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The electronic states in two-dimensional organic conductor �-(BEDT-TTF)2I3 have been investigated

to show the noticeable property of the massless fermions, i.e., the linear dispersion which exists on the

contact point between the conduction band and the valence band. These fermions are well known in

bismuth and graphite, where the former are described by the Dirac equation and the latter obeys the Weyl

equation corresponding to the massless fermion. In the present study, we show that the effective

Hamiltonian describing the massless fermions in �-(BEDT-TTF)2I3 contains intrinsically new terms of

Pauli matrices �z and �0 in addition to the Weyl equation which consists of �x and �y. The new massless

fermions are robust against the charge disproportionation, and induce the anomalous momentum-

dependence in the charge density.
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1. Introduction

The massless fermions in condensed matter physics,

which display the linear dispersion of the energy band in the

vicinity of the contact point between the conduction band

and the valence band,1) have been studied in bismuth2–4) and

graphite5–10) showing anomalous properties, e.g. the anom-

alous diamagnetism, the absence of the backward scattering

and the universal conductivity. The fermions in bismuth are

described by the Dirac equation with the Hamiltonian which

consists of 4� 4 components.2) The fermions in graphite

obey the Weyl equation for neutrino,5,6) which is derived

from the Dirac equation without rest mass, and consists of �x
term and �y term.

In two-dimensional organic conductor �-(BEDT-TTF)2I3,

the zero-gap state (ZGS) with the massless fermions was

found theoretically,11,12) by using the transfer integrals13)

calculated from the experimental data under uniaxial strain.

The characteristic of the ZGS is the existence of the contact

point on the Fermi surface, which is located between

the conduction band and the valence band. The ZGS was

verified by the first principle calculation.14,15) The puzzled

phenomena of the weak temperature dependence of resis-

tivity and the strong T2 dependence of carrier density, which

were discussed as the narrow gap semiconductor,16,17) have

been explained by applying the self-consistent Born approx-

imation to the ZGS.18) In addition to ZGS, there are several

interesting phenomena in �-(BEDT-TTF)2I3. The stripe

charge ordering, which occurs at low pressures,19) has been

explained by the mean-field theories.20–22) For the super-

conductivity, which is found in the presence of the stripe

charge ordering under uniaxial pressure,23) has been inves-

tigated by using the extended Hubbard model.24) The paring

mechanism which is mediated by the spin fluctuation has

been maintained and interpreted in terms of the self-doped

pseduo-one-dimenstional Heisenberg chain. Recently, the

charge disproportionation has been observed at temperature

higher than the transition temperature of the stripe charge

ordering.25) We examine the effect of charge disproportio-

nation on electronic state of the massless fermion by

calculating the momentum dependence of charge density

of the respective site.

In the present study, the electronic states of the massless

fermions in �-(BEDT-TTF)2I3 are investigated. The ex-

tended Hubbard model describing �-(BEDT-TTF)2I3 is

given and is treated by the mean-field theory in §2. In §3,

we show that the Hamiltonian describing the massless

fermions has intrinsically new terms of �z and the identity

matrix �0 in addition to the Weyl equation which consists of

�x and �y. In §4, we show the robust stability of the massless

fermion against the charge disproportionation, which orig-

inates from the variety of transfer integrals. In §5, we

calculate the anomalous momentum-dependence of the

charge density, which is related to both the massless fermion

and the charge disproportionation. In §6, the anomaly on the

contact point is discussed in terms of the wave function of

the massless fermions and summary is given.

2. Hamiltonian and Mean-Field Theory

The model describing the two-dimensional electronic

system in the �-(BEDT-TTF)2I3 is shown in Fig. 1.26) The

unit cell consists of four BEDT-TTF molecules with sites 1,

2, 3, and 4, which correspond to sites A, A0, B and C in the

conventional notation.19) There are six electrons in the

four molecules, i.e., the 3/4-filled band. The extended

Hubbard model with the on-site repulsive interaction U and

the anisotropic nearest-neighbor repulsive interaction V��

is given by11)

H ¼
X

ði�:j�Þ;�

ðti�;j�a
y
i��aj�� þ h.c.Þ

þ
X

i�

Ua
y
i�"a

y
i�#ai�#ai�"

þ
X

ði�:j�Þ;�;�0

V��a
y
i��a

y
j��0aj��0ai�� ; ð1Þ

where i; j denote site indices of the unit cell, and �; �

(¼ 1; 2; 3; 4) are indices of BEDT-TTF sites in the unit cell.

