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Abstract

Recent interest in self-supervised dense tracking has

yielded rapid progress, but performance still remains far

from supervised methods. We propose a dense tracking

model trained on videos without any annotations that sur-

passes previous self-supervised methods on existing bench-

marks by a significant margin (+15%), and achieves per-

formance comparable to supervised methods. In this pa-

per, we first reassess the traditional choices used for self-

supervised training and reconstruction loss by conduct-

ing thorough experiments that finally elucidate the optimal

choices. Second, we further improve on existing methods by

augmenting our architecture with a crucial memory compo-

nent. Third, we benchmark on large-scale semi-supervised

video object segmentation (aka. dense tracking), and pro-

pose a new metric: generalizability. Our first two contribu-

tions yield a self-supervised network that for the first time

is competitive with supervised methods on standard evalu-

ation metrics of dense tracking. When measuring general-

izability, we show self-supervised approaches are actually

superior to the majority of supervised methods. We believe

this new generalizability metric can better capture the real-

world use-cases for dense tracking, and will spur new in-

terest in this research direction. Code will be released at

https://github.com/zlai0/MAST.

1. Introduction

Although the working mechanisms of the human visual

system remain somewhat obscure at the level of neurophys-

iology, it is a consensus that tracking objects is a funda-

mental ability that a baby starts developing at two to three

months of age [5, 34, 58]. Similarly, in computer vision sys-

tems, tracking plays key roles in many applications ranging

from autonomous driving to video surveillance.

Given arbitrary objects defined in the first frame, a track-

ing algorithm aims to relocate the same object through-

out the entire video sequence. In the literature, tracking

can be cast into two categories: the first is Visual Object

Tracking (VOT) [35], where the goal is to relocalize objects

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Number of pixel-level annotations (log-scale)

30

40

50

60

70

80

90

D
A

V
IS

-2
01

7 
J 

&
 F

 (M
ea

n)

Video Colorization

CycleTime
CorrFlow

mgPFF

PReMVOS

OSVOS

OnAVOSOSVOS-S

DyeNet

RGMP

OSMN

FAVOS

FEELVOS
CINM

RANet

VOSwL

AGAME

RVOS

SiamMask

Ours

Figure 1: Comparison with other recent works on the DAVIS-2017 bench-

marks, i.e. dense tracking or semi-supervised video segmentation given the

first frame annotation. The proposed approach significantly outperforms

other self-supervised approaches, and is even comparable to those trained

with heavy supervision on ImageNet, COCO, Pascal, DAVIS, Youtube-

VOS. In the x-axis, we only count pixel-wise segmentation.

Notation: CINM [3], OSVOS [6], FAVOS [8], AGAME [28],

VOSwL [31], mgPFF [33], CorrFlow [37], DyeNet [39], PReMVOS [41].

OSVOS-S [42], RGMP [44], RVOS [54], FEELVOS [56], OnAVOS [57],

Video Colorization [59], SiamMask [61], CycleTime [64], RANet [65],

OSMN [73],

with bounding boxes throughout the video; the other aims

for more fine-grained tracking, i.e. relocalize the objects

with pixel-level segmentation masks, also known as Semi-

supervised Video Object Segmentation (Semi-VOS) [48].

In this paper, we focus on the latter case, and will refer to it

interchangeably with dense tracking from here on.

In order to train such dense tracking systems, most re-

cent approaches rely on supervised training with extensive

human annotations (see Figure 1). For instance, an Ima-

geNet [10] pre-trained ResNet [18] is typically adopted as a

feature encoder, and further fine-tuned on images or video

frames annotated with fine-grained, pixelwise segmenta-

tion masks, e.g. COCO [40], Pascal [13], DAVIS [48] and

YouTube-VOS [71]. Despite their success, this top-down

training scheme seems counter-intuitive when considering

the development of the human visual system, as infants can

track and follow slow-moving objects before they are able

to map objects to semantic meanings. With this evidence, it

is unlikely the case that humans develop their tracking abil-
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Figure 2: Train once, test on multiple datasets: Qualitative results from our self-supervised dense tracking model on DAVIS-2017 and YouTube-VOS

dataset. The number on the top left refers to the frame number in the video. For all examples, the mask of the 0th frame is given, and the task is to track

the objects along with the video. Our self-supervised tracking model is able to deal with challenging scenarios, such as large camera motion, occlusion and

disocclusion, large deformation and scale variation.

ity in a top-down manner (supervised by semantics), at least

not at the early-stage development of the visual system.

