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Summary
Tryptases and chymases are the major proteins stored and secreted by mast cells. The types, amounts
and properties of these serine peptidases vary by mast cell subtype, tissue, and mammal of origin.
Membrane-anchored γ-tryptases are tryptic, prostasin-like, type I peptidases that remain membrane-
attached upon release and act locally. Soluble tryptases, including their close relatives, mastins, form
inhibitor-resistant oligomers that act more remotely. Befitting their greater destructive potential,
chymases are quickly inhibited after release, although some gain protection by associating with
proteoglycans. Most chymase-like enzymes, including mast cell cathepsin G, hydrolyze
chymotryptic substrates, an uncommon capability in the proteome. Some rodent chymases, however,
have mutations resulting in elastolytic activity. Secreted tryptases and chymases promote
inflammation, matrix destruction, and tissue remodeling by several mechanisms, including
destroying pro-coagulant, matrix, growth and differentiation factors, and activating proteinase-
activated receptors, urokinase, metalloproteinases, and angiotensin. They also modulate immune
responses by hydrolyzing chemokines and cytokines. At least one chymase protects mice from
intestinal worms. Tryptases and chymases also can oppose inflammation by inactivating allergens
and neuropeptides causing inflammation and bronchoconstriction. Thus, like mast cells themselves,
mast cell serine peptidases play multiple roles in host defense and any accounting of benefit versus
harm is necessarily context-specific.
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Introduction
The most abundant proteins stored in mast cell secretory granules are endopeptidases, which
are released outside of the cell during exocytosis. The major enzymes are tryptic and
chymotryptic peptidases called tryptases and chymases, respectively. All of these are serine-
class peptidases of the trypsin family, but otherwise they are diverse in form, activity and in
patterns of expression. Mast cells maturing in different tissue microenvironments can vary
widely in the types and amounts of tryptases and chymases expressed. These differences
provide a classic means of dividing mast cells into subsets, which in some cases also exhibit
differences in behavior. Because mast cells can express certain of the peptidases at a very high
level, immunohistochemistry and immunoassay approaches using antibodies directed against
these enzymes are useful experimentally as well as clinically in assessing mast cell numbers,
locations, activation, and disease-association. The numbers and types of expressed tryptases
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(see Table 1) and chymase-like enzymes (see Table 2) also differ substantially between
mammals, and especially between humans and rodents. It is therefore important that these
differences are kept in mind in making inferences about roles of these peptidases in humans
from findings in animal models. The following primer attempts to identify the mast cell
tryptases and chymases most likely to play roles in mammalian inflammation and host defense.

Tryptases
The tryptase family—Mast cell tryptases are a somewhat eclectic group of secreted, serine-
class peptidases with trypsin-like target preferences, which is to say that they cleave peptide
and protein substrates after lysine and arginine. In comparison with trypsin, however, they can
exhibit major physical and behavioral differences, such as intracellular pre-activation prior to
secretion, membrane anchorage, and formation of toroidal, proteasome-like oligomers that
resist circulating anti-peptidases such as α1-antitrypsin and α2-macroglobulin. Although the
functions of mast cell tryptases remain to be fully explained, they are hard to ignore if only
because of abundance. In most human mast cells, tryptases are packed so densely into secretory
granules with other biomolecular components that they form semi-crystalline structures. When
mast cells degranulate in response to allergen-bound IgE or to non-immunological stimuli,
tryptases are released with histamine, heparin proteoglycan and other granule constituents.
Such release of soluble tryptases can be local, as in bronchi in acute asthma, or widespread, as
in systemic mastocytosis or anaphylaxis. Systemic release often is followed by large increases
inof blood levels of immunoreactive tryptase, which can reflect total mast burden or severity
of anaphylaxis (1). Tryptase mRNA levels also are very high in human mast cells, even
exceeding those of classic housekeeping genes.

Tryptases: rubric and definitions—Mast cell tryptases are not closely related to the many
tryptic peptidases associated with digestion, hemostasis, clot lysis and complement activation.
In one sense this is unfortunate because it hampers attempts to make conjectures about tryptase
function via comparisons to peptidases of established function. On the other, it underscores
their unique position in the hierarchy of trypsin-family peptidases and encourages
consideration of non-classical functions. So far tryptases have been described only in
mammals, in which they exhibit considerable variety of form and activity and in some cases
redundancy, particularly in humans, which have four loci of expressed mast cell tryptase genes
(TPSG1, TPSB2, TPSAB1, and TPSD1), plus various pseudogenes (2-4). They fall into two
major groups: membrane-anchored and soluble. The sole known member of the membrane-
anchored group is γ (also known as transmembrane tryptase), which is a type I tryptic enzyme
tethered to the cell surface by a C-terminal transmembrane peptide following secretion (3,5).
In humans, the soluble group includes α, β and mouse mast cell protease (MCP)-7-like/δ (2);
in mice, it includes MCP-6 and MCP-7, expression of the latter being strain-dependent (e.g.,
not expressed in C57BL/6 (6)). Dogs, pigs and mice express an additional mast cell tryptase-
like enzyme, mastin (in mice also known as MCP-11/Prss34) (7-10). Mastins are not expressed
in humans because the gene appears to have mutated into a pseudogene (10). Most if not all
soluble tryptases self-compartmentalize into inhibitor-resistant oligomers (11), which, in the
case of human β are heparin-stabilized tetramers (12). Mastins may form higher-order
oligomers, with some structures stabilized by disulfide links formed between catalytic subunits
(9,10).

