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Abstract
We compute correlation functions in the AdS3/CFT2 correspondence to
study the emergence of effective spacetime geometries describing complex
underlying microstates. The basic argument is that almost all microstates of
fixed charges lie close to certain ‘typical’ configurations. These give a universal
response to generic probes, which is captured by an emergent geometry. The
details of the microstates can only be observed by atypical probes. We compute
two-point functions in typical ground states of the Ramond sector of the D1–D5
CFT, and compare with bulk two-point functions computed in asymptotically
AdS3 geometries. For large central charge (which leads to a good semiclassical
limit), and sufficiently small time separation, a typical Ramond ground state of
vanishing R-charge has the M = 0 BTZ black hole as its effective description.
At large time separation this effective description breaks down. The CFT
correlators we compute take over, and give a response whose details depend
on the microstate. We also discuss typical states with nonzero R-charge, and
argue that the effective geometry should be a singular black ring. Our results
support the argument that a black hole geometry should be understood as
an effective coarse-grained description that accurately describes the results of
certain typical measurements, but breaks down in general.

PACS numbers: 04.70.−s, 11.25.Tq, 11.25.Uv

1. Introduction

The AdS/CFT correspondence [1–3] has provided a detailed connection between black holes
and conformal field theories. Although it is sometimes said that this solves the conceptual
puzzles associated with black hole physics, in fact we still do not understand the connection
well enough to see explicitly how all these puzzles are resolved.
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In using the AdS/CFT correspondence in the context of black holes one typically compares
a thermal ensemble in the CFT to a semiclassical black hole geometry in the bulk. In this
way, it is possible to compute and compare quantities such as the entropy of the system and
correlation functions of fields/operators [4–12]. Recent work [13–21] has shown that in some
cases one can do even better by extending this relation to the regime where the bulk geometry
receives large corrections from higher derivative string and loop effects.

In the CFT, it is manifest that the thermal ensemble corresponds to a weighted collection
of individual microstates. Instead of considering such an ensemble, there is nothing to prevent
one from choosing a particular microstate and computing correlation functions in that state.
On general grounds, if one is working at large N then correlation functions of ‘typical’
operators computed in a ‘typical’ state will be approximated to excellent accuracy by the same
correlators computed in the thermal ensemble. This is just the same as saying that realistic
isolated systems, i.e., a large number of molecules in a sealed box, are in some particular
quantum mechanical microstate at a given time, yet can be accurately studied by the methods
of statistical mechanics and thermodynamics.

The most natural interpretation of the AdS/CFT correspondence is that there is a one-
to-one correspondence between bulk and boundary states. In particular, one expects this
statement to hold even in the range of parameters where black holes are allowed. Precisely
what the bulk microstates should look like is unclear at this point in time. Mathur [22] has
conjectured that these microstates correspond to bulk geometries (in general these might be
classically singular or have large quantum fluctuations) without horizons, and the evidence for
this conjecture includes [22–29]. Just as in the CFT, one is led to believe that if one chooses
a typical such bulk state then with respect to typical measurements it will look like the usual
black hole geometry.

An example of an atypical measurement is one which extends over a very long time
interval. As originally emphasized by Maldacena [4], at late times correlators computed
in the semiclassical black hole geometry decay to zero, while in the CFT they exhibit a
quasi-periodic behaviour. The key difference is that the semiclassical black hole geometry
has a continuous spectrum due to the presence of the horizon, while the CFT has a discrete
spectrum. This distinction is insignificant for short times or at high energy, but becomes
important in the opposite regime. Further work [9, 11] in the context of BTZ black holes
[30] strongly indicates that also summing over the SL(2, Z) images of the black hole (which
includes global AdS3) can prevent the correlators from decaying to zero, but cannot account
for the quasi-periodicity. Presumably, this suggests that we should instead be considering the
actual microstate geometries dual to the individual CFT microstates if we want to correctly
account for detailed properties such as the late time behaviour of correlators. The analogy with
molecules in a box is again helpful: while a coarse-grained effective description accurately
describes most properties of the system, in order to recover the quasi-periodicity of late time
correlators one needs to return to the fundamental molecular description.

Recently, some of these issues have been discussed in the context of the AdS5/CFT4

correspondence for half-BPS states [31–33]. It was argued in [34] that typical large-charge
half-BPS microstates that are incipient black holes have a spacetime description as a quantum
‘foam’, the precise details of which are almost invisible to almost all probes. This gave rise to
effective singular descriptions of underlying smooth quantum states [34]. (Other perspectives
on these issues have appeared in [35].) In the present paper, we will study the D1–D5 system
on T 4, since this provides the simplest link between black holes and CFT. We will also set to
zero the momentum P, so that we just work with the Ramond–Ramond ground states of the
system. This example is of interest for several reasons. The system has a large ground state
degeneracy corresponding to an entropy S = 2π

√
2
√

N1N5, and so should have some of the
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properties of a black hole4. A large class of microstate geometries for this system is known.
They correspond to configurations in which the D1 and D5 branes expand into a Kaluza–Klein
monopole supertube [36]. The shape of the supertube encodes the details of the microstate.
For example, the maximally R-charged microstate corresponds to a circular supertube. On
the other hand, a typical state corresponds to the supertube taking a complicated random walk
shape localized near the origin. This leads to a strongly curved supergravity solution whose
existence is inferred via extrapolation from the weakly curved geometries described by smooth
curves of large size.

We will compute correlation functions of certain operators in typical states of the D1–D5
system. As we have already discussed, at large N = N1N5 the expectation is that these
correlators should coincide with bulk correlators computed in some effective geometry. This
effective geometry is analogous to the black hole geometry in the case of the D1–D5–P system.
As we will see, the effective geometry that emerges depends on the R-charge of the underlying
state. If the R-charge vanishes, the emergent geometry is the massless BTZ [30] black hole; or
equivalently, AdS3 in Poincaré coordinates with a spatial direction periodically identified. This
is often referred to as the ‘naive’ geometry representing the RR ground states. It can be obtained
by contracting the KK-monopole supertube to zero size. No individual microstate corresponds
to this geometry; rather, in the large N limit, this geometry encodes the universal response of
generic finite-time correlation functions in the underlying microstate. This effective geometry
exhibits a continuous spectrum just like the black hole, and so bulk correlators decay to zero
at late times. But in this case we can also show that the exact late time correlation functions
show quasi-periodic behaviour demonstrating that the effective description breaks down at
large times, and should be replaced by the exact microstate geometries.

We would like to emphasize that our approach based on computing correlation functions
allows us to derive the effective geometries corresponding to CFT states, rather than assuming
the (highly plausible!) map between states and KK-monopole supertube profiles. A correlation
function based approach is also necessary if one wishes to make statements about the geometry
at the string or Planck scale, since the existing map between states and geometries is only
valid at the level of two-derivative supergravity.

We also consider typical states of nonzero R-charge, and find some new features. For
sufficiently large charge, the CFT undergoes a form of Bose–Einstein condensation. The state
effectively splits into two components, one carrying the R-charge but no entropy, and the other
carrying no R-charge and all the entropy. The correlation functions we compute then become
a sum of two terms with contributions from each of the two components. The result looks
effectively like a superposition of correlators computed in the massless BTZ space and in the
maximal R-charge Ramond vacuum, namely globals AdS3 with a Wilson line [36–38]. On
the other hand, we are able to derive a prediction for the effective bulk geometry with nonzero
R-charge by explicitly constructing the typical microstate geometry and coarse-graining it.
In effect, this amounts to adding fluctuations on top of the circular supertube solution and
then averaging over these fluctuations in the large N limit. The predicted effective geometry
for nonzero R-charge turns out to be a singular black ring solution. It would interesting to
establish the connection between this prediction and the ‘superposition’ of geometries derived
from the CFT correlators.

The ultimate goal of this sort of investigation is to see a macroscopic semiclassical black
hole geometry emerging from correlators computed in a typical state of a large N CFT. This
requires knowing how the presence of a black hole manifests itself in terms of correlators.

4 In the case of the D1–D5 system on K3 it has been shown that higher curvature terms indeed lead to an event
horizon whose entropy coincides with that in the CFT [15, 16]. Whether this also happens in the T 4 case is unclear
[13–21].
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Let us note two criteria. First, the correlators should correspond to a well-defined classical
geometry, rather than a strongly fluctuating superposition. Second, correlators should fall to
zero at late times (in the large N limit), reflecting the presence of a horizon. Here we observe
that the effective geometry emerging from our computations satisfies these two properties,
and so we can claim to be seeing some black hole-like properties. For a large black hole one
would like to do better and reproduce the most important property of all—that of complete
absorption of high energy particles impinging on the horizon, but this goes beyond what we
can do here.

The remainder of this paper is organized as follows. In section 2 we review the physics
of the D1–D5 system, summarizing the relevant details of the D1–D5 CFT, the map between
Ramond ground states and microstate geometries, and the computation of two-point correlation
functions for massless scalars in the black hole spacetimes. A more extensive review explaining
details appears in appendix A. In section 3, we construct the typical Ramond ground states
of the D1–D5 CFT that have fixed R-charges. In section 4 we derive the effective geometries
describing finite-time correlation functions computed in these microstates. The basic technique
is to compute and analyse the two-point correlator in the typical states constructed in section 3.
In section 5 we conclude. Appendix B gives additional details about typical states with nonzero
R-charge.

2. The D1–D5 system and its geometric dual

2.1. The D1–D5 CFT and its Ramond sector ground states

Consider type IIB string theory on S1 × T 4 with N1 D1-branes and N5 D5-branes. The
D1-branes are wound on S1 and the D5-branes are wrapped on S1 × T 4. At low energies, the
worldvolume dynamics of the branes is given by an N = (4, 4) supersymmetric sigma model
whose target space is the symmetric product M0 = (T 4)N/SN , where SN is the permutation
group of order N [39–42]. Here we set

N ≡ N1N5. (2.1)

More precisely, M0 is the so-called orbifold point in a family of CFTs which are regained by
turning on certain marginal deformations of the sigma model on M0. At the orbifold point
the CFT becomes free. The D1–D5 CFT is dual to type IIB string theory on AdS3 × S3 × T 4,
which is the near-horizon limit of the D1–D5 brane system. The AdS3 length scale is given by
� ∼ N1/4. To have a large, weakly coupled, AdS3 space, N must be large and the CFT must
be deformed far from the orbifold point. This situation is familiar in the AdS5/SYM4 duality,
where the SYM theory becomes free at a special point (gYM = 0) in the moduli space, but in
order for it to correspond to a semiclassical gravity one has to turn on the coupling gYM. The
orbifold point is the analogue of the free SYM. In the following, we will consider the orbifold
point of the D1–D5 CFT, so one should bear in mind that exact agreement with computations
in supergravity is not expected in all cases, although some protected BPS quantities can be
computed exactly.

According to the AdS/CFT correspondence, every pure state of the D1–D5 CFT is dual
to a pure state of string theory in AdS3 × S3 × T 4. Here, we are interested in understanding
how black holes emerge as the effective spacetime description of underlying pure states in
gravity. The only black holes in AdS3 gravity with standard boundary conditions are the BTZ
solutions [30]. The supersymmetric versions of these spacetimes have periodic boundary
conditions for fermions around the asymptotic circle in the AdS3 geometry and thus appear
in the Ramond sector of the theory. Furthermore, the lightest of the black holes, the BPS
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massless solution, has the quantum numbers of a ground state in the Ramond sector of the
dual CFT [43]. For these reasons, we will concentrate on the Ramond ground states of the
D1–D5 CFT henceforth. Powerful techniques to study these ground states are available at the
orbifold point of the CFT.

