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Abstract

Improving the lung function after experimental allergen challenge by blocking of mast cell (MC) mediators and the capability ofMC

mediators (includinghistamine, prostaglandin (PG)D2, and leukotriene (LT)C4) in induction ofmucosal edema, bronchoconstriction,

andmucussecretionprovideevidence thatMCsplayakeyrole inpathophysiologyofasthma. Inasthma, thenumberofMCsincreases in

the airways and infiltration of MCs in a variety of anatomical sites including the epithelium, the submucosal glands, and the smooth

muscle bundlesoccurs.MC localizationwithin theASMis accompaniedwith thehypertrophyandhyperplasia of the layer, and smooth

muscle dysfunction that ismainly observed in forms of bronchial hyperresponsiveness, and variable airflow obstruction. Owing to the

expression of awide range of surface receptors and releasing various cytoplasmicmediators,MCs orchestrate the pathologic events of

the disease.MC-released preformedmediators including chymase, tryptase, and histamine and de novo synthesizedmediators such as

PGD2, LTC4, and LTE4 in addition of cytokines mainly TGFβ1, TSLP, IL-33, IL-4, and IL-13 participate in pathogenesis of asthma.

The release of MC mediators and MC/airway cell interactions during remodeling phase of asthma results in persistent cellular and

structural changes in the airwaywall mainly epithelial cell shedding, goblet cell hyperplasia, hypertrophy of ASM bundles, fibrosis in

subepithelial region, abnormal deposition of extracellular matrix (ECM), increased tissue vascularity, and basement membrane thick-

ening.Wewill review the current knowledge regarding the participation ofMCs in each stage of asthmapathophysiology including the

releasing mediators and their mechanism of action, expression of receptors by which they respond to stimuli, and finally the pharma-

ceutical products designed based on the strategy of blockingMC activation andmediator release.

Keywords Airways . Asthma .Mast cells . Mediators . Remodeling

Abbreviations

AEC Airway epithelial cell

ASM Airway smooth muscle

BAL Bronchoalveolar lavage

bFGF-2 Basic fibroblast growth factor-2

BHR Bronchial hyperresponsiveness

BM Basement membrane

BSM Bronchial smooth muscle

EB Eosinophilic bronchitis

ECP Eosinophil cationic protein

HLMC Human lung mast cell

ICAM-1 Intercellular adhesion molecule-1

LT Leukotriene

PAR Protease-activated receptor

PDGF Platelet-derived growth factor

PG Prostaglandin

SCF Stem cell factor

VCAM-1 Vascular cell adhesion molecule-1

CRTH2 Chemoattractant receptor-homologous

molecule expressed on TH2 cells

Introduction

Asthma is characterized by chronic airway inflammation, and

hyperresponsiveness (AHR) accompanied by mucus
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hypersecretion [1]. Triggers of allergic asthma include aller-

gens, fungus (such as Aspergillus fumigatus [2]), viruses

(mainly human rhinoviruses (HRV) [3]), and pollutants (in-

cluding polycyclic aromatic hydrocarbons [4]) [5]. They in-

teract with the airway epithelial cells to initiate the inflamma-

tory response across the airways by releasing of cytokines,

particularly IL-25, IL-33, and TSLP [5]. Synergistically with

IL-1 and TNF, TSLP stimulates the production of high levels

of Th2 cytokines by human MCs [6]. In uncontrolled asthma,

MC infiltration to the peripheral airways including the alveo-

lar interstitium occurs. Unlike the healthy subjects, MCs in

individuals with asthma express FcεRI and surface bound

IgE [7]. The increase in number of MCs in asthmatics is as-

sociated with evidence of TH2-skewed inflammation [8] and

remodeling with interstitial fibrosis [9]. The participation of

MCs in pathogenesis of asthma is supported by the results of

tissue biopsies obtained from infants dying of viral bronchiol-

itis that revealed the presence of large number of tissue resi-

dent MCs. It has been reported that these MCs unlike those

seen in adult asthmatic individuals did not express surface

FcεRI. Development of asthma in children commonly re-

quires both allergic sensitization and viral infection.

