proposed design, the temporal
receptive field along the depth of the network has a skewed triangular shape,
the shallower layers having access to frames that the deeper layers cannot yet
see (information latency). For example in fig. 2 (c), the latest frame that the
deepest layer can see at time t = 0 is the frame I−4, assuming a temporal kernel
of 3, which, since we define a prediction latency of zero, means it must predict
the output 4 frames in advance. Adding temporal skip connections reduces the
information latency; at the extreme the receptive field becomes similar to the
causal one, bringing it to zero.

Levels of parallelism. For simplicity, the proposed design ideas were illustrated
in fig. 1 using the “extreme” models, i.e.: (a) which is fully-sequential (with only
vertical edges); and (b-c): which are fully parallel (lacking any vertical edge).
However, there is a whole space of semi-parallel models in between, which makes
it possible to trade off accuracy and efficiency.

A simple strategy to transform an image model with a linear-chain layer-
architecture into a semi-parallel video model is to traverse the network starting
from the first layer, and group together contiguous layers into sequential blocks
of k layers that we will call parallel subnetworks and which can execute indepen-
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Fig. 3. Left: neural networks with three parallel subnetworks of two layers and two
parallel subnetworks of three layers. Right: sequential-to-parallel distillation, the ad-
ditional loss L(â, a) leverages intermediate activations of the pre-trained sequential
model.
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dently – see the two diagrams on the right side of fig. 3, left; basic pseudocode
is given in the supp. material.

3.1 Multi-rate clocks

Features extracted deeper in a neural network tend to be more abstract and
to vary less over time [28], obeying the so-called slowness principle [35] – fast
varying observations can be explained by slow varying latent factors. For exam-
ple, when tracking a non-rigid moving object, the contours, which are shallow
features, change rapidly, but the identity of the object typically does not change
at all. Since not all features change at the same rate as the input rate, it is then
possible to reduce computation by reusing, and not recomputing, the deeper,
more abstract, features. This can be implemented by having multi-rate clocks:
whenever the clock of a layer does not tick, that layer does not compute activa-
tions, instead it reuses the existing ones. 3D ConvNets implement this principle
by using temporal strides but does not keep state and hence cannot efficiently
operate frame-by-frame. In our recurrent setting, multi-rate clocks can be imple-
mented by removing nodes from the unrolled graph and preserving an internal
state to cache outputs until the next slower-ticking layer can consume them. We
used a set of fixed rates in our models, typically reducing clock rates by a factor
of two whenever spatial resolution is halved. Instead of just using identity to
create the internal state as we did, one could use any spatial recurrent module
(conv. versions of vanilla RNNs or LSTMs). This design is shown in fig. 4 (d).

For pixelwise prediction tasks, the state tensors from the last layer of a given
spatial resolution are also passed through skip connections, bilinearly upsampled
and concatenated as input to the dense prediction head, similar to the skip
connections in FCN models [36], but arise from previous time steps 1.

1 More sophisticated trainable decoders, such as those in U-Nets [37], could also be
used in a similar pipelined fashion as the encoder.
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3.2 Temporal filters and feedback

The success of depth-parallelism and multi-rate clocks depends on the network
being able to learn to compensate for otherwise delayed, possibly stale inputs,
which may be feasible since videos are quite redundant and scene dynamics are
predictable over short temporal horizons. One way to make learning easier would
seem to be by using units with temporal filters. These have shown their worth
in a variety of video models [38, 21, 6]. We illustrate the use of temporal filters
in fig. 4, (b) as temporalisation. Interestingly, depth-paralellisation by itself also
induces temporalisation in models with skip connections.

For dense predictions tasks, we experimented with adding a feedback con-
nection – the outputs of the previous frame are fed as inputs to the early layers
of the network (e.g. stacking them with the output of the first conv. layer). The
idea is that previous outputs provide a simple starting solution with rich seman-
tics which can be refined in few layers – similar to several recent papers [39–43].
This design is shown in fig. 4, (c).

