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1 Introduction

The construction of the cubic interaction vertices for the higher spin fields is the very

first but important step in the investigation of their consistent interactions. The complete

classification of all cubic vertices for massless and massive bosonic and fermionic fields

were obtained in the light-cone formalism for d ≥ 4 dimensions by Metsaev [1–3], while

the classification for the massless fields in d = 3 appeared only quite recently [4, 5]. As

for the Lorentz covariant realisation for these vertices, till now most results deal with the

massless fields, where the main guiding principle is the gauge invariance, which severely

restricts a possible form of the interactions. A lot of interesting results were developed

in the so-called metric-like formalism (see e.g. [6–28] for the bosons and [29, 30] for the

fermions). As for the frame-like formalism (which usually leads to the much more compact

and elegant expressions, especially when one uses the differential form language) the most
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general results were obtained in [31] (see also [32]) where the generic cubic vertices for the

massless bosonic fields with spins s1 ≥ s2 ≥ s3 satisfying a triangular relation s1 < s2 + s3
for AdSd space with d ≥ 4 have been constructed. The construction was based on the so-

called Fradkin-Vasiliev approach [33, 34] where the non-zero cosmological constant plays a

crucial role so that taking a flat limit appears to be a non-trivial task.

Let us briefly describe the Fradkin-Vasiliev approach to the construction of cubic ver-

tices. First of all, recall that in the frame-like formalism a massless higher spin field

is described by the set of one-forms Φ, each one having its own gauge transformations

(schematically)

δ0Φ ∼ Dη + eη

where e is the background frame. For each one-form a corresponding gauge invariant

two-form (curvature) can be constructed

R ∼ DΦ + eΦ

Moreover, for the non-zero cosmological constant the free Lagrangian can be rewritten in

the explicitly gauge invariant form

L0 ∼
∑

akRkRk

where coefficients ak are determined by the so-called extra field decoupling conditions.

The construction of the interactions begins with the most general quadratic deforma-

tions for the initial curvatures

R ⇒ R̂ = R+ ∆R, ∆R ∼ ΦΦ

One of the nice features of such approach is that these deformations simultaneously deter-

mine the corresponding form for the corrections to the gauge transformations that can be

directly read from that of the curvatures

δ1Φ ∼ Φη

At this step the main requirement is that these deformed curvatures must transform co-

variantly

δR̂ ∼ Rη

Note that the deformation procedure is independent for each of the three fields. Then one

has to take the sum of the three Lagrangians, replace initial curvatures by the deformed

ones and require that the resulting Lagrangian be gauge invariant. This leads to the

relations on the previously independent constants and results in the cubic vertex that is

(on-shell) gauge invariant.

Recall that all cubic vertices can be subdivided into three different types. The first one

we call “trivially gauge invariant” because they can be written in terms of gauge invariant

objects and deform neither gauge transformations nor gauge algebra. The second type —

so-called abelian or Chern-Simons like vertices which do have non-trivial corrections to
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the gauge transformations, but the algebra remains to be abelian. At last, the third type

— non-abelian or Yang-Mills type vertices which deform both the gauge transformations

and the algebra. In [31] Vasiliev has constructed the most general cubic vertices for the

three massless higher spin bosonic fields in d ≥ 4 dimensions and shown that they appear

to be the combinations of the non-abelian and abelian vertices, so that all such vertices

from the Metsaev classification [1] satisfying the triangular relation s1 < s2 + s3 (assuming

s1 ≥ s2 ≥ s3) are reproduced. Since these vertices have different number of derivatives, it

is not a trivial task to extract a particular vertex and/or take a flat limit.

The situation is drastically simplified in four dimensions. Indeed, as has been shown

by Metsaev [1, 2] (see also [6, 24] for bosonic cubic vertices in four dimensions), all abelian

vertices are absent leaving us only the non-abelian ones. In the frame-like formalism this

result is easy to understand because the abelian vertices look like RRΦ and so must be

five-forms. But even in this case to take the flat limit is not so simple because the general

procedure described above still generate a lot of terms with a number of derivatives greater

than the correct one (s1+s2−s3 for bosons and s1+s2−s3−1 for fermions). In this paper

we restrict ourselves to the four dimensions and use the multispinor frame-like formalism

(which greatly simplifies all calculations and allows us to treat bosons and fermions on

equal footing) to reconstruct all non-abelian bosonic and fermionic vertices. We have

managed to show that all these higher derivative terms combine into total derivatives or

cancel on-shell so that we can safely take a flat limit and obtain (surprisingly) simple form

for the flat vertices. Note that the procedure for the construction of cubic vertices we use

produces only parity even ones, while the results of [24] show that there exist parity odd

vertices with the same number of derivatives, How these vertices can be reproduced is still

an open question.

The paper is organised as follows. In section 2 we provide all necessary information

on the multispinor frame-like description for the massless higher spin bosons and fermions.

Sections 3 and 4 contain a number of simple but instructive examples of the vertices

with spin-2 and spin-3/2 correspondingly (and, to our opinion, they are of some interest by

themselves). Section 5 contains our results for the cubic vertices with arbitrary spin bosons

and fermions, while most technical details were moved into two appendices.

Notations and conventions. We use a formalism where all objects are multispinors

Φα(k)α̇(l), α, α̇ = 1, 2 which have k completely symmetric undotted and l completely sym-

metric dotted indices. In all expressions where indices are denoted with the same letter

and are placed on the same level, e.g.

Φα(k)Ψα(l)

they are assumed to be symmetrized and symmetrization is defined as the sum of the

minimal number of necessary terms. Besides, all the fields we consider are the one-forms

(and the gauge parameters are zero-forms), while all the terms in the Lagrangians are the

four-forms. In this, all the wedge product signs ∧ will be systematically omitted.
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We work in AdS4 space (and its flat limit) described by the background frame eαα̇ and

the background Lorentz covariant derivative D satisfying

Deαα̇ = 0, DDΦα(k)α̇(l) = −λ2[EαβΦα(k−1)βα̇(l) + Eα̇β̇Φα(k)α̇(l−1)β̇ ] (1.1)

where two-forms Eα(2) and Eα̇(2) are defined as follows

eαα̇eββ̇ = εαβEα̇β̇ + εα̇β̇Eαβ (1.2)

2 Kinematics

In this section we provide all necessary information on the frame-like multispinor formalism

for the massless higher spin bosonic and fermionic fields.