Hereafter, we take eV as the unit of the energy. In the first
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term, ayi�� denotes a creation operator with spin � (¼ ";#)

and ti�;j� is the transfer energy between the ði; �Þ site and the

ð j; �Þ site. The transfer integrals under the uniaxial pressure

(Pa) along the a-axis is obtained by the extrapolation

formula

tAðPaÞ ¼ tAð0Þð1þ KAPaÞ: ð2Þ

The transfer energies tA with A ¼ c1; c2; . . . ; p4 and the

coefficients KA are given by the data at Pa ¼ 0 kbar27) and

at Pa ¼ 2 kbar,13) where tp1ð0Þ ¼ 0:140, tp2ð0Þ ¼ 0:123,

tp3ð0Þ ¼ �0:025, tp4ð0Þ ¼ �0:062, tc1ð0Þ ¼ 0:048, tc2ð0Þ ¼

�0:020, tc3ð0Þ ¼ �0:028, tc4ð0Þ ¼ �0:028, and Kp1 ¼

0:011, Kp2 ¼ 0, Kp3 ¼ 0, Kp4 ¼ 0:032, Kc1 ¼ 0:167, Kc2 ¼

�0:025, Kc3 ¼ 0:089.

The charge ordering is estimated within the mean field

theory11,20,21) given by

HMF ¼
X

k���

~�����ðkÞa
y
k��ak��

�
X

�

U�hn�"ihn�#i �
X

h�;�i�;�0

V��hn��ihn��0i; ð3Þ

~�����ðkÞ ¼ ���½U�hn� ���i þ
X

�0�0

V��0hn�0�0i� þ ���ðkÞ; ð4Þ

���ðkÞ ¼
X

�

t��e
ik��; ð5Þ

where n�� ¼ ayi��ai�� (i.e., independent of the site i),

��� ¼ ��, and � denotes the vector representing the nearest

neighbor of the unit cell. The Hamiltonian (3) is diagonal-

ized by

X

4

�¼1

~�����ðkÞd�r�ðkÞ ¼ �r�ðkÞd�r�ðkÞ; ð6Þ

where �r� are the eigenvalue with a descending order,

�1�ðkÞ > �2�ðkÞ > �3�ðkÞ > �4�ðkÞ, and d�r�ðkÞ (r ¼

1; 2; 3; 4) are the corresponding eigenvectors. In terms of

eq. (6), the number of electrons on �-site with spin �, hn��i,

is expressed as

hn��i ¼
X

4

r¼1

d��r�ðkÞd�r�ðkÞ
1

exp½ð�r�ðkÞ � �Þ=T� þ 1
; ð7Þ

where T is the temperature (kB ¼ 1). Equation (7) is the

self-consistency equation for hn��i. The quantity � is the

chemical potential determined from a condition

3

2
¼

1

4

X

��

hn��i: ð8Þ

which gives the electron with 3/4 filling per each molecule.

The mean-field solutions are as follows.24) The zero-gap

state (ZGS) accompanied by the charge disproportionation

exists in the region of high pressure (Pa > 4:3 kbar). There

are insulator phase (0 � Pa < 3:3 kbar) and the metallic

phase (3:3 � Pa < 4:3 kbar) accompanied by the stripe

charge ordering in the region of lower pressure. The

superconductivity in the presence of the stripe charge

ordering, which is mediated by the spin fluctuation, occurs

in the metallic phase. The parameters U ¼ 0:4, Vc ¼ 0:17,

and Vp ¼ 0:05 are chosen so that the stripe pattern is

consistent with that of the experiment.19) The electronic

states which vary with increasing Pa reproduce well those of

the experiment.23)

3. Massless Fermions

Figure 2 shows the energy bands with the linear dis-

persion in the vicinity of the contact point k0 at which the

conduction band (the electron band) and the valence band

(the hole band) degenerate,12) i.e., so-called the massless

fermions. The Fermi energy coincides with the energy of

the contact point. This state has been called as the ZGS.

