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Abstract
Recent advances in deep learning technology have triggered radical progress in the autonomy of ground vehicles.
Marine coastal Autonomous Surface Vehicles (ASVs) that are regularly used for surveillance, monitoring and other
routine tasks can benefit from this autonomy. Long haul deep sea transportation activities are additional opportunities.
These two use cases present very different terrains - the first being coastal waters- with many obstacles, structures and
human presence while the latter is mostly devoid of such obstacles. Variations in environmental conditions are common
to both terrains. Robust labeled datasets mapping such terrains are crucial in improving the situational awareness that
can drive autonomy. However, there are only limited such maritime datasets available and these primarily consist of
optical images. Although, Long Wave Infrared (LWIR) is a strong complement to the optical spectrum that helps in
extreme light conditions, a labeled public dataset with LWIR images does not currently exist. In this paper, we fill this
gap by presenting a labeled dataset of over 2,900 LWIR segmented images captured in coastal maritime environment
under diverse conditions. The images are labeled using instance segmentation and classified in seven categories - sky,
water, obstacle, living obstacle, bridge, self and background. We also evaluate this dataset across three deep learning
architectures (UNet, PSPNet, DeepLabv3) and provide detailed analysis of its efficacy. While the dataset focuses on
the coastal terrain it can equally help deep sea use cases. Such terrain would have less traffic, and the classifier trained
on cluttered environment would be able to handle sparse scenes effectively. We share this dataset with the research
community with the hope that it spurs new scene understanding capabilities in the maritime environment.
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1 INTRODUCTION
In recent years, advances in deep learning algorithms have
led to an exponential growth in the research on autonomy
of land vehicles. Some of the key catalysts for this growth
have been publicly available labeled datasets, open-source
software, publication of novel deep learning architectures
and increase in hardware compute capabilities. The maritime
environment, with an abundance of periodic tasks such
as monitoring, surveillance, and long haul transportation
presents a strong potential for autonomous navigation.
Availability of good datasets is a key dependency for gaining
autonomy. Various types of sensors such as electro-optical
(EO) cameras, LWIR cameras, radar and lidar help in
collecting huge volume of data about surroundings. The
challenge lies in interpreting this data and creating labeled
datasets that can help train deep learning architectures.

EO cameras are predominantly used to capture images
because of their versatility and the abundant Convolutional
Neural Network (CNN) architectures Krizhevsky et al.
(2012) that learn from labeled images. Two methods are
commonly used for annotating an image. First, detecting
objects of interest by drawing bounding boxes around them.
Second, semantically segmenting an image in which each
pixel is assigned a class label. The first method is faster as
it focuses on specific targets, however, the second is more
refined as it segments the entire scene.

The maritime environment is predominantly exposed to
sky and water and the lighting conditions are therefore quite

different as compared to a ground terrain. Glitter, reflection,
water dynamism and fog are common. These conditions
deteriorate the quality of optical images. Horizon detection
is also a common problem faced while using optical images.
On the other hand, LWIR images offer distinct advantages
in such extreme light conditions as shown experimentally
by Robinette et al. (2019), Nirgudkar and Robinette (2021)
and as shown in Fig. 1. Marine robotics researchers have
used LWIR sensors in their work (Schöller et al. (2019),
Rodin and Johansen (2018), Qi et al. (2011), Wang et al.
(2017)). Most notably Zhang et al. (2015) has built a labeled
dataset of paired visible and LWIR images of different types
of ships in the maritime environment. However, there are
certain limitations of this dataset which are discussed in the
next section.

In this paper, we present a dataset of over 2,900 LWIR
maritime images that capture diverse scenes such as cluttered
marine environment, construction, living entities and near
shore views across various seasons and times of the day
in the Massachusetts Bay area including Charles River and
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(a) Optical in sun glare (b) LWIR in sun glare

(c) Optical in dark (d) LWIR in dark

Figure 1. LWIR vs Optical cameras in extreme light conditions:
In (a), sun’s glare is obstructing the view for optical while the
visibility is clear in LWIR (b). In (c) visibility from optical camera
is almost zero in the dark, whereas LWIR continues to give a
clear picture (d).

Boston Harbor. The dataset images are segmented using
instance and semantic segmentation into 7 classes. We also
evaluate the performance of this dataset across 3 popular
deep learning architectures (UNet, PSPNet, DeepLabv3)
and present our findings with respect to obstacle detection
and scene understanding. The dataset is publicly available
and can be downloaded from the URL Nirgudkar et al.
(2022). We aim to stimulate research interest in the field of
perception in maritime autonomy through these dataset.