A massless integer spin-s s > 2 boson is described by the set of multispinor one-forms

Ωα(s−1+m)α̇(s−1−m), 0 ≤ |m| ≤ s − 1, where m = 0 corresponds to the physical field,

m = ±1 — auxiliary ones, while others are the so-called extra fields. All fields have their

own gauge transformations:

δΩα(2s−2) = Dηα(2s−2) + λ2eαα̇η
α(2s−3)α̇

δΩα(s−1+m)α̇(s−1−m) = Dηα(s−1+m)α̇(s−1−m) + eβ
α̇ηα(s−1+m)βα̇(s−2−m)

+ λ2eαβ̇η
α(s−2+m)α̇(s−1−m)β̇ (2.1)

δHα(s−1)α̇(s−1) = Dηα(s−1)α̇(s−1) + eβ
α̇ηα(s−1)βα̇(s−2) + eαβ̇η

α(s−2)α̇(s−1)β̇

Moreover, for each field a gauge invariant two-form can be constructed:

Rα(2s−2) = DΩα(2s−2) + λ2eαα̇Ωα(2s−3)α̇

Rα(s−1+m)α̇(s−1−m) = DΩα(s−1+m)α̇(s−1−m) + eβ
α̇Ωα(s−1+m)βα̇(s−2−m)

+ λ2eα
β̇Ωα(s−2+m)α̇(s−1−m)β̇ (2.2)

T α(s−1)α̇(s−1) = DHα(s−1)α̇(s−1) + eβ
α̇Ωα(s−1)βα̇(s−2) + eαβ̇Ωα(s−1)α̇(s−1)β̇

We refer to such two-forms as curvatures. These curvatures satisfy the following differential

identities:

DRα(2s−2) = −λ2eαα̇Rα(2s−3)α̇

DRα(s−1+m)α̇(s−1−m) = −eβα̇Rα(s−1+m)βα̇(s−2−m) − λ2eαβ̇Rα(s−2+m)α̇(s−1−m)β̇ (2.3)

DT α(s−1)α̇(s−1) = −eβα̇Rα(s−1)βα̇(s−2) − eαβ̇R
α(s−1)α̇(s−1)β̇

On-shell all the curvatures, except the highest ones, are zero, while the highest one satisfy

DRα(2s−2) ≈ 0, eβ
α̇Rα(2s−3)β ≈ 0 (2.4)

Note that zero-curvature conditions imply that on-shell

DHα(s−1)α̇(s−1) = −eβα̇Ωα(s−1)βα̇(s−2) − h.c.

DΩα(s−1+m)α̇(s−1−m) = −eβα̇Ωα(s−1+m)βα̇(s−2−m) +O(λ2) (2.5)
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Hence, on-shell the auxiliary field expresses the non-zero derivatives of the physical field,

the extra field Ωα(s+1)α̇(s−3) expresses the non-zero derivatives of the auxiliary field etc. The

field Ωα(s−1+m)α̇(s−1−m) thus expresses the mth derivatives of the physical field which do not

vanish on-shell. Whenever we talk about the number of derivatives, we imply the number

of derivatives of the physical field and count the mth extra field as an mth derivative.

At last, the free Lagrangian can be written in the explicitly gauge invariant form

L0 = i(−1)s
s−1∑
m=1

(2s− 2)!

(s− 1 +m)!(s− 1−m)!λ2m

[
Rα(s−1+m)α̇(s−1−m)Rα(s−1+m)α̇(s−1−m)

−Rα(s−1−m)α̇(s−1+m)Rα(s−1−m)α̇(s−1+m)
]

(2.6)

Note that the torsion T α(s−1)α̇(s−1) is absent in this expression. Formally, this Lagrangian

contains a lot of higher derivative terms. However, due to the smart choice of the coefficients

(coming from the so-called extra fields decoupling conditions) all these terms vanish (up to

the total derivatives). So written in components the Lagrangian reduces to the usual form

in terms of the physical and auxiliary fields only. In particular, it does not contain any

terms singular in the flat limit λ→ 0. Recall also that in the multispinor formalism we use

parity operation simply interchanges the dotted and undotted indices and so it correlates

with the conjugation. The choose made (with the imaginary unit i and minus sign) takes

into account that the Lagrangian being four-form implicitly contains a Levi-Civita symbol.

A massless half-integer spin-s s > 3/2 fermion is described by a set of multispinor one-

forms Φα(s−1+m)α̇(s−1−m), 1/2 ≤ |m| ≤ s − 1, where m = ±1/2 correspond to the physical

fields, all others being the extra ones. The gauge transformations look very similar to the

bosonic case the main difference is the transformation for the physical fields:

δΦα(2s−2) = Dζα(2s−2) + λ2eαα̇ζ
α(2s−3)α̇

δΦα(s−1+m)α̇(s−1−m) = Dζα(s−1+m)α̇(s−1−m) + eβ
α̇ζα(s−1+m)βα̇(s−2−m)

+ λ2eαβ̇ζ
α(s−2+m)α̇(s−1−m)β̇ (2.7)

δΦα(s−1/2)α̇(s−3/2) = Dζα(s−
1/2)α̇(s−3/2) + eβ

α̇ζα(s−
1/2)βα̇(s−5/2) + λeαβ̇ζ

α(s−3/2)α̇(s−3/2)β̇

Similarly, a set of the gauge invariant two-forms can be constructed:

Fα(2s−1) = DΦα(2s−1) + λ2eαα̇Φα(2s−2)α̇

Fα(s−1+m)α̇(s−1−m) = DΦα(s−1+m)α̇(s−1−m) + eβ
α̇Φα(s−1+m)βα̇(s−2−m)

+ λ2eαβ̇Φα(s−2+m)α̇(s−1−m)β̇ (2.8)

Fα(s−1/2)α̇(s−3/2) = DΦα(s−1/2)α̇(s−3/2) + eβ
α̇Φα(s−1/2)βα̇(s−5/2) + λeαβ̇Φα(s−3/2)α̇(s−3/2)β̇

The differential identities for them have the form:

DFα(2s−2) = −λ2eαα̇Fα(2s−3)α̇

DFα(s−1+m)α̇(s−1−m) = −eβα̇Fα(s−1+m)βα̇(s−2−m) − λ2eαβ̇F
α(s−2+m)α̇(s−1−m)β̇ (2.9)

DFα(s−1/2)α̇(s−3/2) = −eβα̇Fα(s−
1/2)βα̇(s−5/2) − λeαβ̇F

α(s−3/2)α̇(s−3/2)β̇

– 5 –
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On-shell all these curvatures, except the highest ones, are zero, while the highest ones satisfy

DFα(2s−2) ≈ 0, eβ
α̇Fα(2s−3)β ≈ 0 (2.10)

Again, the zero-curvature conditions imply that the field Φα(s−1/2+m)α̇(s−3/2−m) expresses

the mth derivatives of the physical field Φα(s−1/2)α̇(s−3/2) which do not vanish on-shell.