In contrast to the aforementioned approaches based on

heavy supervision, self-supervised methods [37, 59, 60, 64]

have recently been introduced, leading to more neurophys-

iologically intuitive directions. While not requiring any la-

beled data, the performance of these methods is still far

from that of supervised methods (Figure 1).

We continue in the vein of self-supervised methods

and propose an improved tracker, which we call Memory-

Augmented Self-Supervised Tracker (MAST). Similar to

previous self-supervised methods, our model performs

tracking by learning a feature representation that enables

robust pixel-wise correspondences between frames; it then

propagates a given segmentation mask to subsequent frames

based on the correspondences. We make three main con-

tributions: first, we reassess the traditional choices used

for self-supervised training and reconstruction loss by con-

ducting thorough experiments to finally determine the op-

timal choices. Second, to resolve the challenge of tracker

drift (i.e. as the object changes appearance or becomes oc-

cluded, each subsequent prediction becomes less accurate

if propagated only from recent frames), we further improve

on existing methods by augmenting our architecture with

a crucial memory component. We design a coarse-to-fine

approach that is necessary to efficiently access the mem-

ory bank: a two-step attention mechanism first coarsely

searches for candidate windows, and then computes fine-

grained matching. We conduct experiments to analyze our

choice of memory frames, showing that both short- and

long-term memory are crucial for good performance. Third,

we benchmark on large-scale video segmentation datasets

and propose a new metric, i.e. generalizability, with the goal

of measuring the performance gap between tracking seen

and unseen categories, which we believe better captures the

real-world use-cases for category-agnostic tracking.

The result of the first two contributions is a self-

supervised network that surpasses all existing approaches

by a significant margin on DAVIS-2017 (15%) and

YouTube-VOS (17%) benchmarks, making it competitive

with supervised methods for the first time. Our results

show that a strong representation for tracking can be learned

without using any semantic annotations, echoing the early-

stage development of the human visual system. Beyond

significantly narrowing the gap with supervised methods

on the existing metrics, we also demonstrate the superior-

ity of self-supervised approaches over supervised methods

on generalizability. On the unseen categories of YouTube-

VOS benchmark, we surpass PreMVOS [41], the 2018 chal-

lenge winner algorithm trained on massive segmentation

datasets. Furthermore, when we analyze the drop in perfor-

mance between seen and unseen categories, we show that

our method (along with other self-supervised methods) has

a significantly smaller generalization gap than supervised

methods. These results show that contrary to the popular

belief that self-supervised methods are not yet useful due to

their weaker performance, their greater generalization ca-

pability (due to not being at risk of overfitting to labels) is

actually a more desirable quality when being deployed in

real-world settings, where the domain gap can be signifi-

cant.

2. Related Work

Dense tracking (aka. semi-supervised video segmenta-

tion) has typically been approached in one of two ways:

propagation-based or detection/segmentation-based. The
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former approaches formulate the dense tracking task as

a mask propagation problem from the first frame to the

consecutive frames. To leverage the temporal consistency

between two adjacent frames, many propagation-based

methods often try to establish dense correspondences

with optical flow or metric learning [20, 21, 29, 41, 56].

However, computing optical flow remains a challenging,

yet unsolved problem. Our method relaxes the constraint of

optical flow’s one-to-one brightness constancy constraint

and spatial smoothness, allowing each query pixel to

potentially build correspondence with multiple reference

pixels. On the other hand, detection/segmentation-based

approaches address the tracking task with sophisticated

detection or segmentation networks, but since these models

are usually not class-agnostic during training, they often

have to be fine-tuned on the first frame of the target video

during inference [6, 41, 42], whereas our method requires

no fine-tuning.

Self-supervised learning on videos has generated fruitful

research in recent years. Due to the abundance of online

data [1, 4, 11, 14, 15, 22, 24, 25, 26, 27, 32, 38, 43, 59, 63,

67, 68], various ideas have been explored to learn repre-

sentations by exploiting the spatio-temporal information in

videos. [14, 43, 66] exploit spatio-temporal ordering for

learning video representations. Recently, Han et al. [17]

learn strong video representations for action recognition

by self-supervised contrastive learning on raw videos. Of

more relevance, [37, 59] have recently leveraged the natural

temporal coherency of color in videos, to train a network

for tracking and correspondence related tasks. We discuss

these works in more detail in Section 3.1. In this work, we

propose to augment the self-supervised tracking algorithms

with a differentiable memory module. We also rectify some

flaws in their training process.