The remainder of the paper has been organized as follows.
Section 2 outlines the current state of art in the maritime
domain. Section 3 describes the hardware assembly that
is used for data acquisition. Specifics about the dataset
and segmentation methods have been elaborated in Section
4 and Section 5 presents evaluation results against the
3 architectures. We draw conclusions in Section 6 and
highlight the future plan of work.

2 RELATED WORK
Significant research has gone in the field of marine robotics
over the past few years and researchers have developed
multiple datasets that can aid autonomy. These datasets
vary in size and complexity, however, their main purpose
revolves around environment monitoring and surveillance.
Castellini et al. (2020) used autonomous aquatic drones and
captured multivariate time series data for the purpose of
water quality management. The dataset contains parameters
such as water conductivity, temperature, oxygen level and is
useful for time series analysis. Bloisi et al. (2015) used ASV
in Venice, Italy and created a dataset of optical images for the
purpose of boat identification and classification. The ground
truth in this dataset is provided in the form of bounding
boxes. Ribeiro (2015) captured images from an unmanned
aerial vehicle (UAV) 150-300 meter above ocean surface for
research on sea monitoring and surveillance. Though multi-
spectrum cameras including IR cameras are used, the dataset

is not annotated and hence it cannot be used readily for
model training. Another problem is that the images were
aerial pictures and therefore do not have the same perception
properties as that of the view from a vehicle on the water
surface. Zhang et al. (2015) has created a dataset of paired
visible and LWIR images of various ships in the maritime
environment. The annotations are provided in the form of
bounding boxes around ships. However, selection is focused
on those images where ships occupy more than 200 pixels
of the image area. The dataset is therefore not adaptable
for general use where obstacles can be in any shape or
form such as buoys, small platforms, construction in water.
More importantly, the images are captured from a static rig
mounted on the shore and therefore lack the dynamism found
in real life scenarios.

Prasad et al. (2017) has created a dataset using optical
and near infrared (NIR) cameras to capture maritime scenes
from a stationary on-shore location. This dataset also has
some video sequences recorded from a ship but they are
from a higher vantage point and hence do not clearly depict
the same view as that from an ASV. Additionally, not all
images in the dataset are annotated. Only a few are annotated
using bounding boxes. Patino et al. (2016) has used multi-
spectrum cameras to capture video segments of enacted
piracy scenes. The emphasis is on threat detection and so the
video sequence contains medium to large boats appearing in
the frames. Since the visuals are enforced, the dataset lacks
natural marine scenes that are critical for training a model.
Steccanella et al. (2020) used pixel wise segmentation to
differentiate between water and non-water class. The dataset
contains around 515 optical images with the 2 classes.
In recent years, two excellent datasets MaSTR1325 and
MODS have been created by Bovcon et al. (2019) and
Bovcon et al. (2021). The optical images in these datasets
are semantically segmented in 3 classes and are suitable for
unmanned surface vehicles (USV) navigation. However, as
pointed out by Bovcon et al. (2021), bright sunlight, foam,
glitter and reflection in the water deteriorate the inference
quality. Small object detection poses a challenge even for
the model developed by Bovcon and Kristan (2020) that is
specifically designed for the maritime environment.

Most of these datasets are captured using EO cameras. The
ones that used NIR, do not provide the benefit of LWIR as
they are still dependent on visible light. As indicated in Fig. 2
EO (2022) NIR light occupies a wavelength between 0.75 to
1.4 microns and although it is a part of the Infrared spectrum,
it is not caused by thermal radiation. Instead it is almost
similar to visible light except that it cannot be observed by
human eye. Heat or thermal radiation is the primary source of
radiation for LWIR NASA (2003), Hyll (2016) and therefore
LWIR is truly independent of visible light.

In a nutshell, the existing NIR/LWIR datasets lack
complete scene parsing capabilities, or have been created
in a controlled environment or are not publicly available.
MassMIND bridges this gap and is the largest labeled dataset
of its kind containing real-life LWIR images. The images
have been recorded in a busy marine area as well as in not
so busy ocean waters during various seasons and times of the
day over a period of 2 years. The dataset has been annotated
into 7 classes using instance segmentation that can be used
for scene parsing during autonomous navigation.