The D1–D5 CFT and the construction of the Ramond ground states is reviewed in detail
in appendix A. For the moment, the following facts are sufficient. At the orbifold point we
are dealing with an N = (4, 4) SCFT on the target space M0 = (T 4)N/SN . This theory

has an SU(2)R × S̃U(2)R R-symmetry, which originates from the SO(4) rotational symmetry

transverse to the D1–D5 worldvolume. There is another global SU(2)I × S̃U(2)I which is
broken by the toroidal identifications in T 4, but can be used for classifying states anyway. We
will label the charges under these symmetries as(

J 3
R, J̃ 3

R

) =
(

s

2
,
s̃

2

)
and (I 3, Ĩ 3) =

(
α

2
,
α̃

2

)
(2.2)

with s, s̃, α, α̃ = ±1. The CFT has a collection of twist fields σn, which cyclically permute
n � N copies of the CFT on a single T 4. One can think of these operators as creating winding
sectors of the worldsheet that wind over the different copies of the torus. The product of twist
operators is also a twist operator. The elementary bosonic operators of twist n carry either

SU(2)R × S̃U(2)R or S̃U(2)I charges (σ ss̃
n or σ

α̃β̃
n ), while the elementary fermionic twist

operators are charged under SU(2)R × S̃U(2)I or S̃U(2)I × S̃U(2)R (τ sα̃
n or τ α̃̃s

n ). A general
Ramond sector ground state is constructed by multiplying together elementary bosonic and
fermionic twist operators to achieve a total twist of N = N1N5:

σ =
∏
n,µ

(
σµ

n

)Nnµ
(
τµ
n

)N ′
nµ ,∑

n,µ

n(Nnµ + N ′
nµ) = N, Nnµ = 0, 1, 2, . . . , N ′

nµ = 0, 1.
(2.3)

Here σ
µ
n and τ

µ
n are the constituent elementary twist operators, and µ = 1, . . . , 8 labels

their possible polarizations (µ = (s, s̃ ), (̃α, β̃) for bosons, and µ = (s, α̃), (̃α, s̃ ) for
fermions). Appendix A gives a detailed description of the construction of the twist operators
and computations using them. For our immediate purposes, the relevant point is that the
integers

{Nnµ,N ′
nµ} (2.4)

uniquely specify a Ramond ground state.

2.2. Map to the FP system and microstate geometries

It has been proposed that each Ramond ground state of the D1–D5 has a corresponding exact
spacetime geometry without horizons [22]. The construction of these geometries was carried
out by first U-dualizing the D1–D5 system to the FP system in type II, where an F1 string is
wound N5 times along S1 and carries N1 units of momentum in the S1 direction [44]. If the
right-moving oscillation number NR vanishes, NR = 0, then this configuration is BPS. Such
states can be written as∏
n,µ

(
α

µ
−n

)Nnµ
(
ψ

µ
−n

)N ′
nµ |N1, N5〉,

NL =
∑
n,µ

n(Nnµ + N ′
nµ) = N1N5 = N, Nnµ = 0, 1, 2, . . . , N ′

nµ = 0, 1.
(2.5)
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Here α
µ
−n and ψ

µ
−n are left-moving bosonic and fermionic oscillators, respectively. The

polarization µ runs over eight transverse directions. |N1, N5〉 is the F1 string state with
momentum N1 and winding number N5, and with no oscillators excited (this state itself is
not physical). The second line displays the Virasoro constraint on the left-moving oscillation
number NL.

Following [22, 36], the U-duality map between the states (2.5) of the FP system and the
Ramond ground states (2.3) of the D1–D5 system is given by

σµ
n ↔ α

µ
−n τµ

n ↔ ψ
µ
−n. (2.6)

The set of integers (2.4) defining a Ramond ground state is precisely mapped into the set of
integers defining an excitation of the FP system.

The metric of the FP system is known for arbitrary classical profile xµ = Fµ(v) of the
F1 string by the chiral null model [45–48]. Here µ runs over the eight transverse directions
to the F1 worldsheet. v = t − y is the left-moving lightcone coordinate, reflecting the fact
that there must be only left-moving waves on the F1 string because of the BPS condition. By
U-dualizing back, Lunin and Mathur [22] obtained the metric of the D1–D5 system, when
the classical profile Fµ(v) is only in the noncompact R4 directions x = xi, i = 1, 2, 3, 4.
Explicitly, the string frame metric of the D1–D5 system in the decoupling limit is given by
[22, 36]

ds2
string = 1√

f1f5
[−(dt − A)2 + (dy + B)2] +

√
f1f5 dxi dxi +

√
f1

f5
dza dza,

e2� = f1

f5
, f5 = Q5

L

∫ L

0

dv

|x − F(v)|2 , f1 = Q5

L

∫ L

0

|Ḟ(v)|2 dv

|x − F(v)|2 , (2.7)

Ai = −Q5

L

∫ L

0

Ḟ i(v) dv

|x − F(v)|2 , dB = −∗4 dA.

Here, y and za are S1 and T 4 directions, respectively. The coordinate radius of S1 is R, and
the coordinate volume of T 4 is (2π)4V4. The length L is related to R by

L = 2πgsα
′N5

R
= 2πQ5

R
, (2.8)

where the D5-brane charge Q5 is related to the D5 number N5 by Q5 = gsα
′N5. The

four arbitrary functions F(v) = Fi(v), 0 � v � L in (2.8) parametrize the solution,
and correspond to the classical profile FFP(v) of the F1 string in the FP duality frame by
F(v) = µFFP(v), µ = gsα

′3/2/R
√

V4 [22]. The D1 charge is given by

Q1 = Q5

L

∫ L

0
|Ḟ(v)|2 dv. (2.9)

The D1-brane charge Q1 is related to the D1 number N1 by Q1 = gsα
′3N1/V4. In this paper,

we will argue that typical probes of typical microstate geometries will react as if the spacetime
was simply an M = 0 BTZ black hole (2.13) below.

Using (2.6) the Ramond ground states can be mapped onto specific states of the FP system
(2.5). For states involving only αi

−n this in turn determines the classical profile F i(v) of the
F1 string, which can be substituted into (2.8) to give the proposed geometry corresponding
to a specific Ramond ground state. Details and examples are given in [22]. For example,
the special Ramond ground state

[
σ ss̃

n

]N/n
with s = s̃ = −1, 1 � n � N corresponds to the

bulk geometry (AdS3 × S3)/Zn × T 4. The three-dimensional part of this geometry is the
conical defect described below. For general states involving all bosonic oscillators as well as
fermionic oscillators more work is needed; see [29] for results regarding the fermionic states.
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2.3. Bulk geometries and correlators

In this subsection, we will review some geometries that show up as the bulk geometries in the
context of AdS/CFT for the D1–D5 system. We will also present the bulk two-point functions
of a massless minimally coupled scalar in those geometries, and compare them at the end.
The asymptotic AdS3 radius is given by � ∼ N1/4.

2.3.1. Conical defect. The Ramond ground state
[
σ ss̃

n

]N/n
with s = s̃ = −1, 1 � n � N

corresponds in the bulk to the conical defect geometry [37, 38]:

ds2 = −
(

1

n2
+

r2

�2

)
dt2 +

dr2

1
n2 + r2

�2

+ r2 dφ2. (2.10)

Here n is an integer in the range 1 � n � N . The angular identification is (φ,ψ)∼=(
φ + 2π,ψ + 2π

n

)
, where ψ is an angle on the S3 factor that we have suppressed. The special

case n = 1 yields AdS3 in global coordinates.
Any state can be probed by computing the correlation functions of operators in that state.

The simplest correlator that one could compute, the two-point function, is related to a four-
point function computed in the vacuum. According to the AdS/CFT correspondence, the
two-point function in the state

[
σ s̃s

n

]N/n
, s = s̃ = −1 can be obtained from AdS space by

computing the bulk–boundary propagator of the spacetime field that is dual to the CFT probe
and then taking the bulk point to the boundary. Let us consider a CFT probe that is dual to
a massless scalar field in AdS3. The conical defect propagator for this field is obtained from
the AdS propagator by summing over the images that define the conical defect. By translation
invariance we can take one of the boundary points to be at t = φ = 0. We then obtain the
result
n−1∑
k=0

1(
2n sin w−2πk

2n

)2 (
2n sin w−2πk

2n

)2

= 1

16n2 sin2 w−w
2n

[
1

sin2 w
2

+
1

sin2 w
2

− 2 sin w−w
2

n tan w−w
2n

sin w
2 sin w

2

]
(2.11)

where

w = φ − t

�
, w = φ +

t

�
. (2.12)

The summation was done by a standard contour integration method.

2.3.2. Naive geometry. Consider taking the n → ∞ limit of the conical defect geometries:

ds2 = − r2

�2
dt2 +

�2

r2
dr2 + r2 dφ2. (2.13)

This is the same as AdS3 in Poincaré coordinates with a periodically identified spatial direction.
This geometry does not actually correspond to any CFT microstate since it has n > N . Instead,
we will see that this geometry emerges as an effective description of the typical Ramond ground
state at large N. As before we compute the boundary two-point function for a massless scalar
field, and find that

∞∑
k=−∞

1

(w − 2πk)2(w − 2πk)2
= 1

4(w − w)2

[
1

sin2 w
2

+
1

sin2 w
2

− 4 sin w−w
2

(w − w) sin w
2 sin w

2

]
.

(2.14)
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2.3.3. Non-rotating BTZ. The above naive geometry is in fact the massless limit of the
BTZ black holes of AdS3. To see this, recall that the non-rotating BTZ black holes have a
metric [30]

ds2 = − r2 − r2
+

�2
dt2 +

�2

r2 − r2
+

dr2 + r2 dφ2. (2.15)

If we take r+ = 0, which is the M = 0 BTZ black hole, we get back the naive geometry (2.13).
The boundary two-point function is [49]

16r4
+

4�4

∞∑
k=−∞

[
1

sinh
(

r+
2�

(w + 2πk)
)

sinh
(

r+
2�

(w + 2πk)
)]2

. (2.16)

We have not succeeded in doing the summation in closed form. But we can use contour
integration to rewrite the sum in a way which makes the large time behaviour manifest. For
simplicity set φ = 0. Then one can rewrite (2.16) as

r2
+

8�2

1

sinh2
(

r+t
�2

) { ∞∑
m=−∞

[
1

sin2
(

t
2�

+ iπ �
r+

m
) +

2r+

�

1

tan
(

t
2�

+ iπ �
r+

m
)

tanh
(

r+t

�2

)]

+
2r+

π�

[ (
r+t

�2

)
tanh

(
r+t

�2

) − 1

]}
. (2.17)

To simplify further, consider the case of a small black hole, r+ 
 �. In this case, we can
truncate to just the m = 0 term and obtain

r2
+

8�2

1

sinh2
(

r+t
�2

) {
1

sin2
(

t
2�

) +
2r+

�

1

tan
(

t
2�

)
tanh

(
r+t

�2

) +
2r+

π�

[ (
r+t

�2

)
tanh

(
r+t

�2

) − 1

]}
. (2.18)

2.3.4. Comparison. Note that the three geometries described above look the same outside
a core region. As we will review later, the n appearing in the conical defect geometry has a
typical size

ntyp ∼ N1/2 ∼ �2. (2.19)

The typical conical defect geometry thus approaches the naive geometry for r � �−1. Consider
then the BTZ geometry with r+ = �−1, so that it has the same characteristic size as the typical
conical defect. The Bekenstein–Hawking entropy of this black hole is then

S ∼ A ∼ �3r+ ∼ �2 ∼ N1/2, (2.20)

where the factor of �3 came from integration over the S3 that we have suppressed. S ∼ N1/2

is indeed the correct ground state entropy of the D1–D5 system. This is an example of the
stretched horizon idea advocated in [22].

The most obvious difference between the two-point functions computed above is that the
conical defect result is periodic in time, with a period 
t = 2πn�, while the naive geometry
and the BTZ black hole results decay to zero at large time. Usually, this sort of decay is
associated with the presence of a horizon, with the information loss problem arising because
the decay winds up implying a failure of unitarity [4]. Later in this paper we will show that the
decay is the correct universal description of the typical two-point function in a typical state,
but that its persistence to late times is an artefact of ignoring the precise quantum mechanical
details of the individual microstates of a black hole. Our computations will be for the M = 0
BTZ black hole which will turn out to be the effective coarse-grained description of the typical
Ramond ground state of the dual CFT. To this end, we now turn to characterizing the structure
of these states.
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3. Typical states

3.1. Statistics and typical states

As described in section 2.1, each ground state in the Ramond sector of the D1–D5 CFT is
characterized by a set of integers {Nnµ,N ′

nµ} specifying the distribution of constituent bosonic
and fermionic twists (2.3). When the total twist length N = ∑

n,µ n(Nnµ + N ′
nµ) is very large,

there is a macroscopic number (∼e2
√

2π
√

N) of Ramond ground states. In such a situation,
most of those e2

√
2π

√
N microstates will have a twist distribution {Nnµ,N ′

nµ} that lies very
close to a certain ‘typical’ distribution. In the large N limit, the difference among individual
distributions is small. Roughly, statistical mechanics states that 〈(
Nnµ)2〉 ∼ Nnµ, thus
〈(
Nnµ)2〉1/2

Nnµ
∼ (Nnµ)−1/2 → 0 as Nnµ → ∞. Thus, although correlation functions computed

in individual microstates depend on the precise form of the microstate distribution {Nnµ,N ′
nµ},

for almost all microstates the generic responses should deviate by small amounts from the
results for the typical state. In the next section, this will be the basis for the emergence of an
effective black hole description of typical Ramond ground states. A similar analysis of the
typical states was carried out for the AdS5/SYM4 duality in [34].