Memory-augmented models refer to the computational ar-

chitecture that has access to a memory repository for pre-

diction. Such models typically involve an internal memory

implicitly updated in a recurrent process, e.g. LSTM [19]

and GRU [9], or an explicit memory that can be read or

written with an attention-based procedure [2, 12, 16, 36, 51,

53, 62, 70]. Memory models have been used for many ap-

plications, including reading comprehension [51], summa-

rization [50], tracking[69], video understanding[7], and im-

age and video captioning [70, 74]. In dense visual tracking,

the popular memory-augmented models treat key frames as

memory [45], and use attention mechanisms to read from

the memory.

3. Method

The proposed dense tracking system, MAST (Memory-

Augmented Self-Supervised Tracker), is a conceptually

simple model for dense tracking that can be trained with

self-supervised learning, i.e. zero manual annotation is re-

quired during training, and an object mask is only required

for the first frame during inference. In Section 3.1, we pro-

vide relevant background of previous self-supervised dense

tracking algorithms, and terminologies that will be used in

later sections. Next, in Section 3.2, we pinpoint weaknesses

in these works and propose improvements to the training

signals. Finally, in Section 3.3, we propose memory aug-

mentation as an extension to existing self-supervised track-

ers.

3.1. Background

In this section, we review previous papers that are closely

related to this work [37, 59]. In general, the goal of self-

supervised tracking is to learn feature representations that

enable robust correspondence matching. During training,

a proxy task is posed as reconstructing a target frame (It)
by linearly combining pixels from a reference frame (It−1),

with the weights measuring the strength of correspondence

between pixels.

Specifically, a triplet ({Qt,Kt, Vt}) exists for each in-

put frame It, referring to Query, Key, and Value. In order

to reconstruct a pixel i in the t-th frame (Îit ), an Attention

mechanism is used for copying pixels from a subset of pre-

vious frames in the original sequence. This procedure is

formalized as:

Îit =
∑

j

Aij
t V

j
t−1

(1)

Aij
t =

exp〈 Qi
t,K

j
t−1

〉
∑

p exp〈 Q
i
t,K

p
t−1

〉
(2)

where 〈·, ·〉 refers to the dot product between two vectors,

query (Q) and key (K) are feature representations computed

by passing the target frame It to a Siamese ConvNet Φ(·; θ),
i.e. Qt = Kt = Φ(It; θ), At is the affinity matrix rep-

resenting the feature similarity between pixel Iit and Ijt−1
,

value (V) is the raw reference frame (It−1) during the train-

ing stage, and instance segmentation mask during inference,

achieving reconstruction or dense tracking respectively.

A key element in self-supervised learning is to set the

proper information bottleneck, or the choice of what input

information to withhold for learning the desired feature rep-

resentation and avoiding trivial solutions. For example, in

the reconstruction-by-copying task, an obvious shortcut is

that the pixel in It can learn to match any pixel in It−1

with the exact same color, yet not necessarily correspond

to the same object. To circumvent such learning shortcuts,

Vondrick et al. [59] intentionally drop the color information

from the input frames. Lai and Xie [37] further show that a

simple channel dropout can be more effective.

3.2. Improved Reconstruction Objective

In this section, we reassess the choices made in previous

self-supervised dense tracking works and provide intuition
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for our optimal choices, which we empirically support in

Section 5.

3.2.1 Decorrelated Color Space

Extensive experiments in the human visual system have

shown that colors can be seen as combinations of the pri-

mary colors, namely red (R), green (G) and blue (B). For

this reason, most of the cameras and emissive color displays

represent pixels as a triplet of intensities: (R,G,B) ∈ R3.

However, a disadvantage of the RGB representation is that

the channels tend to be extremely correlated [49], as shown

in Figure 3. In this case, the channel dropout proposed

in [37] is unlikely to behave as an effective information bot-

tleneck, since the dropped channel can almost always be

determined by one of the remaining channels.

(a) RGB scatter plot (b) Lab scatter plot

Figure 3: Correlation between channels of RGB and Lab colorspace. We

randomly take 100, 000 pixels from 65 frames in a sequence (snowboard)

in the DAVIS dataset and plot the relative relationships between RGB

channels. This phenomena generally holds for all natural images [49], due

to the fact that all of the channels include a representation of brightness.