Membrane-anchored tryptases: ancestral forms?—The closest relatives of mast cell
tryptases are type I membrane-anchored serine peptidases, such as prostasins, which are found
in amphibians as well as mammals and thus have deeper roots (3). This relationship suggests
that membrane-anchored γ-tryptases may resemble tryptases in their ancestral form and that
the extant soluble tryptases evolved from membrane-anchored forms by shedding a C-terminal
anchor. Although at first glance this may seem improbable, a similar conversion between
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soluble and membrane-anchored forms has occurred during evolution of a related serine
peptidase, pancreasin, which is soluble in humans and predicted to be membrane-anchored in
mice (13). Although it is clear that γ-tryptase has inflammatory potential (14), its roles and
importance vis-a-vis soluble tryptases remains to be established. Hints that it may not play a
key or central role in mammalian biology include low or absent expression in some mouse
strains, such as BALB/c and 129/Sv, and absence of the γ gene in current versions of some
nearly complete genomes, such as those of dog and chimpanzee. Studies in C57BL/6 mice
suggest that it may be expressed early in mast cell development and in a tissue-selective manner
(mainly in intestines in adults) (5). In humans, immunoreactive γ is present in extracts of a
mast cell line (3) and in cells resembling mast cells in sections of trachea (3) and intestine
(5). However, the mast cell specificity of γ expression remains to be established; γ mRNA is
present in a variety of human non-mast cell tumor lines (5), indicating the potential for
expression in other cell types. Studies of recombinant human γ in engineered, soluble forms
lacking the C-terminal anchor show that its preferences for cleaving small peptide-based
substrates differ substantially from those of βI, as does its susceptibility to inhibition by drug-
like small inhibitors (15). Of particular note, γ generally resists the types of aromatic dibasic
β-tryptase inhibitors that have shown efficacy in allergic inflammation models, suggesting that
the efficacy of these inhibitors is not due to bystander inhibition of γ. In recombinant soluble
form, γ is inactivated by serpin-class inhibitors which β1 resists, suggesting that γ does not
form the proteasome-like torus that protects β tetramers from circulating proteinaceous
inhibitors. It is not known if the substrate and inhibitor profiles of the membrane-tethered form
of γ are similar to those of the engineered, soluble form. Likewise, there is no direct evidence
to date that γ is shed from the mast cell surface after secretion. Although some peptide anchors
of Type I serine peptidases are exchanged for lipid (GPI) anchors that can be shed by a
phospholipase (16), this does not appear to be the case for γ's transmembrane segment. Recent
studies (16) in which the C-terminal anchor of mouse prostasin was replaced with that of mouse
γ/transmembrane tryptase reveal that the γ segment does not contain a lipid anchor signal but
that it can be cleaved when the chimera is expressed in epithelial cells, resulting in shedding
of the attached protease.

Soluble mast cell tryptases: the α/β dichotomy—Among soluble human tryptases α,
β and δ, only β seems likely to be to play important roles outside of the cell. Both α and δ have
catalytic domain defects that severely reduce activity, with α having a key mutation deranging
the active site, and with δ having a premature stop codon leading to deletion of much of the
protein's C-terminal region, including several residues thought to be essential determinants of
specificity and catalytic competence in all serine peptidases. Furthermore, both α and δ have
a pro-peptide mutation that appears to impair autolytic processing of proenzyme to the point
that most protein is secreted from mast cells in the inactive, zymogen form. It is not yet known
if there are alternative intracellular activation pathways or an extracellular mechanism for
activating these secreted pro-enzymes. However, given the catalytic domain defects, even if
such a mechanism exists, the resulting protein will have little peptidolytic activity. These
considerations allow us to concentrate on β-tryptases (occurring in three principal forms: I, II
and III (17)), as the soluble mast cell tryptases most likely to be involved in pathogenic
inflammatory events in humans. Indeed β tryptases are the major focus of drug development
for therapeutic inhibition. β-Tryptases also are expressed in basophils. Dissection of the human
tryptase gene locus on chromosome 16p13.3, which contains the soluble as well as membrane-
anchored tryptase genes, reveals that β genes are distributed among two adjacent sites, one of
which also appears capable of accepting an α gene (2-4). The δ and γ genes occur in separate
sites nearby. This construction of the tryptase locus implies that the α gene is an allele at the
βI site and predicts that some humans will lack an α gene, which indeed is the case in 20-25%
of the population (18). The clinical implications of lacking genes encoding a largely inactive
enzyme remain to be established, although one prediction is that the resulting inheritance of
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extra β genes, whose translation products are active, results in greater severity of diseases
associated with mast cell degranulation, such as allergic inflammation. It also is likely that
products of α genes, if present and correctly processed from proenzyme forms, will weaken
the inflammatory potential of β tryptases by forming α/β heterotetramers with reduced catalytic
power. For example, an ααββ tetramer would operate on only two of four “cylinders”, compared
to all four in a ββββ tetramer. Heterotetramer formation can occur in vitro between mouse
tryptases MCP-6 and -7 (19), which differ from each in primary structure considerably more
than any human α versus β pairing. On these grounds, formation of mixed tetramers involving
all subtypes of human α and β tryptases is likely, although it remains to be demonstrated in
vivo.