Considering that sensitization to airborne allergens rarely oc-

curs within the first year of life, there should be a link between

MC and viral infection as a predisposing factor for later asth-

ma development [7].MCs develop fromCD34+/CD117+ plu-

ripotent progenitor cells that originate in the bone marrow [10,

11]. The progenitors release into circulation by which access

the peripheral tissues via a well-organized integrin/receptor-

mediated trafficking. Within the residing tissues, the progen-

itors differentiate and mature to MCs under the influence of

local growth factors, mainly stem cell factor (SCF) [12, 13].

Other MC growth and survival modulators include nerve

growth factor (NGF), TGF-β, CXCL12, IL-3, IL-4, IL-9,

IL-10, and IL-33 [13]. Human MCs found in connective tis-

sues contain tryptase, chymase, carboxypeptidase, and cathep-

sin (MCTC), while majority of MCs found in lung and gut

express only tryptase (MCT) [14]. Upon IgE-FcεRI-

mediated MC activation, subsequent degranulation and re-

lease of bioactive mediators occur [15]. MCs produce a wide

range of mediators including biogenic amines (histamine and

serotonin), serglycin, proteoglycans, proteases (mainly

chymase and tryptase), and lipid mediators (platelet-activating

factor (PAF), leukotrienes (LTs), and prostaglandins (PGs))

[16]. Additionally, activated MCs release a broad range of

pre-stored or de novo synthetized cytokines including GM-

CSF, TNFα, IL-3, IL-4, IL-5, IL-6, IL-10, IL-13, and IL-17,

chemokines such as CCL2, CCL3, CCL5, and CXCL8, and

growth factors including bFGF, NGF, VEGF, TGF-β, and

SCF of which the latter acts as the main growth factor for

these cells [15]. During immediate allergic reaction (occurring

within 10–20 min following allergen exposure), MC released

histamine and serotonin cause airway smooth muscle

contraction, mucus hypersecretion, and plasma extravasation

within the airway wall, that finally result in airway narrowing.

The next phase of MC activation occurring within 20–40 min

postallergen exposure is determined by the release of the new-

ly produced mediators mainly PGs and LTs that cause further

enhancing the allergic airway response [15].

Innate Immune Cells in Asthma (Recruitment
and Function)

Both innate and specific immune cells actively participate in

pathogenesis of asthma. Allergen exposure results in releasing

cytokines from airway epithelium mainly IL-33, IL-25, and

TSLP which activate ILC-2 cells to proliferate and secrete IL-

4 and IL-5 that play a role in induction of IL-13 by Th2 and

eosinophil recruitment and activation [17]. ILC2 cells are able

to produce IL-13 in an Th2-independent pathway for instance

under influence of basophil-derived IL-4 [18, 19]. MC released

PGD2 has been reported to activate ILC-2 cells via acting on

CRTH2 receptor through which induces the production of type

2 cytokines [20]. T2 cytokines mainly IL-4 and IL-13 cause

reduction in junctional complex structure and function of air-

way epithelial cells in a JAK-dependent manner [21]. Disrupted

barrier function possibly promotes allergen sensitization within

the airways by accelerating and facilitating the uptake of aller-

gens by subepithelial DCs [21]. Acting via ST2 receptor and

MyD88-dependent signaling pathway, IL-33 activates MCs

and induces their proliferation [22]. IL-25 acts directly on fibro-

blasts and endothelial cells to promote airway remodeling and

angiogenesis and contributes to production of TSLP and IL-33

in the lung [23]. Eosinophils after being recruited to airways

secrete toxic proteins stored in intracellular granules mainly

major basic protein (MBP), eosinophil cationic protein(ECP),

and reactive oxygen species, which are capable of damaging

tissue during allergic inflammation [24, 25]. MBP is known to

induce MC degranulation. Moreover, eosinophil released pro-

inflammatory mediators mainly LTC4 and LTB4 promote vas-

cular permeability, mucus secretion, and smooth muscle con-

traction [24]. Several eosinophil surface proteins including

CD9, CD11a, CD16, CD25, CD45RO, CD48, CD89, and

CD137 have been reported to upregulate in asthma [26].