MassMIND: Massachusetts Maritime INfrared Dataset 3

Figure 2. IR Spectrum

Figure 3. R/V Philos showing placement of LWIR cameras

3 SYSTEM SETUP

R/V Philos, an ASV owned by the Brunswick Corporation
and operated by MIT Autonomous Underwater Vehicle
(AUV) AUVLab (1989) lab was instrumental in collecting
images for the MassMIND dataset. The ASV is equipped
with 3 EO cameras, 2 Forward looking Infrared (FLIR)-
LWIR cameras, a radar, a lidar, GPS and Inertial
Measurement Unit (IMU). The FLIR cameras used in
2019 were entry level providing resolution of 320×240
(width×height) and horizontal field of view of 34°. These
cameras were upgraded in 2020 which provided resolution
of 640×512 (width×height) and horizontal field of view of
75°. Images from these sensors have slight offset with one
another due to the placement of EO and FLIR cameras as
shown in Fig. 3. Table 1 shows technical specifications of
the FLIR ADK cameras used in the setup in 2019 and later.
Additional details of the ASV can be found in DeFilippo
et al. (2021). The unannotated raw dataset from the sensors
was also released as part of that work SeaGrant (2022).

Thermal Imager FLIR ADK, >2019 FLIR ADK, 2019
Data Format 16 bit TIFF or compressed 16 bit TIFF

8 bit PNG
Frame Rate 30 Hz/60 Hz selectable, Same

9 Hz optional
Spectral Band 8-14 µm (LWIR) Same
Array format 640 × 512 320 × 256
Field of View 75° 34°
Pixel pitch 12 µm Same
Thermal Sensitivity < 50 mK Same
Power
Power Consumption 1W (without heater), 580 mW

4W average,
12W maximum (with heater)

Environmental
Operating Temperature -40 °C to 85 °C Same
Environmental Protection IP67 Same
Shock 1500 g @ 0.4 msec Same
Physical
Dimensions (W × H × D) 35 × 40 × 47 mm 38 × 38 × 42.5 mm
Weight 100 gm 116.12 gm

Table 1. FLIR ADK Data sheet

4 DATASET DESCRIPTION
The strength of LWIR is its independence from visible light.
Our main goal was to utilize this property of LWIR and
create a comprehensive marine dataset of real-life images so
that it complements existing optical datasets. In this section,
we first describe how the data was acquired and the process
of image selection. Then we describe the segmentation
scheme that was followed along with the labeling process.

Figure 4. Area covered by R/V Philos near Boston,
Massachusetts

4.1 Data Acquisition and Selection
R/V Philos recorded scenes around the Massachusetts Bay
area over a period of 2 years from 2019 till November
2021. This gave us an opportunity to create seasonal and
temporal diversity in the dataset. Nearshore scenarios were
also captured as they present more challenging scenes with
construction and increased human and vehicle presence. This
was in addition to the complexity present due to weather
and light patterns observed in the farther seas. Images were
taken in a natural, uncontrolled environment which makes
the dataset applicable for practical use. Fig. 4 shows some of
the typical routes the ASV has taken in these trips.

R/V Philos stores data from various sensors in the form
of rosbag BSD (2020) files. LWIR and optical images were
extracted from these rosbag files and carefully analyzed. One
challenge faced while selecting LWIR images was the lack of
texture and color information that sometimes undermined the
scene complexity. In such cases, we used the corresponding
optical equivalents to guide through the selection. The epoch
time from the rosbag file was also used to specifically target
scenes after sunset. This ensured that our dataset specifically
included scenes that would pose challenges to the optical
sensors. The resolution of 2019 footage was lesser than later
recordings and helped create a variation that would be natural
in a practical world. The dataset has approximately equal
distribution of these images as indicated in Table 2.

Intrinsically maritime scenes have a significant imbalance
in their class distribution as compared to the ground scenes.
Sky and water are present in almost any image and occupy
major portions. While nearshore scenes help in capturing
the real life traffic, and living presence, they also amplify
the background adding to the disproportion. As part of the
selection process, we tried to reduce this imbalance so that
sky and background do not undermine the obstacles and
living obstacles in the water that are critical for training. We
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Year of recording Number of images
2019 1423 (48.8%)