In this section, our goal is to characterize the typical distribution of twists and the size of
fluctuations around it within the ensemble of Ramond ground states. Ideally, we carry out a
microcanonical analysis by studying all partitions of integers (2.3) that lead to a total twist of N.
However, it is easier to carry out a canonical analysis by including states with an arbitrary total
twist into the ensemble, while fixing the average total twist to be N via an effective temperature
T. The relative error incurred by the canonical approach compared to the exact microcanonical
analysis vanishes in the large N limit. Large N will correspond to high temperature T � 1,
or equivalently, small β = 1/T 
 1. Since the constituent twist operators in (2.3) carry an
R-charge, we can study the structure of Ramond ground states restricted to carry some fixed

R-charge. In particular, in terms of the SU(2)R × S̃U(2)R charges in (2.2), let us define

J = −J 3
R − J̃ 3

R, J̃ = J 3
R − J̃ 3

R. (3.1)

With these definitions, the R-charges J and J̃ correspond in the bulk geometry to orthogonal
angular momenta in the R4 perpendicular to the D1–D5 worldvolume5. We will consider the
structure of Ramond ground states with J̃ = 0 and different values of J .

3.2. Typical twist distribution with J = J̃ = 0

Let us first consider the ensemble of all the Ramond ground states (2.3) with equal statistical
weight. Some of the states in this ensemble will have a non-vanishing R-charge. However,
because the polarizations µ of twist operators σ

µ
n , τ

µ
n are weighted equally, on average the

states will have J = J̃ = 0. Indeed, as we will see, there are so many more states with J = 0
than J = 0 that summing over all states only incurs a small error in studying the properties of
J = 0 states.

As described in (2.3) and appendix A, we have eight bosonic twist operators σ
µ
n and eight

fermionic twist operators τ
µ
n which are all independent. So the canonical partition function is

Z(β) = Tr[e−βN ] =
∞∏

n=1

(1 + qn)8

(1 − qn)8
=

[
ϑ2(0|τ)

2η(τ)3

]4

, q = e2π iτ = e−β. (3.2)

5 If we let R4 coordinates be x1,2,3,4, the two angular momenta in question are J12 and J34. See appendix A.1 for
details.
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Using the modular property of the theta function,

Z(β) =
[

β

4π

ϑ4
(
0
∣∣ − 1

τ

)
η

(− 1
τ

)3

]4

∼ e2π2/β (β 
 1). (3.3)

The relation between ‘energy’ N and temperature β is

N =
〈 ∞∑

n=1

∑
µ

n(Nnµ + N ′
nµ)

〉
= − ∂

∂β
ln Z(β) � 2π2

β2
. (3.4)

Since all twist operators are independent, the average distribution {Nnµ,N ′
nµ} is given by the

Bose–Einstein and Fermi–Dirac distribution, respectively:

Nnµ = 1

eβn − 1
, N ′

nµ = 1

eβn + 1
, Nn =

∑
µ

(Nnµ + N ′
nµ) = 8

sinh βn
. (3.5)

For large N, the typical states of our ensemble have a distribution almost identical to (3.5). We
will call the distribution (3.5) the ‘representative’ distribution.

3.3. Typical twist distribution with J = 0 and J̃ = 0

Now let us consider the typical state in the ensemble with fixed R-charge J = 0. From the
definitions in section 2.1, the twist operators that carry nonzero J are

σ ss̃
n : J = −(s + s̃)/2, τ sα̃

n : J = −s/2, τ α̃̃s
n : J = −̃s/2.

Strictly speaking, we should consider the microcanonical ensemble in which N and total J are
fixed. But again in the large N limit, we can equivalently consider the canonical ensemble in
which N and J are controlled by temperature β and chemical potential µ.

To construct the partition function it is convenient to use the map (2.6) between the
Ramond ground states and the FP system. Then we are equivalently constructing the ensemble
left-moving oscillations of the FP string as specified in (2.5). In the FP language, we consider
an ensemble in which we have NB left-moving bosons αi

−n and NF left-moving fermions ψi
−n,

where n = 1, 2, . . . . Let the bosons and fermions carry the following R-charge assignments:

nB bosons: J = +1 nF fermions: J = +1/2
nB bosons: J = −1 nF fermions: J = −1/2
NB − 2nB bosons: J = 0 NF − 2nF fermions: J = 0

(3.6)

The case we are interested in, i.e., the D1–D5 system on T 4, has NB = NF = 8, nB = 1,

nF = 4. The D1–D5 system on K3 has NB = 24, nB = 1, NF = nF = 0, for which state
counting was first studied in [50] from the heterotic dual perspective. More recently, the
microscopics of the K3 case was studied in [21], and the discussions below and in appendix B
are generalization of the one therein.

We can compute the entropy S(N, J ) for given level N and R-charge J by studying the
partition function

Z(β,µ) =
∑
N,J

dN,J qNzJ = Tr[e−β(N−µJ)]

=
∞∏

n=1

[(1 + z1/2qn)(1 + z−1/2qn)]nF (1 + qn)NF −2nF

[(1 − zqn)(1 − z−1qn)]nB (1 − qn)NB−2nB
,
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where q = e2π iτ = e−β, z = e2π iν = eβµ. The entropy in the N → ∞ limit can be evaluated
by thermodynamic approximation, as explained in appendix B, and the result is

S = log dN,J = 2π

√
c

6
(N − |J |). (3.7)

Now let us apply this to the D1–D5 system on T 4, for which NB = NF = 8, nB = 1,

nF = 4. One sees from (3.7) that the only effect of J = 0 is to replace N with Ñ ≡ N − J .
Here we assumed J > 0. This means that almost all states (i.e., the states that are responsible
for the entropy) in the ensemble with level N and R-charge J are of the form(

α+
−1

†)J
∞∏

n=1

[∏
i

(
αi

−n

)Nni
(
ψi

−n

)N ′
ni

]
|0〉︸ ︷︷ ︸

states that are responsible for entropy of the
ensemble with level Ñ = N − J and no
angular momentum

, (3.8)

where α+
−n

† is the creation operator of the boson that carries J = +1. Indeed, the entropy

from the ‘ ...︸︷︷︸’ part is 2π
√

cÑ/6 = 2π
√

c(N − J )/6, which fully accounts for (3.7). Of

course, besides
(
α+

−1
†)J

there are other combinations of oscillators that can carry R-charge J .
But any other combination will exact more price in N, and will therefore lead to a subleading
contribution to the entropy. If J < 0, then the same argument goes through if we replace(
α+

−1
†)J

with
(
α−

−1
†)|J |

.
Translating the above into the language of the D1–D5 system, the typical state of the

D1–D5 system with N � 1 and J = 0 splits into the following two parts:

(1) |J | strings of unit length,
(
σ s̃s

1

)|J |
, where s = s̃ = −1 for J > 0 and s = s̃ = +1 for

J < 0. We will call this part the ‘Bose–Einstein (BE) condensate’.
(2) The typical state of the ensemble with

∑
nµ n(Nnµ + N ′

nµ) = Ñ = N − |J | and no
R-charge.

In other words, the typical distribution {Nnµ,N ′
nµ} of the ensemble with level N and

angular momentum J can be written as

Nnµ = N(BEC)
nµ + Ñnµ, N ′

nµ = Ñ
′
nµ, (3.9)

where the BE condensate part N(BEC)
nµ is given byN

(BEC)
n=1,s=̃s=−1 = J, other N(BEC)

nµ = 0 (J > 0),

N
(BEC)
n=1,s=̃s=+1 = |J |, other N(BEC)

nµ = 0 (J < 0),
(3.10)

while the non-condensate part {Ñnµ, Ñ
′
nµ} is identical to the typical distribution (3.5) for the

ensemble with level Ñ = N − |J | and no R-charge.
Note that the entropy of the ensemble with J = 0 is the same as that in the ensemble with

J unspecified. This is a reflection of the fact that there are exponentially more states with
J = 0 than with J = 0.

4. The effective geometry

In the previous section, we derived the distributions of constituent twist operators in typical
Ramond ground states with R-charges J = 0 and J = 0. In the large N limit, almost all states
with the given charges have twist distributions that lie close to these typical distributions.
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Here we will compute two-point correlation functions in typical states and show that generic
correlators computed at finite-time separations are largely independent of the details of the
microstate. Indeed, at small time separations two-point correlators in the typical J = 0 state
give a universal response, as if the corresponding spacetime geometry was a black hole. By
contrast, atypical correlators whose two insertion points are separated by very long times give
responses with intricate variations that encode the detailed microstate.

The fact that generic probes of typical states give essentially universal responses governed
by the statistics of the state’s microscopic constituents is reminiscent of the similar observation
in [34] for the case of AdS5/SYM4. There, it was argued that the correlation function of a small
‘probe’ operator A in a black hole background produced by a long operator O is determined by
the matching of patterns of fields (X, Y,Z,X, etc) in both operators, the distribution of which
is governed largely by statistics. In the case of half-BPS states of the AdS5/SYM4 theory
[31–33] it was possible to use the Yang–Mills theory to argue for an effective spacetime
description of microstates in terms of a singular geometry [34]. In the D1–D5 case, we have
already noted that there exists a proposed map taking RR ground states into geometries, and we
argue below that this map will also give an effective singular spacetime description to typical
states. However, to genuinely prove these assertions it is necessary to compute correlation
functions, because it is through correlators that we can rigorously compare bulk and boundary
physics in the AdS/CFT correspondence. Here we will carry out the analysis of deriving
an effective geometry from correlation functions and thereby infer the effective geometry
corresponding to a typical state. Furthermore, the maps between states and geometries, either
based on LLM [33] or on the Lunin–Mathur geometries, are only valid at the level of two-
derivative supergravity. To learn anything about the geometry when this approximation breaks
down it is necessary to extract the spacetime physics from CFT correlation functions (or
augment the original map with higher derivative terms). We will give an explicit example of
this here. At late times our correlators probe the strongly curved region of the geometry where
the effective spacetime description breaks down. The CFT correlators continue to be valid
and give a result that depends on which particular microstate one has chosen. This shows how
the CFT can be used to go beyond the accuracy of the low energy spacetime description.

4.1. Two-point functions of the D1–D5 CFT

For simplicity, we will compute the two-point functions of non-twist ‘probe’ operators A in
states created by general twist operators. A can be written as a sum over copies of the CFT,

A = 1√
N

N∑
A=1

AA (4.1)

where AA is a non-twist operator that lives in the Ath copy. For example, we can take

AA = ∂Xa
A(z)∂̄Xb

A(z), (4.2)

which corresponds to a fluctuation of the metric in the internal T 4 direction. Although, such
non-twist operators are only a subset of the operators that correspond to spacetime excitations,
we will restrict ourselves to them because their correlation functions are much easier to
compute than those of twist operators, and because they will be sufficient to demonstrate that
an effective geometry emerges in the N → ∞ limit.