Eosinophil-released mediators including IL-1, IL-3, IL-5, IL-

6, TGF-α, TGF-β, and GM-CSF contribute to airway inflam-

mation. Furthermore, eosinophil-released LTC4, PAF, and 15-

HETE (15-hydroxyicosatetraenoic acid) induce acute

hyperresponsiveness and ASM hypertrophy [27]. HLMCs ac-

tivate ILC-2 cells by releasing LTD4 and PGD2 [17]. In return,

ILC-2 cells produce IL-9 that is a MC growth factor and pro-

motes IL-4-driven antibody production by B cells and can also

induce goblet cell metaplasia [17, 28]. IL-13 induces airway

hyperresponsiveness and, in concert with IL-9, promotes mu-

cus production [29]. HLMCs not only release IL-13 but also
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express the receptor IL-13Rα1. Interestingly, IL-13Rα1 over-

expression is reported in asthmatics. IL-13/IL-13Rα1 interac-

tion promotes FcεRI expression on MCs which leads to in-

creased histamine release, MC proliferation, and activation in

asthma in an autocrine fashion [30]. Airway epithelial cells

contribute in DC recruitment and activation by releasing

CCL20 and CCL2 [27]. Moreover, ILC-2-derived IL-13 facil-

itates the migration of activated lung CD11b+ cDCs to the

draining mediastinal lymph nodes (LNs), where they induce

Th2 responses [17]. Immature DCs after uptaking the inhaled

antigens become mature and migrate to regional LNs to present

antigens to naïve T cells which results in differentiation of

CD4+ T cells into Th2 cells involved in allergic asthma [31].

Interestingly, some helper T cells capable of producing IL-21

adopt a follicular helper T cell (TFH) subset [17]. TFH cells

contribute to producing IL-4 and IL-21, that, along with Th2

cell-derived IL-4, promote class switching in B cells in favor of

producing IgE [32]. CD11chi DCs recruit effector Th2 cells to

airways through secreting CCL17 and CCL22 [17]. During

respiratory syncytial virus (RSV) infection, RSV-infected air-

way epithelial cells release TSLPwhich promotes the activation

of DCs [33] (Fig. 1).

Mast Cell Progenitors from Bone Marrow
to Airways: Production and Homing

While SCF, CCL5, CXCL8, CXCL10, CCL11, and CXCL12

are predominant chemokine inMC recruitment to airway epithe-

lium, chemokines including SCF, TGFβ1, CXCL8, CXCL9,

CX3CL1, CXCL10, CCL11, and CXCL12 play a role in recruit-

ment of MCs to HASM [34]. Additionally, CXCL9, CXCL10,

and CXCL11 act through CXCR3, the most highly expressed

HLMC chemokine receptor, and induce a rise in cytosolic-free

Ca2+, actin reorganization, and chemotaxis [35, 36]. Human-

activated lungMCs release LTB4 that actively attracts the imma-

ture MCs via BLT1 receptor to inflammation sites [37]. LTB4-

mediated chemoattraction results in MC hyperplasia through

which MC progenitors are supplied in the lung tissues [38].

Conversely, PGE2/E-prostanoid (EP)-2 receptor interaction re-

sults in inhibiting human lung MC migration [34]. SCF is pro-

duced predominantly by epithelial and mesenchymal cells. SCF-

CD117 binding induces immature cell proliferation, promotes

their chemotaxis to variety of anatomical sites, and suppresses

mature MC apoptosis [34]. MCs after being recruited to airways

benefit largely from adhesion molecules mainly CADM1 to ad-

here to human parenchymal lung fibroblasts and HASM cells

through homophilic CADM1-CADM1 and CADM1-nectin-3

binding respectively. Human ASM bound SCF mediates MC

adhesion via binding to KIT receptor (CD117) [34]. Bronchial

smooth muscle (BSM) is infiltrated by MCs upon releasing me-

diators including TGF-β1, SCF, CXCL10, and CX3CL1 which

possess MC chemoattracting activity [39] (Fig. 2, Table 1).

Role of MC Mediators in Allergic Asthma

Interactions of Mast Cells with Airway
Epithelial Cells, Mucous Glands, and Epithelial
Goblet Cells

AECs are activated through direct enzymatic activity of the ex-

posed allergens or through activation of a wide range of pattern

recognition receptors (PRRs) including TLRs, RIG-I-like recep-

tors (RLRs), NOD-like receptors (NLRs), and C-type lectins.

Upon exposure to inhaled allergens, AEC released CCL17 and

CCL22 attract and recruit ILC2s, basophils, Tregs, and Th2

through acting on CCR4. Eosinophils and Th2 cells are recruited

by AEC released eotaxins CCL11, CCL24, and CCL26 that act

via CCR3 receptors. Additionally, AECs are capable of attracting

basophils, ILC2s and Th2 cells through releasing PGD2 that

binds to CRTH2 receptor [61]. MC-released IL-4 and IL-13

promote the capability of cytokine production by AECs [53].

