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Abstract

Single-cell transcriptomics reveals gene expression heterogeneity but suffers from stochastic dropout and

characteristic bimodal expression distributions in which expression is either strongly non-zero or non-detectable.

We propose a two-part, generalized linear model for such bimodal data that parameterizes both of these features.

We argue that the cellular detection rate, the fraction of genes expressed in a cell, should be adjusted for as a

source of nuisance variation. Our model provides gene set enrichment analysis tailored to single-cell data. It

provides insights into how networks of co-expressed genes evolve across an experimental treatment. MAST is

available at https://github.com/RGLab/MAST.

Keywords: Bimodality, Cellular detection rate, Co-expression, Empirical Bayes, Generalized linear model, Gene set
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Background

Whole transcriptome expression profiling of single cells

via RNA sequencing (scRNA-seq) is the logical apex to

single cell gene expression experiments. In contrast to

transcriptomic experiments on mRNA derived from bulk

samples, this technology provides powerful multi-

parametric measurements of gene co-expression at the

single-cell level. However, the development of equally

potent analytic tools has trailed the rapid advances in

biochemistry and molecular biology, and several challenges

need to be addressed to fully leverage the information in

single-cell expression profiles.

First, single-cell expression has repeatedly been shown

to exhibit a characteristic bimodal expression pattern,

wherein the expression of otherwise abundant genes is

either strongly positive or undetected within individual

cells. This is due in part to low starting quantities of

RNA such that many genes will be below the threshold

of detection, but there is also a biological component to

this variation (termed extrinsic noise in the literature)

that is conflated with the technical variability [1–3]. We

and other groups [4–7] have shown that the proportion

of cells with detectable expression reflects both technical

factors and biological differences between samples. Re-

sults from synthetic biology also support the notion that

bimodality can arise from the stochastic nature of gene

expression [2, 3, 8, 9].

Second, measuring single cell gene expression might

seem to obviate the need to normalize for starting RNA

quantities, but recent work shows that cells scale tran-

script copy number with cell volume (a factor that af-

fects gene expression globally) to maintain a constant

mRNA concentration and thus constant biochemical re-

action rates [10, 11]. In scRNA-seq, cells of varying vol-

ume, and hence mRNA copy number, are diluted to an
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approximately fixed reaction volume, leading to differ-

ences in detection rates of various mRNA species that

are driven by the initial cell volumes. Technical assay

variability (e.g., mRNA quality, pre-amplification effi-

ciency) and extrinsic biological factors (e.g., nuisance

biological variability due to cell size) that globally

affect transcription remain, and can significantly influ-

ence expression level measurements. Our approach

easily allows for estimation and control of the “cellular

detection rate” (CDR) while simultaneously estimating

treatment effects.

Previously, Kharchenko et al. [6] developed a so-called

three-component mixture model to test for differential

gene expression while accounting for bimodal expres-

sion. Their approach is limited to two-class comparisons

and cannot adjust for important biological covariates

such as multiple treatment groups and technical factors

such as batch or time information, limiting its utility in

more complex experimental designs. Several methods

have been proposed for modeling bulk RNA-seq data

that permit sophisticated modeling through linear [12]

or generalized linear models [13, 14], but these models

have not yet been adapted to single-cell data because

they do not properly account for the observed bimodal-

ity in expression levels. This is particularly important

when adjusting for covariates that might affect the ex-

pression rates. As we will demonstrate later, such model

mis-specification can significantly affect sensitivity and

specificity when detecting differentially expressed genes

and gene sets.

Here, we propose a hurdle model tailored to the ana-

lysis of scRNA-seq data, providing a mechanism to ad-

dress the challenges noted above. It is a two-part

generalized linear model that simultaneously models

the rate of expression over the background of various

transcripts, and the positive expression mean. Lever-

aging the established theory for generalized linear mod-

eling allows us to accommodate complex experimental

designs while controlling for covariates (including tech-

nical factors) in both the discrete and continuous parts

of the model. We introduce the CDR: the fraction of

genes that are detectably expressed in each cell. As dis-

cussed above, this acts as a proxy for both technical

(e.g., dropout, amplification efficiency) and biological

factors (e.g., cell volume and extrinsic factors other

than treatment of interest) that globally influence gene

expression. As a result, it represents an important

source of variability in scRNA-seq data that needs to be

modeled (Fig. 1). Our approach of modeling the CDR

as a covariate offers an alternative to the weight correc-

tion of Shalek et al. [5] that does not depend on the use

of control genes and allows us to jointly estimate nuis-

ance and treatment effects. Our framework permits the

analysis of complex experiments, such as repeated

single-cell measurements under various treatments or

longitudinal sampling of single cells from multiple sub-

jects with a variety of background characteristics (e.g.,

sex, age), because it can easily be extended to accom-

modate random effects. These features are especially

important when sampling single cells because there are

multiple sources of variance (e.g., cell-to-cell variance

within a subject, and subject-to-subject variance).

These type of experiments and designs will become

routine in future single-cell studies, such as for clinical

trials where single-cell assays will be performed on

large cohorts with complex designs.