> 2019 1493 (51.2%)
Total 2916

Table 2. Image distribution: 2019 sensors had low resolution as
compared to 2020

Class Minimum pixel area Maximum pixel area
Sky 303 235,763

Water 3,013 251,531
Bridge 29 223,990

Obstacles 2 17,341
Living Obstacles 2 12,512

Background 48 249,720
Self 32 11,915

Table 3. Variation of pixel area across classes: As expected,
sky, water and background are generally larger in most of the
images. Obstacles and living obstacles on the other hand vary a
lot based on the distance. Nearer ones contribute to much
larger areas than the distant ones. Pixel area of 2 represents
very small buoys or birds.

also focused on bridges as a part of them was relevant for
path navigation while the remainder was not and therefore
had to be considered as background. Another important
difference between maritime and ground scenes is the line of
sight. In maritime environment, cameras are exposed to large
vistas and distant objects although part of the scene, can only
be identified vaguely because they appear tiny. Annotation
of such objects may vary as they become more discernible.
Such reinterpretation requires consideration of distance as
an additional parameter in the classifiers. Table 3 and Fig.
5 show the size and instance distribution of each class in the
dataset. The obstacles (purple) and living obstacles (green)
mostly occupy less area but there are few instances in which
they occupy considerably larger area. The images in such
cases contain close up views of boat and/or humans. Fig. 5
shows size variation across far obstacles, sky and water in the
order of magnitude.

4.2 Image Segmentation
We analyzed the Cityscape Cordts et al. (2016) dataset
to understand the guidelines of their classification. In
order to make our dataset meaningful for path navigation,
we finalized 7 classes - ‘sky’, ‘water’, ‘obstacle’, ‘living
obstacle’, ‘bridge’, ‘background’ and ‘self’ for annotation.
Categorizing maritime scene into such refined classes
ensures that true obstacles are identified and not get
combined with other non-essential entities. Segmentation
guidelines were prepared to assist the annotators. The
‘obstacle’ class consists of inanimate objects surrounded
by water such as buoys, small platforms, sailboats, ships,
kayaks. Animate obstacles like humans and birds in the
water are classified as ‘living obstacles’. Identification of
living entity may be useful for navigation such as deriving
COLREGs compliant navigation path IMO (1972) and also
for other use cases such as surveillance and environmental
or ecological monitoring. Because of the urban setting of the
dataset, bridges were frequent and posed a unique challenge.

Figure 5. Distribution of instances across pixel area: As seen,
sky, water and background are prominently on the right end of
the chart with larger area. Most of the concentration of living
obstacles and obstacles is on the left indicating smaller pixel
areas. There is a gradual progression toward the center which
indicates cases where these obstacles are in close proximity
and appear larger. Distance does play a role in bridge size as
well but not to the same extent as that of obstacles. Training
was therefore done on actual size images so that we can retain
information for obstacles and living obstacles.

The legs of the bridge that are submerged in water and
the belly of the bridge were relevant as the ASV would
need to maneuver around the same. However, the top of
the bridge or construction on top was not. We decided to
annotate the navigation relevant portions of the bridge as
‘bridge’ class and mark the remaining portions as belonging
to the ‘background’ class. The ‘background’ class covered
any static or dynamic entities that were on land such as
trees, buildings, construction cranes and other structures. We
observed self returns on the images due to the position of
the cameras and these have been labeled as ‘self’ class.
This area neither represents ‘obstacle’ nor ‘background’ and
hence justified its own label. The path planning module can
always be programmed to exclude the ‘self’ class, but it helps
to identify the regions in the image correctly. Table 4 shows
number of instances in each class that were annotated in
these images and also the distribution of pixel area across
these classes.

As we were working through the annotations, many
images gave us new insights that had to be incorporated. We
had anticipated bridge complexity as part of our planning,
however we encountered a similar issue with respect to
obstacles. Initially we defined an obstacle as an entity
surrounded by water on all sides. However, we came across
construction objects that stretched from land into the water
such as gates that allow the boats to pass through, piers and
docks to park the boats, or platforms connected to the land.
These obstacles were pertinent for path navigation and hence
could not be treated as background. Similarly birds flying
just above the water were categorized as sky, and birds in
the water were categorized as ‘living obstacle’. Since the
images are 2D and LWIR does not give a good feel of the
color and texture, there were cases where the obstacle in
water was collapsed in the rear background and had to be
reviewed thoroughly. Another challenge faced was due to
the wide and deep line of sight that we get in the marine
environment. There were many obstacles near the horizon
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Class

Total
number
of
instances

%
Distribution
of number
of instances

%
Distribution
of pixel area

Sky 2902 12.97 30.58
Water 2916 13.04 52.21
Bridge 715 3.19 1.67
Obstacles 7120 31.83 0.94
Living
Obstacles