Both MCs and AECs are able to produce TSLP. AECs owing

to expressing TLRs mainly 3, 6, 7, 8, and 9 are able to sense

inhaled antigens and in respond to their presence release TSLP.

TSLP which is overexpressed in the asthmatic airway promotes

the release of Th2 cytokines including IL-4, IL-5, and IL-13 [53].

MCs after localize into the submucosal mucous glands release

mediators and cytokines including histamine, PGD2, LTC4,

TNFα, chymase, IL-4, IL-6, and IL-13, that consequently pro-

mote mucous hypersecretion by hyperplastic submucosal cells

and epithelial goblet cells [53]. MC-released IL-13 is the pre-

dominant cytokine associated with mucous secretion that pro-

motes the secretion of airway mucus in asthmatics [62]. Excess

mucus observed in asthma and COPDs is due to increased bio-

synthesis of the secretoryMUC5ACwhich is the dominant mac-

romolecule in chemical composition of mucus secreted by air-

ways [63]. IL-13/IL-4Rα interaction activates cytokine receptor-

associated Janus kinases (JAKs) which supports the phosphory-

lation of STAT6. Following dimerization, translocation of phos-

phorylated STAT6 to the nucleus occurs that suppresses the ex-

pression of FOXA2, a transcriptional repressor ofMUC5AC [62,

64]. IL-13 signaling promotes transdifferentiation of ciliated to

goblet cells [64]. TNFα also is considered as aMCmediator that

plays a role in induction of mucous secretion. TNFα/TNFR1

interaction supports receptor trimerization followed by recruit-

ment of multiple signaling proteins to the cytoplasmic domains

of TNFR1. TNFR1-associated death domain-containing protein

(TRADD) acts as a scaffold for the assembly of downstream

signaling complexes, of which receptor-interacting protein1

(RIP1) and TNFR-associated factor2 (TRAF2) are major com-

ponents. Both RIP1 and TRAF2 are involved in IκB kinase

(IKK) activation. IKK promotes the phosphorylation of IκB,

after which IκB becomes marked to undergo ubiquitination and

degradation by the 26S proteasome. This process is dependent to
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Fig. 1 Upon allergen exposure,

air way epithelial cells release IL-

25, IL-33, and TSLP and activate

ILC-2. DCs after being recruited

to lymph nodes act in favor of

differentiation of naïve T cells to

Th2 cells. TFH cells contribute to

Ig class switching in B cells and

production of IgE. Antigen-

specific IgE molecules sensitize

MCs via binding to FcεRI.

Further allergen exposures result

in MC activation and degranula-

tion. Innate immune cells includ-

ing eosinophils and DCs are re-

cruited to airways by

chemoattractants released by oth-

er immune cells
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Fig. 2 Different chemoattractants

are responsible for recruitingMCs

to epithelium and ASM. MCs

attach to fibroblasts and ASM

using homo/heterotypic CADM1,

and SCF/CD117 bindings
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unmasking a nuclear localization signal and permits subsequent

nuclear import of NF-κB [62] (Fig. 3).

Mast Cell—Airway Smooth Muscle
Interactions in Allergic Asthma

The presence ofMCs in ASM is considered as a key feature in

asthma pathogenesis [65] which is associated to the develop-

ment of ASM hypertrophy and hyperplasia, ASM dysfunction

expressed as BHR, and presence of variable obstruction in

airflow [66]. Unlike submucosa residing MCs, the population

located in the ASM bundles are always tryptase and chymase

positive (MCTC) and their number has been linked to the

severity of asthma [59, 67]. Interestingly, MC proteases show

different properties when studied in isolation on ASM func-

tion. For example, while β-tryptase induces ASM cell prolif-

eration, chymase dramatically reduces it [68]. ASM secretes

the three CXCR3 ligands CXCL9, CXCL10, and CXCL11

capable of binding to MC expressed receptor CXCR3 that

actively recruit them. SCF/CD117 and TGF-β/TGF-βR also

play a role in recruitment of MCs to ASM [66]. Moreover,

ASM secreted CXCL10 and CCL5 have a role in the recruit-

ment of MCs via MC expressed CXCR3 and both CCR1 and

CCR3, respectively [69]. MC surface expressed CADM-1

facilitates homotypic adhesion between MCs and also

Table 1 Role of three classic groups of MC mediators in allergic asthma

Preformed mediators

Chymase Activates MMP-9, consequently degradation of the ECM and basement membrane (BM),

migration of endothelial cells into the interstitial space, and endothelial cell proliferation

and differentiation into mature blood vessels occur.