In our hurdle model, differences between treatment

groups are summarized with pairs of regression coeffi-

cients whose sampling distributions are available through

bootstrap or asymptotic expressions, enabling us to per-

form complementary differential gene expression and

gene set enrichment analyses (GSEA). We use an empir-

ical Bayesian framework to regularize model parameters,

which helps improve inference for genes with sparse ex-

pression, much like what has been done for bulk gene

expression [15]. Our GSEA approach accounts for gene–

gene correlations, which is important for proper control

of type I errors [16]. This GSEA framework is particularly

useful for synthesizing observed gene-level differences

into statements about pathways or modules. Finally, our

model yields “single cell residuals” that can be manipu-

lated to interrogate cellular heterogeneity and gene–gene

correlations across cells and conditions. We have named

our approach MAST for “Model-based Analysis of Single-

cell Transcriptomics.”

We illustrate the method on two data sets. We first

apply our approach to an experiment comparing primary

human non-stimulated and cytokine-activated mucosal-

associated invariant T (MAIT) cells. MAST identifies

novel expression signatures of activation, and the single-

cell residuals produced by the model highlight a popula-

tion of MAIT cells showing partial activation but no

induction of effector function. We then illustrate the ap-

plication of MAST to a previously published complex

experiment studying temporal changes in murine bone

marrow-derived dendritic cells subjected to lipopolysac-

charide (LPS) stimulation. We both recapitulate the

findings of the original publication and describe add-

itional coordinated gene expression changes at the

single-cell level across time in LPS-stimulated myeloid

dendritic cells (mDC).

Results and discussion
Our MAST framework models single-cell gene expres-

sion using a two-part generalized linear model. One

component of MAST models the discrete expression

rate of each gene across cells, while the other compo-

nent models the conditional continuous expression level
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(conditional on the gene being expressed). We define

the CDR as the proportion of genes expressed in a single

cell.

The CDR for cell i is:

CDRi ¼ 1=N
X

N

g¼1

zig ð1Þ

where zig is an indicator if gene g in cell i was expressed

above background. We consider the implications of set-

ting the background to zero, or alternately to a conser-

vatively estimated non-zero threshold (see Additional

file 1: Methods). The CDR is not sensitive to how the

background is defined, nor does it change substantially

when only putative control (housekeeping) genes are

used in the summation in equation 1. Our threshold-

ing approach does not adversely affect detection of

differentially expressed genes and serves to make the

continuous expression (Et > 0) more normal (Additional

file 1: Figure S1).

MAST can account for variation in the cellular

detection rate

The principal component analysis (PCA) shown in Fig. 1

demonstrates that the CDR (see “Methods”) is an im-

portant source of variability. It correlates strongly with

the second principal component (PC, Pearson’s rho =

0.76 grouped, 0.91 stimulated, 0.97 non-stimulated) in the

MAIT data set and with the first PC (rho = 0.92 grouped,

0.97 non-stimulated, 0.92 LPS (lipopolysaccharide), 0.89

PAM (synthetic triacylated lipopeptide), 0.92 PIC (viral-like

double-stranded RNA)) in the mDC data set. Given that we

observe larger CDR variability within treatment groups than

across groups, it is likely that the CDR is a nuisance factor.

This is further supported by the fact that the CDR calculated

using control (e.g., housekeeping) genes was highly corre-

lated with the CDR calculated over all genes (Additional

file 1: Figure S2). Its role as a principal source of variation

persisted across experiments (Figure 1).

We thus conjecture that CDR is a proxy for unobserved

nuisance factors that should be explicitly modeled. In par-

ticular, we suggest that the CDR captures variation in global

Fig. 1 Cellular detection rate correlates with the first two principal components of variation. The fraction of genes expressed, or cellular detection

rate (CDR) correlates mostly with the a,c) first principal component (PC) of variation in the myeloid dendritic cells (DC) data set and mostly with

the second PC in the b,d) mucosal-associated invariant T (MAIT) data set
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transcription rates due to differences in cell size (among

other factors) [11], as well as technical variation due to fac-

tors such as cell viability and efficiency in first strand synthe-

sis. Fortunately, MAST easily accommodates covariates,

such as the CDR, and more importantly allows joint, additive

modeling of them with other biological variables of interest,

with the effect of each covariate decomposed into its discrete

and continuous parts. Applying an analysis of deviance with

MAST (see “Methods”), we quantified the amount of vari-

ability that could be attributed to CDR. The CDR accounted

for 5.2 % of the deviance in the MAIT data set and 4.8 % in

the mDC data set for the average gene, and often much

more than that: it comprised more than 9 % of the deviance

in over 10 % of genes in both data sets, particularly for the

discrete component of the model (Additional file 1: Figure

S3). It should also be noted that the CDR deviance estimates

for many of the genes were comparable to (if not greater

than) the treatment deviance estimates. It is possible that the

CDR and treatment effects could be partially confounded,

for example, treated cells could become larger in volume.

We explored the effect of confounding between the CDR

and treatment effects on the MAST false positive rate in the

presence and absence of CDR control in the MAST model

(Additional file 1: Figure S4A, B). Controlling for CDR im-

proved the sensitivity and specificity of MAST in the pres-

ence of confounding, and did not negatively impact its

performance either in the absence of confounding or in the

absence of a CDR effect.