Fig. 4. Basic image models (left) can be extended along the temporal domain using dif-
ferent patterns of connectivity. Temporalisation adds additional inputs to the different
computation nodes, increasing their temporal receptive field. Feedback re-injects past
high-level activations to the bottom of the network. Both connectivity patterns aim to
improve the expressivity of the models. For increasing throughput, having multi-rate
clocks avoids always computing deeper activations (here shown for a temporal model),
and instead past activations are copied periodically.
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3.3 Sequential-to-parallel “distillation”

The proposed parallel models reduce latency, but their computational depth for
the current frame at the moment where they produce an output is also reduced
compared to their fully sequential counterparts; additionally they are designed
to re-use features from previous states through the multi-rate clocks mechanism.
These properties typically make learning more difficult. In order to improve the
accuracy of our parallel models, we adopt a strategy similar to distillation [44],
or to Ladder networks [45], wherein a teacher network is privileged relative to
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a student network, either due to having a greater capacity or (in the case of
Ladder networks) access to greater amounts of information.

In our case, we consider the sequential model as the teacher, since all of its
layers always have access to fresh features extracted from the current frame. We
first train a causal fully-sequential model with the same overall architecture as
the parallel model. Then we modify the loss of the parallel model to encourage
its activations to match those of the sequential model for some given layers,
while still minimising the original classification error, such that it predicts how
the abstract features would have looked, had the information from the current
frame been available. This is illustrated for one layer on the right side of fig. 3.
In our experiment we used the average of this new loss over m = 3 layers. The
overall loss Ld with distillation is:

Ld = L(y, ygt) + λ

m
∑

i=1

1

ni

∥

∥

∥
â(i) − a(i)

∥

∥

∥

2

where L(y, ygt) is the initial cross-entropy loss between the predictions of the
parallel network y and the ground truth ygt, and the second term is the nor-
malised Euclidean distance between the activations of the pre-trained sequential
model â(i) for layer i and the activation of the parallel model a(i) for the same
layer; ni denotes the number of feature channels of layer i. A parameter λ is
used to weight the two components of the new loss. We set λ = 1 for the dense
keypoint prediction and λ = 100 for action recognition.

4 Experiments

We applied the proposed principles starting from two popular image classifica-
tion models: a 54 layer DenseNet [12] and Inception [11], which has 22 conv.
layers. We chose these models due to their differences in connectivity. Incep-
tion has some built-in parallelism due to the parallel branches in the Inception
blocks. DenseNet has no parallelism and instead has dense skip connections
within blocks, which helps reduce information latency when parallelised. Full
details on the architectures are provided in the supp. material.

We instantiated a number of model variations using the principles set in the
previous section. In all cases we are interested in the online, causal setting (i.e.
no peeking into the future), where efficiency matters the most. In the majority of
the experiments we trained models with 0 prediction latency (e.g. the output at
time t should correspond to the input at time t), the most challenging setting. We
name pipelined DenseNet models as Par-DenseNet and Inception-based models
as Par-Inception.

For evaluation, we considered two tasks having different latency and through-
put requirements: (1) action classification, where the network must output only
one label prediction for the entire video sequence, and (2) human keypoint lo-
calisation, where the network must output dense per-frame predictions for the
locations of human joints – in our case spatial heatmaps for the keypoints of
interest (see fig. 5).
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Model #Par. Subnets. Par-Inception Top-1 Par-Dense. Top-1

non-causal 1 71.8 -

sequential causal 1 71.4 67.6

semi-parallel causal 5 (7) 66.0 61.3

parallel causal 10 (14) 54.5 54.0

Table 1. Test accuracy as percentage for action recognition on the miniKinetics
dataset [46], using networks with multi-rate clocks and temporal filters. The num-
ber of parallel subnetworks is shown in the second column. For the semi-parallel case,
Par-Inception uses 5 parallel subnetworks and Par-DenseNet 7. The non-causal, single
subnetwork Par-Inception in the first row is equivalent to the I3D model [6].