Values are normalized for visualization purposes.

To remedy this limitation, we hypothesize that dropout

in the decorrelated representations (e.g. Lab) would force

the model to learn invariances suitable for self-supervised

dense tracking; i.e. if the model cannot predict the missing

channel from the observed channels, it is forced to learn a

more robust representation rather than relying on local color

information.

3.2.2 Classification vs. Regression

In the recent literature on colorization and generative mod-

els [46, 75], colors were quantized into discrete classes and

treated as a multinomial distribution, since generating im-

ages or predicting colors from grayscale images is usually

a non-deterministic problem; e.g. the color of a car can

reasonably be red or white. However, this convention is

suboptimal for self-supervised learning of correspondences,

as we are not trying to generate colors for each pixel, but

rather, estimate a precise relocation of pixels in the refer-

ence frames. More importantly, quantizing the colors leads

to an information loss that can be crucial for learning high-

quality correspondences.

We conjecture that directly optimizing a regression loss

between the reconstructed frame (Ît) and real frame (It)
will provide more discriminative training signals. In this

work, the objective L is defined as the Huber Loss:

L =
1

n

∑

i

zi (3)

where

zi =

{

0.5(Î
i

t − Iit)
2, if |̂I

i

t − Iit| < 1

|̂I
i

t − Iit| − 0.5, otherwise
(4)

where Î
i

t ∈ R3 refers to RGB or Lab, normalized to the

range [-1,1] in the reconstructed frame that is copied from

pixels in the reference frame It−1, and It is the real frame

at time point t.

3.3. Memory­Augmented Tracking

So far we have discussed the straightforward attention-

based mechanism for propagating a mask from a single

previous frame. However, as predictions are made recur-

sively, errors caused by object occlusion and disocclusion

tend to accumulate and eventually degrade the subsequent

predictions. To resolve this issue, we propose an attention-

based tracker that efficiently makes use of multiple refer-

ence frames.

3.3.1 Multi-frame tracker

An overview of our tracking model is shown in Figure 4.

To summarize the tracking process: given the present frame

and multiple past frames (memory bank) as input, we first

compute the query (Q) for the present frame and keys (K)

for all frames in memory. Here, we follow the general pro-

cedure in previous works as described in Section 3.1, where

K and Q are computed from a shared-weight feature extrac-

tor and V is equal to the input frame (during training) or ob-

ject mask (during testing). The computed affinity between

Q and all the keys (K) in memory is then used to make a pre-

diction for each query pixel depending on V. Note we don’t

put any weights on the reference frames, as this should be

encoded in the affinity matrix (e.g. when a target and ref-

erence frame are dis-similar, the corresponding similarity

value will be naturally low; thus the reference label will

have less contribution to the labeling of a target pixel).

The decision of which pixels to include in K is crucial

for good performance. Including all pixels previously seen

is far too computationally expensive due to the quadratic ex-

plosion of the affinity matrix (e.g. the network of [37] pro-

duces affinity matrices with more than 1 billion elements

for 480p videos). To reduce computation, [37] exploit tem-

poral smoothness in videos and apply restricted attention,

only computing the affinity with pixels in a ROI around the

query pixel location. However, the temporal smoothness

assumption holds only for temporally close frames.

To efficiently process temporally distant frames, we pro-

pose a two-step attention mechanism. The first stage in-

volves coarse pixel-matching with the frames in the mem-

ory bank to determine which ROIs are likely to contain good
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Figure 4: Structure of MAST. The current frame is used to compute query to attend and retrieve from memory (key & value). During training, we use raw

video frame as value for self-supervision. Once the encoder is trained, we use instance mask as value. See Section 3.3 for details.

matches with the query pixel. In the second stage, we ex-

tract the ROIs and compute fine-grained pixel matching, as

described in Section 3.1. Overall, the process can be sum-

marized in Algorithm 1.

Algorithm 1 MAST

1: Choose m reference frames Q1, Q2, ...Qm

2: Localize ROI R1, R2, ...Rm according to 3.3.2 (Eq. 5 and 6)

for each of the reference frames

3: Compute similarity matrix A
ij
t = 〈Qj , Ri

t〉 between target

frame Q and each ROI.

4: Output: pixel’s label is determined by aggregating the labels

of the ROI pixels (weighted by its affinity score).