In the present study, we investigate the electronic states

in the vicinity of the contact point. By making use of the

expansion with respect to ~kk (¼ k� k0), the Hamiltonian

around the contact point k0 is given as

2(A’)

3(B)

c1

c4

p4p1

p2

p4

x(b)

y(a)
1(A)

c2

c3

p3

p1

p3

p2

4(C) Vc

Vp
Vp

Fig. 1. The model describing the electronic system of �-(BEDT-TTF)2I3.

The unit cell consists of four BEDT-TTF molecules 1, 2, 3, and 4 with

seven transfer integrals tA. The the nearest neighbor repulsive interactions

are given by Vc and Vp. The a- and b-axes in the conventional notation

correspond to the y- and x-axes in the present paper.

kx

ky

0.02

0

0.02

0.04

Fig. 2. The massless fermions in �-(BEDT-TTF)2I3. The vertical axis

represents the band energy (eV), on the kx–ky plane (k0x � 0:1	 � kx �

k0x þ 0:1	 and k0y � 0:1	 � ky � k0y þ 0:1	), where the contact point is

given by k0 ¼ ð0:740	;�0:346	Þ at Pa ¼ 4:5 kbar, U ¼ 0:4, Vc ¼ 0:17,

and Vp ¼ 0:05. The upper (lower) cone corresponds to the conduction �1
(valence �2) band. The Fermi energy coincides with the contact point in

the ZGS. Another contact point with k ¼ �k0 also has the massless

fermions.
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HðkÞ ¼ Hðk0Þ þ H0ð ~kkÞ; ð9Þ

H0ð ~kkÞ ¼ ~kk �rHðk0Þ ð10Þ

For H0, we take the effective Hamiltonian represented in

terms of 2� 2 components for the conduction band (
 ¼ 1)

and the valence band (
 ¼ 2), because the linear components

are dominant at k0 and the components related to the other

bands (
 ¼ 3 or 4) are negligible. By using the velocity

matrix u

 0 ðkÞ given as

u�

 0ðkÞ ¼
X

��

d��
ðkÞd�
 0ðkÞ
@ ~����ðkÞ

@k�
; ð11Þ

where � ¼ x; y and 
; 
 0 ¼ 1; 2, the velocities v�ðkÞ are

defined as

vxðkÞ ¼ Re u12ðkÞ; ð12Þ

vyðkÞ ¼ � Im u12ðkÞ; ð13Þ

vzðkÞ ¼
1

2
ðu11ðkÞ � u22ðkÞÞ; ð14Þ

v0ðkÞ ¼
1

2
ðu11ðkÞ þ u22ðkÞÞ; ð15Þ

respectively. All the components of v�ðkÞ (� ¼ x; y; z; 0) are

of the same order. The effective Hamiltonian Heff can be

expressed as28)

Heffð ~kkÞ ¼
X

�¼x;y;z;0

~kk � v�ðk
0
0Þ��; ð16Þ

where �x;y;z are the Pauli matrices and �0 is the identity

matrix. Since u

 0ðkÞ are singular at k0 [see Fig. 3(a)], we

introduce a momentum k
0
0 which is infinitesimally different

from the contact point k0. The direction of k
0
0 � k0 is

arbitrary. The linear dispersion �effð ~kkÞ with a cone is

obtained by diagonalization of Heff .

�effð ~kkÞ ¼ ~kk � v0ðk
0
0Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X




ð ~kk � v
ðk
0
0ÞÞ

2
r

ð17Þ

¼
X

�

~kk�v
�
0ðk

0
0Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

��0

~kk� ~kk�0Q��0ðk00Þ

r

; ð18Þ

where Q��0 ¼ 4
P


 v
�

v

�0


 and 
 ¼ x; y; z. Although eq. (16)

depends on the direction of k00 � k0, the eigenvalues �effð ~kkÞ

are independent of the choice of k00. Here we note that the

Hamiltonian describing the massless fermions in graphite

consists of �x and �y terms with vx ¼ ðv; 0Þ and vy ¼ ð0; vÞ

and then obeys the Weyl equation for the neutrino. The

Weyl equation is obtained by vanishing rest mass term of the

relativistic Dirac equation which consists of 4� 4 compo-

nents.4,7) In eq. (16), new terms of �z and �0 are added to the

Weyl equation. The term of �0 leads to the anisotropic

velocity. Thus Heff in eq. (16) gives new massless fermions

which have the anisotropy of the velocity and the inclination

of the cone. In addition, the corresponding quantity on

another contact point at �k0 shows a fact that v�ð�k0 þ

�kÞ ¼ �v�ðk0 � �kÞ due to the crystal symmetry.