At last, the free Lagrangian can be written as

L0 = (−1)s+1/2
s−1∑
m=1/2

(2s− 2)!

(s− 1 +m)!(s− 1−m)!λ2m

Fα(s−1+m)α̇(s−1−m)Fα(s−1+m)α̇(s−1−m) + h.c. (2.11)

The same comments on the higher derivative terms, flat limit and parity as above are

applicable here, note however that the absence of imaginery unit is related with anticom-

mutativity of fermions.

3 Graviton

In this section we consider all possible vertices with spin-2 field. They will serve as the

simple illustration for both the general method and all four possible types of vertices.

Besides, interaction with gravity is always of some interest by itself.

We describe a free massless spin-2 field with the one-forms hαα̇, ωα(2) + h.c. with the

initial gauge transformations

δωα(2) = Dηα(2) − λ2eαα̇ξαα̇

δhαα̇ = Dξαα̇ + eβ
α̇ηαβ + eαβ̇η

α̇β̇ (3.1)

The corresponding linearized gauge invariant curvature and torsion have the form:

Rα(2) = Dωα(2) + λ2eαα̇h
αα̇

Tαα̇ = Dhαα̇ + eβ
α̇ωαβ + eαβ̇ω

α̇β̇ (3.2)

On-shell we have (note the difference with (2.4))

Tαα̇ ≈ 0, DRα(2) ≈ 0, eα
α̇Rαβ + eαβ̇R

α̇β̇ ≈ 0 (3.3)

At last, the free Lagrangian can be written as

L0 =
i

λ2
Rα(2)R

α(2) + h.c. (3.4)

There are only two possible types of vertices satisfying the triangular relation, namely

(s + 1, s, 2) and (s, s, 2). For both of them, the cases with s = 2 turn out to be special,

resulting in four different cases in total. We consider them in turn.
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3.1 Vertex (s + 1, s, 2), s > 2

We use Σ and F for the field with spin s+ 1 and its curvatures and Ω and R — for spin s.

Using the general formulas given in appendix A, it easy to construct deformations for the

curvatures of all three fields.1 For the spin s+ 1 components we obtain:

∆Fα(2s) = a0λ
2Ωα(2s−2)ωα(2)

∆Fα(2s−1)α̇ = a0λ
2Ωα(2s−2)hαα̇ + a0λ

2Ωα(2s−3)α̇ωα(2) (3.5)

∆Fα(2s−2)α̇(2) = a0Ω
α(2s−2)ωα̇(2) +O(λ2)

where a0 is a coupling constant and we always choose normalization so that all coefficients

in the deformations are proportional to the positive degree of λ. The only variations of the

deformed curvatures that do not vanish on-shell are

δF̂α(2s) = a0λ
2
[
Rα(2s−2)ηα(2) − ηα(2s−2)Rα(2)

]
(3.6)

Now we turn to the spin-s components and obtain:

∆Rα(2s−2) = b0Σ
α(2s−2)β(2)ωβ(2) + 2b0λ

2Σα(2s−2)ββ̇hββ̇ + b0λ
2Σα(2s−2)β̇(2)ωβ̇(2)

∆Rα(2s−3)α̇ = b0Σ
α(2s−3)β(2)α̇ωβ(2) +O(λ2) (3.7)

In this case, the variations of the deformed curvatures that do not vanish on-shell are

δR̂α(2s−2) = b0

[
Fα(2s−2)β(2)ηβ(2) − ζα(2s−2)β(2)Rβ(2)

]
(3.8)

At last, for the spin-2 we get

∆Rα(2) = c0Σ
α(2)β(2s−2)Ωβ(2s−2) + (2s− 2)c0λ

2Σα(2)β(2s−3)β̇Ωβ(2s−3)β̇

+ c0λ
2Σα(2)β̇(2s−2)Ωβ̇(2s−2) +O(λ4) (3.9)

∆Tαα̇ = c0Σ
αβ(2s−2)α̇Ωβ(2s−2) + c0Σ

αα̇β̇(2s−2)Ωβ̇(2s−2) +O(λ2)

with the non-vanishing variations being:

δR̂α(2) = c0

[
Fα(2)β(2s−2)ηβ(2s−2) − ζα(2)β(2s−2)Rβ(2s−2)

]
(3.10)

Now we take the sum of the free Lagrangians and replace the free curvatures by the

deformed ones. The gauge variation of the resulting Lagrangian produces:

δL̂ =

[
(−1)s+1s(2s− 1)a0

λ2s−2
+

(−1)sb0
λ2s−2

]
Fα(2s−2)β(2)Rα(2s−2)ηβ(2)

+

[
c0
λ2
− (−1)s+1s(2s− 1)a0

λ2s−2

]
Fα(2s−2)β(2)η

α(2s−2)Rβ(2)

−
[
c0
λ2

+
(−1)sb0
λ2s−2

]
Rα(2s−2)ζ

α(2s−2)β(2)Rβ(2) (3.11)

1Here and in what follows we provide only the terms which give non-zero contribution to the flat vertices.
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Thus the invariance of the deformed Lagrangian requires

(−1)s+1s(2s− 1)a0 = λ2s−4c0, (−1)sb0 = −λ2s−4c0 (3.12)

Now we consider a cubic vertex that follows from the deformed Lagrangian. Due to the

relations on the coupling constants given above we find that the terms with the highest

number of derivatives (and singular in the flat limit) combine into the total derivative and

can be dropped out. At the next level we obtain terms with the correct number N = 2s−1

of derivatives, so we can safely take a flat limit and, after a number of cancellations, obtain

a very simple result:

L1 = c0Dωα(2)Σ
α(2)α̇(2s−2)Ωα̇(2s−2) + h.c. (3.13)

We see that the spin-2 field enters through the gauge invariant curvature, while the invari-

ance of the vertex under the other gauge transformations can be checked using the on-shell

identities (3.3) and the corrections to the physical graviton transformations:

δhαα̇ = c0Σ
αα̇β̇(2s−2)ηβ̇(2s−2) − c0ζ

αα̇β̇(2s−2)Ωβ̇(2s−2) + h.c. (3.14)

Let us stress that this result holds also for the case when s is half-integer, i.e. both higher

spin fields are fermions.