That CDR predicts expression levels contradicts the

model of independent expression between genes, be-

cause the level of expression (averaged across many

genes) would not affect the level in any given gene were

expression independent. It is especially important to ad-

just for CDR when testing for co-expression between

genes, or the apparent correlation between genes is

greatly inflated (see “Residual analysis identifies net-

works of co-expressed genes implicated in MAIT cell

activation”).

Finally, we investigated the relationship between our

approach and the weight correction of Shalek et al. [5]

and other technical bias correction approaches like Re-

move Unwanted Variation (RUV) and Surrogate Variable

Analysis (SVA; Additional file 1: Figure S5A, B) [17, 18].

We observed a strong linear relationship between the

CDR and the weights of Shalek et al. [5], as well as with

the first component of SVA and second component of

RUV. Thus, use of the CDR as a covariate can be seen

as a statistically rigorous way to correct for the dropout

biases of Shalek et al. [5], without the need to use con-

trol genes. More importantly, it provides the ability to

control for these biases while estimating treatment ef-

fects. Although CDR was correlated to the latent com-

ponents found via RUV or SVA in the data sets we

consider here (Additional file 1: Figure S5C), CDR has

the advantage of biological interpretability as a cellular

scaling factor.

Single-cell sequencing identifies a transcriptional profile

of MAIT cell activation

We applied MAST to our MAIT data set to identify genes

up-regulated or down-regulated by cytokine stimulation

while accounting for variation in the CDR (see

“Methods”). We detected 291 differentially expressed

genes, as opposed to 1413 when excluding CDR. To deter-

mine whether this was due to a change in ranking or sim-

ply a shift in significance, we compared the overlap

between the top n genes in both models (varying n from

100 to 1413), and found that, on average, 35 % (range 32–

38 %) of genes were excluded when CDR was modeled,

suggesting that inclusion of this variable allows global

changes in expression, manifest in the CDR, to be decom-

posed from local changes in expression. This was sup-

ported by gene ontology (GO) enrichment analysis

(Additional file 1: Figure S6) of these CDR-specific

genes (n = 539), where we saw no enrichment for

modules associated with the treatment of interest.

These CDR-specific GO terms (e.g., involvement of

regulation of RNA stability and protein folding) may

hint at the biology underlying differences in the CDR

that are not necessarily associated with treatment.

In order to assess the type-I error rate of our ap-

proach, we also applied MAST to identify differentially

expressed genes across random splits of the MAIT cells.

As expected, MAST did not detect any significant differ-

ences (Additional file 1: Figure S7A ,B), whereas DEseq

and edgeR, designed for bulk RNA-seq, detected a large

number of differentially expressed genes even at a strin-

gent nominal false discovery rate (FDR). SCDE, a single-

cell RNA-seq specific method, also had higher FDRs

than MAST. Permutation analysis demonstrated that the

null distribution of the MAST test statistic was well cali-

brated (Additional file 1: Figure S8A).

We examined the GO enrichment of genes detected

by limma, edgeR, DESeq, or SCDE but not MAST and

found that these sets generally lacked significant enrich-

ment for modules related to the treatment of interest

(Additional file 1: Figures S9–S12). MAST with CDR con-

trol also detected enrichment of immune-specific GO

terms at a higher rate than other methods (Additional file

1: Figure S13). MAST’s testing framework has better sen-

sitivity and specificity than these approaches. Among

models that do not adjust for CDR, SCDE performs rela-

tively well but trails MAST and limma, which can adjust

for CDR.

Figure 2a shows the single-cell expression (log2-tran-

scripts per million [TPM]) of the top 100 genes identi-

fied as differentially expressed between cytokine (IL18,

IL15, IL12)-stimulated and non-stimulated MAIT cells
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using MAST. Following stimulation with IL12, IL15, or

IL18, we observed increased expression in genes with

effector function, including interferon-γ (IFNG), granzyme-

B (GZMB) and a concomitant down-regulation of the AP-1

transcription factor network. Up-regulation of IFNG and

GZMB following cytokine stimulation has also been reported

in natural killer (NK), natural killer T-cells (NKT), and mem-

ory Tcells. CD69 is an early and only transient marker of ac-

tivation that can be induced by stimulation of the T cell

receptor or by cytokine signals. Its down-regulation at the

mRNA level after 24 h likely precedes subsequent protein-

level down-regulation [19–21].