Chymotryptic mast cell peptidases: Chymases and cathepsin G
Mast cells make two major types of peptidases with chymotrypsin-like activity, defined as a
propensity for cleaving peptide and protein targets after aromatic amino acids, especially
tyrosine and phenylalanine. These are the chymases and cathepsin G. Chymases are expressed
fairly selectively by mast cells. Although there is some evidence of smooth muscle expression,
only mast cells appear capable of accumulating chymases in secretory granules. On the other
hand, cathepsin G is expressed in myelomonocytic cells (especially neutrophils) in addition to
mast cells. In dogs and humans, mast cell chymase is the product of a single gene, CMA1
(20,21). In rodents, however, chymases and chymase-like genes have proliferated in abundance
(22-26). In humans and rodents alike, cathepsin G is the product of a single gene, CTSG.
Compared to most chymases, cathepsin G is generally a weaker enzyme and at the same time
broader in peptidase specificity. It exhibits the unusual property of cleaving peptide targets
after amino acids with basic as well as aromatic side chains, and thus has tryptic as well as
chymotryptic acitivity. It is similar in these respects to mast cell duodenases, which have been
identified so far only in ruminant mammals (specifically, cows and sheep). In humans, mast
cell expression of chymase and cathepsin G is confined largely to MCC and MCTC subsets,
which tend be most abundant in the dermis of the skin. They are expressed little or not at all
in MCT cells, which are over-represented in mast cells populating wet mucosa, such as the gut.
The large family of chymase-like genes expressed in mice is challenging to relate to the sole
human chymase not only due to multiplicity but also because several of the rodent enzymes
depart significantly from human chymase in function. Two prominent examples are mouse and
rat MCP-5. Although these peptidases are the rodent chymases most closely related to human
chymase in a phylogenetic sense, they have acquired a catalytic domain mutation that
fundamentally changes specificity: namely, from chymotryptic to elastolytic (27,28). The
mouse chymase most similar to human chymase in target preferences and tissue pattern of
expresson is MCP-4 (29), even though it is much less similar in primary amino acid sequence
to human chymase than the functionally dissimilar MCP-5. Thus, phylogenetic similarity turns
out to be an unreliable predictor of functional similarities in this group of proteins (4). This
can be attributed to the ease with which changes in one or a small number of residues near the
active site produce large differences in target specificity and enzyme performance. This
phenomenon has been demonstrated not only by comparing the properties of natural chymases
but also via site-directed mutagenesis. For example, by changing just one amino acid in dog
chymase for its human counterpart among 40 residues differing between the dog and human
enzyme, Diego Muilenberg and others in my laboratory converted an angiotensin-destroying
enzyme into a human–like enzyme with highly selective angiotensin-generating activity (30).

Mast cells in inflammation: General principles
Inflammation mediated by mast cell activation can be deleterious or protective
—Mast cells are traditionally considered to be inflammatory. Recently, some investigations
challenge this rather entrenched view, suggesting instead that the net contribution of mast cells
can be either pro- or anti-inflammatory, depending on context. Probably the best known and
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most extensively studied examples of a pro-inflammatory role are allergic phenomena, which
have been studied in animal models of allergic inflammation (31,32) as well as in humans.
There is a vast literature on this topic, which will not be reviewed comprehensively here,
providing abundant evidence that the inflammatory consequences of mast cell activation in
allergic disease can be deleterious, as in bee sting anaphylaxis and severe asthma. However,
there is also mounting evidence that not all mast cell-initiated inflammation is unfavorable.
Indeed, it can be life-saving, as in a mouse model of septic peritonitis, in which acute release
of TNFα and other factors from mast cells upon exposure to colonic bacteria appears to be
critically important in recruiting neutrophils quickly enough to control the infection (33). On
the other hand, in murine peritonitis induced by cecal ligation and puncture, the balance
between protective and deleterious contributions of the mast cell can be subtle, for although
mice without mast cells almost always die--and mice with normal mast cells sometimes die--
mice with mast cells deficient in chymases and tryptases do better even than wild-type mice
(34). In this instance, the serine peptidases seem to increase mortality by cleaving survival-
enhancing cytokines, like IL-6. In a contrasting example, although mast cells can mediate fatal
anaphylactic responses to venom proteins, they also can release peptidases to detoxify venom
proteins--and this can make a difference between living or dying after envenomation (35).
Thus, mast cells, along with their armory of deployable peptidases, have the potential to help
as well as harm, sometimes simultaneously.