The velocity matrix u

 0ðkÞ has anomalous momentum

dependence around k0. Figures 3(a) and 3(b) show the

momentum dependence of ux11ðkÞ in the vicinity of k0

(k0x � 0:1	 � kx � k0x þ 0:1	 and k0y � 0:1	 � ky � k0y þ

0:1	). There are anti-symmetric component around k0 with

a discontinuous jump at k0. The anomaly comes from the

property of the wave function of the massless fermion

(discussed in §6). The anomaly in the momentum depen-

dence of u

 0ðkÞ cancels completely for v0ðkÞ as shown in

ky

-0.2

-0.1

0

kx

(a) (b)

Fig. 3. The momentum dependence of ux11ðkÞ (a) and the contour plot (b) in the region (k0x � 0:1	 � kx � k0x þ 0:1	 and k0y � 0:1	 � ky � k0y þ 0:1	) at

Pa ¼ 4:5 kbar. There is anti-symmetric component around k0 with a discontinuous jump at k0.

ky

-0.2

-0.175

-0.15

-0.125

-0.1

kx

Fig. 4. The momentum dependence of ux11ðkÞ þ u
y
22ðkÞ in the region

of k0x � 0:1	 � kx � k0x þ 0:1	 and k0y � 0:1	 � ky � k0y þ 0:1	. The

strong momentum dependences of ux11ðkÞ and u
y
22ðkÞ cancel each other

completely.
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Fig. 4 in the vicinity of k0 (k
0
x � 0:1	 � kx � k0x þ 0:1	 and

k0y � 0:1	 � ky � k0y þ 0:1	), where ux11ðkÞ þ ux22ðkÞ ¼

2vx0ðkÞ. For example, we obtain fixed values v0ðk0Þ ¼

ð�8:21� 10�2;�1:29� 10�2Þ (eV with the lattice constant

a ¼ b ¼ 1) at Pa ¼ 4:5 kbar.

The anomaly of v
ðkÞ (
 ¼ x; y; z) is understood from the

property of the rotation of these vectors. When k goes

counterclockwise around k0, these vectors also rotate

counterclockwise, with the variation of the magnitude of

these vectors. The anomaly in v
ðkÞ vanish in Q��0ðkÞ

completely. Then we obtain fixed values Qxxðk0Þ ¼ 4:40�

10�2, Qxyðk0Þ ¼ Qyxðk0Þ ¼ 1:15� 10�2 and Qyyðk0Þ ¼

3:34� 10�2 at Pa ¼ 4:5 kbar.

In order to see the degree of anisotropy, we rotate ~kkx- and
~kky-axis to ~KKx and ~KKy-axis to take the principal axis of the

ellipse. Thus we obtain
X

��0

~kk� ~kk�0Q
��0 ðk0Þ ¼ A2

x
~KK2
x þ A2

y
~KK2
y ; ð19Þ

where Ax ¼ 0:227, Ay ¼ 0:161, and the rotational angle of

the axis is given by � ¼ �0:568 rad.

Figure 5 shows the trajectories of the contact points with

varying Pa, which are calculated by the extrapolation in the

tight-binding model [eq. (2)] with increasing Pa. The contact

point emerges at M0-point which corresponds to the metallic

phase accompanied by the stripe charge ordering. The point

moves from M0-point (Pa ¼ 3:3 kbar) to the cross (�)-point

(Pa ¼ 4:3 kbar), where the Fermi energy does not coincide

with the contact point. The contact point in the ZGS jumps

into another cross (�)-points (Pa ¼ 4:3 kbar) and moves

toward the �-point. The dashed curves are obtained for the

non-interacting case, where the contact point also moves

form open-circle point (Pa ¼ 0 kbar) toward the �-point.

A pair of the contact points at �k0 approaching the �-point

each other vanish due to collision at Pa ¼	 40 kbar. The

electronic system becomes the band insulator at pressures

higher than Pa ¼	 40 kbar. For pressures just before the

collision, the anisotropy of the velocity and the inclination

of the cone are strongly enhanced, and two Van Hove

singularities approach the Fermi energy each other.