We used these lists of up-regulated and down-regulated

genes to define a MAIT activation score that differentiates

between stimulated and non-stimulated MAITs as shown

in Fig. 2b. This yields a score for each cell, based on the

model fit and adjusting for nuisance factors (see

“Methods”), defined as the expected expression level

across genes in a module. The score differentiates stimu-

lated and non-stimulated cells, and demonstrates that the

stimulated MAIT population was more heterogeneous in

its expression phenotype. In particular, a few stimulated

MAIT cells (SC08, SC54, SC48, SC15, SC46, and SC61 in

Fig. 2a) exhibited low expression of IFNG response genes,

suggesting these cells did not fully activate despite stimu-

lation. Post-sort experiments via flow cytometry showed

that the sorted populations were over 99 % pure MAITs

(Additional file 1: Figure S14A), exhibited a change in

cell size upon stimulation (Additional file 1: Figure

S14B), and that up to 44 % of stimulated MAITs did not

express IFNG or GZMB following cytokine stimulation

(Additional file 1: Figure S14C). The non-responding

cells in the RNA-seq experiment likely correspond to

these non-responding cells from the flow cytometry ex-

periment, and the observed frequencies of these cells in

the RNA-seq and flow populations are consistent with

each other (probability of observing 6 or fewer non-

responding cells = 0.16 under binomial sampling). We

discuss this heterogeneity in a further section. Import-

antly, the lists of up-regulated and down-regulated

genes can be used to define gene sets for GSEA in order

to identify transcriptional changes related to MAIT acti-

vation in bulk experiments.

GSEA highlights pathways implicated in MAIT cell

activation

We used MAST to perform GSEA (see “Methods”) in the

MAIT data using the blood transcriptional modules of Li

et al. [22]. The cell-level scores for the top nine enriched

modules (Fig. 3a) continued to show significant heterogen-

eity in the stimulated and non-stimulated cells, particularly

for modules related to T-cell signaling, protein folding,

proteasome function, and the AP-1 transcription factor

network. Although the standard deviations of the module

scores were greater for stimulated than non-stimulated

cells in seven of the top nine enriched modules (Additional

file 1: Table S2), the magnitude of variability for stimulated

and non-stimulated cells was fairly similar. Enrichment in

BA

Fig. 2 Single-cell expression (log2-transcripts per million) of the top 100 genes identified as differentially expressed between cytokine (IL18, IL15,

IL12)-stimulated (purple) and non-stimulated (pink) MAIT cells using MAST (a). Partial residuals for up-regulated and down- regulated genes are

accumulated to yield an activation score (b), and this score suggests that the stimulated cells have a more heterogeneous response to stimulation

than do the non-stimulated cells
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stimulated cells and non-stimulated cells is displayed for

each module for the discrete and continuous components of

the model in Fig. 3b (see “Methods”), as well as a Z-score

combining the discrete and continuous parts. The enrich-

ment in the T-cell signaling module was driven by the in-

creased expression of IFNG, GZMB, IL2RA, IL2RB, and

TNFRSF9, five of the six genes in the module. Stimulated

cells also exhibited increased energy usage, translation, and

protein synthesis, while down-regulating genes were involved

in cell cycle growth and arrest (and other cell cycle related

modules). The down-regulation of cell cycle growth inhib-

ition genes indicates that IL12, IL15, and IL18 signals are suf-

ficient to prepare MAIT cells for cell proliferation.

Interestingly, we observed down-regulation of mRNA tran-

scripts from genes in the AP-1 transcription factor network.

This has been previously described in dendritic cells in re-

sponse to LPS stimulation [23] and, indeed, we observed this

effect in the mDC data set analyzed here (Additional file 1:

Fig. S15).

Our GSEA approach is more powerful than existing

methods for bulk RNA-seq data (Additional file 1: Figure

S16), and we discovered significantly enriched modules with

clear patterns of stimulation-induced changes that other

methods omit (Additional file 1: Figure S17). Two such

modules include the “T-cell surface signature” and “chaper-

onin mediated protein folding,” whose component genes

showed elevated expression in response to stimulation

(Additional file 1: Fig. S17A–D). These additional discover-

ies are not solely due to greater permissiveness in MAST.

We applied MAST to identify differentially expressed gene

sets across random partitions of the non-stimulated cells, to

examine its FDR. As expected, MAST did not detect any

significant differences, which suggests that it has good type I

error control (Additional file 1: Figure S7A).

Residual analysis identifies networks of co-expressed

genes implicated in MAIT cell activation

Much of the heterogeneity between the non-responding

and responding stimulated cells remained even after re-

moval of marginal (gene-level) stimulation effects. Given

that MAST models the expected expression value for

each cell, we can compute residuals adjusted for known

sources of variability (see “Methods”). The residuals can

be compared across genes to characterize cellular het-

erogeneity and correlation. We observed co-expression

in the residuals from stimulated cells that was not evi-

dent in the non-stimulated group (Fig. 4a, b). Because

the residuals removed any marginal changes due to

stimulation in each gene, the average residual in the two

groups is comparable. The co-expression observed,

meanwhile, is due to individual cells expressing these

genes dependently, where pairs of genes appear together

A B

Fig. 3 Module scores for individual cells for the top nine enriched modules (a) and decomposed Z-scores (b) for single-cell gene set enrichment

analysis in the MAIT data set, using the blood transcription modules (BTM) database. The distribution of module scores suggests heterogeneity

among individual cells with respect to different biological processes. Enrichment of modules in stimulated and non-stimulated cells is due to a

combination of differences in the discrete (proportion) and continuous (mean conditional expression) components of genes in modules. The

combined Z-score reflects the enrichment due to differences in the continuous and discrete components
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more often than expected under a model of independent

expression.