Given a general Ramond ground state σ (2.3) we are interested in computing

〈σ †A†Aσ 〉. (4.3)

The key result, demonstrated in appendix A, is that for non-twist operators at the orbifold
point in the CFT such correlation functions decompose into independent contributions from
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the constituent twists operators in (2.3). Denoting the constituents σ
µ
n , τ

µ
n collectively by σ

µ̂
n

and Nnµ,N ′
nµ by Nnµ̂, we write the Ramond ground states (2.3) as

σ =
∏
n,µ̂

(
σ µ̂

n

)Nnµ̂
. (4.4)

Then, the desired correlation function decomposes as

〈σ †A†Aσ 〉 = 1

N

∑
n,µ̂

nNnµ̂

n∑
A=1

〈[
σ µ̂

n

]†A†
AA1σ

µ̂
n

〉
. (4.5)

The problem then reduces to computing four-point functions of the form〈[
σ

µ̂

(1,...,n)(z = ∞)
]†AA(z1)

†AB(z2)σ
µ̂

(1,...,n)(z = 0)
〉 ≡ 〈AA(z1)

†AB(z2)〉σ µ̂

(1,...,n)
, (4.6)

where 1 � A,B � n, and the equation indicates that we are equivalently computing the
two-point function of A in the ground state of twist sector n. As we described, in the nth twist
sector the worldsheet is effectively n times as long and therefore, as shown in appendix A, for
bosonic operators〈

A†
A(w1)AB(w2)

〉
σ(1,...,n)

= C[
2n sin

(
w
2n

)]2h [
2n sin

(
w
2n

)]2h̃
, (4.7)

where

w ≡ w1 − w2, w ≡ w1 − w2. (4.8)

Here, the copy labels A,B mean that w1 and w2 must be understood as w1 + 2π(A − 1)

and w2 + 2π(B − 1), respectively. The analogous computation for fermionic A is given in
appendix A.6.

4.2. Example of typical state correlation function

The correlation function of non-twist operators in the general microstate (2.3) can be computed
by plugging (4.7) and (A.40) into the general formula (4.5). For example, forA purely bosonic,
we substitute bosonic correlator (4.7) into (4.5) to obtain

〈A(w1)A(w2)〉� = 1

N

∑
n

nNn

n−1∑
k=0

C[
2n sin

(
w−2πk

2n

)]2h [
2n sin

(
w−2πk

2n

)]2h̃
, (4.9)

where

Nn ≡
∑

µ

(Nnµ + N ′
nµ). (4.10)

Here we took into account that the copy labels A,B mean that w in (4.7) should be replaced by
w + 2π(A − B). The correlation function for the typical state is obtained simply by plugging
the typical distribution (3.5) or (3.9) into {Nnµ,N ′

nµ} above. For fermionic A, the correlation
function (A.29) depends on the spin µ and the expression is more complicated, as we will see
below.

As a simple example of a probe A, take the operator (4.2) which is dual to a fluctuation
of the metric on T 4. For this operator h = h̃ = 1. In this case, the summation over k in (4.9)
is the same as in (2.11). Therefore the correlation function can be written as

G(w,w) ≡ 〈∂X∂̄X(w1)∂X∂̄X(w2)〉�

= − 1

N

∞∑
n=1

nNn

16n2 sin2 w−w
2n

[
1

sin2 w
2

+
1

sin2 w
2

− 2 sin w−w
2

n tan w−w
2n

sin w
2 sin w

2

]
. (4.11)
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Figure 1. Plot of the regularized correlation function Ĝ(t, φ = 0; β) as a function of t, for various
values of β. The two graphs on the left show short-time behaviour; the two on the right show
long-time behaviour. As β → 0 (or equivalently, N → ∞), Ĝ approaches the correlation function
(2.14) in the M = 0 BTZ geometry, denoted in the graph by dashed lines.

In Lorentzian signature we set

w = φ − t, w = φ + t. (4.12)

The correlator G(w,w) = G(t, φ) then diverges at w = kπ/2 or w = kπ/2 with k ∈ Z.
This divergence is a physical one, since on a finite cylinder a particle periodically returns
to the same spatial location. Therefore, in order to make the temporal behaviour of the
correlation function more transparent, it is useful to remove this divergence. So, let us define
the regularized correlator Ĝ(t, φ) by dividing G(t, φ) by the vacuum correlation function of
the probe graviton operator:

Ĝ(t, φ) ≡ −16 sin2 w

2
sin2 w

2
G(t, φ)

= 1

N

∞∑
n=1

nNn(
n sin t

n

)2

[
sin2 w

2
+ sin2 w

2
− 2 sin t sin w

2 sin w
2

n tan t
n

]
. (4.13)

Plugging in the representative distribution of constituent twists for microstates with J = 0
(3.5) into the regularized correlator (4.13) we obtain figure 1. As one can see from this graph,
the correlator decays rapidly at initial times (t � π), and at later times exhibits a quasi-periodic
behaviour. Quasi-periodicity is not surprising; it is expected on general grounds in a system
with a finite number of degrees of freedom. Furthermore, one sees that, in the β → 0 (or
equivalently N → ∞) limit, Ĝ approaches a certain limit shape. As we will discuss below,
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the limit shape in the N → ∞ limit turns out to be the correlation function (2.14) in the
M = 0 BTZ geometry.

4.3. Effective geometry of microstates with J = 0

Now consider the correlation function (4.9) of a general bosonic non-twist operator:

〈A(w1)A(w2)〉� = 1

N

∑
n

nNn

n−1∑
k=0

C[
2n sin

(
w−2πk

2n

)]2h [
2n sin

(
w−2πk

2n

)]2h̃
. (4.14)

Let us study the relative size of the contributions to this from terms with different n. The
contributions come multiplied by Nn, which is 8n

sinh βn
for the typical microstates with J = 0

(equation (3.5)). Because of the suppression by the sinh βn, the values of n that make
substantial contributions to the correlation function (4.9) are n � 1/β ∼ √

N . Thus there are
O(

√
N) twists that make a significant contribution. Now observe that for any γ < 1/2, the

number of twists with n � Nγ is parametrically smaller than
√

N . Indeed, the ratio vanishes
as N → ∞. In this sense we can say that in the N → ∞ limit, (4.14) is dominated by twists
scaling as n ∼ √

N .
Next, for any n � 1, when t 
 n we can approximate the sum on k as

n−1∑
k=0

1[
2n sin

(
w−2πk

2n

)]2h [
2n sin

(
w−2πk

2n

)]2h̃

≈
∞∑

k=−∞

1

(w − 2πk)2h(w − 2πk)2h̃
(t 
 n),

where we assumed h + h̃ = even.
Putting the above statements together, we arrive at the following conclusion: for

sufficiently early times

t 
 tc = O(
√

N), (4.15)

the correlation function (4.14) can be approximated by

〈A(w1)A(w2)〉� ≈ 1

N

∑
n

nNn

∞∑
k=−∞

C

(w − 2πk)2h(w − 2πk)2h̃

=
∞∑

k=−∞

C

(w − 2πk)2h(w − 2πk)2h̃
. (4.16)

This is precisely the bulk correlation function in the naive geometry, or the M = 0
BTZ black hole (compare with (2.14)) for h = h̃ = 1). Therefore, in the orbifold CFT
approximation, the emergent effective geometry of the D1–D5 system is the M = 0 BTZ
black hole geometry. The description in terms of this effective geometry is valid until t ∼ tc,
which goes to infinity as N → ∞. In the special case h = h̃ = 1, the summation (4.16) yields
(2.14). In this case, we indeed saw in figure 1 that the β → 0 limit of the correlation function
is given by (2.14) (or (4.16)).

Note that in (4.16) the sum over the twists n factors out. Thus, for t < tc we show that the
correlation function is largely independent of the detailed microscopic distribution of twists.
It is this universal response that reproduces the physics of the M = 0 BTZ black hole. After
t ∼ tc, the approximation (4.16) breaks down, and the correlation function starts to show
random-looking, quasi-periodic behaviour (see figure 1). The form of the correlation function
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in this regime will depend on the precise form of the individual microstate, no matter how
close it is to the representative state (3.5).

The β → 0 limit corresponding to the M = 0 BTZ black hole yields a correlator which
decays to zero at large times as 1/t2. By contrast, the microstate correlators exhibit quasi-
periodic fluctuations around a nonzero mean value. Numerical analysis indicates that this
mean value scales as 1√

N
for h = h̃ = 1. For an ordinary finite size, finite temperature

system, one expects the mean value to be of order e−cS where S is the entropy and c is of
order 1. This behaviour arises because typical interactions can explore the entire phase space
of the system. The fact that we observe power law rather than exponential behaviour is likely
to be a result of working in the free orbifold limit of the CFT and probing the system with
only non-twist operators. Under these conditions, the full space of states does not come into
play in determining a correlation function. For example, the non-twist operators cannot see
the full structure of the microstate, for instance the relative phases between different twist
components, and so might be expected to exhibit larger correlations at late times. For this
reason, it would be very instructive to repeat our analysis for twist operators, although this is
technically much more challenging.

A finite N microstate correlator will exhibit exact periodicity in time because only
a finite number of frequencies appear in the Fourier expansion. The frequencies are
ωn = n

N
, n = 1, 2, . . . , N . Let L(N) denote the least common multiple of (1, 2, . . . , N). The

correlator is then periodic with period 
t = 2πNL(N). The large N behaviour of L(N) is
L(N) ∼ eN , and therefore


t ∼ N eN . (4.17)

Our correlators have been computed in the canonical ensemble in which the summation over n
extends past N up to infinity, and so we will not see this exact periodicity. On the other hand,
due to the exponential suppression of the distribution function Nn the deviation from exact
periodicity is tiny for large N. As was argued above, and as can be confirmed numerically, one
finds that for large N the large time behaviour of the correlator is unaffected if we truncate the
sum over n at nmax = c

√
N , for c of order unity. Taking this into account, we see that our

correlators will exhibit approximate periodicity with period


t ∼ ec
√

N = ec̃S , (4.18)

where S = 2π
√

2
√

N is the entropy. This timescale is the so-called Poincaré recurrence time,
over which generic finite size thermal systems are expected to exhibit approximate periodicity.

Fermionic probes. In the above, we restricted ourselves to bosonic probes, but we obtain the
same effective geometry even if we probe the microstate with operators that contain fermions.
For example, let A = �s ′

�̃s̃ ′
as defined in (A.4). From (A.40), we obtain

〈AAAB〉σ s̃s
n

= 〈[
�s ′

A�̃s̃ ′
A (w1)

]†
�s ′

B �̃s̃ ′
B (w2)

〉
σ s̃s

n

= eiss ′w/2n−ĩs̃s ′w/2n(
2n sin w

2n

)(
2n sin w

2n

) . (4.19)

If we sum over copies,

n∑
A=1

〈AAA1〉σ s̃s
n

=
n−1∑
k=0

eiss ′(w+2πk)/2n−ĩs̃s ′(w+2πk)/2n(
2n sin w+2πk

2n

)(
2n sin w+2πk

2n

)
≈

∞∑
k=−∞

1

(w + 2πk)(w + 2πk)
(t 
 n). (4.20)
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Other twist operators σ
α̃β̃
n , τ sα̃

n , τ α̃̃s
n give different correlation functions, but they are all

identical to (4.20) for t 
 n,
n∑

A=1

〈AAA1〉σ µ̂
n

≈
∞∑

k=−∞

1

(w + 2πk)(w + 2πk)
(t 
 n), (4.21)

where σ
µ̂
n can be any of the twist operators σ s̃s

n , σ
α̃β̃
n , τ sα̃

n , τ α̃̃s
n . Plugging this result into (4.5),

we conclude that

〈A(w1)A(w2)〉� = 〈[
�s ′

A�̃s̃ ′
A (w1)

]†
�s ′

B �̃s̃ ′
B (w2)

〉
�

≈
∞∑

k=−∞

1

(w − 2πk)(w − 2πk)
(t 
 tc). (4.22)

This is again the correlation function in the M = 0 BTZ black hole geometry. Therefore, we
conclude that the effective geometry of the D1–D5 system in the orbifold CFT approximation is
the M = 0 BTZ black hole geometry for any non-twist probe operators, bosonic or fermionic.
The description by this effective geometry breaks down at t = tc = O(

√
N).