4. Charge Disproportionation vs Massless Fermion

We investigate the origin of the charge disproportionation

observed in �-(BEDT-TTF)2I3.
25) Figure 6 shows the charge

disproportionation as the function of the magnitude of the

interactions U, Vp, and Vc, which are chosen as U ¼ 0:4x,

Vc ¼ 0:17x, and Vp ¼ 0:05x (eV). The case of x ¼ 1

corresponds to the ZGS which describes the real material

at Pa ¼ 4:5 kbar, while the case of x ¼ 0, on the other hand,

corresponds to that of the tight-binding model. It is found

that the charge disproportionation does exist even at x ¼ 0.

Thus, the charge disproportionation originates from the

transfer integrals. The disproportionation is enhanced as x

decreases.

The presence of the interactions (x ¼ 1) gives spatial

variation observed by the NMR experiment,25) that the site 3

is hole-rich and the site 4 is electron-rich among four sites.

The stability of the massless fermions against the charge

disproportionation is evidenced by the fact that the ZGS is

found in whole range (0 � x � 1) of the solutions.

Figure 7 shows the temperature-dependences of n�
(� ¼ 1; 2; 3; 4) for x ¼ 1 at Pa ¼ 0. The insulating state

accompanied by the stripe charge ordering is obtained in the

region of low temperature T < TCO ¼ 0:016. There are large

staggered magnetic moments m1 (> 0) and m3 (< 0) on the

hole-rich sites for T < TCO, where m� ¼
P

� sgnð�Þn�� .

At high temperature regions (T > TCO), on the other hand,

there is the metallic state accompanied by the charge

disproportionation, where the magnetic moments m� vanish.

In the metallic state, the contact point leaves the Fermi

energy because of the appearance of the hole pocket at

Y-point. It is found that there is no critical temperature for

the vanishing of the charge disproportionation even in the

case of x ¼ 1. The stability of the massless fermions against

Γ

Y M

X

M’

hole

electron
pockets

pockets

Fig. 5. The solid curves show trajectories of a pair of the contact points

�k0 which move to the �-point each other with increasing Pa, where

U ¼ 0:4, Vc ¼ 0:17, and Vp ¼ 0:05. The small ellipse of solid line

represents the electron and hole pockets for the metallic state at

Pa ¼ 4 kbar. The dashed curves are obtained for the non-interacting case.

The contact points also move form open-circle points (Pa ¼ 0 kbar) to the

�-point. The dashed curves around the X- and Y-points represent the

electron and hole pockets at Pa ¼ 0. The square, triangle and inverted

triangle points correspond to Pa ¼ 10, 20, and 30 kbar, respectively.

0 0.5 1
1

1.5

2

n3

n4

n1=n2

x

Fig. 6. The x-dependences of n� (¼
P

� n��), where U ¼ 0:4x, Vc ¼

0:17x, and Vp ¼ 0:05x, at Pa ¼ 4:5 kbar.
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the charge disproportionation is also verified since the

massless fermions are obtained in this metallic state

(T > TCO).

5. Anomalous Momentum-Dependence of Charge

Density

We examine the anomaly in the momentum-dependence

of the charge density n�ðkÞ for each BEDT-TTF site (per

spin) which is given by (kB ¼ 1)

n�ðkÞ ¼
X




d��
ðkÞd�
ðkÞ
1

expð�
ðkÞ=TÞ þ 1
: ð20Þ

Figure 8 shows the momentum-dependence of n1ðkÞ

[¼ n2ðkÞ]. It is found that the anomalous momentum-

dependence exists on the contact point at k ¼ �k0, while

the total charge density nðkÞ ¼
P

� n�ðkÞ is independent of k

at T ¼ 0.

Figure 9 shows the momentum-dependences of n3ðkÞ and

n4ðkÞ. The anti-symmetric component is found in the vicinity

of the center of symmetry k ¼ �k0 accompanied by the

discontinuous jumps at k ¼ �k0. The tendency of the

momentum-dependence in n3ðkÞ is opposite to those of

n1ðkÞ, n2ðkÞ; and n4ðkÞ. This fact indicates a relevance that

the charge disproportionation of n3 which is much smaller

than 3/4 (hole-rich). The anomaly exists not only in the ZGS

but also in the metallic state discussed in the previous

section. The origin of this anomaly is related to the point-

contact of two bands, and is the same as that of the velocity

matrix u

 0 ðkÞ, i.e., due to the anomaly of the eigenvector

d�
ðkÞ discussed in §6.

