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Mast cells have been attributed several functions in both health and disease. Mast cell
activation and release of inflammatory mediators are associated with the pathogenesis
of several diseases, in particular that of allergic diseases. While the notion of mast cells
as important, protective sentinel cells is old, this feature of the cell is not well recognized
outside the mast cell field. The mast cell is a unique, multifunctional cell of our defense
system, with characteristics such as wide-spread tissue distribution, expression of recep-
tors capable of recognizing both endogenous and exogenous agents, and a capability to
rapidly respond to triggering factors by selective mediator release. In this review, we dis-
cuss the function of mast cells as sentinel cells in the context of cell injury, where mast
cells respond by initiating an inflammatory response. In this setting, IL-33 has turned out to
be of particular interest. IL-33 is released by necrotic structural cells and is recognized by
mast cells via the IL-33 receptor ST2. IL-33 and mast cells probably constitute one impor-
tant link between cell injury and an inflammatory response that can lead to restoration
of tissue function and homeostasis, but might under other circumstances contribute to a
vicious circle driving chronic inflammation.
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INTRODUCTION
Mast cells are peculiar cells with many fascinating properties and
functions. They are distributed in almost all tissues, endowed with
a broad spectra of receptors that gives them the capacity to respond
to a variety of endogenous and exogenous agents, leading to release
of pre-formed mediators stored in granules, and/or rapid release
of lipid mediators and in addition initiation of protein synthesis
and secretion of cytokines, chemokines, interferons, and growth
factors. Depending on the stimuli and the tissue environment, the
mast cell responds with a differential release of mediators (Theo-
harides et al., 2007), leading to a specific but at the same time
multifunctional effect on the tissue. For instance, IgE-receptor
activation leads to degranulation, secretion of eicosanoids, and de
novo synthesis of cytokines; while treatment with CD30 induces
degranulation independent secretion of chemokines, without any
secretion of leukotrienes (Fischer et al., 2006). Because of this, the
roles and functions of mast cells in health and disease are diverse
and complex, and have been increasingly appreciated (Leslie, 2007;
Metz and Maurer, 2007; Kalesnikoff and Galli, 2008; Abraham and
St. John, 2010).

In Hans Selye’s book entitled The Mast Cell, published 1965,
he reviewed current literature on mast cell research and listed
more than 30 theories concerning mast cell functions in, e.g.,
stress, inflammation, edema formation, arteriosclerosis, temper-
ature regulation, hair growth, sweat secretion, and defensive phe-
nomena (Selye, 1965). Many of these theories were based on the
morphological appearance of the highly granulated mast cell, and
on its content of histamine, serotonin, and heparin. Some of the
theories have been explored further and we have today, thanks

to technical developments and animal models, a more in-depth
mechanistic understanding of mast cell function, and thereby
explanations for many of the different hypotheses. Other early
hypotheses have remained more or less unanswered. West (1958)
suggested that mast cells act as part of the defense system where
they sense and react quickly to any kind of cell injury. The func-
tion of mast cells as sentinel cells has been extensively investigated
during the last 10–15 years, mainly in the context of pathogen
recognition (Galli et al., 1999; Abraham and St. John, 2010). How-
ever, how mast cells recognize and react to cell injury has not until
recently been deciphered in any detail.

Cell injury can be caused by mechanical trauma, infection,
UV-light exposure, radiation, toxins, ischemia, but also by endoge-
nous cytotoxic mediators and be part of a chronic inflam-
mation (Kono and Rock, 2008). In this context, necrotic cells
release their intracellular contents containing what is usually
referred to as damage-associated molecular patterns (DAMPs), or
alarmins, that are recognized by immune cells, which then initi-
ate inflammatory responses (Bianchi, 2007). While there are many
well-characterized alarmins, such as high mobility group box 1
(HMGB1; Scaffidi et al., 2002), heat shock proteins (Basu et al.,
2000), uric acid (Shi et al., 2003), IL-1α (Eigenbrod et al., 2008),
and IL-33 (Moussion et al., 2008), surprisingly few of these have
been investigated in the context of mast cell activation, and ini-
tiation of inflammatory responses. Recently it was described that
necrotic cells specifically activate mast cells through the release of
IL-33, with no apparent effect of HMGB1 or uric acid (Enoks-
son et al., 2011). Thus, IL-33 constitutes the alarmin released
by necrotic cells that is recognized by adjacent mast cells. These
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mast cells then react by releasing pro-inflammatory mediators that
subsequently initiate an inflammatory response.