Gravitational origin of the effective geometry. We can also argue that the effective geometry
for the ensemble with J = 0 should be the M = 0 BTZ black hole by using the Lunin–Mathur
metric (2.8). Assume that the profile Fi(v) is a random superposition of small-amplitude,
high-frequency oscillations that is much smaller than the asymptotic AdS radius:

|F(v)| 
 � ∼ N1/4. (4.23)

Then, for r ∼ � � |F(v)|,

f5 = Q5

L

∫ L

0
dv

1

|x − F(v)|2 ≈ Q5

r2
, (4.24)

f1 = Q5

L

∫ L

0
dv

|Ḟ(v)|2
|x − F(v)|2 ≈ 1

r2

Q5

L

∫ L

0
dv|Ḟ(v)|2 = Q1

r2
, (4.25)

Ai = Q5

L

∫ L

0
dv

Ḟ i(v)

|x − F(v)|2 ≈ 0, (4.26)

where in the second line we used (2.9), and in the third line Ai(x) vanishes because Fi(v) is
random. So the metric (2.8) is

ds2 = − r2

�2
dt2 +

r2

�2
dy2 +

�2

r2

(
dr2 + r2 d�2

3

)
+

√
Q1

Q5
ds2

T 4 (4.27)

with � = (Q1Q5)
1/4. This is indeed the direct product of the M = 0 BTZ black hole (2.13),

and S3 × T 4, if one sets y → Rφ, r → �r/R. One can check that the condition (4.23) is
satisfied from the microscopic theory, as follows. If the typical frequency and amplitude are
ω and a, respectively, then |F| ∼ a, |Ḟ| ∼ aω. We can relate ω, a with the microscopic
quantities n,Nn as ω ∼ n, a ∼ N

1/2
n . Recall that the typical twist is n ∼ N1/2 ∼ 1/β. For

n ∼ 1/β,Nn is Nn = 8
sinh(βn)

= O(1) from (3.5). Therefore, ω ∼ N1/2, a ∼ N0. This indeed
satisfies (4.23).

4.4. Effective geometry of microstates with J = 0

As we saw in section 3.3, the ensemble with J = 0 becomes in the large N limit a ‘direct
product’ of the Bose–Einstein condensate

(
σ s̃s

1

)|J |
with s = s̃ = ∓, and an ensemble with
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level Ñ = N −|J | and no angular momentum. Therefore, from the general formula (4.5), one
sees that the correlation function for this ensemble is a sum of the correlation function in the
Bose–Einstein condensate background and the one for the ensemble with level Ñ = N − |J |
and no angular momentum.

Specifically, consider a bosonic non-twist operator A. Plugging the typical distribution
(3.9) into the formula (4.9),

〈A(w1)A(w2)〉�

= |J |
N

C(
2 sin w

2

)2h (
2 sin w

2

)2h̃
+

1

N

∑
n

nÑn

n−1∑
k=0

C[
2n sin

(
w−2πk

2n

)]2h [
2n sin

(
w−2πk

2n

)]2h̃

≈ |J |
N

C(
2 sin w

2

)2h (
2 sin w

2

)2h̃
+

(
1 − |J |

N

) ∞∑
k=−∞

C

(w − 2πk)2h(w − 2πk)2h̃
(t 
 tc)

= |J |
N

〈AA〉BEC +

(
1 − |J |

N

)
〈AA〉M=0 BTZ. (4.28)

The critical time tc is now given by

tc = O(
√

N − |J |). (4.29)

The first term in (4.28), which arises from the Bose–Einstein condensate (BEC), is proportional
to the correlation function ofA computed in global AdS3. This happens because the condensate
is

(
σ s̃s

1

)|J |
, s = s̃ = ∓, and the three-dimensional part of the microstate geometry associated

with this operator by itself is simply global AdS3 with a scale � ∼ |J |1/4, as described by
[36–38]. Actually, the total 10-dimensional geometry is more complicated because of the
nontrivial Wilson line coming from the internal S3, but the bosonic operator A does not sense
this extra structure. On the other hand, fermionic A does see this structure, as we will see
below.

Hence the ‘effective geometry’ for t < tc appears to be a weighted average of global AdS3

(with a nontrivial Wilson line) and the M = 0 BTZ. The linear summation in (4.28) appears
because in the orbifold CFT the simple class of non-twist probes has correlation functions that
are simply linear summations of the responses in the individual constituent twist states (4.28).
Of course as |J | → N , the typical microstate operator found in (3.8) becomes precisely the
operator corresponding to global AdS3 (with a Wilson line) in [36–38]. Thus the response
(4.28) is simply a weighted sum of the expected responses in the J = 0 and |J | = N limits.

Correlation functions involving fermionic operators can be evaluated similarly. For
example, let us take A = �s ′

�̃s̃ ′
as before. From (4.9), (4.19) and (4.21), we obtain

〈AAAB〉� ≈ |J |
N

eis(s ′w−̃s ′w)/2(
2 sin w

2

)(
2 sin w

2

) +

(
1 − |J |

N

) ∞∑
k=−∞

1

(w − 2πk)(w − 2πk)
(t 
 tc)

= |J |
N

〈AA〉BEC +

(
1 − |J |

N

)
〈AA〉M=0 BTZ, (4.30)

where s = sign(J ). Again the ‘effective geometry’ appears to be a weighted average.
The Bose–Einstein condensate part 〈AA〉BEC of the bosonic correlator (4.28) did not

care whether the condensate is made of σ s̃s
1 with s = s̃ = −1 or s = s̃ = +1, whereas the

fermionic one (4.30) does depend on what the condensate is made of through its dependence
on s = sign(J ). This reflects the fact that the three-dimensional geometry corresponding to(
σ s̃s

1

)N
with s = s̃ = −1 and the one with s = s̃ = +1 are both global AdS3 but differ in the

nontrivial Wilson line in the internal S3 [36–38]. Bosonic probes are not charged under the
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relevant U(1), and thus its correlator is independent of what the condensate is made of. On
the other hand, fermionic probes are charged under the U(1), and its correlator depends on
what the condensate is made of.

Do the above results mean that the emergent geometry is a superposition of two classical
geometries? Below we will use the Lunin–Mathur solution (2.7) to argue that this should not
be the case and that the emergent geometry should be a singular zero-horizon limit of the black
ring [51].

The effective geometry should be a black ring. Assuming J > 0 and J = O(N), the typical
state of the ensemble with J = 0 is given by (3.8). In the language of the FP system,

(
α+

−1
†)J

corresponds to an F1 worldvolume that makes a circle with radius ∼√
J = O(N1/2) in the 1–2

plane. The remaining part
∏∞

n=1

[ ∏
i

(
αi

−n

)Nni
(
ψi

−n

)N ′
ni

]
adds fluctuations around this circular

profile. By an argument similar to that given at the end of the last subsection, the typical
frequency and amplitude of the fluctuations are estimated to be n ∼ √

N − J = O(N1/2) and
N

1/2
n = O(N0), respectively.

This motivates the following profile function F(v) of the D1–D5 metric (2.7). Namely,
we assume that the profile F(v) is a circle F(0) with random, small-amplitude, high-frequency
fluctuations δF around it:

F = F(0) + δF,

{
F

(0)
1 + iF (0)

2 = a eiωv,

F
(0)
3 = F

(0)
4 = 0,

ω = 2π

L
= R

Q5
. (4.31)

From the above analysis, the amplitude of the fluctuation δF is much smaller than the size of
the circle or the AdS radius:

|δF| = O(N0) 
 |F(0)| = a = O(N1/2), |δF| = O(N0) 
 � = O(N1/4). (4.32)

On the other hand, the derivatives of F(0) and δF are of the same order of magnitude:

|δḞ| ∼ nN1/2
n = O(N1/2), |Ḟ(0)| = aω = O(N1/2). (4.33)

Using these relations, the harmonic functions in (2.7) are approximated for large N as follows6,

f5 ≈ Q5

L

∫ L

0
dv

1

|x − F(0)|2 = Q5

�
,

f1 ≈ Q5

L
(a2ω2 + |δḞ|2)

∫ L

0
dv

1

|x − F(0)|2 = Q1

�
, (4.34)

A1 + iA2 ≈ Q5

L

∫ L

0
dv

iaω eiωv

|x − F(0)|2 , therefore Aψ = 2a2Q5ωs2

�(� + s2 + w2 + a2)
,

where

x1 + ix2 = s eiψ, x3 + ix4 = w eiφ, � =
√

[(s + a)2 + w2][(s − a)2 + w2]. (4.35)

In the second line of (4.34), the cross term F(0) · δF was dropped because δF is fluctuating
randomly. Also in the second line, because |δḞ|2 is fluctuating with length scale much smaller
than a, we can replace it with its average and take it out of the integral (so, |δḞ|2 there really
means the average). We also used relation (2.9):

Q1 = Q5

L

∫ L

0
dv|Ḟ|2 ≈ (a2ω2 + |δḞ|2)Q5. (4.36)

In the third line of (4.34), the term containing δḞ was dropped because it is fluctuating
randomly. It is convenient to go to the (x, y, ψ, φ) coordinate system [51] with R = a,

6 This metric was studied in [52] using a different ansatz of the profile function F(v). Recent analysis of this metric
from the bubbling AdS viewpoint of [33] can be found in [53].
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defined by

s =
√

y2 − 1

x − y
R, w =

√
1 − x2

x − y
R. (4.37)

In this coordinate system, Ai, Bi,� can be written as

Aψ = Q5ω

2
(−1 − y), Bφ = Q5ω

2
(1 + x), � = 2R2

x − y
. (4.38)

Plugging these into (2.7), one obtains the metric

ds2 = �

�2

[
−

(
dt +

Q5ω

2
(−1 − y) dψ

)2

+

(
dy +

Q5ω

2
(1 + x) dφ

)2
]

+
�2

�
ds2

4 +

√
Q1

Q5
ds2

T 4 ,

(4.39)

where � ≡ (Q1Q5)
1/4. This is the metric of the supersymmetric black ring [51, 54] with

charges (Q1,Q2,Q3) = (Q1,Q5, 0), dipole charges (q1, q2, q3) = (0, 0,Q5ω) and radius
R = a. For these charges, the horizon area and thus the Bekenstein–Hawking entropy vanish.
The angular momentum of this singular black ring satisfies

Jψ = R2q3 � Q1Q2

q3
≡ Jψ,max. (4.40)

If this inequality is saturated, the singular black ring becomes the regular D1–D5 → kk
geometry. However, in the present case,

Jψ = a2Q5ω, Jψ,max = Q1Q5

Q5ω
= a2Q5ω

(
1 +

|δḞ|2
a2ω2

)
. (4.41)

So, the equality in (4.40) does not hold and the geometry (4.39) describes a singular, zero-
horizon limit of the black ring.

The above argument suggests that the effective geometry for the ensemble with J = 0
is the singular, zero-horizon limit of the black ring (4.39)7. The description by this effective
geometry should be valid up to the critical time tc (4.29), which goes to infinity as N → ∞.
In order to prove the above statement, one should compute the bulk–boundary propagator in
the singular black ring geometry (4.39) and show that it leads to the boundary CFT correlation
function (4.28), (4.30).

5. Discussion

The puzzles regarding the black hole information paradox are all traceable to the fact that
we do not have an adequate understanding of the relation between geometry and entropy. In
the boundary CFT description of black holes, we can choose to work either with individual
microstates or with an ensemble, and we understand that entropy arises from the coarse-
graining associated with defining the ensemble. In practice, the ensemble usually yields
results to the accuracy we desire, and the existence of the underlying microstate description
tells us that there is no possibility of information loss at a fundamental level.

We lack a similar understanding in the bulk. If the black hole is to be thought of
as an ensemble, we need to specify precisely the elements of the ensemble. One logical
possibility is that the bulk description is intrinsically coarse-grained, and that microstates can

7 This is reminiscent of the proposal by [55] that the CFT microstate of the black ring with non-vanishing horizon is
made of two parts, where the first part is made of small effective strings of identical length, while the second part is
made of a single long string and responsible for the whole entropy.
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only be found in the boundary CFT. An alternative picture, advocated by Mathur, is that bulk
microstates are to be described as new horizon-free geometries differing from the black hole
at the horizon scale. Some evidence for the latter has accumulated, but the question remains
open.