3.2 Vertex (s, s, 2), s > 2

In this case the vertex is symmetric on the two spin-s fields, so for simplicity we assume

that we have just one such field. The part of the deformation for the spin-s components

we need have the form:

∆Rα(2s−2) = a0Ω
α(2s−3)βωαβ + a0λ

2Ωα(2s−3)β̇hαβ̇

∆Rα(2s−3)α̇ = a0Ω
α(2s−3)βhα̇β + a0Ω

α(2s−4)βα̇ωαβ

+ a0Ω
α(2s−3)β̇ωα̇β̇ +O(λ2) (3.15)

while the non-vanishing variations of the deformed curvatures look like:

δR̂α(2s−2) = a0[Rα(2s−3)βηαβ − ηα(2s−3)βRαβ ] (3.16)

The corresponding expressions for the deformations of spin-2 curvature and torsion are:

∆Rα(2) = c0Ω
αβ(2s−3)Ωα

β(2s−3) + c0λ
2Ωαβ(2s−4)β̇Ωα

β(2s−4)β̇

+ c0λ
2Ωαβ̇(2s−3)Ωα

β̇(2s−3) +O(λ4) (3.17)

∆Tαα̇ = c0Ω
αβ(2s−3)Ωα̇

β(2s−3) + c0Ω
αβ̇(2s−3)Ωα̇

β̇(2s−3) +O(λ2)

and for the non-vanishing variations

δR̂α(2) ∼ 2c0Rαβ(2s−3)ηαβ(2s−3) (3.18)

– 8 –
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The invariance of the deformed Lagrangian requires

(−1)s(2s− 2)a0 = 4λ2s−4c0 (3.19)

As in the previous case, due to this relation the terms in the cubic vertex with 2s derivatives

combine into the total derivative and can be dropped out so that we can safely take a flat

limit and obtain one more simple result:

L1 = 2c0DωαβΩαα̇(2s−3)Ωβ
α̇(2s−3) + h.c. (3.20)

Here the spin-2 also enters only through the gauge invariant curvature, while the invariance

under remaining gauge transformations holds due to the on-shell identities (3.3) and the

corresponding corrections to the physical graviton transformations:

δhαα̇ = c0Ω
αβ̇(2s−3)ηα̇β̇(2s−3) − c0η

αβ̇(2s−3)Ωα̇
β̇(2s−3) + h.c. (3.21)

Note that these results are in agreement with the particular case of the (3, 3, 2) vertex

which has been considered in [35] (see also [7, 10, 11] for the metric-like formulation). Note

also that in this case this results works for the fermionic case where s is half-integer as well.

3.3 Vertex (3, 2, 2)

This case is special and provides a simple example of the whole class of vertices where

two lower spins are equal. As far as we know, in the metric-like formulation this vertex

was considered for the first time in [7], while in the frame-like formalism — in [35]. Note

that this vertex is antisymmetric on the spin-2 fields so that we must have two different

spin-2 particles.

The deformations for all curvatures have the form now:

∆Fα(4) = a0Ω
α(2)ωα(2)

∆Fα(3)α̇ = a0Ω
α(2)hαα̇ + a0H

αα̇ωα(2)

∆Rα(2) = b0Σ
α(2)β(2)ωβ(2) + 2b0λ

2Σα(2)ββ̇hββ̇ + b0λ
2Hα(2)β̇(2)ωβ̇(2) (3.22)

∆Rα(2) = c0Σ
α(2)β(2)Ωβ(2) + 2c0λ

2Σα(2)ββ̇Hββ̇ + c0λ
2Hα(2)β̇(2)Ωβ̇(2)

while non-vanishing variations are:

δF̂α(4) = a0[Rα(2)ηα(2) − ζα(2)Rα(2)]

δR̂α(2) = b0[Fα(2)β(2)ηβ(2) − ζα(2)β(2)Rβ(2)] (3.23)

δR̂α(2) = c0[Fα(2)β(2)ζβ(2) − ζα(2)β(2)Rβ(2)]

The invariance of the deformed Lagrangian requires

6a0 = λ2b0, c0 = −b0 (3.24)

As usual, the terms with 5 derivatives combine into total derivative, while 3-derivative

terms give the following flat vertex:

L1 = b0DΩα(2)H
α(2)α̇(2)ωα̇(2) + 2b0Ωα(2)Σ

α(2)βα̇eβ
β̇ωα̇β̇ − (Ω↔ ω) + h.c. (3.25)
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3.4 Vertex (2, 2, 2)

This very well known vertex provides the simplest example of self-interaction, so for com-

pleteness we briefly give it here. The curvature deformation looks like:

∆Rα(2) = a0ω
αβωαβ + a0λ

2hαβ̇hαβ̇ (3.26)

The deformed Lagrangian is automatically gauge invariant. The terms in the cubic vertex

with four derivatives combine into the total derivative leaving us with:

L1 = a0Dωαβh
αα̇hβα̇ − a0eαα̇hβα̇ωαγωβγ + h.c. (3.27)

4 Gravitino

In this section we present two more simple examples — vertices with the spin-3/2 field.

Taking into account the even in the higher spin theory the supersymmetry plays a distin-

guished role, we think they worth to be considered. The spin-3/2 itself is described by the

one-forms ψα, ψα̇ with the gauge invariant two-forms:

Fα = Dψα + λeαα̇ψ
α̇

F α̇ = Dψα̇ + λeα
α̇ψα (4.1)

and the free Lagrangian

L0 =
1

λ
FαF

α + h.c. (4.2)

There are two types of vertices satisfying the strict triangle inequality and corresponding

to the two types of the massless supermultiplets — (s+ 1/2, s,
3/2) and (s+ 1, s+ 1/2,

3/2).