It generates mature forms of IL-33 by acting on full-length IL-331–270 to activate ILC2s

and eosinophils in vivo.

[40]

[41]

Histamine Upon MC degranulation, histamine causes immediate bronchoconstriction via H1 receptors.

The levels in the BAL fluid directly correlate with the severity of asthma.

[42]

Tryptase Tryptase induces AHR by activating ASM expressed PAR-2 and has been implicated

in bronchoconstriction through release of neurokinins from afferent neurons in the airways.

It promotes tissue remodeling and fibrosis.

Upon releasing from MCs, it induces HASM to release TGFβ1 which promotes the expression

of α-smooth muscle actin (α-SMA) by HASMC and induces the contractility.

[43]

[44]

[45]

De novo synthesized mediators

PGD2 PGD2 is a chemoattractant for HASM when acts on CRTH2/DP2 receptor (expressed by eosinophils,

basophils, and epithelial cells in addition of HASM) and may promote ASM migration toward the

subepithelial BM. Additionally, when released from MCs, PGD2 acts as bronchoconstrictor.

PGD2/DP2 interaction facilitates the trafficking of inflammatory cells into cite of inflammation by

increasing smooth muscle relaxation, vasodilation, vascular permeability, and production of CCL22

by epithelial cells.

[46]

[47]

[47]

LTC4 Acting through Cys-LT1, LTC4 promotes variety of physiopathologic reactions in airways mainly

acute bronchoconstriction, eosinophil chemotaxis and activation, mucus hypersecretion, hyperplasia,

and contraction of ASM.

[48, 49]

LTE4 LTE4 induces airflow obstruction and MC activation when acts on CysLT1 receptor. [50]

PAF PAF an important pro-inflammatory mediator causes bronchial hyperactivity, increased vascular

permeability, and accumulation of inflammatory cells.

[51]

Released cytokines

IL-4 IL-4 as a pleiotropic cytokine acting via the IL-4R on majority of lung cells is associated with

remodeling of epithelium and lamina propria. It also supports smooth muscle cell contractility.

IL-4 supports the expression of FcεRI on MCs and basophils. In addition to MCs, other immune

cells including Th2 cells, eosinophils, basophils, and ILC-2 are capable of producing and releasing IL-4.

[52]

[52]

IL-13 IL-13 expression promotes inflammatory cell release, production of eotaxin and FeNO, mucus hypersecretion,

and supports subepithelial fibrosis.

[53–55]

TSLP MCs express the TSLP receptor, and TSLP/TSLP receptor interaction results in expression of Th2 cytokines.

MCs are known to produce high levels of TSLP, upon IgE-mediated activation.

[56]

TGFβ1 TGFβ1 along with bFGF and PAF is a key mediator in fibrotic pathways. These mediators are associated with

differentiation of the myofibroblasts which act as the key cell type involved in pulmonary fibrosis.

TGFβ is well known for its profibrotic mediating properties in the lung which supports collagen synthesis.

[57]

[9]

IL-33 IL-33 enhances IgE/Ag-, monomeric IgE-, C5a-, SCF-, and NGF-mediated cytokine production in human

MCs, and HMC-1.

[58]

VEGF MC and eosinophil-derived VEGF act as angiogenic factor in the asthmatic submucosa. [59]

bFGF-2 Acts as a profibrogenic cytokine during airway remodeling. [60]
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heterotypic adhesion with ASM. CADM-1 promotes MC sur-

vival and proliferation even in the absence of SCF and is

thought to corporate with CD117 in promoting MC survival

[57]. CADM-1-mediated MC-ASM adhesion results in ASM

activation by MC tryptase, with secretion of TGFβ1 from

ASM cells, that upregulates ASM contractile protein expres-

sion [57]. PGE2 a lipid mediator of MCs after releasing in-

duces bronchial contractions through interaction with EP1 re-

ceptors and relaxations through acting on EP2 or EP4 recep-

tors [70]. Under the function of HLMCs expressed EP2 or

EP4 receptors, the concentration of cyclic-AMP raises

through activation of adenylyl cyclase. It has been reported

that PGE2 works via EP2 receptors to stabilize MCs [71].