Here, we have studied some of these issues in the simple context of the D1–D5 CFT
at the free orbifold point. On the one hand, a large class of microstate geometries are
known, and on the other hand there is an effective ‘black hole’ geometry describing their
‘average’. We essentially tried to make this last sentence precise by comparing CFT correlation
functions computed in typical microstates to bulk correlation functions computed in the ‘black
hole’ geometry. The agreement we found, as well as its breakdown at late times, provides
evidence for the picture of black holes as the effective description of more fundamental
underlying structures. Although the ‘black hole’ in this case has vanishing horizon size,
it does display some of the hallmarks of real black holes, such as the decay of late time
correlators.

If black holes in general represent effective coarse-grained descriptions of underlying
microstate geometries, it naturally explains why one cannot see quasi-periodicity and Poincaré
recurrence by summing over the SL(2, Z) family of BTZ black holes as was pursued in
[9, 11]. This is analogous to the fact that, after replacing a gas of molecules by its effective
coarse-grained description, i.e., a dissipative continuum, one does not expect to be able to
see quasi-periodicity or Poincaré recurrence in the correlation function describing a particle
scattered in the gas.

It would be interesting to try to repeat our calculations in the context of the D1–D5 system
on K3 rather than T 4. In the K3 case, it has been found that higher derivative terms in the
supergravity Lagrangian lead to a nonzero size horizon whose Bekenstein–Hawking–Wald
entropy agrees with that of the CFT [15, 16]. Furthermore, one can still write down a large
class of microscopic geometries which contribute to the entropy [56]. The complication is
that the sigma model is no longer free, and so the computation of CFT correlators is not as
straightforward. But the goal would be to show how the nonzero horizon size manifests itself
in CFT correlators. Alternatively, perhaps a horizon could be found even in the T 4 case once
interactions are included.

Another useful endeavour would be to compare bulk correlators computed in the known
microstate geometries of the D1–D5 system to the microscopic CFT correlators we have
computed here. This can easily be done for the simplest class of states, namely those
corresponding to the twist operator σ = [

σ s̃s
n

]N/n
, s = s̃ = −1. In this case, the bulk

geometries are simply the conical defects (2.10), and we saw that this gives precise agreement
between bulk and boundary correlators. But for more general states the bulk geometry is no
longer just an orbifold, and the bulk correlators will be much more complicated. On the other
hand, the CFT correlators continue to be expressed as a sum of simple contributions. This
suggests that either the bulk geometries can also somehow be thought of as being built up out
of simple geometries, or alternatively that working at the free orbifold point of the CFT is
simply inadequate.

In this paper, we studied correlation functions of non-twist operators, but it would be
very interesting to consider twist operators. This would allow much greater sensitivity to the
microstate structure. Non-twist operators see the states as built out of decoupled components
corresponding to the given cycles, and this led to the correlators taking the form of a sum
over relatively simple contributions from each component. This will no longer be the case
when twist operators are used to probe the state, and the results are expected to be much more
complicated. This extra information could potentially be used to map out the bulk geometry
in much greater detail.
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Appendix A. D1–D5 CFT

In this appendix, we present a complete review of the relevant aspects of the D1–D5 CFT,
in particular chiral primary fields and the corresponding R(amond) ground states related by
spectral flow. We will compute correlation functions of non-twist operators in the R ground
states, which are related via AdS/CFT to supergravity amplitudes in AdS3×S3. References on
SN orbifold CFTs and methods for computing correlation functions in them include [57–67].
Below we will closely follow the argument of [66, 68, 69] and the notation of [66]. For a
more detailed explanation of the covering space method and the NS sector chiral primaries,
see [64, 66].

The main results from this appendix that are used in the main text of this paper are the
bosonic two-point function (A.33) and the fermionic two-point functions (A.39)–(A.41). The
two-point function for the general state (A.23) can be computed using (A.28) and (A.29). We
will derive these using orbifold CFT machinery, but the final results for the two-point function
are simple and intuitive, and can be obtained more simply by just taking into account the fact
that the effective length of the CFT cylinder undergoes a rescaling. However, the detailed
machinery described below is necessary for further computation of more general correlation
functions, particularly those involving twist operators as probes.

A.1. D1–D5 system

Consider type IIB string theory on Rt × R4 × S1 × T 4 with N1 D1-branes and N5 D5-branes.
The D1-branes are wound on S1 and smeared over T 4, and the D5-branes are wrapped on
S1 × T 4 . We denote by x0 the time direction Rt ; by xi (i = 1, 2, 3, 4) the R4 directions;
by x5 the S1 direction; and by xa (a = 6, 7, 8, 9) the T 4 directions (see table 1). The low
energy worldvolume dynamics of the D1–D5 system is described by a (1 + 1)-dimensional
N = (4, 4) SCFT in the RR sector, where the two dimensions come from the x0,5 directions

[39–42]. This theory has SO(4)E ∼= SU(2)R × S̃U(2)R R-symmetry, which originates from
the rotational symmetry in the transverse directions xi, i = 1, 2, 3, 4. On the other hand, the

rotation in the longitudinal directions xa, a = 6, 7, 8, 9 leads to SO(4)I ∼= SU(2)I × S̃U(2)I
symmetry. Actually, T 4 breaks the latter symmetry, but it can still be used for classifying the
states in the theory.
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Table 1. Configuration of D-branes.

0 1 2 3 4 5 6 7 8 9

D1 © · · · · © ∼ ∼ ∼ ∼
D5 © · · · · © © © © ©

The CFT is a sigma model whose target space is the symmetric product M0 = (T 4)N/SN ,
where SN is the permutation group of order N. We put

N = N1N5. (A.1)

More precisely, the target space is not the symmetric product M0 but a deformation of it; the
sigma model has marginal deformations, which one has to turn on in order for the CFT to
precisely correspond to the supergravity side. M0 is a special point in the moduli space of the
CFT called the orbifold point, where the CFT becomes free. This situation is very similar to
the situation of AdS5/SYM4 duality, where SYM becomes free at a special point (gYM = 0)

in the moduli space, but in order for SYM to precisely correspond to the supergravity side one
has to turn on the coupling gYM. The orbifold point is the analogue of the free SYM. In the
following, we will consider the orbifold point of the D1–D5 CFT.

A.2. Orbifold CFT

The N = (4, 4) SCFT at the orbifold point M0 = (T 4)N/SN is described by the free
Lagrangian

S = 1

2π

∫
d2σ

[
∂xa

A∂̄xa
A + ψa

A(z)∂̄ψa
A(z) + ψ̃a

A(z)∂ψ̃a
A(z)

]
, (A.2)

where a = 6, 7, 8, 9 labels the T 4 directions and A = 1, . . . , N labels the N copies of T 4.
Summation over a and A is implied. Without the orbifolding, this theory would be simply a
direct sum of N free CFTs each with c = 6.

As we explained in the last subsection, this theory has SO(4)E ∼= SU(2)R × S̃U(2)R

R-symmetry and SO(4)I ∼= SU(2)I × S̃U(2)I non-R-symmetry. The transformation property
of the fields under these symmetry groups is as follows8:

Field SU(2)R × S̃U(2)R SU(2)I × S̃U(2)I

xa (1, 1) (2, 2)

ψa (2, 1) (1, 2)

ψ̃a (1, 2) (1, 2)

. (A.3)

Following [66], we bosonize the fermions as

�+
A(z) ≡ 1√

2

(
ψ1

A + iψ2
A

) = eiφ5
A(z), �−

A (z) ≡ 1√
2

(
ψ3

A + iψ4
A

) = eiφ6
A(z), (A.4)

8 The surviving supersymmetry is in the representation (+ 1
2 ; 2, 1; 2, 1) and (− 1

2 ; 1, 2; 2, 1) under SO(1, 1)05 ×
[SU(2)R × S̃U(2)R] × [SU(2)I × S̃U(2)I ]. This implies the transformation property (A.3) of the hypermultiplet
superpartners of the boson xa (see, e.g., [70]).
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where left-moving bosons are normalized as φi(z1)φ
j (z2) ∼ −δij log(z1 − z2). Similarly, the

right-moving fermions �̃±
A (z) are bosonized using right-moving bosons φ̃i

A(z). In terms of
bosons, the R current is

J 3
R(z) = i

2

N∑
A=1

(
∂φ5

A − ∂φ6
A

)
(z), J±

R (z) =
N∑

A=1

e±i(φ5
A−φ6

A)(z). (A.5)

Note that �s
A(z), s = ± have R-charge J 3

R = s
2 , while �̃s̃

A(z), s̃ = ± have J̃ 3
R = s̃

2 .

The charge associated with the global S̃U(2)I symmetry is given by

Ĩ i = Ĩ i
hol + Ĩ i

antihol, (A.6)

where

Ĩ i
hol =

∫
dz

2π i
Ĩ i

hol(z), Ĩ i
antihol =

∫
dz

2πi
Ĩ i

antihol(z). (A.7)

The currents Ĩ i
hol(z), Ĩ

i
antihol(z) are given by

Ĩ 3
hol(z) = i

2

N∑
A=1

(
∂φ5

A + ∂φ6
A

)
(z), Ĩ±

hol(z) =
N∑

A=1

e±i(φ5
A+φ6

A)(z),

Ĩ 3
antihol(z) = i

2

N∑
A=1

(
∂̄ φ̃5

A + ∂̄ φ̃6
A

)
(z), Ĩ±

antihol(z) =
N∑

A=1

e±i(̃φ5
A+φ̃6

A)(z),

(A.8)

where we omitted the part that contains xa fields only, which is not relevant for us; see
[68] for the complete expression. The charge I i associated with the global SU(2)I does not
involve fermions and can also be found in [68]. Note that holomorphic part Ĩ i

hol and the
antiholomorphic part Ĩ i

antihol are not separately conserved; the chirality of the CFT fields is not

aligned with the chirality of the SO(4)I ∼= SU(2)I × S̃U(2)I symmetry.
It turns out to be convenient to define �α̃

A(z) by

�+
A(z) = �+

A(z) = 1√
2

(
ψ1

A + iψ2
A

) = eiφ5
A(z),

�−
A(z) = �−

A (z)† = 1√
2

(
ψ3

A − iψ4
A

) = e−iφ6
A(z).

(A.9)

We similarly define �̃α̃
A(z). Note that �α̃

A(z) and �̃α̃
A(z) have Ĩ -charge Ĩ 3 = α̃

2 .
In the SN orbifold CFT (A.2), there are twist fields σP (z), P ∈ SN , which permute the

copies of CFT as 1 → P(1), 2 → P(2), . . . , N → P(N) as one circles the point of insertion
of σP [58]. For example, if we have σ(12,...,n)(z) at z = 0, we should impose the boundary
condition on the fields xA(z), ψA(z) as follows,

x1(e
2π iz) = x2(z), . . . , xn(e

2π iz) = x1(z),

ψ1(e
2π iz) = ±ψ2(z), . . . , ψn(e

2π iz) = ±ψ1(z),
(A.10)

where ‘+’ is for the NS sector and ‘−’ is for the R sector. This permutation of CFTs can be
conveniently realized by going to a covering space on which the fields of the CFT are single
valued [64, 66]. In the case of σ(12,...,n)(z = 0), one can define a new coordinate t by

tn = bz near z = 0, (A.11)

so that circling n times around z = 0 corresponds to circling around t = 0 once. This
corresponds to inserting a twist field at z = 0 in the z-space that has the lowest conformal
weight 
n = 1

4

(
n − 1

n

)
[64, 66]. We will denote this twist operator henceforth by σn(z).

Twist fields with higher conformal weight are obtained by inserting some fields at t = 0 in
the t-space. In this way, computing the correlation function of twist fields reduces to finding
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a holomorphic map between the z-space and the covering t-space that realizes the twists
[64, 66]. Note that this method of covering space is applicable only to SN orbifolds, and not
applicable to general non-Abelian orbifolds [71].