4.1 Vertex (s + 1/2, s,
3/2), s ≥ 2

We begin with the deformations for all curvatures (keeping only necessary terms):

∆Fα(2s−1) = a0λΩα(2s−2)ψα

∆Fα(2s−2)α̇ = a0Ω
α(2s−2)ψα̇ +O(λ)

∆Rα(2s−2) = b0Φ
α(2s−2)βψβ + b0λΦα(2s−2)β̇ψβ̇ (4.3)

∆Fα = c0Φ
αβ(2s−2)Ωβ(2s−2) + c0λΦαβ̇(2s−2)Ωβ̇(2s−2) +O(λ2)

Non-vanishing variations have the form:

δF̂α(2s−1) = a0λ[Rα(2s−2)ζα − ηα(2s−2)Fα]

δR̂α(2s−2) = b0[Fα(2s−2)βζβ − ζα(2s−2)βFβ ] (4.4)

δF̂α = c0[Fαβ(2s−2)ηβ(2s−2) − ζαβ(2s−2)Rβ(2s−2)]

The invariance of the deformed Lagrangian requires

(−1)s+1(2s− 1)a0 = λ2s−3c0, (−1)sb0 = λ2s−3c0 (4.5)
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The resulting flat vertex with the correct number of derivatives N = 2s−2 (after the higher

derivative terms combine into total derivative and were dropped out) takes the form:

L1 = c0DψαΦαα̇(2s−2)Ωα̇(2s−2) + h.c. (4.6)

Once again we find that the lowest spin field enters through its gauge invariant curvature

only, while to check the invariance under the remaining gauge transformations one has to

take into account the corrections to the gravitino gauge transformations:

δψα̇ = c0Φ
α̇β̇(2s−2)ηβ̇(2s−2) − c0ζ

α̇β̇(2s−2)Ωβ̇(2s−2) + h.c. (4.7)

4.2 Vertex (s + 1, s + 1/2,
3/2), s ≥ 2

This case appears to be very similar, so we will be brief. The appropriate deformations

look like:

∆Rα(2s) = a0λΦα(2s−1)ψα

∆Rα(2s−1)α̇ = a0Φ
α(2s−1)ψα̇ +O(λ)

∆Fα(2s−1) = b0Ω
α(2s−1)βψβ + b0λΩα(2s−1)β̇ψβ̇ (4.8)

∆Fα = c0Ω
αβ(2s−1)Φβ(2s−1) + c0λΩαβ̇(2s−1)Φβ̇(2s−1)

while the relations on the coupling constants are:

(−1)s+12sa0 = −λ2s−2c0, (−1)s+1b0 = λ2s−2c0 (4.9)

The resulting flat cubic vertex with N = 2s− 1 derivatives appears to be

L1 = c0DψαΩαα̇(2s−1)Φα̇(2s−1) + h.c. (4.10)

The results given above hold only for s ≥ 2, while the case s = 1 turns out to be

special (as all cases where two lowest spins are equal). This vertex (2, 3/2,
3/2) is very well

known being a part of the N = 1 supergravity, but for completeness we briefly provide this

vertex in our current formalism.

The deformations now are very simple

∆Rα(2) =
i

4
c0λψ

αψα

∆Tαα̇ =
i

2
c0ψ

αψα̇ (4.11)

∆Fα = c0ω
αβψβ + c0λh

αα̇ψα̇

and the flat vertex has the form:

L1 = c0Dψαh
αα̇ψα̇ − c0eαα̇ψα̇ωαβψβ + h.c. (4.12)
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5 Arbitrary spins

In this section we consider general case of three arbitrary spins s1 ≥ s2 ≥ s3. We introduce

their convenient combinations:

ŝ1 = s2 + s3 − s1 − 1, ŝ2 = s1 + s3 − s2 − 1, ŝ3 = s1 + s2 − s3 − 1 (5.1)

Note that if spins s1,2,3 satisfy the triangular relations these combinations are always non-

negative: ŝ1,2,3 ≥ 0. Moreover, even if two of the three fields are fermions and two of the

three s1,2,3 are half-integer, the corresponding ŝ1,2,3 are always integer. Let us give here

some useful relations on them:

ŝ1 + ŝ2 = 2(s3 − 1), ŝ1 + ŝ3 = 2(s2 − 1), ŝ2 + ŝ3 = 2(s1 − 1) (5.2)

We begin with the bosonic case and then make necessary adjustment for the fermionic

one. We use notations Σ, F for the fields component and curvatures for the highest spin s1,

Ω, R for spin s2 and ω, R for the lowest spin s3 correspondingly.

The deformations for all curvatures of the highest spin s1 have the form:

∆Fα(2s1−2−m)α̇(m) =

ŝ1∑
k=0

min(m,ŝ2)∑
l=0

akΩ
α(ŝ3−m+l)β(ŝ1−k)α̇(m−l)β̇(k)ωα(ŝ2−l)α̇(l)β(ŝ1−k)β̇(k)

(5.3)

where coefficients ak (see appendix A for details) look like

ak =
(ŝ1)!

(ŝ1 − k)!k!
a0 (5.4)

Strictly speaking, these coefficients must be multiplied by λ raised to some positive power,

but to simplify formulas we temporarily set λ = 1. We restore them by dimensionality of

terms whenever it is necessary.

Similarly, for the two other spins s2,3 we consider

∆Rα(2s2−2−m)α̇(m) =

ŝ2∑
k=0

min(m,ŝ1)∑
l=0

bkΣ
α(ŝ3−m+l)β(ŝ2−k)α̇(m−l)β̇(k)ωα(ŝ1−l)α̇(l)β(ŝ2−k)β̇(k)

(5.5)

∆Rα(2s3−2−m)α̇(m) =

ŝ3∑
k=0

min(m,ŝ1)∑
l=0

ckΣ
α(ŝ2−m+l)β(ŝ3−k)α̇(m−l)β̇(k)Ωα(ŝ1−l)α̇(l)

β(ŝ3−k)β̇(k)

(5.6)

with the corresponding coefficients

bk =
(ŝ2)!

(ŝ2 − k)!k!
b0, ck =

(ŝ3)!