Two clusters of co-expressed genes stood out in the

residuals of the stimulated cells (Fig. 4b). These clusters

showed coordinated, early up-regulation of GZMB and

IFN-γ in response to stimulation in MAIT cells and a

concomitant decrease in CD69 expression, an early and

transient activation marker. PCA of the model residuals

highlighted the non-responsive stimulated MAIT cells

(Fig. 4c).

Accounting for the CDR reduced the background

correlation observed between genes (Additional file 1:

Figure S18), with nearly 25 % of pairwise correlations

decreasing after CDR correction. When the CDR was

included in the model, the number of differentially

expressed genes with significant correlations across

cells (FDR adjusted p-value < 1 %) decreased from 73

to 61 in the stimulated cells, and from 808 to 15 in

non-stimulated cells. This shows that adjusting for

CDR is also important for co-expression analyses be-

cause it reduces background co-expression attributable

to cell volume, which otherwise results in dense, un-

interpretable gene networks.

Residual analysis of MAIT non-responding stimulated cells

The hurdle model expression residuals identified six

MAIT cells that did not have a typical activated expres-

sion profile in response to stimulation (Figs 2 and 3).

The proportion of these cells detected in the scRNA-seq

experiment was consistent with what was detected in

the flow cytometry experiment. The cells exhibited lower

levels of IFNG and GZMB than activated cells (Additional

file 1: Figure S19A), but also exhibited decreased expres-

sion of AP-1 component genes FOS and FOSB, consistent

with other stimulated cells (Additional file 1: Figure S19B).

They did not produce IFNG or GZMB upon cytokine

stimulation and exhibited expression profiles intermediate

to non-stimulated and stimulated cells (Additional file 1:

Figure S19C).

Temporal expression patterns of mouse dendritic cell

maturation

Shalek et al. [5] analyzed murine bone marrow-derived

dendritic cells simulated using three pathogenic compo-

nents over the course of 6 h and estimated the propor-

tion of cells that expressed a gene and the expression

level of expressing cells. We compared results from ap-

plying our model to those obtained by Shalek et al. [5]

when analyzing their LPS-stimulated cells. As with the

MAIT analysis, we used MAST adjusting for the CDR.

MAST identified a total of 1359 differentially expressed

genes (1996 omitting the CDR), and the CDR accounted

for 5.2 % of the model deviance in the average gene.

The most significantly elevated genes at 6 h included

CCL5, CD40, IL12B, and interferon-inducible (IFIT) gene

family members, while down-regulation was observed for

EGR1 and EGR2, transcription factors that are known to

negatively regulate dendritic cell immunogenicity [24].

GSEA of mouse bone marrow-derived dendritic cells

We performed GSEA with the mouse GO modules and

three modules identified by Shalek et al. [5]. The blood

transcriptional modules of Li et al. [22] are shown in

Additional file 1: Figure S15. Figure 5 shows module

scores for significant GSEA modules for the LPS-

stimulated cells where the heatmap represents Z values

(see “Methods” for details). Besides finding signatures

consistent with the modules from Shalek et al. (Fig. 5a),

we identified modules that showed similar annotation

and overlap, significantly with the “core antiviral” and

A B C

Fig. 4 Gene–gene correlation (Pearson’s rho) of model residuals in non-stimulated (a) and stimulated (b) cells, and a principal components ana-

lysis biplot of model residuals (c) on both populations using the top 50 marginally differentially expressed genes. As marginal changes in the

genes attributable to stimulation and CDR have been removed, clustering of subpopulations in (c) indicates co-expression of the indicated genes

on a cellular basis. PC principal component
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“sustained inflammatory” signatures, including several

modules linked to type 1 interferon response and anti-

viral signatures (Fig. 5b). The “cellular response to

interferon-beta” signature (n = 22) overlapped with the

original core antiviral signature (n = 99) by 13 genes

(hypergeometric p = 1.24 × 10−23). The “response” and

“defense response to virus” signatures overlapped with

the core antiviral signature by 17 of 43 and 22 of 74

genes (hypergeometric p = 3.64 × 10−26 and 4.08 × 10−29,

respectively), suggesting the core antiviral signature cap-

tures elements of these known signatures. The “chemo-

kine” (n = 16) and “cytokine activity” (n = 51) modules

overlapped with the sustained inflammatory (n = 95) mod-

ule by 5 and 12 genes, respectively (hypergeometric p =

5.10 × 10−9 and 9.53 × 10−16). Our modeling approach

identified the two “early marcher” cells in the core anti-

viral module (marked with triangles on Fig. 5a) corre-

sponding to the same cells highlighted in figure 4b of

Shalek et al. [5]. Other modules exhibiting significant

time-dependent trends included a module of genes in-

volved in the AP-1 transcription factor network that was

down-regulated (Additional file 1: Figure S15), a finding

which has been previously shown in human monocytes

following LPS stimulation [23]. As with the MAITs, GSEA

permutation analysis to evaluate type I error rates did

not identify any significant modules (data not shown).

These results further confirm the original findings and

demonstrate the increased sensitivity of our approach.

GSEA heatmaps for the other stimulations can be found

in Additional file 1: Figure S20.