4350 19.45 0.05

Background 2860 12.78 11.28
Self 1501 6.71 3.25

Table 4. Spread of each class in the dataset: As seen all
classes have a proportionate presence in the dataset. Due to
instance segmentation, multiple occurrence of the same class in
an image is treated as a new instance. The dataset has a
significant number of obstacles and living obstacles - entities
impacting the navigation path. They are smaller and their area
is far less than that of the dominant classes like sky and water.
Self class does appear in considerable images and was
retained as the model can learn from it. Background, sky and
self are always counted as one even if they appear multiple
times in an image.

that were very tiny. We had to enlarge the image and annotate
such images per pixel. A person on a boat is annotated as a
‘living obstacle’ while the boat is annotated as an ‘obstacle’.
In cases where the boat was far out and a human could not
be easily identified on the boat, it was not called out and
considered as part of the ‘obstacle’ class.

In addition to labeling, we also had to make a choice
between semantic and instance segmentation. In semantic
segmentation, each occurrence of a class is assigned same
class label while in instance segmentation, each instance
of a class is assigned different instance id. Unlike on land,
maritime environment has a wide and deep line of sight.
The near and far objects may overlap in the 2-D view of
an image. They will be collapsed if semantic segmentation
was used. By instance segmenting the image, the information
of overlapping multiple obstacles can be retained which in
turn can be used to evaluate or develop occlusion aware
classifier vital for path planning. Lastly, the benefit of
instance segmentation is that it can always be converted
programmatically to semantic based on the need. Fig. 6
illustrates a few samples of raw LWIR images and their
annotated masks.

4.3 Labeling Process
An independent organization was tasked with the labeling
of these images. To achieve consistency in the result, we
created and shared a detailed class label definition document
so that labelers would have a common understanding. We
also labeled a batch of images ourselves to illustrate the
desired outcome. There are many tools available for image
segmentation but we chose Debals (2021) platform because
of its ease of use. The labeling was quick because of it’s
superpixels technology. The API interface made working
with the labeled dataset efficient. Fig. 7 shows the tool
in action. While the labeling tool was easy to use, there
were some challenges faced especially due to the nature of
LWIR images. Lack of color and textures posed difficulties

Figure 6. LWIR images and their segmentation: Multiple
occurrences of birds, humans or boats have their own instance
id and appear in different color. Background, sky and water
each have only one instance in an image.

Figure 7. Image segmentation platform: Segments.ai tool that
was used for annotation. It provides super pixels that improve
the productivity and reduces manual errors. Pipeline was
automated using the API interface.

in image identification as well as annotation. Color and
texture assists the human eye in making a judgment. Lack of
thereof, led to multiple reviews in some complex situations
such as cluttered set of obstacles, cluster of parking poles,
flock of birds or distant ships. For each LWIR video, the
corresponding optical version was therefore provided to the
labeling team for reference. The image had to be classified in
7 classes. This made the labeling process quite elaborate and
time consuming. Identifying parts of the bridge that should
be annotated as background was subjective and as a result,
there may be some deviations in some of the annotations. In
summary, the semantic annotation exercise for LWIR images
was more time consuming and needed a lot more attention
than we had anticipated.

2 rounds of reviews were done to improve the accuracy of
segmentation. Including the reviews, each image annotation
took approximately 25 minutes. We also developed a script
to check for any unclassified pixels and corrected such
masks. Automated checks for validating the segmentation
and gathering metrics were also developed.

5 DATASET EVALUATION
Though we have created instance-segmentation dataset,
for the purpose of evaluation we used its semantic
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Figure 8. Data augmentation: First column shows original
image and its mask followed by 3 rotations: 2, 5 and 7 degrees
respectively. Last column shows mirror operation. Images were
also rotated by -2, -5 and -7 degrees.

segmentation masks. To evaluate the efficacy of the dataset,
we used 3 image segmentation architectures - UNet
developed earlier by Ronneberger et al. (2015) for medical
image segmentation, PSPNet by Zhao et al. (2017) for
its improvement over fully convolutional network based
segmentation and DeepLabv3 by Chen et al. (2018) which
is known for its overall superior performance. The dataset
was split into 3 categories - 70% for training, 20% for
validation and 10% for testing. The test images were used
only during inference. Pretrained weights such as Deng et al.
(2009) are generally available for training optical images.
They greatly reduce the time to retrain the model, however
these do not work well for LWIR image training as shown by
Nirgudkar and Robinette (2021). We therefore trained these
architectures from scratch for our LWIR dataset. Original
image resolution of 640×512(width×height) pixels was
used across all the architectures - UNet (Ronneberger et al.
(2015)), PSPNet (Zhao et al. (2017)), DeepLabv3 (Chen
et al. (2018)) for both 2019 as well as the 2020 images.