(ŝ3 − k)!k!
c0 (5.7)

Now we take a sum of the three Lagrangians, replace the initial curvatures by the deformed

ones and require the resulting deformed Lagrangian to be invariant. The non-vanishing
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on-shell variations have the form:

δF̂α(2s1−2) = a0[Rα(ŝ3)β(ŝ1)ηα(ŝ2)β(ŝ1) − η
α(ŝ3)β(ŝ1)Rα(ŝ2)β(ŝ1)]

δR̂α(2s2−2) = b0[Fα(ŝ3)β(ŝ2)ηα(ŝ1)β(ŝ2) − η
α(ŝ3)β(ŝ2)Rα(ŝ1)β(ŝ2)] (5.8)

δR̂α(2s3−2) = c0[Rα(ŝ2)β(ŝ3)ηα(ŝ1)β(ŝ3) − η
α(ŝ2)β(ŝ3)Rα(ŝ1)β(ŝ3)]

Then the invariance of the Lagrangian requires (for what follows it is important to restore

the λ dependence here):

(−1)s1
(ŝ2 + ŝ3)!

(ŝ2)!(ŝ3)!

a0
λ2s1−2

= −(−1)s2
(ŝ1 + ŝ3)!

(ŝ1)!(ŝ3)!

b0
λ2s2−2

= (−1)s3
(ŝ1 + ŝ2)!

(ŝ1)!(ŝ2)!

c0
λ2s3−2

(5.9)

Now let us turn to the cubic vertex. Recall, that all the curvatures except the highest

ones, i.e. Fα(2s1−2), Rα(2s2−2) and Rα(2s3−2) (and their conjugates), vanish on-shell. So

it seems that the simplest way to obtain the cubic vertex is to take into account their

deformations only. But this produce a lot of terms with the number of derivatives greater

than N = s1 + s2 − s3, moreover, their coefficients will be proportional to the negative

degrees of λ and so will be singular in the flat limit. Note that due to relation on the

constants given above the terms with the highest number of derivatives, namely s1 + s2 +

s3−2 combine into total derivative and can be dropped out, but it still leaves a lot of other

dangerous terms (exceptions are the vertices with lowest spin-2 and spin-3/2). So before

taking a flat limit we must show that all these terms somehow vanish on-shell. It turns out

that the best strategy is to keep all the curvatures and all their deformations. In this way

we managed to show (see appendix B for details) that all such terms combine into total

derivatives or cancel each other so we safely can take a flat limit. The procedure we followed

produce also a lot of terms which have the correct number s1 + s2 − s3 of derivatives and

contribute to the flat vertex. By rather long but straightforward calculations (ones again

see appendix B) we reduced the final results to (we dare say) the simplest form possible.

Among all cubic vertices there are four possible types, namely s1 > s2 > s3, s1 = s2 >

s3, s1 > s2 = s3 and s1 = s2 = s3, and, as we have seen on the simple examples above,

have to be considered separately.

5.1 Vertex s1 > s2 > s3

First of all note that the relation (5.9) implies that

a0 ∼ λ2(s1−s3)c0, b0 ∼ λ2(s2−s3)c0

It means that in the flat limit all deformations for the two higher spins vanish and as a result

the flat vertex must be trivially invariant under the lowest spin field gauge transformations.

And indeed, we managed to reduce this vertex to very simple form

L1 = 2c0Dωα(ŝ2)β(ŝ1)Σ
α(ŝ2)α̇(ŝ3)Ωβ(ŝ1)

α̇(ŝ3) + h.c. (5.10)

where the lowest spin field enters through the gauge invariant curvature. As for the in-

variance under the other gauge transformations, it can be easily checked with the help of

on-shell identities (2.4) or (2.10). Recall that even if the two of the three fields are fermions

so that two of the three s1,2,3 are half-integer, the combinations ŝ1,2,3 are always integer

and so the formula above works for the fermionic vertices as well.
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5.2 Vertex s1 = s2 > s3

First of all note that these vertices are symmetric on the two higher spin fields if s3 is even

(so it may be one and the same field) and antisymmetric if s3 is odd. In all other respects,

including considerations on the gauge invariance, they are very similar to the previous case.

The flat vertex turns out to be

L1 = 2c0Dωα(s3−1)β(s3−1)[Σ
α(s3−1)α̇(ŝ3)Ωβ(s3−1)

α̇(ŝ3) + (−1)s3(Σ↔ Ω)] + h.c. (5.11)

so the lowest spin field also enters only through the gauge invariant curvature. Note

also, that in this case the two higher spin fields can be fermions, but lower spin field is

always boson.

5.3 Vertex s1 > s2 = s3

For the even highest spin s1 such vertex must be symmetric on the two lower spin ones, so

it may be one and the same field, while for the odd s1 it must be antisymmetric and we

must have two different fields with the same spin. We have seen on the simple examples

above that this case is indeed special and the vertex has a more complicated form. Indeed,

the relations on the coupling constants

a0 ∼ λ2(s1−s3)c0, b0 ∼ c0

show that only corrections to the higher spin transformations vanish in the flat limit and

so the vertex cannot be trivially gauge invariant under the gauge transformations of the

lower spin fields. The most simple result we have managed to obtain looks like:

L1 = c0Dωα(s1−1)β(ŝ1)H
α(s1−1)β̇(s1−1)Ωα(ŝ1)

β̇(s1−1)

+ c0

ŝ1∑
k=0

(s1 − 1)(ŝ1)!

(ŝ1 − k)!k!
eγγ̇Σα(s1−1)γα̇(s1−2)Ω

α(s1−1)β(ŝ1−k)β̇(k)ωα(s1−2)γ̇
β(ŝ1−k)β̇(k)

+ (−1)s1(Ω↔ ω) + h.c (5.12)

The first term has the same structure as in the general case the main difference is that the

highest spin enters through its physical component that has different on-shell relations. As

a result, the first term is not gauge invariant by itself and the gauge invariance requires

that the number of algebraic terms to be added.

Note that in this case the two lower spin fields can be fermions, while the highest spin

one is always boson.

5.4 Vertex s1 = s2 = s3 = s

Similarly to the previous case, for the even spin s this vertex must be completely symmetric

on all three fields so that it may be just one and the same field and the vertex describes

its self interaction; for the odd spin s the vertex must be completely antisymmetric so we

must have three different fields with the same spin. In this case

a0 ∼ b0 ∼ c0
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so that the corrections to the gauge transformations for all three fields survive in the flat

limit and the resulting vertex looks very similar to the previous one:

L1 = c0DΣα(s−1)β(s−1)Φ
α(s−1)α̇(s−1)φβ(s−1)

α̇(s−1)

+ c0

s−1∑
k=1

(s− 1)(s− 1)!