The dataset for training and evaluation in all cases was miniKinetics [46],
which has 80k training videos and 5k test videos. MiniKinetics is a subset of the
larger Kinetics [24], but more pratical when studying many factors of variation.
For heatmap estimation we populated miniKinetics automatically with poses
from a state-of-the-art 2D pose estimation method [47] – that we will call baseline
from now on – and used those as ground truth. This resulted in a total of 20
million training frames 2.

4.1 Action recognition

For this task we experimented with three levels of depth-parallelism for both
architectures: fully sequential, 5, and 10 parallel subnetworks for Par-Inception
models and fully sequential, 7, and 14 parallel subnetworks for Par-DenseNet
models. Table 1 presents the results in terms of Top-1 accuracy on miniKinetics.
The accuracy of the original I3D model [6] on miniKinetics is 78.3%, as reported
in [46]. This model is non-causal, but otherwise equivalent to the fully sequential
version of our Par-Inception 3.

There is a progressive degradation in performance as more depth-parallelism
is added, i.e. as the models become faster and faster, illustrating the trade-off
between speedup and accuracy. One possible explanation is the narrowing of the
temporal receptive field, shown in fig. 2. The activations of the last frames in
each training clip do not get to be processed by the last classifier layer, which is
equivalent to training on shorter sequences – a factor known to impact negatively
the classification accuracy. We intend to increase the length of the clips in future
work to explore this further. Promisingly, the loss in accuracy can be reduced
partially by just using distillation; see subsection 4.3.

2 This is far higher than the largest 2D pose video dataset, PoseTrack [48], which has
just 20k annotated frames, hardly sufficient for training large video models from
scratch (although cleanly annotated instead of automatically).

3 Note that this was pre-trained using ImageNet, hence it has a significant advantage
over all our models that are trained from scratch.
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4.2 Human keypoint localisation

For this task we experimented with 5 different levels of depth-parallelism for
Par-DenseNet: fully sequential and 2, 4, 7 and 14 parallel subnetworks. For Par-
Inception, we used three different depth-parallelism levels: fully sequential, 5,
and 10 parallel subnetworks. We employed a weighted sigmoid cross-entropy
loss. Since the heatmaps contain mostly background (no-joint) pixels, we found
it essential to weight the importance of the keypoint pixels in the loss – we used
a factor of 10. For evaluation, we report results on the miniKinetics test set in
terms of weighted sigmoid cross-entropy loss.

Results using the pipelining connectivity with multi-rate clock models are
shown in fig. 6, left. For both models, it can be observed that the performance
improves as more layers are allowed to execute in sequence. Par-Inception has
slightly better performance for higher degrees of parallelism, perhaps due to its
built-in parallelism; Par-DenseNet models become better as less parallelism is
used.

Since Par-DenseNet offers more possibilities for parallelisation, we used it
to investigate more designs, i.e.: with/without multi-rate clocks, temporal filters
and feedback. The results are shown in fig. 6, right. Versions with temporal filters
do better than without except for the most parallel models – these have intrinsi-
cally temporal receptive fields because of the skip connections in time, without
needing explicit temporal filters. Feedback helps slightly. Clocks degrade accu-
racy a little but provide big speedups (see subsection 4.6). We show predictions
for two test videos in fig. 5.

4.3 Sequential to parallel distillation

As mentioned in section 3, we investigated training first a sequential model, then
fitting the parallel model to a subset of its activations in addition to the original
loss function. This led to significant improvements for both models. The parallel
causal Par-Inception model obtains a relative improvement in accuracy of about
12%, from 54.5% to 61.2% for action recognition. The improvement for multi-
rate Par-DenseNet model on the keypoint localisation task is shown in fig. 7.

4.4 Training specifically for depth-parallelism

Is it important to train a model specifically for operating in parallel mode or can
we rewire a pretrained sequential model and it will work just as well at inference
time? We ran an experiment where we initialiased Par-DenseNet models with
different levels of parallelism with the weights from the DenseNet fully sequen-
tial model and ran inference on the miniKinetics test set. The results are shown
in fig. 8, left, and indicate the importance of training with depth-parallelism
enabled, so the network learns to behave predictively. We similarly evaluated
the test loss of Par-DenseNet models with different levels of parallelism when
initialised from a fully-parallel trained model. As expected, in this case the be-
haviour does not change much.
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Fig. 5. Example outputs on a subset of frames one second apart from two videos
of the miniKinetics test set. “Ground truth” keypoints from the model [47] used to
automatically annotate the dataset are shown as triangles, our models predictions are
shown as circles. Note that the parallel models exhibit some lag when the legs move
quickly on the video on the left. Best seen zoomed on a computer screen in color.