Additionally, ASM cells overexpress PAR-2 in asthma. The

consequences of PAR-2/MC-derived tryptase include induc-

ing of the calcium mobilization, contraction, and proliferation

of human ASM cells [72]. Relatively, overexpression of func-

tional PAR-2 receptors by asthmatic BSM cells accounts for

the increased calcium response to PAR-2 stimulation.

Repeated PAR-2 stimulations by MC released tryptase pro-

mote the proliferation capacity of asthmatic BSM cells [73].

ASM released nerve growth factor (NGF) acts as a MC sur-

vival factor that promotes bronchial hyperresponsiveness

[74]. Interestingly, ASM release a variety of inflammatory

and angiogenic mediators, including eotaxin, GM-CSF, IL-

1β, IL-2, IL-5, IL-6, IL-8, IL-10, IL-11, bFGF, PDGF-BB,

and VEGF [59]. Recently, it has been reported that ASM-

generated pro-MMP-1 after being proteolytically activated

by MC-released tryptase plays a role in bronchial

hyperresponsiveness. MMP-1 is capable of processing

ASM-derived extracellular matrix that enhances ASM prolif-

eration [60]. ASM-derived MMP-1 is induced by collagen I

and tenascin C [75] (Fig. 4).

Mast Cells and Airway Remodeling in Asthma

In asthma, ASM layer infiltration by MCs and secretion

of pro-inflammatory and profibrotic mediators are widely

accepted to contribute to airway remodeling. Thickening

of the asthmatic basement membrane occurs in response

to increased deposition of collagen I and III, tenascin, and

fibronectin, likely produced by activated myofibroblasts

[59]. Subepithelial fibrosis which is another feature of

airway remodeling in asthma occurs in the lamina

reticularis just below the BM and results in thickening

of the BM just below the epithelium [76]. MCs play a

�Fig. 3 Upon allergen exposure, AECs are activated by variety of

receptors and release chemoattractant mediators and recruit variety of

immune cells to airways. IL-13 and TNF play a crucial role in inducing

the mucus production by goblet cells. Both IL-13 and TNF signaling

pathways are illustrated
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predominant role in developing of chronic airway inflam-

matory changes and remodeling by releasing mediators.

Mitogenic properties of MC released tryptase on fibro-

blasts and to stimulate the synthesis of type 1 collagen

in these cells have been reported. Both tryptase and his-

tamine are able to induce ASM proliferation [42]. During

airways remodeling TGFβ, another dominant MC media-

tor involved in airway remodeling promotes epithelial

changes and induces subepithelial fibrosis, ASM remod-

eling, and microvascular changes. TGFβ after being re-

leased promotes the differentiation of fibroblasts to

myofibroblasts and induces the release of cytokines in-

cluding fibroblast growth factor-2 (FGF-2) and connective

tissue growth factor (CTGF). The latter cytokine enhances

the production and deposition of ECM proteins [77]. A

number of MC mediators including VEGF, histamine,

bFGF, metalloproteinases, IL-8, and proteases are in-

volved in MC-mediated angiogenesis during asthma

[40]. MC-derived chymase activates MMP-9 that facili-

tates the degradation of the ECM and BM, migration of

endothelial cells into the interstitial space, and endothelial

cell proliferation and differentiation into mature blood

vessels [78]. MC-derived proteases, mainly tryptase, and

MMPs boost inflammatory responses and airway remod-

eling in asthma. In turn, ASM-derived mediators, includ-

ing TGF-β, PGE2, and soluble and membrane-bound SCF

modulate the activation state of infiltrating MCs [78].

Mast Cell-Targeted Treatment in Allergic
Asthma

There are different therapeutic strategies to target MC-

related airway inflammation:

Neutralizing IgE (anti-IgE) and Prevent the Antibody
from Linking to the FcεRI

Omalizumab, a clinically approved therapeutic humanized

antibody, inhibits the IgE/FcεRI interaction via binding to

the Cε3 region on free IgE, prevents MC and basophil acti-

vation, and blocks IgE binding to CD23 on B cells and

APCs [15, 79, 80]. Moreover, MeDI4212 an antibody with

high affinity binds specifically to IgE Cε3 domain and pre-

vents IgE binding to its receptors (FcεRI and CD23) [81].