(s− 1− k)!k!
eγγ̇Σα(s−1)γα̇(s−2)Ω

α(s−1)β(s−1−k)β̇(k)ωα(s−2)γ̇
β(s−1−k)β̇(k)

+min. perm.(Σ,Ω, ω) + h.c. (5.13)

Here min. perm. stands for the two cyclic permutations of Σ,Ω, ω in the first term and

five permutations in the second one. It is clear that such vertices exist only for bosons.

6 Conclusion

In this paper we have constructed a number of non-trivial cubic vertices for the massless

higher spin bosonic and fermionic fields in flat four dimensional space. We begin with

Fradkin-Vasiliev approach in AdS4 space and then consider the flat limit. The procedure

appears to be not so simple, because we have to take care on all the higher derivative

terms, which such approach generates, but the final results happen to be very simple. So

we hope that they could be useful for the future investigations. Let us stress once more

that the procedure we use produce only parity even vertices, while the construction of the

corresponding parity odd ones [24] is an open question.

As one of the future directions we see a construction of the cubic vertices for massive

and partially massless fields. The frame-like formalism for such fields is known [36–38], but

there are just a few examples of interactions till now [39–44].

One more interesting direction is the cubic vertices for the higher spin massless su-

permultiplets. Their classification was elaborated quite recently in the light-cone formal-

ism [45, 46], but for the Lorentz covariant realization there are also just a few non-trivial

results [47–51].
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A Deformations

In this appendix we calculate the combinatoric coefficients for the deformations of the

gauge invariant curvatures. Let us take as an example the curvatures of the highest spin

components. Their most general quadratic deformations are given by ansatz (5.3), which

we repeat here for the reader convenience:

∆Fα(2s1−2−m)α̇(m) =

ŝ1∑
k=0

min(m,ŝ2)∑
l=0

akΩ
α(ŝ3−m+l)β(ŝ1−k)α̇(m−l)β̇(k)ωα(ŝ2−l)α̇(l)β(ŝ1−k)β̇(k)
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Recall also that

ŝ1 = s2 + s3 − s1 − 1, ŝ2 = s1 + s3 − s2 − 1, ŝ3 = s1 + s2 − s3 − 1

Now let us consider variations of the deformed curvatures F̂ = F + ∆F under the lowest

spin ω gauge transformations. From the ansatz given above we can immediately read the

corrections to the gauge transformations:

δΣα(2s1−2−m)α̇(m) = ak,l,mΩα(ŝ3−m+l)β(ŝ1−k)α̇(m−l)β̇(k)ηα(ŝ2−l)α̇(l)β(ŝ1−k)β̇(k) (A.1)

Taking into account these corrections, the variations of the deformed curvatures F̂ =

F + ∆F appear to be

δF̂α(2s1−2−m)α̇(m) = ak,l,mDΩα(ŝ3−m+l)β(ŝ1−k)α̇(m−l)β̇(k)ηα(ŝ2−l)α̇(l)β(ŝ1−k)β̇(k)

+ (ak,l,m+1 − ak,l−1,m)eαγ̇Ωα(ŝ3−m+l−1)β(ŝ1−k)α̇(m−l+1)β̇(k)

ηα(ŝ2−l)α̇(l−1)γ̇
β(ŝ1−k)β̇(k)

+ (k + 1)ak+1,l,me
γ
γ̇Ωα(ŝ3−m+l)β(ŝ1−k−1)α̇(m−l)β̇(k)γ̇ηα(ŝ2−l)α̇(l)β(ŝ1−k−1)γβ̇(k)

+ ak,l,m+1e
α
γ̇Ωα(ŝ3−m+l−1)β(ŝ1−k)α̇(m−l)β̇(k)γ̇ηα(ŝ2−l)α̇(l)β(ŝ1−k)β̇(k)

+ (ak,l,m−1 − ak,l+1,m)eγ
α̇Ωα(ŝ3−m+l+1)β(ŝ1−k)α̇(m−l−1)β̇(k)

ηα(ŝ2−l−1)γα̇(l)
β(ŝ1−k)β̇(k)

+ ak,l,m−1eγ
α̇Ωα(ŝ3−m+l)β(ŝ1−k)γα̇(m−l−1)β̇(k)ηα(ŝ2−l)α̇(l)β(ŝ1−k)β̇(k)

+ (ŝ1 − k + 1)ak−1,l,meγ
γ̇Ωα(ŝ3−m+l)β(ŝ1−k)γα̇(m−l)β̇(k−1)

ηα(ŝ2−l)α̇(l)β(ŝ1−k)β̇(k−1)γ̇ (A.2)

The main requirement here is that the deformed curvatures transform covariantly, so we

must have

δF̂α(2s1−2−m)α̇(m) = ak,l,mRα(ŝ3−m+l)β(ŝ1−k)α̇(m−l)β̇(k)ηα(ŝ2−l)α̇(l)β(ŝ1−k)β̇(k)

= ak,l,m

[
DΩα(ŝ3−m+l)β(ŝ1−k)α̇(m−l)β̇(k)ηα(ŝ2−l)α̇(l)β(ŝ1−k)β̇(k)

+ eαγ̇Ωα(ŝ3−m+l−1)β(ŝ1−k)α̇(m−l)β̇(k)γ̇ηα(ŝ2−l)α̇(l)β(ŝ1−k)β̇(k)

+ (ŝ1 − k)eγγ̇Ωα(ŝ3−m+l)β(ŝ1−k−1)α̇(m−l)β̇(k)γ̇ηα(ŝ2−l)α̇(l)β(ŝ1−k−1)γβ̇(k)

+ eγ
α̇Ωα(ŝ3−m+l)β(ŝ1−k)γα̇(m−l−1)β̇(k)ηα(ŝ2−l)α̇(l)β(ŝ1−k)β̇(k)

+ keγ
γ̇Ωα(ŝ3−m+l)β(ŝ1−k)γα̇(m−l)β̇(k−1)ηα(ŝ2−l)α̇(l)β(ŝ1−k)β̇(k−1)γ̇

]
(A.3)

A comparison of these two expressions gives us a number of recurrent relations on the

coefficients ak,l,m

ak,l,m+1 = ak,l−1,m, ak,l,m−1 = ak,l+1,m

(ŝ1 − k + 1)ak−1,l,m = kak,l,m, (k + 1)ak+1,l,m = (ŝ1 − k)ak,l,m

ak,l,m+1 = ak,l,m, ak,l,m−1 = ak,l,m
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their simple solution being

ak,l,m =
(ŝ1)!