Par-DenseNet models with 14 parallel subnetworks, without clocks

Fully sequential Par-DenseNet model, without clocks

Par-DenseNet models with 14 parallel subnetworks, with clocks

Fully sequential Par-DenseNet model, with clocks

4.5 Effect of higher prediction latency

All the results above were obtained when training for 0 frames of prediction
latency. However, if a parallel model is several times faster than a sequential one,
we can afford to introduce a prediction latency greater than zero frames. Figure 8,
right, shows results for Par-DenseNet models in this setting. As expected, the
test loss decreases as the prediction latency increases, since more layers get to
process the input frame before a prediction needs to be made. Strikingly, by using
a predictive delay of 2 frames, models with up to 4 depth-parallel subnetworks
are as accurate as fully sequential models with 0 frame predictive latency.

4.6 Efficiency measurements

In this section, we present the efficiency improvements achieved by the proposed
models, comparing the cases with and without multi-rate clocks and with differ-



12 Carreira, Pătrăucean et al.
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Fig. 6. Weighted sigmoid cross-entropy (lower is better) for human keypoint locali-
sation on miniKinetics test set for zero prediction latency. “Cl” denotes models with
multi-rate clocks, “T” – models with temporal filters, “FB” – models with feedback.
Left: Comparison between Par-Inception and Par-DenseNet for different levels of par-
allelism. Note that in terms of number of sequential convolutions, 14 subnetworks for
Par-DenseNet are equivalent to 10 subnetworks for Par-Inception, and similar for 7(5).
Right: Variations of Par-DenseNet. In the absence of parallelisation (1 subnetwork),
the accuracy of the best models with multi-rate clocks is just slightly worse to that
of a much slower sequential model. Parallelisation penalises the accuracy of models
with clocks more. The basic Par-DenseNet can have up to 4 parallel subnetworks with
modest drop of accuracy.
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Fig. 7. Comparison between the weighted sigmoid cross-entropy (lower is better) of
models with different levels of parallelism and the same models distilled from sequential
for human keypoint localisation on miniKinetics test set for zero prediction latency.
Results presented for a DenseNet model with multi-rate clocks (“Cl”), temporal filters
(“T”), and feedback (“FB”). See text for details.

ent numbers of parallel subnetworks. Our parallel models improve efficiency un-
der the assumption that parallel computation resources are available. We bench-
mark our models on CPUs and GPUs by running inference on a CPU with 48
cores and on hosts with 2, 4, and 8 k40 GPUs, respectively. The GPUs were on
the same machine to avoid network latency. For benchmarking, each model is
run on 3000 frames and we average the time used to process each frame. Re-
sults are presented in table 2. A figure illustrating the loss in accuracy as the
throughput is increased can be found in the supp. material.



Massively Parallel Video Networks 13

14 7 4 2 1
Number of depth-parallel subnetworks

15

20

25

30

35

40

45

50

55

T
e
st

 l
o
ss

 (
x
1
0
−3

)

Cl+FB+T Seq. weights

Cl+FB+T Par. weights

14 7 4 2 1
Number of depth-parallel subnetworks

16

18

20

22

24

26

28

30

T
e
st

 l
o
ss

 (
x
1
0
−3

)

T - pred. latency 0

T - pred. latency 2

T - pred. latency 6

Fig. 8. Left: Seq. weights - Behaviour of Par-DenseNet with different levels of par-
allelism at inference time when trained with sequential connectivity. Par. weights -
behaviour of Par-DenseNet with different levels of parallelism at inference time when
trained with fully-parallel connectivity. Right: Test loss for Par-DenseNet when pre-
diction latency is allowed to be greater than zero.