One example of the operators that can be obtained by inserting a field at t = 0 is the chiral
primary operator σ−−

n (z) in the NS sector. Concretely, σ−−
n (z) is obtained by inserting in the

t-space the following operator [66],

σ−−
n (t) ≡ σ−

n (t)σ̃−
n (t̄), (A.12)

where

σ−
n (t) ≡ b−p2/n eip(φ5−φ6)(t), σ̃−

n (t̄) ≡ b̄−p2/n eip(̃φ5−φ̃6)(t̄). (A.13)

Here p ≡ n−1
2 , and φi(t), φ̃i(t̄ ) are the lift of φi

A(z), φ̃i
A(z) to the t-space, whose OPE is

φi(t1)φ
j (t2) ∼ −log(t1−t2). Note that σ−−

n (z) is not the coordinate transformation of σ−−
n (t),

but it is a ‘product’ of the pure twist operator σn(z) and the insertion σ−−
n (t). Therefore, the

conformal dimension of σ−−
n (z) is given by

h = 
n +
1

n

(
p2

2
+

p2

2

)
= n − 1

2
. (A.14)

Here 
n = 1
4

(
n − 1

n

)
is the conformal dimension of the pure twist σn(z). In the second

term, we divided the conformal dimension in the t-space by n to obtain the conformal
dimension in the z-space (remember that z ∝ tn) [66]. Similarly one can show that
(h, h̃) = (

j 3
R, j̃ 3

R

) = (
n−1

2 , n−1
2

)
. The chiral primary σ−−

n (z) has the smallest conformal
dimension among the chiral primary operators constructed on σn(z) [66]. Another important
fact is that σ−−

1 (z) is nothing but the unit operator.
The twist fields σP (z), P ∈ SN , considered above are not proper fields of the orbifold

CFT. A proper field of the SN orbifold CFT should be invariant under conjugation by any
element of SN . This means that the twist sector is in one-to-one correspondence with the
conjugacy class of SN [71]. One can construct a proper field from σP (z) by

�P (z) = λP

N !

∑
Q∈SN

σQPQ−1(z), (A.15)

where λP is a normalization constant. As long as we do this summation over SN at the
end of the computation of the correlation function, we can consider the cyclic permutation
σ(12,...,n)(z) ≡ σn(z), instead of σP (z) with general P ∈ SN .

Let us mention here one important aspect of the covering space method. As we discussed
above, computing correlation functions of twist fields reduces to the problem of finding a
holomorphic map z = f (t) that realizes the twists. This coordinate transformation leads to a
nontrivial Liouville action SL[f (t)], which contributes to the correlation function as eSL[f (t)]

[64, 66]. This Liouville factor is important when, for example, computing the correlation
function of twist fields at z = zi ; the precise form of the map f (t) depends on zi , and this
in turn leads to a nontrivial dependence of the correlation function on zi − zj . Actually
the normalization in (A.13), which depends also on the map f (t), also gives a nontrivial
contribution. However, what we will be interested in here is the zi dependence of the
correlation functions of non-twist operators at general points z = zi and twist operators at
fixed points z = 0,∞. Because eSL and the normalization of twist operators depend only
on the coordinates of twist operators, they are irrelevant for us and we will ignore them
altogether.
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Table 2. Single-trace chiral primaries in the NS sector. Here n = 1, 2, . . . , N , and α̃, β̃ = ±.
Summation over A = 1, 2, . . . , N is implied in all expressions, even if A appears only once (i.e.,
�α̃

A = ∑N
A=1 �α̃

A). Note that σ−−
1 = 1. The corresponding cohomology H 2h,2h̃(B), and the

weights and charge of the chiral primary field are shown. The R-charge of the corresponding R
ground state is also shown.

Chiral primaries H 2h,2h̃(B) (h, h̃)NS = (
j3
R, j̃3

R

)
NS SU(2)I × S̃U(2)I

(
j3
R, j̃3

R

)
R

σ−−
n H 0,0

(
n−1

2 , n−1
2

)
(1, 1)

(− 1
2 , − 1

2

)
τ α̃,̃s=−
n = �α̃

Aσ−−
n H 1,0

(
n
2 , n−1

2

)
(1, 2)

(
0,− 1

2

)
τ s=−,̃α
n = �̃α̃

Aσ−−
n H 0,1

(
n−1

2 , n
2

)
(1, 2)

(− 1
2 , 0

)
σ +−

n = �+
A�−

Aσ−−
n H 2,0

(
n+1

2 , n−1
2

)
(1, 1)

( 1
2 , − 1

2

)
σ

α̃β̃
n = �α̃

A�̃
β̃
Aσ−−

n H 1,1
(

n
2 , n

2

)
(1, 3) ⊕ (1, 1) (0, 0)

σ−+
n = �̃+

A�̃−
Aσ−−

n H 0,2
(

n−1
2 , n+1

2

)
(1, 1)

(− 1
2 , 1

2

)
τ s=+,̃α
n = �+

A�−
A�̃α̃

Aσ−−
n H 2,1

(
n+1

2 , n
2

)
(1, 2)

( 1
2 , 0

)
τ α̃,̃s=+
n = �α̃

A�̃+
A�̃−

Aσ−−
n H 1,2

(
n
2 , n+1

2

)
(1, 2)

(
0, 1

2

)
σ ++

n = �+
A�−

A�̃+
A�̃−

Aσ−−
n H 2,2

(
n+1

2 , n+1
2

)
(1, 1)

( 1
2 , 1

2

)

A.3. Chiral primaries and spectral flow to R sector

We are interested in the R sector ground states of the D1–D5 CFT. The R ground states can be
obtained by first finding chiral primary operators in the NS sector, and then spectral flowing
to the R sector.

So, let us first focus on the chiral primaries of the orbifold CFT (A.2) in the NS sector.
The chiral primaries with weight (h, h̃) of N = (4, 4) SCFT on a manifold K correspond
to the elements of the cohomology H 2h,2h̃(K) [72]. In the present case of the orbifold
K = (T 4)N/SN , the cohomology H ∗(K) can be constructed as follows [73]. Let the basis of
H ∗(B) be wa, a = 1, 2, . . . , dim(H ∗(B)) = 16, where B is the diagonal T 4, i.e., the sum of
all copies of T 4. For each wa , introduce a ‘one-particle creation operator’ αa

−n, n = 1, 2, . . . .

Then there is a one-to-one correspondence between the elements of H ∗(K) and the states
in the ‘Fock space’ generated by αa

−n. Namely, for each element of H ∗(K), there is a state∏
n,a

(
αa

−n

)Nna |0〉, ∑
n nNn = N . If wa is an even (odd) form, αa

−n is bosonic (fermionic).
In the present case, H ∗(B) has eight elements of even rank and eight elements of odd

rank, so there are corresponding 8+8 chiral primaries. The chiral primaries corresponding to
αa

−n are constructed by multiplying the above 8+8 chiral primaries with the chiral primary
σ−−

n (z) defined in (A.12), which is a twist operator of order n. In table 2, we list all chiral
primary fields in the NS sector that correspond to the ‘one-particle creation operator’ αa

−n.
They are single-trace in the sense that they involve only one summation over copies

∑N
A=1

and only one twist operator σ−−
n (z). We also present their conformal weight, R-charges, and

SU(2)I × S̃U(2)I charges, as well as the R-charges of the R ground states that can be obtained
by spectral flow, using (A.18). One sees that there are eight bosonic and eight fermionic
single-trace chiral primaries:

σ s̃s
n , σ α̃β̃

n , τ sα̃
n , τ α̃̃s

n . (A.16)

Here, s, s̃ = ± correspond to SU(2)R × S̃U(2)R charges
(
J 3

R, J̃ 3
R

) = (
s
2 , s̃

2

)
, while α̃, β̃ = ±

correspond to S̃U(2)I charge Ĩ 3 = α̃
2 . The fields τ sα̃

n , τ α̃̃s
n which correspond to odd-rank

elements of H ∗(B) are indeed fermionic because � anticommute. These single-trace chiral
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primaries are known to be in one-to-one correspondence with the Kaluza–Klein spectrum of
particle supergravity on AdS3 × S3 × T 4 [40]. We will use σ−−

n , σ ++
n etc, with explicit +,−

signs exclusively for denoting the σ s̃s
n operators, not σ

α̃β̃
n .

Now let us consider spectral flowing to the R sector. From (A.5), the spectral flow operator
that maps NS sector operators to the R sector operators is

U(z) = exp

[
− i

2

N∑
A=1

(
φ5

A − φ6
A

)]
(z), (A.17)

where we wrote the holomorphic part only. The spectral flow relates the charges in the R and
NS sectors as follows:

hR = hNS − (
j 3
R

)
NS +

c

24
,

(
j 3
R

)
R = (

j 3
R

)
NS − c

12
. (A.18)

Here, roman R stands for Ramond, while italic R is for R-charge. The spectral flow operator
in the t-space is given by coordinate transformation of U(z) by

U(t = 0) ∝ exp
[
−i

n

2
(φ5 − φ6)

]
(t = 0), (A.19)

where we used φA(z) → φ(t e2π i(A−1)/n)−→
t→0

φ(t = 0). For example, we can use this to map

the NS sector twist operator [σ−
n (t)]NS ∝ exp

[
i n−1

2 (φ5 − φ6)
]
(t) into the R sector:

[σ−
n (t)]NS → [σ−

n (t)]R ∝ e− i
2 (φ5−φ6)(t). (A.20)

We can check that this has the correct conformal dimension and R-charge as a R ground state:

hR = 
n +
1

n

[
1

2

(
1

2

)2

+
1

2

(
1

2

)2
]

= n

4
= c

24
,

(
j 3
R

)
R = −1

2
. (A.21)

Including other operators, the list of R ground states corresponding to single-trace NS chiral
primaries is[
σ s̃s

n (t)
]

R = e
is
2 (φ5−φ6)(t) e

ĩs
2 (̃φ5−φ̃6)(t̄),

[
σ α̃β̃

n (t)
]

R = e
ĩα
2 (φ5+φ6)(t) e

ĩβ
2 (̃φ5+φ̃6)(t̄),[

τ sα̃
n (t)

]
R = e

is
2 (φ5−φ6)(t) e

ĩα
2 (̃φ5+φ̃6)(t̄),

[
τ α̃̃s
n (t)

]
R = e

ĩα
2 (φ5+φ6)(t) e

ĩs
2 (̃φ5−φ̃6)(t̄).

(A.22)

Here, we ignored normalization constants because they are irrelevant for our purposes as
explained at the end of the last subsection. We will call these operators (A.22) single-trace
R ground states. Henceforth, we restrict ourselves to the R sector and drop the subscript R
from the twist operators (A.22).

General R ground states are obtained by multiplying the single-trace R ground states
(A.22) together. They can be written as

σ =
∏
n,µ

(
σµ

n

)Nnµ
(
τµ
n

)N ′
nµ ,∑

n,µ

n(Nnµ + N ′
nµ) = N, Nnµ = 0, 1, 2, . . . , N ′

nµ = 0, 1,
(A.23)

where µ labels the eight polarizations of bosons and fermions, i.e., µ = (s, s̃ ), (̃α, β̃) for
bosons µ = (s, α̃), (̃α, s̃ ) for fermions. The numbers

{Nnµ,N ′
nµ} (A.24)

uniquely specify the R ground state. We will refer to the factors σ
µ
n , τ

µ
n in (A.23) as constituent

twist operators of the twist operator σ .
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A.4. Correlation function of non-twist operators

We would now like compute correlation functions in the R ground states of the D1–D5 CFT.
Such CFT correlation functions are related to supergravity amplitudes in the dual geometry
via AdS/CFT.