IL-33 belongs to the IL-1 family of cytokines, and was recently
identified as a ligand to the previously orphan ST2 receptor. IL-33
is expressed by several different cell types; most notably by epithe-
lial and endothelial cells (Liew et al., 2010) and is a potent inducer
of Th2 responses (Schmitz et al., 2005). Unlike other cytokines
of the IL-1 family such as IL-1β and IL-18, the full-length form
of IL-33 does not require proteolytical cleavage for activation
(Cayrol and Girard, 2009). Thus, IL-33 released from necrotic
cells is biologically active, whereas IL-33 released from apoptotic
cells is inactivated by caspases (Luthi et al., 2009). By signaling
through the IL-33 receptor ST2, IL-33 activates several cell types,
such as Th2 cells, innate lymphoid cells, mast cells, basophils, and
eosinophils. Even though the role of IL-33 in the immune system
is not yet fully understood, this cytokine has been implicated, for
good or for bad, in several diseases. Since the mast cell is located in
all tissues, they are positioned to rapidly recognize IL-33 released
from damaged cells and initiate an inflammatory response. Since
this is a newly described pathway, this review will focus on IL-
33 and mast cells, and their interrelation in acute and chronic
inflammations.

MAST CELL RECOGNITION OF CELL INJURY THROUGH IL-33
RELEASED BY NECROTIC CELLS
In a recent study we examined the role of mast cells as sensors
of cellular injury (Enoksson et al., 2011). Debris-free supernatant
made from freeze–thaw necrotized cells induced mouse mast cells
to produce and release leukotrienes and cytokines such as IL-6 and
TNF, without any preceding degranulation. Through the use of
mast cells derived from receptor deficient mice, the activation was
pinpointed to be mediated through a TLR-independent, but totally
MyD88- and ST2-dependent route. Silencing of the IL-33 expres-
sion in fibroblasts further defined IL-33 and ST2 to be responsible
for the necrosis-induced activation of mast cells. The cellular ori-
gin of the necrotic cells also turned out to be of importance, and
only necrotic structural cells (such as keratinocytes, neuronal cells,
and smooth muscle cells) contained IL-33 and therefore possessed
the ability to activate mast cells, whereas necrotic hematopoietic
cells (bone marrow-derived mouse mast cells, spleen cells, and
monocytes) lacked this capacity. Moreover,other endogenous dan-
ger signals, such as HMGB1, uric acid, and adenosine, known to
activate other immune cells (Scaffidi et al., 2002; Shi et al., 2003;
Bours et al., 2006; Bianchi, 2007), did not contribute to the mast
cell alarming activity within the necrotic cell supernatant. Thus,
IL-33 appears to be the sole danger signal responsible for alarming
mast cells of cell injury.

IL-33 BIOLOGY
IL-33 was initially described as NF-high endothelial venules
(HEV), a nuclear factor strongly expressed in HEVs (Baekkevold
et al., 2003). NF-HEV was later identified to be identical to IL-33,
and shown to be preferentially expressed in endothelial cells (Car-
riere et al., 2007). While IL-33 has been shown to be expressed
in several tissues and cell types at the mRNA level (Schmitz
et al., 2005), IL-33 protein is predominantly expressed in the
nuclei of structural cell types such as endothelial cells, fibroblasts,

keratinocytes (Moussion et al., 2008) epithelial cells (Prefontaine
et al., 2010), and airway smooth muscle cells (Prefontaine et al.,
2009). The nuclear role of IL-33 is to date not fully understood,
but the recent generation of IL-33−/− mice (Oboki et al., 2010)
will likely facilitate future studies aiming at understanding nuclear
actions of IL-33. It has been shown that IL-33 associates with
heterochromatin in the nucleus, and that IL-33 can regulate tran-
scription by repressing transcriptional activity (Carriere et al.,
2007). Interestingly, is has also been suggested that IL-33 inter-
acts with NFκB to reduce NFκB-triggered gene expression (Ali
et al., 2011). It is thus clear that IL-33 is a cytokine of dual func-
tions, where nuclear IL-33 functions as a repressor of NFκB, while
released IL-33 mainly is involved in pro-inflammatory processes,
acting through ST2 signaling activating NFκB.