3.3.2 ROI Localization

The goal of ROI localization is to estimate the candidate

windows non-locally from memory banks. Intuitively, for

short-term memory (temporally close frames), dilation is

not required since spatial-temporal coherence naturally ex-

ists in videos; thus ROI localization becomes restricted at-

tention (similar to [37]). However, for long-term memory,

we aim to account for the fact that objects can potentially

appear anywhere in the reference frames. We unify both

scenarios into a single framework for learning ROI local-

ization.

Formally, for the query pixel i in It, to localize the ROI

from frame (It−N ), we first compute in parallel Hi
t−N,x,y ,

the similarity heatmap between i and all candidate pixels in

the dilated window:

Hi
t−N,x,y = softmax(Qi

t · im2col(Ki
t−N , γt−N )) (5)

where γt−N refers to the dilation rate for window sam-

pling in frame It−N , and im2col refers to an operation

that transforms the input feature map into a matrix based

on dilation rate. Specifically, in our experiments, the dila-

tion rate is proportional to the temporal distance between

the present frame and the past frames in the memory bank,

i.e. γt−N ∝ N . We use γt−N = ⌈(t−N)/15⌉.

The center coordinates for ROIs can be then computed

via a soft-argmax operation:

P i
x,y =

∑

x,y

Hi
x,y ∗ C (6)

where P i
x,y is the estimated center location of the candi-

date window in frame It−N for query pixel Iit , and C refers

to the grid coordinates (x, y) corresponding to the pixels in

the window from im2col. The resampled Key (K̂i
t−N ) for

pixel Iit can be extracted with a bilinear sampler [23]. With

all the candidate Keys dynamically sampled from different

reference frames of the memory bank, we compute fine-

grained matching scores only with these localized Keys, re-

sembling a restricted attention in a non-local manner. With

the proposed design, the model can therefore efficiently ac-

cess high-resolution information for correspondence match-

ing, without incurring large physical memory costs.

4. Implementation Details

Training: For fair comparison, we adopt as our feature en-

coder the same architecture (ResNet18) as [37] in all exper-

iments (as shown in Supplementary Material). The network

produces feature embeddings with a spatial resolution 1/4
of the original image. The model is trained in a completely

self-supervised manner, meaning the model is initialized

with random weights, and we do not use any information

other than raw video sequences. We report main results

on two training datasets: OxUvA [52] and YouTube-VOS

(both raw videos only). We report the first for fair compari-

son with the state-of-the-art method [37] and the second for

maximum performance. As pre-processing, we resize all

frames to 256× 256× 3. In all of our experiments, we use

I0, I5 (only if the index for the current frame is larger than

5) as long term memory, and It−5, It−3, It−1 as short term

memory. Empirically, we find the choice of frame number

has small impact on performance, but using both long and

short term memory is essential.

During training, we first pretrain the network with a pair of
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input frames, i.e. one reference frame and one target frame

are fed as inputs. One of the color channels is randomly

dropped with probability p = 0.5. We train our model end-

to-end using a batch size of 24 for 1M iterations with the

Adam optimizer. The initial learning rate is set to 1e-3,

and halved after 0.4M, 0.6M and 0.8M iterations. We then

finetune the model using multiple reference frames (our full

memory-augmented model) with a small learning rate of 2e-

5 for another 1M iterations. As discussed in Section 3.2.2,

the model is trained with a photometric loss between the re-

construction and the true frame.

Inference: We use the trained feature encoder to compute

the affinity matrix between pixels in the target frame and

those in the reference frames. The affinity matrix is then

used to propagate the desired pixel-level entities, such as

instance masks in the dense tracking case (Algorithm 1).

Image Feature Alignment: Due to memory constraints,

the supervision signals in previous methods were all de-

fined on bilinearly downsampled images. This introduces

a misalignment between strided convolution layers and im-

ages from naı̈ve bilinear downsampling. We handle this

spatial misalignment between feature embedding and im-

age by directly sampling at the strided convolution cen-

ters. This seemingly minor change actually brings signif-

icant improvement to the downstream tracking task (Ta-

ble 4). More implementation details can be found in arXiv

version (https://arxiv.org/abs/2002.07793).