Mast cells can be anti-inflammatory—Although mast cells clearly can cause
inflammation, which can be bad or good with respect to mortality and other endpoints, it is
important to acknowledge an enlarging body of evidence that mast cells also can suppress
inflammation. For example, Xu and others in my laboratory showed that mast cells help to
protect mice against tracheobronchitis and pneumonia from Mycoplasma pulmonis, which is
a natural rodent pathogen causing chronic respiratory tract infection and inflammation that can
last for the lifetime of the animal (36). The features of this model showcase the antibacterial
as well as the anti-inflammatory role of mast cells. Mycoplasma given to naïve, mast cell-
deficient mice causes an acute tracheobronchitis and pneumonia, which is much more severe
than that seen in naïve wild-type mice exposed to the same number of live organisms. Indeed,
mast cell-deficient mice are much more likely than wild-type mice to die from this infection.
In the acute phase of the infection, infected mast cell-deficient mice develop much higher
numbers of live bacteria in the lung than in infected wild-type mice, which is one likely
explanation for the more severe inflammation in mast cell-deficient animals. Intriguingly, in
the chronic phase of the infection (4 weeks after first exposure to mycoplasma), the numbers
of live bacteria become nearly identical in the two types of infected mice, and yet the residual
inflammation is more severe in mast cell-deficient mice. This suggests that mast cells suppress
inflammation in this setting. Studies from other laboratories also hint at anti-inflammatory
roles for mast cells. For example, mast cell degranulation associated with mosquito bites (37)
and UVB irradiation (38,39) sharply dampen antigen-specific delayed-type hypersensitivity
responses in the skin. Furthermore, mast cells recruited and activated under the influence of
IL-9 and other products of regulatory T-cells are required for full expression of tolerance of
transplanted skin (40). The exact basis of mast cell-mediated suppression of inflammation and
immune responses is not clear. It is tempting to speculate that mast cell-derived “TH2”
cytokines, like IL-4, IL-13 and TNFα may antagonize some aspects of TH1-type immune
responses, or may have other counter-regulatory effects on other immune cells. Additional
secreted potentially anti-inflammatory products of mast cells include heparin, which prevents
exercise-induced asthma when aerosolized into human airways (41), and histamine, which can
suppress neutrophil infiltration in rats and TH2-type responses in mice by stimulating H2
receptors (42,43). Potential anti-inflammatory actions of secreted chymases and tryptases are
considered below after reviewing their proposed roles in inflammatory conditions.
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Pro-inflammatory actions of mast cell serine peptidases
Tryptases and allergic inflammation—Most approaches used to probe an in vivo role for
tryptases in allergic inflammation have been pharmacological (for review, see (44)). My
laboratory, working in collaboration with Richard Tidwell, identified the first high-potency
inhibitors of β-tryptases with pharmaceutical potential (45). These were aromatic diamidines,
including the most potent of our series, bis(5-amidino-2-benzimidazolyl) methane (BABIM),
which later was shown to prevent late-phase bronchoconstriction and to block post-allergen
challenge airway hyper-responsiveness in allergic sheep (46). Along with the peptidic
compound APC-366, BABIM provided the first in vivo evidence that β-tryptases worsen
asthma-like allergic inflammation. When BABIM's structure was solved in a complex with
pancreatic trypsin, it was seen to adopt a unique and unanticipated Zn+2-dependent mode of
slowly reversible active site blockade (47). This Zn+2-binding scaffold was then used to create
selective inhibitors of other serine peptidases (48).

Some later-generation inhibitors with more drug-like properties and greater β-tryptase
selectivity are related to BABIM in the sense that they are dibasic aromatic compounds. Among
others (49-51), these include “rational” bifunctional inhibitors engineered to bridge two active
sites across the 33-45 Å hole of the β-tryptase “donut” (52-54). They also include nafamostat
(55), which is especially interesting because it is an existing drug given to humans to treat
disseminated intravascular coagulation and pancreatitis. Nafamostat was not developed as a
tryptase inhibitor but since its identification as such it was recognized to exhibit a variety of
anti-inflammatory actions, such as inhibition of radiological contrast-induced pulmonary
edema and trinitrobenzene sulfonic acid-induced colitis in rats (56). Nafamostat also reduces
asthma-like inflammation in mice (57), decreasing infiltration by eosinophils and bronchial
responsiveness to methacholine in a model of dust mite-induced asthma. Another example
using a different inhibitor, MOL 6131, developed against human mast cell β-tryptase was
studied in ovalbumin-induced allergic airway inflammation (51), revealing reduced lavage and
tissue eosinophilia, goblet cell hyperplasia, mucus secretion and peribronchial edema. β-
Tryptase inhibitors also show promise in human asthma (58) and allergic rhinitis (59). These
findings indicate that β-like tryptases potentiate allergic inflammation and also may contribute
specifically to the airway remodeling that accompanies chronic allergic inflammation.

The means by which tryptases promote allergic inflammation are not entirely clear, although
several mechanisms are proposed. For example, studies in sheep lung and skin suggest that
tryptase itself promotes histamine release and therefore may help to spread the degranulation
signal from one group of activated mast cells to others (60,61). Theoretically, tryptases also
may potentiate the appearance and persistence of local edema by acting in concert with mast
cell-derived heparin to inhibit local formation of a fibrin clot (62). One contribution of β-
tryptases to this phenomenon is as part of the heparin delivery package, by virtue of its physical
attachment to heparin proteoglycan deposited in the vicinity of degranulating mast cells.
Tryptases also can contribute by destroying pro-coagulant proteins such as high molecular
weight kininogen and fibrinogen itself, as demonstrated in vitro (63-66). Selective cleavage
by tryptase renders fibrinogen unclottable by thrombin. Tryptase also has some potential to
activate kinin-generating pro-kallikreins and to release vascular permeability-enhancing kinins
directly from kininogens (67-69).

Other likely mechanisms of tryptase-induced inflammation include leukocyte recruitment
mediated indirectly by stimulating chemokine release from epithelial and endothelial cells. For
example, β-tryptases can provoke responses from airway epithelial cells, including adhesion
molecule expression and IL-8 release, thereby attracting neutrophils and other inflammatory
cells to the airway (70). Indeed, this occurs when human βI (but not α) tryptase is placed into
mouse airway, as shown by Stevens and colleagues (71). Neutrophilic infiltration also follows
injection of mouse tryptase MCP-6 (but not MCP-7) into the peritoneal cavity (72). More
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apropos to allergic-type inflammation, the Stevens group also reported that recombinant human
γ-tryptase, introduced to the airway in a form engineered to be soluble, provokes production
of the allergic cytokine IL-13, and bronchial irritability (14). While not establishing whether
γ-tryptase in its native, membrane-anchored form possesses these capabilities, this study does
suggest a potential link between γ-tryptase and physiological responses more specific to
asthma.