5.1 Data Augmentation
Robust, diverse and large volume of data is a prerequisite
for any successful model. However, creating a labeled
dataset is a laborious and expensive task. A common
technique employed in increasing the dataset variety is data
augmentation Schöller et al. (2019), Bovcon et al. (2019). We
used the following 2 types of transformations for our dataset:

• Rotation: An image and its mask were rotated by ±2°,
±5°, ±7°

• Mirror: The original image and mask and their rotated
equivalence from previous step was mirrored on the
vertical axis

This scheme generated 13 images from 1 image.
Accordingly, our dataset was augmented to 40,096 images.
An illustrative example is shown in Fig. 8.

5.2 Performance Criterion
Intersection over union (IoU) is an important metric for
segmentation inference Csurka et al. (2013). It is defined as
ratio of area of intersection between predicted segmentation
mask (P) and the ground truth (G), and the area of union
between the two.

IoU =
G ∩ P

G ∪ P
(1)

The IoU score ranges between 0 and 1. A threshold value

can be chosen to determine if the inference can be treated as

true positive (TP). If the IoU score is greater than a certain
threshold then we treat the inference as true positive (TP)
otherwise it is treated as false negative (FN). If the ground
truth does not contain the region present in prediction then
it is treated as false positive (FP). Usually a threshold value
of greater than 0.5 is considered optimal Liu et al. (2021),
however, if the class sizes are tiny as in the present case,
the threshold can be compromised to a lower value. The
precision, recall and F1 score are defined as follows:

Precision(Pr) =
TP

TP + FP
, Recall(Re) =

TP

TP + FN
(2)

F1 =
2 ∗ Precision ∗Recall

Precision+Recall
(3)

5.3 Performance Metrics
All 3 architectures were run on Colab (2021) platform which
provided a 16GB GPU memory. Training was performed
from scratch without using pretrained weights. Images were
randomly shuffled prior to the training which helped in
improving the robustness of the model. Table 5 gives
a summary of the high level metrics obtained for each
architecture.

Name Images Image
size Epoch Loss Training

time
UNet train:27678

val:7910
test:4508

640*512 50
0.0202 27hr 50min

PSPNet 0.0223 47hr 56min
DeepLabv3 0.0112 29hr 30min

Table 5. Performance of various architectures: Size of the
images and number of epochs were identical across the 3
architectures.

The training loss is quite low for all the three architectures.
However, since water and sky occupy significant portions
of the maritime images, this parameter does not help
much and gives misleading accuracy. Classes were therefore
individually analyzed and Table 6 reports these metrics at a
class level. As noted above, sky and water have a significant
contribution in each image and therefore yield a high F1
even with a threshold of 0.6. The classes that are critical
for path navigation namely ‘obstacles’, ‘living obstacles’ and
‘bridge’ are much smaller as per Fig. 5. As shown in Table
6, a threshold of 0.6 gives substantial FNs for ‘’obstacles’
and ‘living obstacles’. Since the pixel area of these classes
is really tiny, we decided to evaluate their performance by
lowering the threshold to 0.3. As seen from the table, the FN
reduced appreciably. The threshold value can be subjective
based on the size of the class. A value of 0.6 for tiny sizes
is too high a bar to achieve. The primary intent of the model
is path navigation and having a dynamic threshold based on
parameters like size or distance would enable the model to
predict the presence of an obstacle although it may have
lesser spatial accuracy. Poor recall score of PSPNet on ‘living
obstacles’ indicates its failure to identify them which is also
reflected in low F1 score.