(ŝ1 − k)!k!
a0 (A.4)

Thus the result turns out to be unique up to the one arbitrary coupling constant.

B Flat limit

The main problem with the flat limit is that the formalism we use generates a lot of terms

with the number of derivatives greater than that of the flat vertex and their coefficients

are singular in the limit λ→ 0. Our first task here is to show that all such terms combine

into total derivatives or vanish on-shell and so they all can be dropped out allowing us to

take a desired limit. Let us consider contribution to the cubic vertex from the highest spin

field as an example. They have the form (schematically)

∆L1 ∼
∑
m

Fα(2s1−2−m)α̇(m)∆Fα(2s1−2−m)α̇(m)

where ∆F are given in (5.3). Recall that on-shell each auxiliary or extra field

Σα(s1−1+m1)α̇(s1−1−m1) is equivalent to |m1| derivatives of the physical one, in this the

number of derivatives for each concrete term in the cubic vertex is defined by N =

|m1|+ |m2|+ |m3|+ 1, where

m1 = s1 − 1−m
m2 = s2 − 1−m+ l − k (B.1)

m3 = s3 − 1− k − l

Let us consider the contributions with positive m1, while m2,3 can be both positive or

negative. Now we consider all four possible cases, calculate the number of derivatives and

focus on terms with more than N0 = s1 + s2 − s3 derivatives.

I) m2 > 0, m3 > 0

N = s1 + s2 + s3 − 2− 2m− 2k > s1 + s2 − s3 ⇒ k < s3 − 1−m

II) m2 > 0, m3 < 0

N = s1 + s2 − s3 − 2m+ 2l > s1 + s2 − s3 ⇒ l > m

III) m2 < 0, m3 > 0

N = s1 − s2 + s3 − 2l > s1 + s2 − s3 ⇒ l < s3 − s2 < 0

IV) m2 < 0, m3 < 0

N = s1 − s2 − s3 + 2 + 2k > s1 + s2 − s3 ⇒ k > s2 − 1 > ŝ1

– 17 –
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So we see that only terms where all three m1,2,3 are positive (or all three are negative)

generate the higher derivatives terms. Each such contribution looks (schematically)

[DΣ− eΣ− λ2eΣ]Ωω

so that we have terms with explicit derivative as well as the purely algebraic ones. Let us

begin with terms DΣΩω. Taking into account all combinatoric coefficients (both from the

free Lagrangian as well as from the deformation parameters) we obtain

∆ = Ck,l,mDΣα(ŝ3−m+l)δ(ŝ2−l)α̇(m−l)δ̇(l)Ω
α(ŝ3−m+l)β(ŝ1−k)α̇(m−l)β̇(k)ωδ(ŝ2−l)δ̇(l)β(ŝ1−k)β̇(k)

(B.2)

where

Ck,l,m =
(ŝ2 + ŝ3)!(ŝ1)!a0

(ŝ3 −m+ l)!(ŝ2 − l)!(m− l)!l!(ŝ1 − k)!k!
(B.3)

Calculating the inverse relations from the (B.1)

m = (s1 − 1)−m1, k =
ŝ1 + m̂1

2
, l =

ŝ2 + m̂2

2
(B.4)

where we have introduced

m̂1 = m1 −m2 −m3, m̂2 = m2 −m1 −m3, m̂3 = m3 −m1 −m2 (B.5)

we can show that the denominator in the expression for Ck,l,m can be rewritten as follows:(
ŝ1 + m̂1

2

)
!

(
ŝ1 − m̂1

2

)
!

(
ŝ2 + m̂2

2

)
!

(
ŝ2 − m̂2

2

)
!

(
ŝ3 + m̂3

2

)
!

(
ŝ3 − m̂3

2

)
!

Taking into account the relations on the constants a0, b0 and c0, we see that such con-

tributions are completely symmetric on the three fields. As a result, all such terms with

explicit derivative combine into total derivative exactly in the same way as the terms with

the highest number of derivatives do.

Now we consider purely algebraic terms of the type λ2eΣΩω. We obtain

∆1 = (ŝ3 −m+ l)Ck,l,meγ
γ̇Σα(ŝ3−m+l−1)δ(ŝ2−l)α̇(m−l)δ̇(l)γ̇

Ωα(ŝ3−m+l−1)β(ŝ1−k)γα̇(m−l)β̇(k)ωδ(ŝ2−l)δ̇(l)β(ŝ1−k)β̇(k) + . . . (B.6)

where dots stand for the similar terms with index γ contracted with one of the indices of

the field ω. On the other hand, if we take the contribution of the type eΩΣω from the

deformations of the Ω field, we obtain

∆2 = (m̃− l̃)C̃k̃,l̃,m̃e
γ
γ̇Ωα(ŝ3−m̃+l̃)δ(ŝ1−l̃)α̇(m̃−l̃−1)δ̇(l̃)

Σα(ŝ3−m̃+l̃)β(ŝ2−k̃)α̇(m̃−l̃−1)β̇(k̃)ωδ(ŝ1−l̃)δ̇(l̃)β(ŝ2−k̃)β̇(k̃) + . . . (B.7)

where again dots stand for the similar terms where index γ̇ is contracted with one of the

ω indices. We see that the structure of these two contributions is the same provided

m̃ = m− l + k + 1, k̃ = l, l̃ = k (B.8)

The resulting coefficients turn out to be equal so these two terms cancel each other. The

same holds for the two other pairs of contractions, namely (Σω) and (Ωω).
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Thus all the higher derivative terms combine into total derivatives or cancel each other

and we may safely take a flat limit. We repeat our considerations but focus this time on

the terms with exactly N0 = s1 + s2 − s3 derivatives, i.e. those which do not vanish in the

flat limit. We find that there are a lot of such terms with both positive and negative m2,3.

The situation with positive m2,3 appears to be mainly the same as before, so that they also

combine into total derivatives or cancel. As for the terms with negative m2 or/and m3,

after rather long work we have managed to show that most of them can be combined into

terms proportional to the gauge invariant curvatures which vanish on-shell. All this leads

to the surprisingly simple results presented in the main text.

Open Access. This article is distributed under the terms of the Creative Commons
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