Tryptases in airway hyperresponsiveness and remodeling—Effects of tryptase on
narrowing of the bronchial lumen, “twitchiness” in response to bronchoconstricting agonists,
and asthma-associated remodeling may not be related to inflammation, and so will be
considered here as a potentially separate phenomenon. A series of in vitro and ex vivo
experiments in my laboratory in the late 1980's suggested that tryptases could promote
bronchoconstriction by cleaving bronchodilating peptides of the non-adrenergic, non-
cholinergic nervous system: namely, vasoactive intestinal peptide (VIP) and related peptides.
These studies established that VIP is an excellent substrate of β-like canine and human tryptases
and that the resulting fragmentation ablates VIP's muscle-relaxing activity (73,74). Further,
we showed that inhibitors of tryptase and other peptidases enhance VIP's bronchodilator
potency in isolated human bronchi (75). These findings led us to hypothesize that airway
tryptase worsens asthmatic bronchoconstriction. In related studies, Sekizawa, Nadel and I
showed that purified mast cell tryptase added to isolated dog bronchi, while not contracting
smooth muscle by itself, greatly enhanced responses to histamine and other
bronchoconstricting agonists (76). These studies were the first to implicate tryptase in
hyperresponsiveness--a poorly understood phenomenon sometimes considered to be the
physiological sine qua non of asthma--and encouraged us to collaborate with Judy Black and
others in studies of human bronchi (77), in which tryptase augmented histamine-induced
muscle contraction in bronchi excised from allergic individuals. Patrick Berger, Manuel
Tunon-de-Lara and colleagues later reported similar findings in non-sensitized human bronchi,
in which tryptase induced migration of mast cells into the airway sub-epithelium nearer to
smooth muscle (78). These studies foreshadowed the intriguing finding of Peter Bradding and
colleagues that infiltration of smooth muscle bundles by mast cells—sometimes called mast
cell myositis--is a consistent and perhaps unique feature of asthmatic bronchi (79).

Asthma-associated remodeling includes reticular basement membrane thickening/sub-
epithelial fibrosis, increased airway smooth muscle mass, and goblet cell metaplasia. Several
lines of evidence suggest that these architectural changes, which also may be associated with
some of the physiological derangements afflicting asthmatics, may be influenced directly or
indirectly by tryptase. Indications of direct effects come from the in vitro discovery that β-like
tryptases provoke a variety of responses from fibroblasts and airway smooth muscle cells. The
first hints that mast cell tryptases are growth factors came from investigations conducted by
Steve Ruoss and Thomas Hartmann in my laboratory, who showed that tryptases upregulate
DNA synthesis and proliferation in fibroblasts (80,81). These studies revealed not only that
tryptase is a strong mitogen in its own right, but that it synergizes with more traditional growth
factors, such as PDGF and FGF. Other investigators showed that tryptase stimulates fibroblast
chemotaxis and production of collagen (82,83). Furthermore, a series of studies conducted with
James Brown revealed that tryptase is an airway smooth muscle cell mitogen activating
intracellular MAP kinase pathways (84-86). These effects do not seem to be mediated by
PAR-2, although some tryptases have PAR-2-activating capacity (see below). Although details
of the mechanism of direct tryptase-mediated mitogenesis remain to be worked out, the
likelihood that they play a role in asthma-associated airway remodeling is high given the nature
of the in vitro observations, demonstration of tryptase release in asthmatic airways (87), and
effects of tryptase inhibition on airway remodeling in a mouse model of allergic inflammation
(51).
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Tryptases in neutrophil recruitment, itching and neurogenic inflammation—
Tryptases can cause inflammation not classically allergic in nature. This includes the
aforementioned neutrophilic peritonitis provoked by mouse MCP-6 (72). Not all tryptases (for
example, not mouse MCP-7 or human α) exhibit this property. Among human tryptases, β-
tryptases appear to have the greatest potential in this regard, for recombinant βI-tryptase
instilled into mouse airway causes neutrophil influx (71). Interestingly, human βI placed into
mouse airway protects against Klebsiella pneumonia (71). Thus, tryptase can be pro-
inflammatory yet protective. Although the mechanism of protection is not known, it may have
parallels with the mechanism of the proposed role of mast cell TNFα in cecal ligation and
puncture, in which TNF's facilitation of neutrophil influx into peritoneum allows spilled
bacteria to be controlled and contained early enough to affect mortality (33). If tryptase is
protective because it recruits neutrophils to kill bacteria, then the positive contributions of
tryptases will be inseparable from the inflammation they cause.