Fig. 9 indicates the inference results from all 3
architectures for a few sample images. Living obstacles
(humans) have been inferred really well in both DeepLabv3
and UNet. The boundaries separating humans from the
obstacle (boat) has been interpreted well. In the second row,



MassMIND: Massachusetts Maritime INfrared Dataset 7

Test UNet PSPNet DeepLabv3

Figure 9. Qualitative comparison of the inference: First row: DeepLabv3 and UNet have a good inference other than a few traces of
sky in the obstacle. PSPNet, despite the significant size has problem in identifying living obstacles and will need significant
additional training. Second row: Very tiny birds in the water have been correctly captured by both DeepLabv3 and UNet and are
again missed in PSPNet. Third row: Curvature of the image and waves in water have been correctly depicted in all 3 classifiers.
DeepLabv3 does a good job in calling out the bridges as well. Fourth row: There is significant reflection in the water that is handled
well by all, except for a few sporadic traces of bridge. Fifth row: There is a very obscure cloud and sky boundary. This has been
handled really well in all 3 models. Overall, glitter, waves, horizon boundaries that are a problem in optical world are handled well in
the LWIR dataset. DeepLabv3 performs best overall, closely followed by PSPNet (except for the problem with living obstacle) and
UNet

very tiny obstacles (birds) in the water have been correctly
inferred by DeepLabv3 and UNet. Third row indicates that
curvature or waves in water pose no issue to the model.
Reflection in water in the fourth row, or the heavy cloud
cover right on top of the sea, has been interpreted properly
by the models. PSPNet was found to have problems with
identifying ‘living obstacles’. While it works really well for
all other classes, it needs a lot of training to consistently
differentiate the boundaries between obstacle and the living
obstacle.

In addition to the above limitation in PSPNet, there were
some situations where very tiny obstacles were missed or
not completely identified. Bridge is another area where the
classifiers sometimes gave inconsistent results. This was
primarily due to the fact that ground truth for the bridge
contained portion annotated as ‘background’ that is not
pertinent to navigation. The classifier therefore sometimes
incorrectly inferred the navigable portion of the bridge
as background and vice versa. Despite that, inference for
‘bridge’ class improved significantly after increasing the
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Model Class Th TP FP FN Pr Re F1
UNet

Sky 0.6
4327 24 153 99.4 96.6 98.0

DeepLabv3 4374 8 106 99.8 97.6 98.7
PSPNet 4408 18 72 99.6 98.4 99.0
UNet

Water 0.6
4508 0 0 100 100 100

DeepLabv3 4508 0 0 100 100 100
PSPNet 4508 0 0 100 100 100

UNet

Bridge

0.6 723 605 409 54.4 63.9 58.8
0.3 962 605 170 61.4 85.0 71.3

DeepLabv3
0.6 870 377 262 69.8 76.9 73.1
0.3 1013 377 119 72.9 89.5 80.3

PSPNet
0.6 910 319 222 74.0 80.4 77.1
0.3 1040 319 92 76.5 91.9 83.5

UNet

Obstacle

0.6 615 504 2193 55.0 21.9 31.3
0.3 1645 504 1163 76.5 58.6 66.4

DeepLabv3
0.6 1143 429 1665 72.7 40.7 52.2
0.3 2045 429 763 82.7 72.8 77.4

PSPNet
0.6 1175 428 1633 73.3 41.8 53.3
0.3 2068 428 740 82.9 73.6 78.0

UNet

Living Ob

0.6 98 136 886 41.9 10.0 16.1
0.3 420 136 564 75.5 42.7 54.5

DeepLabv3
0.6 294 141 690 67.6 29.9 41.4
0.3 599 141 385 80.9 60.9 69.5

PSPNet
0.6 65 9 1045 87.8 5.9 11.0
0.3 127 9 983 93.4 11.4 20.4

UNet
Background 0.6

3856 85 526 97.8 88.0 92.7
DeepLabv3 4049 33 333 99.2 92.4 95.7
PSPNet 4178 50 204 98.8 95.3 97.0
UNet

Self 0.6
2306 179 74 92.8 96.9 94.8

DeepLabv3 2322 54 58 97.7 97.6 97.6
PSPNet 2329 19 51 99.2 97.9 98.5

Table 6. Quantitative results on the MassMIND dataset:
Classes pertinent to the navigation path were also evaluated
against a lower threshold. PSPNet performs at par with
DeepLabv3 in all classes except for ’living obstacles’ as
indicated by the poor recall. Most of the times it identifies the
living obstacle but collapses it in the obstacle (a boat typically).
Large number of epochs for PSPNet will probably circumvent
this problem. F1 score is really good for sky, water, background
and self class as expected. Despite their tiny size, obstacles
give a satisfactory recall. DeepLabv3 has performed well across
all the classes.

training to 50 epochs. Some of the challenge cases are shown
in Fig. 10.