The subjects of IL-33 activity, processing, and release/active
secretion have been matters of some controversy. Full-length IL-
33 was originally proposed to be cleaved by caspase-1 (Schmitz
et al., 2005), similarly to proIL-1β and proIL-18, two other mem-
bers of the IL-1 cytokine family. In contrast, several later studies
have reported that IL-33 is not at all a target for caspase-1 (Luthi
et al., 2009; Talabot-Ayer et al., 2009; Ali et al., 2010), and it has
even been reported that caspase-1 treatment of IL-33 results in
inactivation (Cayrol and Girard, 2009). Furthermore, it has been
demonstrated that caspase-3 and caspase-7 inactivates IL-33 dur-
ing apoptosis (Luthi et al., 2009). Another study exploring IL-33
processing in vivo implicated calpain as an important player in IL-
33 maturation (Hayakawa et al., 2009). This is in contrast to a study
by Ohno et al. (2009) in which IL-33 release could be observed
in macrophages treated with calpain- and caspase-8-inhibitors as
well as in macrophages from caspase-1−/− mice. Several studies
have reported that the full-length IL-33 is biologically active (Cay-
rol and Girard, 2009; Luthi et al., 2009; Talabot-Ayer et al., 2009;
Ali et al., 2010), a characteristic that fits well with its proposed
role as an alarmin (Moussion et al., 2008; Cayrol and Girard, 2009;
Enoksson et al., 2011). As stated above, IL-33 is inactivated during
apoptosis but has been shown to be readily released upon induc-
tion of necrosis (Schmitz et al., 2005), for instance after endothelial
cell damage or mechanical injury (Cayrol and Girard, 2009). To
date, necrosis is believed to be the principal way in which IL-33 is
released from cells. However, a recent study observed IL-33 secre-
tion from epithelial cells exposed to the fungus Alternaria alternata
(Kouzaki et al., 2011), providing evidence for that necrosis is not
the only way in which IL-33 is released.

IL-33 signals through a receptor complex composed of ST2
and IL-1R accessory protein (IL-1RAcP; Chackerian et al., 2007).
ST2 was for a long time an orphan receptor of the IL-1R family
(Tominaga, 1989), until 2005 when IL-33 was revealed as a ST2
ligand by Schmitz et al. (2005). ST2 was shown by Xu et al. (1998)
to be a stable surface marker expressed on Th2 but not on Th1
cells. In the same year it was described that ST2 is expressed also
on mast cells (Moritz et al., 1998). Three isoforms are encoded by
the ST2 gene; a transmembrane form responsible for the ST2/IL-
33 signaling on most cells (ST2L), another transmembrane form
which is mainly expressed on cells in the gastrointestinal organs
(ST2V) and a secreted soluble form (sST2) with a decoy func-
tion preventing IL-33 to bind ST2 (Yanagisawa et al., 1993; Tago
et al., 2001; Trajkovic et al., 2004). The association of IL-1RAcP
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with ST2 during IL-33 binding is essential for functional signaling
(Ali et al., 2007; Chackerian et al., 2007; Palmer et al., 2008). For
instance, IL-1RAcP is required for IL-33-induced effects in vivo
(Chackerian et al., 2007), and IL-6 secretion has been shown to be
impaired in IL-1RAcP−/− mast cells treated with IL-33 (Palmer
et al., 2008). Likewise, mast cell responses to IL-33 could be dis-
rupted by using a neutralizing IL-1RAcP antibody (Ali et al., 2007).
Upon binding of IL-33 to its receptor ST2, MyD88, IRAK, IRAK4,
and TRAF6 are recruited, resulting in both NFκB phosphorylation
and activation of the MAP-kinases Erk1/2 and p38 (Schmitz et al.,
2005). This signaling pathway has subsequently been studied in
greater detail, revealing that the tyrosine kinase JAK2 is involved
in IL-33-induced IκBα-degradation and subsequent NFκB activa-
tion (Funakoshi-Tago et al., 2011). In addition, TRAF6 has been
demonstrated to be of vital importance, as NFκB, p38, and JNK
activation induced by IL-33 is entirely inhibited in TRAF6−/−
fibroblasts (Funakoshi-Tago et al., 2008).