At times, tryptase-induced inflammation may do more harm than good. This may be the case
in inflammatory bowel disease, e.g. ulcerative colitis, a condition in which tryptase inhibitors
may be beneficial (88). Tryptase's contribution to inflammatory bowel disease may relate not
only to neutrophilic inflammation but also to cleavage-activation of proteinase-activate
receptor (PAR)-2. My laboratory helped Nigel Bunnett's research team establish that β-
tryptases activate PAR-2 on cultured rat colonic myocytes and that PAR-2 regulates motility
in explants of colon (89). β-Tryptases are not intrinsically as potent as pancreatic trypsin in
stimulating PAR-2. However, this difference in potency may be offset by high concentration
of tryptases in the immediate vicinity of a degranulating mast cell, expression of tryptases in
tissue locations in which trypsin is not expressed, and remarkable inhibitor resistance of
tryptases compared with trypsin. Further studies with the Bunnett group revealed that tryptase
activates PAR-2 expressed by human keratinocytes (90). Because numbers of dermal mast
cells increase in atopic dermatitis, tryptase may play a role in keratinocyte growth and pruritus
associated with this condition. Indeed, tryptase and PAR-2 both are linked to itching (91-93).
Some itch-promoting effects of tryptase may be mediated via PAR-2 expressed by afferent
neurons, a capability suggested by more recent studies with Martin Steinhoff and Nigel Bunnett
(94). The interaction of tryptases with neural PAR-2 in skin, gut and elsewhere suggest a
mechanism for mast cell peptidases to promote neurogenic inflammation. However, as further
discussed below, tryptases and chymases also can prevent neurogenic inflammation from
getting out of hand by destroying pro-inflammatory neuropeptides. Another interesting
property of β-tryptase is an ability to stimulate cultured vascular endothelial cells to form tubes
(95). This behavior suggests one of several means by which mast cells could promote the
growth and differentiation of new blood vessels (i.e., angiogenesis), as my group demonstrated
in studies conduced with Lisa Coussens in a model of skin cancer and mast cell-dependent
angiogenesis (96). β-Tryptase also induces cardiac endothelial cells to produce pro-
inflammatory and pro-angiogenic chemokines, as demonstrated in a study conducted with the
Frangogiannis group, who provided evidence of mast cell activation and involvement in the
healing phase of myocardial infarction (97).

Chymases and allergic inflammation—In rodent models of allergic phenomena, the
value of chymases as biomarkers of anaphylactic mast cell degranulation is well established.
For example, the rat mucosal mast cell chymase MCP-II appears in blood (98) and translocates
to gut lumen after intestinal anaphylaxis in parasitized mice challenged with worm antigen
(99). Rat MCP-II also can appear in the blood after mast cell degranulation provoked by a
Pavlovian response (100), thereby underscoring the connections between mast cells and the
nervous system. In a mouse model of dust mite-induced allergic airway inflammation (101),
intratracheal challenge with Der f produced a serum rise in the chymase MCP-1. Unfortunately
in humans equivalent assays for assessing systemic release of chymase are not generally
available. Although the rodent studies suggest that some types of chymases can achieve a wide
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distribution, many if not most effects of chymases in allergic events are likely to be local rather
than systemic.

In a series of experiments conducted with Sommerhoff, Nadel and others, we showed that mast
cell chymase and the related mast cell/neutrophil enzyme cathepsin G are potent stimulators
of secretion from cultured airway gland serous cells (102,103). Further, in a histochemical
study of human bronchi, we showed that chymase-positive mast cells are locally enriched in
the immediate vicinity of submucosal glands, where secreted chymase might be positioned to
fulfill its potential as a secretagogue (104). Working with purified dog chymase, which is highly
similar to the human enzyme in structure and function (21,105-107), we showed that chymase
augments the size of skin wheals (108). Although chymase alone does not cause a wheal when
injected into skin, it greatly increases the size of the wheal caused by co-injected histamine;
furthermore, chymase inhibitors decrease wheals induced by allergen. Thus it appears that
chymase can worsen allergic inflammation by acting in conjunction with other inflammatory
products of mast cells. To date the evidence from rodent models suggests that one or more
chymases released in the setting of allergic inflammation is protective. In particular, mice
lacking MCP-1 chymase have difficulty expelling the intestinal nematode, Trichinella
spiralis (109). Because mouse chymase MCP-1 has no direct counterpart in dogs or humans
and is not closely related to human chymase in form, function or tissue expression, it is perhaps
hazardous to speculate that human chymase plays a similar protective role. If human chymase
is in fact required to protect humans from parasites, systemic pharmacological inactivation of
chymase for the sake of inhibiting allergic inflammation or other properties of chymase, such
as its ability to generate angiotensin II, may be unwise. Nonetheless, there are a variety of
reasons that human chymase might be a good target for inhibition; indeed a variety of chymase
inhibitors are under development and are being explored for their pharmaceutical potential.

Chymases in matrix destruction and turnover—Compared to β-type tryptases, most
chymases have more destructive potential, given that can cleave a fairly wide variety of peptide
and protein targets. Perhaps another indication of this potential is the observation that high
copy number transgenic expression of human chymase in mice is lethal in utero (110). On the
other hand, chymases are more susceptible to inhibition by circulating and extravascular anti-
peptidases, including serpins and α2-macroglobulin, and therefore may have a shorter active
life after secretion. One recent and rather unexpected piece of in vivo evidence of a role for
chymases in connective tissue turnover was supplied by the MCP-4 knockout mouse, as
reported Gunnar Pejler and colleagues (111). Compared to wild-type mice, MCP-4 chymase-
deficient animals have thicker ears and more connective tissue, suggesting that lack of MCP-4
produces an imbalance between extracellular matrix production and destruction favoring the
former. MCP-4 is the mouse enzyme most resembling human chymase in enzyme activity and
tissue expression, though not its closest relative in a phylogenetic sense.