Our models are implemented using TensorFlow (TF) [49], hence: (1) when
running on a multi-core CPU, we can run multiple operations in parallel and to
parallelise a single operation, e.g., for conv layers. This means that the sequential
model becomes faster with more cores, but only up to a certain point, when the
overhead cancels out the gain from parallelism. The proposed parallel models
benefit far more from having many CPU cores. (2) Multiple operations cannot
run in parallel on the same GPU, hence there is little benefit in running our
models on a single GPU. (3) A single operation cannot be split between GPUs.
This explains why the sequential image model performance does not improve
with more GPUs.
Par-DenseNet. Our Par-DenseNet architecture has a total of 4+8+8+6=26
miniblocks so when using 14 parallel subnetworks, each parallel subnetwork is
made of at most 2 miniblocks. When not using multi-rate clocks, 26 miniblocks
are executed for each frame resulting in 416 miniblocks executions for a sequence
of 16 frames. However when using multi-rate clocks, only 86 miniblocks are
executed for such a sequence, which theoretically results in a speedup of 4.8×. We
observe some smaller speedup but this is likely to be explained by the miniblocks
having different sizes.
Par-Inception. Our models have 9 inception blocks. The most parallel version
uses 10 parallel subnetworks: one for the initial convolutions and one for each
inception block. For the sequential version, roughly a third of the time is spent
on these initial convolutions. This explains why we do not observe speedups
greater than 3 for the models without clocks when using more GPUs and we do
not see much difference between using 4 and 8 GPU. More details together with
execution timelines are included in the supp. material.

5 Conclusion

We introduced the paradigm of processing video sequences using networks that
are constrained in the amount of sequential processing they can perform, with
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Model # Par. subnets 48 cores 2 GPUs 4 GPUs 8 GPUs

Par-DenseNet without multi-rate clocks

sequential 1 1.0 1.0 1.0 1.0

semi-parallel 2 1.3 1.6 1.7 1.7

semi-parallel 4 1.8 1.7 2.5 2.9

semi-parallel 7 2.2 1.6 2.6 3.7

parallel 14 2.6 1.7 2.7 3.8

Par-DenseNet with multi-rate clocks

sequential 1 2.6 3.4 3.4 3.4

semi-parallel 2 3.0 3.9 4.0 4.0

semi-parallel 4 3.6 4.5 5.1 5.2

semi-parallel 7 4.6 4.5 5.6 6.1

parallel 14 5.1 5.0 6.2 7.4

Par-Inception without multi-rate clocks

sequential 1 1.0 1.0 1.0 1.0

semi-parallel 5 1.3 1.8 2.7 2.7

parallel 10 1.3 1.8 2.6 2.6

Par-Inception with multi-rate clocks

sequential 1 2.4 2.6 2.6 2.6

semi-parallel 5 3.0 3.4 5.0 5.0

parallel 10 3.0 3.4 4.9 5.0

Table 2. Throughput improvement factors for Par-DenseNet and Par-Inception models
relative to a sequential network without multi-rate clocks. For Par-DenseNet the fastest
model processes 7x more frames per second, whereas the fastest Par-Inception model
processes 5x more frames per second; see supp. material for absolute numbers in frames
per second.

the goal of improving their efficiency. As a first exploration of this problem, we
proposed a family of models where the number of sequential layers per frame
is a design parameter and we evaluated how performance degrades as the al-
lowed number of sequential layers is reduced. We have also shown that more
accurate parallel models can be learned by distilling their sequential versions.
We benchmarked the performance of these models considering different amounts
of available parallel resources together with multi-rate clocks, and analysed the
trade-off between accuracy and speedup. Interestingly, we found that the pro-
posed design patterns can bring a speedup of up to 3× to 4× over a basic model
that processes frames independently, without significant loss in performance in
human action recognition and human keypoint localisation tasks. These are also
general techniques – applicable to any state-of-the-art model in order to process
video more efficiently. As future work we plan to investigate further the space
of possible wirings using automated strategies.
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