Residual analysis of mouse bone marrow-derived

dendritic cells identifies sets of co-expressed genes

We also explored stimulation-driven correlation pat-

terns. PCA (Fig. 6a) of the model residuals demonstrated

a clear time trend associated with PC1, as cells increase

Fig. 5 Module scores (a) and decomposed Z-scores (b) for single-cell gene set enrichment analysis for lipopolysaccharide (LPS)-stimulated

myeloid dendritic cells (mDC data set), using the mouse gene ontology (GO) biological process database. The change in single-cell module scores

over time for the nine most significantly enriched modules in response to LPS stimulation are shown in (a). The “core antiviral”, “peaked inflammatory,”

and “sustained inflammatory” modules are among the top enriched modules, consistent with the original publication. Additionally, we

identified the GO modules “cellular response to interferon-beta” and “response to virus,” which behave analogously to the core antiviral and

sustained inflammatory modules. No GO analog for the “peaked inflammatory” module was detected. The majority of modules detected

exhibited enrichment relative to the 1 h time point (thus increasing with time). The “early marcher” cells identified in the original publication

are highlighted here with triangles. We show the top 50 most significant modules (b). The combined Z-score summarizes the changes in the

discrete and continuous components of expression
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co-expression of interferon-activated genes. After re-

moving the marginal stimulation and adjusting for the

CDR, we observed correlation between chemokines

CCL5, TNF receptor CD40, and IFIT genes (Fig. 6b). A

principal finding of the original publication was the

identification of a subset of cells that exhibited an early

temporal response to LPS stimulation. Recapitulating

the original results here, when we examine the PCA of

the residuals using the genes in the core antiviral mod-

ule, we can identify the “early marcher” cells at the 1 h

time-point (Additional file 1: Figure S21). The co-

expression plot for other stimulations can be found in

the supplementary material (Additional file 1: Figures

S22 and 23).

Conclusion

We have presented MAST, a flexible statistical frame-

work for the analysis of scRNA-seq data. MAST is suit-

able for supervised analyses about differential expression

of genes and gene modules, as well as unsupervised ana-

lyses of model residuals, to generate hypotheses regarding

co-expression of genes. MASTaccounts for the bimodality

of single-cell data by jointly modeling rates of expression

(discrete) and positive mean expression (continuous)

values. Information from the discrete and continuous

parts is combined to infer changes in expression levels

using gene or gene set-based statistics. Because our ap-

proach uses a generalized linear framework, it can be used

to jointly estimate nuisance variation from biological and

technical sources, as well as biological effects of interest.

In particular, we have shown that it is important to control

for the proportion of genes detected in each cell, which

we refer to as the CDR, because this factor can single-

handedly explain 13 % of the variability in the 90 % per-

centile gene. Adjusting for CDR at least partially controls

for differences in abundance due to cell size and other ex-

trinsic biological and technical effects. Using several

scRNA-seq data sets, we showed that our approach pro-

vides a statistically rigorous improvement to methods pro-

posed by other groups in this context [5]. Although

MAST has greatest efficiency when the continuous (log)-

expression is normally distributed, transformations (such

as the Box-Cox) could also be applied if the non-zero con-

tinuous measurements are skewed.

As discussed by Padovan-Merhar et al. [11], care must

be taken when interpreting experiments where the sys-

tem shows global changes in CDR across treatment

groups. The question is essentially ontological: is the

CDR a mediator of the treatment effect (is it caused by

the treatment and intermediate to expression of the gene

*
*

Fig. 6 Principal components analysis biplot of model residuals (a) and gene–gene correlation (Pearson’s rho) of model residuals (b) by time point

for lipopolysaccharide-induced myeloid dendritic cells (mDC data set) using 20 genes with the largest log-fold changes, given significant (false

discovery rate q < 0.01) marginal changes in expression. Principle component 1 (PC1) is correlated with change over time. The two “early marcher”

cells are highlighted by an asterisk at the 1 h time point. Correlation structure in the residuals is increasingly evident over time and can be clearly

observed at the 6 h time point compared to the earlier time points
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of interest), or does it confound the treatment effect

(does it happen to co-occur with treatment)? Regardless,

the CDR-adjusted treatment estimates are interpreted as

the change in expression due to treatment, if CDR were

held constant between the two conditions.

Two other alternative uses of the CDR are of note. It is

also possible to use CDR as a precision variable (an uncorre-

lated secondary cause) by centering the CDR within each

treatment groups, which makes the CDR measurement or-

thogonal to treatment. This would implicitly assume that

the observed changes are treatment induced, while still

modeling the heterogeneity in cell volume within each treat-

ment group. An alternative approach would be to estimate

the CDR coefficient using a set of control genes assumed to

be treatment invariant, such as housekeeping or ERCC

spike-ins [25, 26] and including it as an offset to the linear

predictors in the regression. An analogous approach is

undertaken by Buettner et. al. [26]. As noted by Hicks et al.

[27], the optimal approach to handle confounding between

technical and biological effects on the CDR is to design ex-

periments with biological replicates across multiple batches.