Chymases contribute to matrix destruction directly by cleaving proteins such as fibronectin
and non-helical collagens. However, their indirect contributions may be just as significant, if
not more so. For example, Ken Fang, working with dog chymase, matrix metalloproteases
(MMPs) and cultured mast cells in my laboratory, discovered that dog mastocytoma cells
secrete and activate MMP-9/gelatinase B. This broad-specificity MMP directly cleaves a wide
spectrum of matrix proteins and also activates cascades of MMP activity by activating other
MMPs. In his cells, the activation of MMP-9 was coupled to mast cell degranulation (112)—
specifically, to release of chymase. He went on to identify the mode, sites and mechanism of
activation, which was proteolytic (113). In important further work, he showed that although
pro-MMP-9 is released from mast cells (and perhaps all cells) bound to an inhibitor, TIMP-1,
chymase destroys TIMP-1 during the activation process (114). This work established the
principal that mast cells—unlike other MMP-9-secreting cells—are the complete package: they
secrete, activate and disinhibit MMP-9, and thus can immediately get down to the business of
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degrading matrix, without help from other sources. The secretion and activation of MMP-9
does not seem to be a property just of mast cell tumors, as it has been validated by non-malignant
cells, including mast cells cultured from canine bone marrow (115). Chymase-mediated
activation of MMP-9 is also a prominent feature of mast cell-rich hyperplastic skin in a mouse
cancer model (96), in which MMP-9 contributes to tumor progression (116). As further
evidence that chymases are major activators of MMP-9 in vivo, Gunnar Pejler and colleagues
showed that MCP-4-deficient mice have almost exclusively inactive pro-MMP-9 in tissue
extract, compared to wild type mice (111); additionally, MCP-4-deficient mice have defective
thrombin regulation and FN turnover (29). It bears noting that the above actions of chymase
differ from those of β-tryptases, which are not effective activators of MMP-9, although their
ability to activate pro-stromelysin/MMP-3 provides a potential means of activating MMP-9
indirectly via MMP-3 (117). Interestingly, my group and others showed that tryptases, mastins
and chymases, like MMP-9 itself, are strong gelatinases (10,96,118). However, the extent to
which an ability to hydrolyze denatured collagens (which are the main components of gelatin)
predicts in vivo importance in matrix destruction and remodeling remains to be resolved.

There also are hints that mast cell serine peptidases promote ischemia-reperfusion injury,
particularly of muscle. For example, the Gurish group showed that this type of injury to skeletal
muscle is mast cell-dependent and is less severe in mice lacking the elastolytic chymase-like
enzyme MCP-5 (119). It remains to be seen whether human chymase has similar potential to
harm skeletal muscle, given that the human enzyme is mainly chymotryptic rather than
elastolytic in its cleavage preferences, as we showed by screening a combinatorial library of
peptide substrates (120). It is possible that tryptase, if not chymase, damages tissues in
ischemia-reperfusion injury of heart muscle associated with myocardial infarction, as
suggested by collaborators in the Frangogiannis laboratory (97).

Chymases in hypertension, atherosclerosis, and diseases of mycocardium—
The body of experimental evidence that chymases are important in cardiovascular diseases,
including regulation of blood pressure (121), is large and expanding. Much of this evidence,
which has been reviewed elsewhere (122-124), is beyond the scope of this review. Nonetheless,
it bears emphasizing that the presumed basis of many chymase effects on cardiovascular
pathology is an ability to activate angiotensin I to angiotensin II. Indeed, chymases (but not
angiotensin converting enzyme) appear to be the principal source of extravascular angiotensin
II in mammals. Human chymase was shown to be a potent angiotensin II-generator over a
quarter of a century ago by Travis and coworkers (125). Colleagues in my laboratory showed
that angiotensin II-generating activity is a property shared by a number of mammalian
chymases despite substantial divergence in primary structure (22,107). These studies suggested
that the major angiotensin-generating chymase in mice is MCP-4, a prediction which is
supported by studies by Gunnar Pejler and colleagues on mast cells from mice lacking MCP-4
(126). As demonstrated by intravital microscopy of small vessels in hamster skeletal muscle
in collaboration with Israel Rubinstein and colleagues (127), angiotensin II-generating
chymases may modulate acute changes in vessel caliber in response to lipopolysaccharide and
other influences. However, angiotensin II also can have chronic effects on cardiovascular
smooth muscle growth and remodeling. The likelihood that chymases influence remodeling
by this mechanism is suggested by studies in animal models using pharmacological inhibitors
(reviewed by (124)), as well as by the phenotype of transgenic mice over-expressing chymase
(110,128,129). However, some short- and long-term effects of chymase on vessels and
myocardium may be mediated by other means, such as by activating endothelin (130), which
plays a pathological role in pulmonary hypertension. Other effects on matrix remodeling could
be mediated by activation of pro-MMP-9, as discussed above. The ability of mast cell chymases
to activate MMP-9 and of β-tryptases to activate MMP cascades by cleaving pro-MMP-3
prompted speculation that these peptidases destabilize and help to rupture atherosclerotic
plaques (123,131), which is thought to be a precipitating event in myocardial infarction.
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Chymase also may weaken plaques by degrading apolipoproteins and matrix proteins directly
(132), by inhibiting production of structural components of plaque matrix by smooth muscle
cells (133), and by attacking proteins attaching endothelial cells to matrix (134).

Anti-inflammatory actions of mast cell serine peptidases
Because peptidases are so often associated with inflammation, it may be counterintuitive that
mast cell peptidases can limit inflammation—and yet several lines of evidence suggest that
indeed this indeed is the case, as can be true of mast cells themselves (36). One mechanism by
which this can occur is by cleavage of pro-inflammatory chemokines and cytokines. For
example, human β-tryptase cleaves and markedly reduces the activity of eosinophil
chemotaxins eotaxin and RANTES in vitro (135). This suggests a potential explanation for the
paucity of eosinophils in human asthmatic airway smooth muscle bundles, where mast cells
congregate. Human chymase similarly affects eotaxin, without affecting RANTES and several
other chemokines (135). The studies of Zhao and Schwartz showed that a variety of cytokines
produced by cultured human mast cells, including IL-5, -6, -13 and TNFα, are cleaved by mast
cell peptidases (primarily chymase and/or cathepsin G rather than tryptases (136)). In the
absence of added peptidase inhibitors, cytokine production by human masts in culture is
seriously underestimated. The extent to which destruction of human cytokines and chemokines
by tryptases and chymases is important in limiting inflammatory responses in vivo is not yet
clear. However, studies in mice conducted in collaboration with Paul Wolters and others
suggest that hydrolysis of mast cell-derived IL-6 by mouse tryptase MCP-6 increases mortality
in mice with septic peritonitis (34); thus, the net effect of cytokine inactivation by mast cell
peptidases can be negative or even lethal.