5. Experiments

We benchmark our model on two public benchmarks:

DAVIS-2017 [48] and the current largest video segmenta-

tion dataset, YouTube-VOS [71]. The former contains 150

HD videos with over 30K manual instance segmentations,

and the latter has over 4000 HD videos of 90 semantic cate-

gories, totalling over 190k instance segmentations. For both

datasets, we benchmark the proposed self-supervised learn-

ing architecture (MAST) on the official semi-supervised

video segmentation setting (aka. dense tracking), where a

ground truth instance segmentation mask is given for the

first frame, and the objective is to propagate the mask to

subsequent frames. In Section 5.1, we report performance

of our full model and several ablated models on the DAVIS

benchmark. Next, in Section 5.2, we analyze the general-

izability of our model by benchmarking on the large-scale

YouTube-VOS dataset.

Standard evaluation metrics. We use region similar-

ity (J ) and contour accuracy (F) to evaluate the tracked

instance masks [47].

Generalizability metrics. To demonstrate the generaliz-

ability of tracking algorithms in category-agnostic scenar-

ios, i.e. the categories in training set and testing set are dis-

joint, YouTube-VOS also explicitly benchmarks the perfor-

mances on unseen categories. We therefore evaluate a gen-

eralization gap in Section 5.3, which is defined as the aver-

age performance difference between seen and unseen object

classes:

Gen. Gap =
(Jseen − Junseen) + (Fseen −Funseen)

2

Note, the proposed metric aims to explicitly penalize the

case where the performance on seen outperforms unseen

by large margins, while at the same time provide a reward

when the performance on unseen categories is higher than

on seen ones.

5.1. Video Segmentation on DAVIS­2017

5.1.1 Main results

In Table 1, we compare MAST with previous approaches

on the DAVIS-2017 benchmark. Two phenomena can be

observed: first, our proposed model clearly outperforms all

other self-supervised methods, surpassing previous state-of-

the-art CorrFlow by a significant margin (65.5 vs 50.3 on

J&F). Second, despite using only ResNet18 as the fea-

ture encoder, our model trained with self-supervised learn-

ing can still surpass supervised approaches that use heavier

architectures.

5.1.2 Ablation Studies

To examine the effects of different components, we conduct

a series of ablation studies by removing one component at

a time. All models are trained on OxUvA (except for the

analysis on different datasets), and evaluated on DAVIS-

2017 semi-supervised video segmentation (aka. dense

tracking) without any finetuning.

Choice of color spaces. As shown in Table 2, we perform

different experiments with input frames transformed into

different color spaces, e.g. RGB, Lab or HSV. We find that

the MAST model trained with Lab color space always out-

performs the other color spaces, validating our conjecture

that dropout in a decorrelated color space leads to better

feature representations for self-supervised dense tracking,

as explained in Section 3.2.1. Additionally, we compare

our default setting with a model trained with cross-color

space matching task (shown in Table 3). That means to

use a different color space for the input and the training

objective, e.g. input frames are in RGB, and loss function is

defined in Lab color space. Interestingly, the performance

drops significantly, we hypothesis this can attribute to the

fact that all RGB channels include a representation of

brightness, making it highly correlate to the luminance in

Lab, therefore acting as a weak information bottleneck.

Loss functions. As a variation of our training procedure,

we experiment with different loss functions: cross entropy

loss on the quantized colors, and photometric loss with Hu-

ber loss. As shown in Table 2, regression with real-valued

photometric loss surpasses classification significantly,

6484



Method Backbone Supervised Dataset (Size) J&F (Mean) ↑ J (Mean) ↑ J (Recall) ↑ F (Mean) ↑ F (Recall) ↑