Finally, we note that while the methodology presented here

was developed using scRNA-seq data sets, it appears ap-

plicable to other single-cell gene expression platforms

where bimodal, conditionally normal expression patterns

are seen such as single-cell RNA-seq with unique molecu-

lar identifiers.

Methods

Data sets

Data for the MAIT study were derived from a single donor

who provided written informed consent for immune re-

sponse exploratory analyses. The study was approved by

the Fred Hutchinson Cancer Research Center institutional

review board.

MAIT cell isolation and stimulation

Cryopreserved peripheral blood mononuclear cells were

thawed and stained with Aqua Live/Dead Fixable Dead Cell

Stain and the following antibodies: CD3, CD8, CD4, CD161,

Vα7.2, CD56, and CD16. CD8+ MAIT cells were sorted as

live CD3+CD8+ CD4-CD161hiVα7.2+ cells and purity was

confirmed by post-sort fluorescence-activated cell sorting

analysis. Sorted MAIT cells were divided into aliquots and

immediately processed on a C1 Fluidigm (Fluidigm, South

San Francisco, CA) machine or treated with a combination

of IL-12 (eBioscience, San Diego, CA), IL-15 (eBioscience),

and IL-18 (MBL, Worburn, MA ) at 100 ng/mL for 24 h

followed by C1 processing.

C1 processing, sequencing, and alignment

After flow sorting, single cells were captured on the Flui-

digm C1 Single-Cell Auto Prep System (C1), lysed on

chip, and subjected to reverse transcription and cDNA

amplification using the SMARTer Ultra Low Input RNA

Kit for C1 System (Clontech, Mountain View, CA). Se-

quencing libraries were prepared using the Nextera XT

DNA Library Preparation Kit (Illumina, San Diego, CA)

according to C1 protocols (Fluidigm). Barcoded libraries

were pooled and quantified using a Qubit Fluorometer

(Thermo Scientific Life Technologies, Grand Island,

NY). Single-read sequencing of the pooled libraries was

carried out either on a HiScanSQ or a HiSeq2500 se-

quencer (Illumina) with 100-base reads, using TruSeq v3

Cluster and SBS kits (Illumina) with a target depth of

>2.5 M reads. Sequences were aligned to the UCSC Hu-

man Genome Assembly version 19, gene expression

levels quantified using RSEM [28], and TPM values

loaded into R [29] for analyses. See Additional file 1 for

more details on data processing procedures.

Time-series stimulation of mouse bone-marrow derived

dendritic cells

Processed RNA-seq data (TPM) were downloaded from

the Gene Expression Omnibus [GEO: GSE41265]. Align-

ment, pre-processing, and filtering steps have been pre-

viously described [5]. Low quality cells were filtered as

described in Shalek et al. [5].

Single-cell RNA-seq hurdle model

We model the log2(TPM+ 1) expression matrix as a two-

part generalized regression model. The gene expression rate

was modeled using logistic regression and, conditioning on

a cell expressing the gene, the expression level was modeled

as Gaussian.

Given normalized, possibly thresholded (see Additional

file 1), scRNA-seq expression Y = [yig], the rate of expression

and the level of expression for the expressed cells are mod-

eled conditionally independent for each gene g. Define the

indicator Z = [zig], indicating whether gene g is expressed in

cell i (i.e., zig= 0 if yig= 0 and zig= 1 if yig > 0). We fit logistic

regression models for the discrete variable Z and a Gaussian

linear model for the continuous variable (Y | Z= 1) inde-

pendently, as follows:

logit
�

PrðZig ¼ 1Þ
�

¼ Xi β
D
g

Pr Y ig ¼ yjZig ¼ 1
� �

¼ N Xiβ
C
g ; σ

2
g

� �

The regression coefficients of the discrete component are

regularized using a Bayesian approach as implemented in

the bayesglm function of the arm R package, which uses

weakly informative priors [30] to provide sensible estimates

under linear separation (See Additional file 1 for details).

We also perform regularization of the continuous model

variance parameter, as described below, which helps to in-

crease the robustness of gene-level differential expression

analysis when a gene is only expressed in a few cells.
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We define the CDR as the proportion of genes de-

tected in each cell. The CDR for cell i is:

CDRi ¼ 1=N
X

N

g¼1

zig

An advantage of our approach is that it is straightfor-

ward to account for CDR variability by adding the vari-

able as a covariate in the discrete and continuous

models (column of the design matrix, X, defined above).

In the context of our hurdle model, inclusion of the

CDR covariate can be thought of as the discrete analog

of global normalization, and as we show in the examples,

this normalization yields more interpretable results and

helps decrease background correlation between genes,

which is desirable for detecting genuine gene co-

expression.

Shrinkage of the continuous variance

As the number of expressed cells varies from gene to

gene, so does the amount of information available to es-

timate the residual variance of the gene. However, many

genes can be expected to have similar variances. To ac-

commodate this feature of the assay, we shrink the gene-

specific variance estimates to a global estimate of the

variance using an empirical Bayes method. Let τg
2 be the

precision (1/variance) for Yg|Zg = 1 in gene g. We sup-

pose τg
2
∼Gamma(α, β), find the joint likelihood (across

genes), and integrate out the gene-specific inverse vari-

ances. Then the maximum likelihood is used to estimate

α and β. Owing to conjugacy, these parameters are inter-

pretable, providing 2α pseudo-observations with preci-

sion β/α. This leads to a simple procedure where the

shrunken gene-specific precision is a convex combin-

ation of its maximum likelihood estimate (MLE) and the

common precision. This approach accounts for the fact

that the number of cells expressing a gene varies from

gene to gene. Genes with fewer expressed cells end up

with proportionally stronger shrinkage, as the ratio of

pseudo observations to actual observations is greater.