However, when the target of mast cell peptidases is a toxic or inflammatory endogenous
peptide, inactivation can be beneficial. For example, destruction of endothelin by mast cell
carboxpeptidase and chymases reduces toxicity in vivo, as shown in mice by Galli and
colleagues (137). Furthermore, Brain and Williams showed that the CGRP-mediated flare
reaction (a classic feature of inflammation associated with the “triple response of Lewis”)
initiated by substance P in the skin is rapidly terminated by unidentified peptidases (138)—
most likely tryptases, which Tam and others in my laboratory showed to be cleaved by tryptase
(74). Indeed, from a kinetic perspective, CGRP is the best natural substrate identified for human
β-tryptase. Tryptases and chymases also may cleave and detoxify foreign peptides and proteins.
For example, chymase cleaves and reduces allergenicity of birch profilin (139), a common
aeroallergen and cause of allergic rhinitis, and may also play a role in detoxifying venoms
(35). Although at least one mouse chymase, MCP-1, helps to expel intestinal parasites (109),
it is not yet clear whether this involves direct attack of worm proteins or an indirect effect on
intestinal inflammation or motility.

In general, although mast cells tend to bolster host defense in intestinal parasitosis, peritonitis
and pneumonia, the resulting inflammation can be harmful and even fatal to the host. Based
on the evidence reviewed above, mast cell tryptases and chymases embody similar dichotomies
of benefit versus detriment, control versus spread of inflammation, and tissue defense versus
destruction. Of course similar dichotomies and tradeoffs are inherent in the actions of other
mediators of allergic inflammation, including “TH2” cytokines (140), and of immunity
generally.
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Fig. 1. Summary of targets of pro-inflammatory actions of mast cell tryptases and chymases
1) Soluble β-tryptases stimulate nerves by activating proteinase-activated receptor 2 (PAR2)
and 2) affect airway smooth muscle and fibroblasts by acting as mitogens and by promoting
secretion of matrix proteins. They also 3) recruit neutrophils and eosinophils and degranulate
mast cells, 4) provoke airway epithelial cells to produce interleukin-8, 5) degrade extracellular
matrix and fibrin clots by activating pro-stromelysin and pro-urokinase, respectively, and 6)
stimulate endothelial cells to form vessels. Chymases overlap tryptases in some of their targets,
but with unique effects, including the following: 7) they alter arterial caliber and intimal
responses to injury by generating angiotensin II and promote new vessel growth by activating
pro-MMP-9; 8) they degrade matrix proteins directly (as well as indirectly by activating pro-
MMP-9); they may alter epithelial growth and repair by degrading hepatocyte growth factor;
10) they may affect the properties of mucus by degrading serous cell proteoglycans and 11)
also stimulate gland cell secretion itself.
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Fig. 2. Cutaneous example of an anti-inflammatory effect of mast cell serine peptidases
Skin trauma stimulates dermal sensory nerves, which propagate antegrade and retrograde
impulses and liberate inflammatory neuropeptides such as substance P and calcitonin gene-
related peptide (CGRP). The latter is a potent vasodilator contributing to the flare reaction
surrounding sites of injury. Tryptase released from local mast cells by substance P cleaves and
inactivates CGRP, thereby shortening duration of the flare.
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Table 1
Expressed mast cell tryptases

Species Enzyme Gene Features

Human α-Tryptase TPSAB1 Soluble; largely inactive; not stored
βI-Tryptase TPSAB1 Soluble; active; tetrameric; stored
βII-Tryptase TPSB2 Soluble; active; stored
βIII-Tryptase TPSB2 ? Soluble; active; stored
γ-Tryptase TPSG1 Membrane anchored; two-chain; active
δ-Tryptase TPSD1 Truncated; chimeric; largely inactive

Mouse MCP-6 Mcpt6 Soluble; active; tetrameric; stored
MCP-7 Mcpt7 Soluble; active; tetrameric
γ-Tryptase/TMT Tpsg1 Membrane anchored; two-chain
Mastin/MCP-11 Prss34 Soluble; active

Dog Tryptase Soluble; active; tetrameric
Mastin LOC448801 Soluble; active; multimeric
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Table 2
Expressed mast cell chymases and chymase-like peptidases

Species Enzyme Gene Features

Human α-Chymase CMA1 Stored; chymotryptic
Cathepsin G CTSG Stored; broad spectrum activity (tryptic,

chymotryptic, met-ase)
Mouse α-Chymase/MCP-5 Mcpt5 Weakly active; elastolytic

β-Chymase MCP-1 Mcpt1 Stored; chymotryptic
β-Chymase MCP-2 Mcpt2 Largely inactive
β-Chymase MCP-4 Mcpt4 Stored; chymotryptic
Cathepsin G Ctsg ?

Dog α-Chymase CMA1 Stored; chymotryptic
Cathepsin G CTSG ?
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