Vid. Color. [59] ResNet-18 ✗ Kinetics (800 hours) 34.0 34.6 34.1 32.7 26.8

CycleTime† [64] ResNet-50 ✗ VLOG (344 hours) 48.7 46.4 50.0 50.0 48.0

CorrFlow† [37] ResNet-18 ✗ OxUvA (14 hours) 50.3 48.4 53.2 52.2 56.0

UVC⋆ [72] ResNet-18 ✗ Kinetics (800 hours) 59.5 57.7 68.3 61.3 69.8

MAST (Ours) ResNet-18 ✗ OxUvA (14 hours) 63.7 61.2 73.2 66.3 78.3

MAST (Ours) ResNet-18 ✗ YT-VOS (5.58 hours) 65.5 63.3 73.2 67.6 77.7

ImageNet [18] ResNet-50 ✓ I (1.28M, 0) 49.7 50.3 - 49.0 -

OSMN [73] VGG-16 ✓ ICD (1.28M, 227k) 54.8 52.5 60.9 57.1 66.1

SiamMask [61] ResNet-50 ✓ IVCY (1.28M, 2.7M) 56.4 54.3 62.8 58.5 67.5

OSVOS [6] VGG-16 ✓ ID (1.28M, 10k) 60.3 56.6 63.8 63.9 73.8

OnAVOS [57] ResNet-38 ✓ ICPD (1.28M, 517k) 65.4 61.6 67.4 69.1 75.4

OSVOS-S [42] VGG-16 ✓ IPD (1.28M, 17k) 68.0 64.7 74.2 71.3 80.7

FEELVOS [56] Xception-65 ✓ ICDY (1.28M, 663k) 71.5 69.1 79.1 74.0 83.8

PReMVOS [41] ResNet-101 ✓ ICDPM (1.28M, 527k) 77.8 73.9 83.1 81.8 88.9

STM [45] ResNet-50 ✓ IDY (1.28M, 164k) 81.8 79.2 - 84.3 -

Table 1: Video segmentation results on DAVIS-2017 validation set. Dataset notations: I=ImageNet, V = ImageNet-VID, C=COCO, D=DAVIS,

M=Mapillary, P=PASCAL-VOC Y=YouTube-VOS. For size of datasets, we report (length of raw videos) for self-supervised methods and (#image-level

annotations, #pixel-level annotations) for supervised methods. ⋆ denotes concurrent work. † denotes highest results reported after original publication.

Higher values are better.
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Figure 5: Our method vs. previous self-supervised methods. Other methods show systematic errors in handling occlusions. Row 1: The dancer undergoes

large self-occlusion. Row 2: The dog is repeatedly occluded by poles. Row 3: Three women reappear after being occluded by the man in the foreground.

validating our conjecture that the information loss during

color quantization results in inferior representations for

self-supervised tracking (as explained in Section 3.2), due

to less discriminative training signals.

Image feature alignment. To evaluate the alignment mod-

ule proposed for aligning features with the original image,

we compare it to direct bilinear image downsampling used

by CorrFlow [37]. The result in Table 4 shows that our

approach achieves about 2.2% higher performance.

Dynamic memory by exploiting more frames. We com-

pare our default network with variants that have only short

term memory or long term memory. Results are shown

in Table 5. While both short term memory and long term

memory alone can make reasonable predictions, the com-

bined model achieves the highest performance. The quali-

tative predictions (Figures 2 and 5) also confirm that the im-

provements come from reduced tracker drift. For instance,

when severe occlusion occurs, our model is able to attend

and retrieve high-resolution information from frames that

are temporally distant.

5.2. Youtube Video Object Segmentation

We also evaluate the MAST model on the Youtube-VOS

validation split (474 videos with 91 object categories). As

no other self-supervised methods have been tested on the

benchmark, we directly compare our results with supervised

methods. As shown in Table 8, our method outperforms the

other self-supervised learning approaches by a significant

margin (64.2 vs. 46.6), and even achieves comparable per-

formance to many heavily supervised methods.

5.3. Generalizability

As another metric for evaluating category-agonostic

tracking, the YouTube-VOS dataset conveniently has sep-

arate measures for seen and unseen object categories.

We can therefore estimate testing performance on out-of-

distribution samples to gauge the model’s generalizability

to more challenging, unseen, real-world scenarios. As seen

from the last two columns, we rank second amongst all al-

gorithms in unseen objects. In these unseen classes, we are

even 3.9% higher than the DAVIS 2018 and YouTube-VOS
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Colors. Loss J (Mean) F (Mean)

RGB
Cls. 42.5 45.3

Reg. 52.7 57.1

HSV
Cls. 32.5 35.3

Reg. 54.3 58.6

Lab
Cls. 47.1 48.9

Reg. 61.2 66.3

Table 2: Training colorspaces and loss: Our

final model trained with Lab colorspace with

regression loss outperforms all other models on

dense tracking task. Higher values are better.

Input Loss J (Mean) F (Mean)

Lab RGB 48.2 52.0

RGB Lab 46.8 49.9

Lab Lab 61.2 66.3

Table 3: Cross color space matching vs. sin-

gle color space: Cross color space matching

shows inferior results compared to single color

space.

I-F Align J (Mean) F (Mean)

No 59.1 64.0

Yes 61.2 66.3

+2.1 +2.3

Table 4: Image-Feature alignment: Using the

improved Image-Feature alignment implemen-

tation improves the results. Higher values are

better.