Neutralizing MC Activator Mediators via Blocking MC
Surface Receptors

MCs express a number of receptors that regulate their

activation [82]. Tezepelumab (AMG-157) is a fully hu-

man neutralizing IgG2 anti-TSLP monoclonal antibody.

Tezepelumab inhibits both the early and late allergic re-

sponses to a whole long allergen challenge and reduces

the number of eosinophils in both blood and sputum of

patients with asthma [83, 84]. C-Kit is a surface receptor

of SCF expressed on most MCs. It is widely used as a

surface marker to identify MCs in tissue. Masitinib is a

new kinase inhibitor designed to inhibit c-Kit kinase. It

has proven to be effective in mastocytosis and is in a

phase III program on patients with severe asthma [85].

Blocking the Signaling Pathways

It is well stablished that cross-linking at FcεRI activates spleen

tyrosine kinase (Syk). According to the structure and function,

Syk is classified as a ZAP70 family member that is required to

mediate MC activation and de novo synthesis of eicosanoids,

chemokines, and cytokines [86, 87]. Considering that Syk is

located upstream in the cell signaling pathway of multiple

immune receptors in human MCs, therapies with Syk inhibi-

tors possibly may be more efficient than drugs that inhibit a

single downstream event. In this regard, the Syk inhibitor

R343 (Rigel) previously known for its capability to abrogate

FcR and BCR signaling has been evaluated by inhaled route in

clinical trials for asthma [88].

Blocking the Receptors of Mediators

Blocking the receptors of MC-released mediators could be an

effective strategy of controlling the inflammatory effects of

MCs in asthma. LTD4 receptor antagonists including

Bmontelukast,^ Bzafirlukast,^ and Bpranlukast^ are well docu-

mented in both asthma and allergic rhinitis [15]. Additionally,

the PGD2 receptor BCRTH2^ antagonist setipiprant has been

reported effective in reducing the late phase reaction after aller-

gen challenge [15]. The pro-inflammatory effects of PGD2

could be observed when it binds to CRTH2 receptor. The re-

ceptor is selectively expressed on variety of immune cells in-

cluding Th2 cells, eosinophils, and basophils [89]. Blocking

CRTH2 results in suppressing PGD2 chemotactic activity by

which PGD2 recruits effectively circulating eosinophils and

basophils to the site of inflammation [89]. Phase 1 clinical trial

has revealed the safety selective H4R antagonists including

UR-63325, JNJ-39758979, and PF-3893787 in human [27].

Imatinib, a potent inhibitor of c-Kit discoidin domain and

platelet-derived growth factor receptors (PDGFR), has been

reported to decrease airway hyperresponsiveness, MC counts,

and tryptase release in patients with severe asthma [90, 91].

�Fig. 4 ASM released mediators actively attract MCs to airways. MCs

benefit largely from CADM1 and CD117 to attach to ASM.MC Tryptase

plays a role in converting pro-MMP-1 to MMP-1 which contributes in

bronchial hyperresponsiveness. Tryptase also induces the ASM prolifer-

ation, in return ASM-derived TGFβ activates MCs

242 Clinic Rev Allerg Immunol (2019) 56:234–247



Discussion and Conclusion

It is still not clearwhy airway remodeling develops in asthma

and how such changes contribute to alterations of airway

function. In proportion to adult asthma, we also have a poor

knowledge regarding childhood asthma. Surprisingly, the

frequencies of MCs in the subepithelial mucosa and in the

ASM of children who wheeze and with severe asthma as

controls show no significant alteration [65]. Moreover, ef-

forts should be done to clarify the exact role of newly discov-

ered MC expressed receptors and released mediators. As an

example, mice MC-derived neurotrophin 4 (NT4) has been

reported to be in association with persistent changes in ASM

innervation and AHR in mice; however, the role of human

MC-derived NT4 has been poorly understood in pathogene-

sis of asthma [92].Additionally, IFN-γ2 (IL-28A) beyond its

role in autoimmunity has been reported tomodulate lungDC

function to promote T1 immune skewing and suppresses al-

lergic airway after being released from airway MCs in pa-

tientswith combined rhinitiswith asthma [93].TargetingMC

progenitor recruitment may offer an upstream checkpoint to

reduce tissue recruited MCs, and the consequences of their

presence. The exact molecular mechanism of such recruit-

ment remains unclear most likely it involves integrins and

perhaps CADM1, that binds to endothelial CADM1 [48].