6. Discussion and Summary

We discuss the relation between the new massless

fermions and the charge disproportionation. The anomaly

of the velocity matrix u

 0 ðkÞ and that of the charge density

n�ðkÞ originates from the property of the wave function. We

examine the Hamiltonian

Hð2Þ ¼
a c

c� b

� �

; ð21Þ

0 0.05 0.1
1

1.5

2

n3

n4

n1

n2

T

Fig. 7. The temperature-dependences of n1, n2, n3, and n4 at Pa ¼ 0 kbar

for x ¼ 1.

ky

0.018

0.02

kx

Fig. 8. The momentum-dependence of n1ðkÞ [¼ n2ðkÞ] in the 1st Brillouin

zone.

(a) (b)

Fig. 9. The contour plots of the momentum-dependence of n3ðkÞ (left) and n4ðkÞ (right) in the 1st Brillouin zone, where n�ðkÞ is large (small) in the light

(dark) region.
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which consists of two sites in a unit cell. (a ¼ b ¼ 0 and

c ¼ kx � iky in the case of graphite.7)) When k ¼ k0, the

diagonal components become equal (a ¼ b) and the off-

diagonal components vanish (c ¼ 0) at the contact point of

two bands. The components of the wave function depend on

the phase �, where c ¼ jcjei�, i.e., � is the angle of rotation

around k0. The anomaly is discussed in terms of the helisity

of neutrino in graphite, i.e., the pseudo spin vector describ-

ing the wave function is always parallel to the momentum

k.9) The phase of the wave function jumps from � to � þ 	

when ~kk passes the contact point k0 into � ~kk. Such anomaly is

an intrinsic property of the massless fermions.

Here the instability of the massless fermions in the

presence of the site potential is also understood by using

Hð2Þ. The diagonal components, which have different values

in the presence of the site potential, violate the condition for

degeneration. Thus the massless fermions in the presence of

the charge disproportionation can not exist in the system

which consists of two sites in a unit cell. In the case for

�-(BEDT-TTF)2I3, the stability of the massless fermions is

robust in the presence of the site potential. It is due to

the electronic system with four sites in a unit cell, since

diagonal components in 4� 4 matrix with slightly different

values allow degeneracy of eigenvalues. The velocity matrix

u

 0 ðkÞ and the charge density n�ðkÞ have the anomaly in

both the amplitude and the phase, which are related to the

charge disproportionation. Thus the correlation between the

massless fermions and the charge disproportionation gives

rise to a unique property of �-type salts which consists of

four sites in a unit cell.

In summary, we have found that the Hamiltonian

describing the massless fermions in �-(BEDT-TTF)2I3 has

intrinsically new terms for �z and the identity matrix �0 in

addition to the Weyl equation with �x and �y. The massless

fermions in the present case have the anisotropy of the

velocity and the inclination of the cone. Within the

extrapolation scheme of the transfer integrals, we have

found the pair of the contact points �k0 are merged to

disappear at a high pressure, which is accompanied by strong

anisotropy of the velocity and by the Van Hove singularities.

The new massless fermions have robust stability against the

charge disproportionation. The charge disproportionation

originates from the variety of transfer integrals, while the

spatial variation observed by the NMR experiment25) is

explained by taking account into the interactions. The

anomalous momentum-dependence of the charge density in

the vicinity of �k0 have been also found. The anomaly is

due to the property of the wave function of the massless

fermions, and is related to the charge disproportionation

through the unitary matrix for the diagonalization.

Recently, anomalous three-stepwise structure in the

magnetoresistance and enhancement of 1=T1T in the NMR

have been observed in the ZGS under magnetic field and

high pressure in �-(BEDT-TTF)2I3,
17,29) while the two-

stepwise structure has been observed in bismuth and

graphite.30) It is expected that these phenomena are related

to the electronic states of the new massless Fermion. The

roles of the new terms for �z and �0 on the magnetic

response are interesting problems. It is also expected that

the incorporation of the pair of the contact points �k0 at

high pressure induces new phenomena.
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