Further details are available in Additional file 1.

Testing for differential expression

Because Zg and Yg are defined conditionally independent

for each gene, tests with asymptotic χ2 null distributions,

such as the likelihood ratio or Wald tests, can be

summed and remain asymptotically χ2, with the degrees

of freedom of the component tests added. For the con-

tinuous part, we used the shrunken variance estimates

derived through our empirical Bayes approach described

above. The test results across genes can be combined

and adjusted for multiplicity using the FDR adjustment

[31]. In this paper, we declare a gene differentially

expressed if the FDR adjusted p-value is less than 0.01

and the estimated fold-change is greater than 1.5 (on a

log2 scale).

Gene set enrichment analysis

Our competitive GSEA compares the average model

coefficient in the test set (gene set of interest) to the

average model coefficient in the null set (everything

else) with a Z-test. Suppose the genes are sorted so

that the first G0 genes are in the null set, and the last

G −G0 genes are in the test set. Then, for example,

to test the continuous coefficients in the gene set, the

sample means of the coefficients in the test and null

sets are calculated, that is, calculate: θ̂ ¼ 1= G−G0ð Þ
XG

g¼G0þ1
β̂g and θ̂0 ¼ 1=G0

XG0

g¼1
β̂g . The sampling

variance of θ̂0 , in principle, is equal to 1=G0

Xn

g¼1
Var β̂g

� �

þ 2
X

1≤g<h<G0
Cov β̂g ; ; β̂h

� �� �

, and

similarly for θ̂ .

Given this sampling variance, a Z test can be formed

by comparing Z ¼ θ̂−θ̂0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var^ θ̂ð ÞþVar^ θ̂0ð Þ
p .

We estimate Var β̂g

� �

and Cov β̂g ; β̂h

� �

via boot-

strap, to avoid relying on asymptotic approximations. In

practice, we found only a few (<100) bootstrap replicates

were necessary to provide stable variance-covariance es-

timates; however, even this modest requirement can be

relaxed for exploratory analysis by assuming independ-

ence across genes and using model-based (asymptotic)

estimates.

Z scores are formed and calculated equivalently for

the logistic regression coefficients. GSEA tests are done

separately on the two components of the hurdle model

and the results from the two components are combined

using Stouffer’s method [32], which favors consensus in

the two components [33] (see Additional file 1 for de-

tails). The approach is similar to that used by CAMERA

[16] for bulk experiments in its accounting for inter-

gene correlation that is known to inflate the false signifi-

cance (type-I error) in permutation-based GSEA proto-

cols [16], although it differs in that it uses the sampling

variance of each model coefficient to estimate the vari-

ance of the average coefficient, whereas CAMERA uses

the empirical variance of the model coefficients. In our

analyses, we used the Emory blood transcriptional mod-

ules [22] as well as mouse GO annotations available

from the Mouse Genome Informatics website [34].

GO enrichment analysis

Testing for enriched GO terms based on a list of genes

was performed with the GOrilla online tool by comparing

an unranked target list against a background list [35].
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Residual analysis

The hurdle model, in general, provides two residuals:

one for the discrete component and one for the continu-

ous component. Standardized deviance residuals are cal-

culated for the discrete and continuous component

separately, and then we combine the residuals by aver-

aging them. If a cell is unexpressed, then its residual is

missing and it is omitted from the average (details in

Additional file 1: Methods).

Module scores

In order to assess the degree to which each cell exhibits

enrichment for each gene module, we use quantities

available through our model to define module “scores,”

which are defined as the observed expression corrected

for CDR effect, analogous to those defined by Shalek

et al. [5]. The score sij for cell i and gene j is defined as

the observed expression corrected for the CDR effect:

sij = yij − ỹij where ỹij is the predicted effect from the fit-

ted model that excludes the treatment effects of interest.

This can be interpreted as correcting the observed ex-

pression of gene j in cell i by subtracting the condi-

tional expectation of nuisance effects. In our two part

model, ỹij = ẑijŷij , where ẑij and ŷij are the predicted

values from the discrete and continuous components

of our hurdle model.

A gene module score for cell i is the average of the

scores for the genes contained in the module, that is,

∑{j ∈ module}sij/|module|.

Availability of supporting data

MAST is available as an R package (http://www.github.

com/RGLab/MAST, doi: 10.5281/zenodo.18539), released

under the GPL license. All data and results presented in

this paper—including code to reproduce the results—are

available at: (http://github.com/RGLab/MASTdata/arch-

ive/v1.0.1.tar.gz, doi: 10.5281/zenodo.19041). Raw data

files have been submitted to NCBI’s sequence read archive

under project accession SRP059458.
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