Interestingly, the use of IL-37 that binds to IL-18Rα as an

anti-inflammatory biological cytokine in suppressing in-

flammatory cytokines involved in asthma pathogenesis is

under investigation. IL-37 capability of suppressing the se-

cretion of pro inflammatory cytokines released from MCs

including IL-1, IL-6, IL-8, and TNF-αmakes it a promising

cytokine to control the MCs [94]. It also increases activated

Treg, APC, activated antigen sensitized T cells, and naïve T

cells [94]. In humans, the KCa3.1 which is an intermediate

conductance Ca2+ activated K+ channel is activated follow-

ing FcεRI-dependent activation and enhances the influx of

Ca2+ (via Orai 1 channels) and histamine release in HLMCs.

KCa3.1 blockers such as TRAM-34 have been investigated

in mice models of asthma, but still their effectiveness in hu-

man asthmahas not been proven [57]. Interestingly, attention

has been given to immune modulating properties of TLRs

especially TLR9 to redirect allergic Th2 responses by trig-

gering Th1 response via TLR activation to control and treat

asthma [95]. In recent years, IL-18, a pro-inflammatory cy-

tokine, was introduced as an IFN-γ-inducing factor. IL-18 is

emerging to be involved in the pathogenesis of asthma

through promoting the production of Th2 cytokines by T

cells, NK cells, basophils, and MCs in mice models.

Although IL-18 levels have been reported to elevate in pa-

tients with asthma, and that humanMCs express IL-18R, the

exact role of IL-18 with the focus to MCs needs to be inves-

tigated in human [96, 97]. Most recently, lysosomotropic

agents mainly mefloquine or siramesine that induce the

HLMCs apoptosis via permeabilizing the secretory granules

of HLMCs and releasing the contents of the granules into the

cytosol have been reported to be promising in targeting

HLMCs in asthma [98]. Upon acute inflammatory reaction

ATP levels increase andadenosine forms throughATPbreak-

down. ATP and adenosine are capable of activating HLMCs

expressed P2Y, P2X, and adenosine receptors [99]. P2X7

selective antagonists possibly could be used for the treatment

ofMC-mediated chronic inflammatorydiseasesmainly asth-

ma [99]. One aspect of asthma pathogenesis in human that

should be investigated precisely is the role of TLR signaling

which has been extensively studied in mice models of asth-

ma. For instance, mediatory role of the BLT2 ligand–BLT2

axis in LPS/TLR4 signaling in producing Th2 cytokines es-

pecially IL-13 has been reported [100]. It has been reported

that combined stimulation of FcεRI and TLR induces a syn-

ergistic cytokine response inMCs, suggesting a contributory

role ofMCs to allergic exacerbations in the presence of path-

ogens [101]. Interestingly, in a human in vitro model using

LAD2 cells, lipoteichoic acid is reported to reduce the sur-

face expression of FcεRI through TLR2.Yoshioka et al. con-

cluded that TLR2 ligands may be used as a therapy for con-

trollingallergicdisorders [102]. Finally, considering the sim-

ilarities betweenMCsandbasophils including their ability of

releasing histamine, leukotrienes, andTh2-related cytokines

following IgE-dependent stimulation and the fact that baso-

phils increase in number in tissue and sputumof patientswith

asthma, investigations should be done to clarify their over-

lapping roles with MCs in asthma [103]. Investigations to

determining the exact role ofMCs in pathogenesis of asthma

have limitations as any other MC related study; first, unlike

animalmodel, obtaining tissue samples fromhuman airways

is limited to postmortem samples or specimen obtained

through surgical treatment. Additionally, unlike mice

models, there is no transgenic or genetically knockdown hu-

man models to participate in MC investigations. MC activa-

tion syndrome or mastocytosis may provide opportunity to

investigate the role of MCs in pathogenesis of asthma when

compared with normal individuals. Although, it seems logi-

cal to assume that patients with mastocytosis will tend to

have bronchial hyperresponsiveness due to high burden of

infiltrated MCs in airway, surprisingly, very few cases have

been reported [104].
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