To get consistent and meaningful performance from the
deep learning models, various modifications were tried and
parameters changed. A few of those key modifications are
elaborated below:

Initially we had reduced the image size to
320×256(width×height) to speedup the training phase.
This resulted in a lot of smaller obstacles being missed in
the inference. The obstacles were inherently small as shown
in Table 3 and they got tinier with the reduction in image
size leaving the classifier with very less information to train
well. It was therefore decided to retain the original size
of the images. We also experimented with excluding 2019
images because they were of low resolution. We expected
improvement in the performance. However,the performance
worsened as a lot of variation and information contained in
the 2019 dataset was lost. We therefore retained both 2019
and 2020 images.

To increase the dataset size, data augmentation was used
as described in Sub-Section 5.1. For optical images, color
adjustment is yet another augmentation operation. However,
augmentation by changing the brightness of LWIR images
had adverse effect on the inference and was not incorporated.
Larger rotations (±10°, ±15°) were tried and that caused

distortion in 2019 images and deteriorated the overall results.
Smaller range (±2°, ±5°, ±7°) seem to fit the dataset well.
An important consideration that improved the performance
drastically was shuffling. Since our images were named
based on epoch times, without explicit shuffling they were
fed sequentially to the classifier and gave poor results. They
were shuffled randomly before the training and that variation
helped the classifiers boost the performance multi-fold.

As seen from the inference, horizon detection does not
pose a problem in LWIR images. However, there are some
sporadic instances of clouds being incorrectly inferred as
water and vice versa. This happens mainly when there
are white clouds in the sky that appear similar to water,
have similar pixel values and get labeled incorrectly. Bridge
annotation remained challenging despite good F1 scores.
Depending on the nature of the bridge and position of the
background with respect to the bridge, the classifier has a
challenge and classifies the navigable portion of the bridge
as a background. When the bridge has arches, view from
beneath the arch could be sky or background and water. Such
minute details pleasantly have been represented well most of
the times, but do pose a challenge in other cases.

In summary, standard CNN architectures can be trained
with LWIR images and can produce good inference. The
LWIR dataset indeed complements the optical dataset in
many such scenarios and is therefore invaluable in the
perception task.

6 CONCLUSION
We have presented a comprehensive MassMIND dataset
containing over 2,900 segmented diverse LWIR images
and made it publicly available. This is the first maritime
dataset that segments LWIR images in 7 different classes
with emphasis on living and non-living, static and dynamic
obstacles in the water. The dataset is also evaluated and
bench marked against a few industry standard architectures.

Of the 3 classifiers evaluated, DeepLabv3 Chen et al.
(2018) stands out the best, followed by UNet and PSPNet.
PSPNet is found to be comparable to DeepLabv3 in all
other classes except for living obstacles. Our research calls
out significance of LWIR when it comes to problems such
as extreme light conditions and horizon detection that are
common in the optical world. In addition, the dataset tries
to encompass many of the critical aspects of the maritime
imagery such as static and dynamic obstacles of varying
sizes, crowded shoreline, deep seas, varying weather and
light patterns, and life presence on the water surface. Such
a diverse LWIR dataset can be useful to improve the deep
learning architectures for the maritime environment. At the
same time, it can complement optical datasets. The present
dataset also has some limitations. Certain obstacles such as
river barges or Sea-Doos are not captured because of the
ASVs’ urban setting. The demographics within the dataset
is also limited to one region in USA. We understand that as a
result, there is no variety in navigational markers used across
world regions. This gap can be bridged by collaboration with
other researchers.

We plan to refine the current ’obstacle’ class to indicate
the type of obstacle such as sailboats, kayaks, and merchant
ships. This will enable creation of COLREG compliant
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Test UNet PSPNet DeepLabv3

Figure 10. Misrepresented inference: First row: A portion of the obstacle has been clubbed with the background in both UNet and
DeepLabv3, however it is represented properly in PSPNet. There are sporadic traces of bridge in UNet. Second row: Again, the hull
of the larger ship is very close to the background and the classifier has problems detecting the boundaries in all 3 architectures.
And there are a few spurious occurrences of bridge and living obstacles. Third row: PSPNet has a better inference than the rest
although the boundaries are not clear. Portions of bridge and background have been collapsed in the other two along with a few
sporadic obstacles. The reflection in water has been handled well in all three.

classifiers. We plan to integrate the inference obtained from
these models in real time with the perception pipeline
developed by Clunie et al. (2021). Lastly, we will also
explore creation of an instance-segmentation architecture
dedicated towards LWIR images in the marine environment.
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