We want to compute the two-point function of the ‘probe’ operator A in the state created
by a general twist operator. Let us assume that A does not contain twists and can be written
as a sum over copies of the CFT,

A = 1√
N

N∑
A=1

AA, (A.25)

where AA is a non-twist operator that lives in the Ath copy. For example, we can take

AA = ∂Xa
A(z)∂̄Xb

A(z), (A.26)

which corresponds to fluctuation of the metric in the internal T 4 direction.
Let us consider the general R ground state (A.23). If we denote σ

µ
n , τ

µ
n collectively by

σ
µ̂
n , and Nnµ,N ′

nµ by Nnµ̂, then we can write (A.23) as

σ =
∏
n,µ̂

(
σ µ̂

n

)Nnµ̂
. (A.27)

The correlation function of the probe operator A in this state is, taking into account the
summation over copies (equation (A.15)),

〈�†A†A�〉 = 〈σ †A†Aσ 〉 = 1

N

N∑
A,B=1

〈
σ †A†

AABσ
〉

= 1

N

N∑
A,B=1

〈[ ∏
n,µ̂

(
σ µ̂

n

)Nnµ̂

]†

A†
AAB

[ ∏
ν,µ̂

(
σ µ̂

n

)Nnµ̂

]〉

= 1

N

∑
n,µ̂

Nnµ̂

∑
A,B∈σ

µ̂
n

〈[
σ µ̂

n

]†A†
AABσ µ̂

n

〉
= 1

N

∑
n,µ̂

nNnµ̂

n∑
A=1

〈[
σ

µ̂

(1,...,n)

]†A†
AA1σ

µ̂

(1,...,n)

〉
, (A.28)

where
∑

A,B∈σ
µ̂
n

means summing over copies A,B that are involved in the n-cycle of σ
µ̂
n . In

the first equality, we used the fact that A is a sum over copies, (A.25). In the fourth equality,
we used the fact that the ‘initial’ and ‘final’ states must have the same length of twist and the
same SU(2) charges to give a non-vanishing correlator, since A†

AAB does not involve twist

or charges. We assumed that the three-point function vanishes,
〈[
σ

µ̂
n

]†AAσ
µ̂
n

〉 = 0, which is
true in the case considered in this paper. Note that the final expression (A.28) decomposed
into contributions from constituent twist operators. This is because we restrict ourselves to
non-twist probes A, and because we are in the orbifold point approximation and ignoring
interactions. Once we start considering twist probes or interaction, this will no longer be the
case.

Therefore, for a non-twist operator A in the orbifold approximation, all we have to
compute is the four-point function〈[
σ

µ̂

(1,...,n)(z = ∞)
]†AA(z1)

†AB(z2)σ
µ̂

(1,...,n)(z = 0)
〉 ≡ 〈AA(z1)

†AB(z2)〉σ µ̂

(1,...,n)
, (A.29)

where 1 � A,B � n.
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A.5. Boson correlation function

Let us evaluate the correlation function (A.28), (A.29) for A a purely bosonic non-twist
operator such as ∂X∂̄X. In this case, we can replace the twist operator σ

µ̂

(1,...,n)(z) in (A.29)
with the pure twist operator σ(1,...,n)(z), since these two are different only in their fermionic
dressing, to which the bosonic operator A is insensitive.

The twist operators σ(1,...,n)(z) at z = 0,∞ mean that Xa
A(z) permute as Xa

1 → Xa
2 →

· · · → Xa
n → Xa

1 as one circles z = 0,∞. As explained around (A.11), we can conveniently
go to the covering t-space by

z = btn (A.30)

on which we have single-valued fields Xa(t). If we normalize the correlation function in the
t-space as 〈

A†
A(t1)AB(t2)

〉 = C

(t1 − t2)2h(t̄1 − t̄2)2h̃
, (A.31)

where (h, h̃) is the conformal weight of A, then the correlation function on the z-plane is〈
A†

A(z1)AB(z2)
〉
σ(1,...,n)

= C

n2h+2h̃(z1z2)h(z1z2)h̃
[(

z1
z2

) 1
2n − (

z2
z1

) 1
2n

]2h[(
z1
z2

) 1
2n − (

z2
z1

) 1
2n

]2h̃
.

If we go to the cylinder coordinate w by

z = e−iw, (A.32)

then the correlation function is〈
A†

A(w1)AB(w2)
〉
σ(1,...,n)

= C[
2n sin

(
w
2n

)]2h [
2n sin

(
w
2n

)]2h̃
, (A.33)

where

w ≡ w1 − w2, w ≡ w1 − w2. (A.34)

Here, the copy labels A,B mean that w1 and w2 must be understood as w1 + 2π(A − 1) and
w2 + 2π(B − 1), respectively.

The result (A.33) expresses the fact that the effective circumference of the CFT cylinder
is 2πn, where the factor of n comes from the permutation of n copies of the CFT. Indeed, from
this picture one can easily write down (A.33) directly, simply by inserting the appropriate
factors of n in the usual free correlator on the cylinder.

A.6. Fermion correlation function

Now let us evaluate the correlation function (A.29) in the case where A involves fermions ψ .
As an example, let us consider

Gz ≡ 〈
σ−−

n (z∞)†�+
A(z1)

†�+
B(z2)σ

−−
n (z0)

〉
. (A.35)

It is understood that we will take z∞ → ∞, z0 → 0 in the end, so we can use (A.30) as the
relation between z and t coordinates. Using the expression of operators in terms of bosons
(equations (A.4), (A.22)), one computes

Gz ∝ eSL
〈[

e
i
2 (φ5−φ6)(t∞) e− i

2 (̃φ5−φ̃6)(t̄∞)
]

e−iφ5
(t1) eiφ5

(t2)
[
e− i

2 (φ5−φ6)(t0) e
i
2 (̃φ5−φ̃6)(t̄0)

]〉
×

(
dt1

dz1

)1/2 (
dt2

dz2

)1/2
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∝ (t∞ − t1)
−1/2(t∞ − t2)

1/2(t∞ − t0)
−1/2(t̄∞ − t̄0)

−1/2(t1 − t2)
−1(t1 − t0)

1/2(t2 − t0)
−1/2

×
(

dt1

dz1

)1/2 (
dt2

dz2

)1/2

→ t−1/2
∞ t̄−1/2

∞ (t1 − t2)
−1t

1/2
1 t

−1/2
2

(
dt1

dz1

)1/2(
dt2

dz2

)1/2

, (t∞ → ∞, t0 → 0). (A.36)

SL is the Liouville action as explained at the end of section A.2, which is an irrelevant factor
for our purpose and was dropped. Now rewrite t in terms of z using t ∝ z1/n. The factor
t
−1/2
∞ t̄

−1/2
∞ , along with the dropped Liouville factor eSL and the normalization constants of the

twist operators, corresponds in the Lorentzian signature simply to the phase e−iEt due to the
initial and final states σ−−

n . Thus they are irrelevant and we will drop this factor henceforth.
The result is

Gz = 〈
�+

A(z1)
†�+

B(z2)
〉
σ−−

n
∝ 1

(z1z2)1/2[1 − (z2/z1)1/n]
. (A.37)

Passing to the cylinder coordinate w by z = e−iw,〈
�+

A(w1)
†�+

B(w2)
〉
σ−−

n
= 〈

�+
A(z1)

†�+
B(z2)

〉
σ−−

n

(
dz1

dw1

)1/2 (
dz2

dw2

)1/2

∝ 1

1 − eiw/n
, (A.38)

where w = w1 − w2. As before, the copy labels A,B mean that w1, w2 must be understood
as w1 + 2π(A − 1), w2 + 2π(B − 1), respectively. Therefore, more precisely,〈
�+

A(w1)
†�+

B(w2)
〉
σ−−

n
= i

n[1 − ei(w+2π(A−B))/n]
= ei(w+2π(A−B))/2n

2n sin w+2π(A−B)

2n

, (A.39)

where the normalization was fixed by requiring �+
A(w1)

†�+
B(w2) ∼ δAB/w.

Similarly, one can compute other correlators of the SU(2)R doublet fields �s
A as〈

�s ′
A(w1)

†�s ′
B (w2)

〉
σ s̃s

n

= eiss ′w/2n

2n sin w
2n

,
〈
�s ′

A(w1)
†�s ′

B (w2)
〉
σ

α̃β̃
n

= eĩαw/2n

2n sin w
2n〈

�s ′
A(w1)

†�s ′
B (w2)

〉
τ α̃̃s
n

= eĩαw/2n

2n sin w
2n

,
〈
�s ′

A(w1)
†�s ′

B (w2)
〉
τ sα̃
n

= eis̃sw/2n

2n sin w
2n

,

(A.40)

where it is understood that w really means w + 2π(A−B); or, in terms of the S̃U(2)I doublet
fields �α̃

A defined in (A.9),〈
�α̃

A(w1)
†�α̃

B(w2)
〉
σ s̃s

n

= eisw/2n

2n sin w
2n

,
〈
�α̃

A(w1)
†�α̃

B(w2)
〉
σ

β̃γ̃
n

= eĩαβ̃w/2n

2n sin w
2n〈

�α̃
A(w1)

†�α̃
B(w2)

〉
τ

β̃s̃
n

= eĩαβ̃w/2n

2n sin w
2n

,
〈
�α̃

A(w1)
†�α̃

B(w2)
〉
τ

sβ̃
n

= eisw/2n

2n sin w
2n

.

(A.41)

Just as we remarked after the derivation of the bosonic correlator (A.33), these results
for fermionic correlators express the fact that the effective length of the CFT cylinder has
increased by a factor of n due to the permutation, and the results could have been obtained
from this property alone.

Appendix B. Statistical mechanics of the ensemble with J=/ 0

In this appendix, we study the statistical mechanics of the ensemble with J = 0 studied in
section 3.3.
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For the special case NB = 24, nB = 1, NF = nF = 0, i.e., for the D1–D5 system on
K3, state counting was first studied in [50] from the heterotic dual viewpoint. More recently,
statistical mechanics of the K3 case was analysed in [21], and the following discussion is a
more detailed and generalized version of the one presented in [21].

For the canonical ensemble of bosons and fermions with the spin assignment (3.6), the
partition function is

Z(β,µ) = Tr[e−β(N−µJ)] =
∞∏

n=1

[(1 + z1/2qn)(1 + z−1/2qn)]nF (1 + qn)NF −2nF

[(1 − zqn)(1 − z−1qn)]nB (1 − qn)NB−2nB

= 2nB− NF
2 q

NB −NF
24 η(τ)−NB+3nB− NF

2

[
ϑ2

(
ν
2

∣∣τ)
cos πν

2

]nF [
sin πν

ϑ1(ν|τ)

]nB

ϑ2(0|τ)
NF

2 −nF . (B.1)

Here q = e2π iτ = e−β, z = e2π iν = eβµ. After modular transformation, one obtains the
expression for β 
 1,

Z(β,µ) = 2− NF
2 e

π2c
6β

− β

24 (NB−NF )− µ2β

2 (nB− nF
4 )

(
β

2π

) NB
2 −nB

[
sinh βµ

2

sin πµ

]nB

1[
cosh βµ

4

]nF
(B.2)

up to exponentially suppressed terms by e− 2π2

β . Here, c ≡ NB + NF /2. For the ‘Hamiltonian’
N −µJ to be positive definite, we must restrict the range of the chemical potential to |µ| < 1.
Therefore, for β 
 1, one can further simplify (B.2) as

Z(β,µ) ∼ β
NB

2

(
µ

sin πµ

)nB

eπ2c/6β, (B.3)

up to a numerical factor. Note that this result does not depend on nF ; all spins are carried
by bosons. This is because the Pauli exclusion principle exacts a high price in N when the
fermions carry a macroscopic amount of angular momentum.

Let us compute the entropy of this system by thermodynamic approximation, i.e., by
saddle point approximation. By the standard formula of thermodynamics,

N = −
(

∂ log Z

∂β

)
βµ

= cπ2

6β2
+

nBµ

β
g(µ), J =

(
∂ log Z

∂(βµ)

)
β

= nB

β
g(µ), (B.4)

where

g(µ) ≡ 1

µ
− π

tan πµ
= π2µ

3
+

π4µ3

45
+ · · · . (B.5)

In deriving (B.4), we ignored βNB/2 in (B.3) in the thermodynamic approximation. The
entropy is

S = β(N − µJ − F) = β(N − µJ) + log Z = cπ2

3β
+ nB log

(
µ

sin πµ

)
. (B.6)

From (B.4), (B.6), we obtain

S = 2π

√
c

6
(N − µJ) + nB log

(
µ

sin πµ

)
, (B.7)

J = 3n2
Bµg(µ)2

cπ2

[√
1 +

2cNπ2

3µ2n2
Bg(µ)2

− 1

]
. (B.8)
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From relation (B.8) and the form of the function g(µ) (B.5), it is easy to see that µ → sign(J )

is needed in order that |J | = O(N). More precisely, we need |µ − sign(J )| ∼ N−1/2.
Therefore,

S = log dN,J ≈ 2π

√
c

6
(N − |J |), (B.9)

where we dropped the subleading log term coming from the second term in (B.7). Note
that µ → ±1 implies that the energy of bosons with J = ±1 vanishes and Bose–Einstein
condensation of those bosons occurs.
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