Memory J (Mean) F (Mean)

Only long 44.6 48.7

Only short 57.3 61.8

Both 61.2 66.3

Table 5: Memory length: Removing either

long term or short term memory results in a

performance drop.

Propagation J (Mean) F (Mean)

Soft 57.0 61.7

Hard 61.2 66.3

+4.2 +4.6

Table 6: Soft vs. hard propagation: Quantiz-

ing class probability of each pixel (hard prop-

agation) shows large gains over propagating

probility distribution (soft propagation).

Dataset J (Mean) F (Mean)

OxUvA 61.2 66.3

ImageNet VID 60.0 63.9

YouTube-VOS (w/o anno.) 63.3 67.6

Table 7: Training dataset: All datasets provide rea-

sonable performance, with O and Y slightly superior.

We conjecture that our model gains from higher qual-

ity videos and larger object classes in these datasets.

Method Sup. Overall ↑
Seen Unseen

Gen. Gap ↓

J ↑ F ↑ J ↑ F ↑

Vid. Color.[59]† ✗ 38.9 43.1 38.6 36.6 37.4 3.9

CorrFlow[37] ✗ 46.6 50.6 46.6 43.8 45.6 3.9

MAST (Ours) ✗ 64.2 63.9 64.9 60.3 67.7 0.4

OSMN[73] ✓ 51.2 60.0 60.1 40.6 44.0 17.75

MSK[30] ✓ 53.1 59.9 59.5 45.0 47.9 13.25

RGMP[44] ✓ 53.8 59.5 - 45.2 - 14.3

OnAVOS[57] ✓ 55.2 60.1 62.7 46.6 51.4 12.4

RVOS[55] ✓ 56.8 63.6 67.2 45.5 51.0 17.15

OSVOS[6] ✓ 58.8 59.8 60.5 54.2 60.7 2.7

S2S[71] ✓ 64.4 71.0 70.0 55.5 61.2 12.15

PreMVOS[41] ✓ 66.9 71.4 75.9 56.5 63.7 13.55

STM[45] ✓ 79.4 79.7 84.2 72.8 80.9 5.1

Table 8: Video segmentation results on Youtube-VOS dataset. Higher val-

ues are better. According to the evaluation protocol of the benchmark, we

report performance separated into “seen” and “unseen” classes (“Seen”

with respect to training set). † indicates results based on our reimple-

mentation. The first- and second-best results on the unseen category are

highlighted in red and blue, respectively.

2018 video segmentation challenge winner, PreMVOS[41],

a complex algorithm trained with multiple large manually

labeled datasets. For fair comparison, we train our model

only on the YouTube-VOS training set. We also re-train

two most relevant self-supervised methods in the same man-

ner as baselines. Even learning from only a subset of all

classes, our model generalizes well to unseen classes, with a

generalization gap (i.e. the performance difference between

seen and unseen objects) near zero (0.4). This gap is much

smaller than any of the baselines (avg = 11.5), suggesting

a unique advantage to most other algorithms trained with

labels.

By training on large amounts of unlabeled videos, we

learn an effective tracking representation without the need

for any human annotations. This means that the learned net-

work is not limited to a specific set of object categories (i.e.

those in the training set), but is more likely to be a “uni-

versal feature representation” for tracking. Indeed, the only

supervised algorithm that is comparable to our method in

generalizability is OSVOS (2.7 vs. 0.4). However, OSVOS

uses the first image from the testing sequence to perform

costly domain adaptation, e.g. one-shot fine-tuning. In con-

trast, our algorithm requires no fine-tuning, which further

demonstrates its zero-shot generalization capability.

Note our model also has a smaller generalization gap

compared to other self-supervised methods as well. This

further attests to the robustness of its learned features, sug-

gesting that our improved reconstruction objective is highly

effective in capturing general features.

6. Conclusion

In summary, we present a memory-augmented self-

supervised model that enables accurate and generalizable

pixel-level tracking. The algorithm is trained without any

semantic annotation, and surpasses previous self-supervised

methods on existing benchmarks by a significant margin,

narrowing the gap with supervised methods. On unseen ob-

ject categories, our model actually outperforms all but one

existing methods that are trained with heavy supervision.

As computation power grows and more high quality videos

become available, we believe that self-supervised learning

algorithms can serve as a strong competitor to their super-

vised counterparts for their flexibility and generalizability.
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