The finding that the ST2 receptor is stably expressed on Th2
but not Th1 cells is also well reflected in terms of cell activation. In
an experiment performed by Schmitz et al. (2005), it was revealed
that Th2 but not Th1 cells from C57BL/6 mice respond to IL-33
treatment with secretion of IL-5 and IL-13. Since then, the capabil-
ity of IL-33 to activate several other cell types has been described.
In particular, IL-33 has emerged as a potent activator of both
murine and human mast cells, a subject discussed in detail below
and summarized in Figure 1. Aside from mast cells, IL-33 also
activates mouse (Kondo et al., 2008; Kroeger et al., 2009; Schnei-
der et al., 2009) and human basophils (Suzukawa et al., 2008a;
Pecaric-Petkovic et al., 2009) to release IL-4 and IL-13. In addi-
tion, IL-33 enhances eosinophil survival, adhesion, and CD11b
expression (Cherry et al., 2008; Suzukawa et al., 2008b). Neu-
trophils express ST2 and in an experimental sepsis model IL-33
likely acts on neutrophil recruitment directly without involve-
ment of Th2 cytokines by counteracting downregulating effects
of TLR ligands on the chemokine receptor CXCR2 (Alves-Filho
et al., 2010). In dendritic cells, IL-33, induces TNF, IL-1β, IL-6,

FIGURE 1 | IL-33 is a potent regulator of mast cell functions. IL-33
triggers several events in mast cells, including release of cytokines,
chemokines, and lipid mediators. In addition, IL-33 has been shown to
promote mast cell survival, adhesion, and maturation. While IL-33 does not
seem to induce degranulation in naïve mast cells, IL-33 augment
IgE-receptor mediated degranulation and cytokine release.

and CCL17 production (Besnard et al., 2011), and importantly,
it has been shown that IL-33-activated dendritic cells can prime
naïve T cells to produce IL-5 and IL-13 (Rank et al., 2009; Besnard
et al., 2011). In addition, it has also been demonstrated that both
iNKT cells and NK cells produce IFN-γ in the presence of IL-33
(Bourgeois et al., 2009), and iNKT cells treated with IL-33 in the
presence of α-galactosylceramide produce both IFN-γ and IL-4
(Smithgall et al., 2008), thus demonstrating that IL-33 is a multi-
facetted cytokine involved in several different types of immune
responses. Interestingly, several populations of cells in the recently
described class of innate lymphoid cells type 2 (ILC2) also express
ST2 and both expand in vivo and produce Th2 cytokines such as
IL-5 and IL-13 in response to IL-25 and IL-33 (Neill et al., 2010).

IL-33 INDUCES MULTIFUNCTIONAL MAST CELL RESPONSE
ST2 is expressed already on early mouse mast cell-committed prog-
enitors residing in the bone marrow (Chen et al., 2005). Human
CD34+ progenitors also express ST2, and activation through
the receptor by IL-33 both accelerates their maturation into
tryptase-containing cells and induces release of pro-inflammatory
cytokines and chemokines (Allakhverdi et al., 2007b). In vitro-
differentiation of mouse mast cells is promoted by co-culture with
fibroblasts which provide stem cell factor (Levi-Schaffer et al.,
1985; Fujita et al., 1988; Nocka et al., 1990). Besides stem cell
factor, which is the main mast cell growth factor, it was recently
described that IL-33 in the co-culture system promotes granule
accumulation in the developing mast cells (Kaieda et al., 2010).
IL-33 also has the capability to enhance the survival of mature
human in vitro differentiated mast cells (Iikura et al., 2007), even
in the absence of SCF. Furthermore, IL-33 also increases human
mast cell adhesion to fibronectin, which might have implications
for their tissue distribution (Iikura et al., 2007).

The traditional view of mast cells includes activation of the cells
through cross-linking of the IgE-receptor, which typically results
in degranulation and release of pre-formed mediators. During
the years this view has been modified and today it is obvious
that mast cells can be activated by a variety of stimuli and exert
different actions upon stimulation, with or without degranula-
tion (Theoharides et al., 2007). IL-33 does not generally induce
degranulation of mouse and human mast cells (Allakhverdi et al.,
2007b; Ho et al., 2007; Moulin et al., 2007; Silver et al., 2009).
The effect of IL-33 on formation of eicosanoids appears to be dif-
ferent between species, where human mast cells do not produce
either prostaglandin (PGD2) or leukotrienes (Allakhverdi et al.,
2007b), whereas mouse mast cells produce both (Moulin et al.,
2007; Enoksson et al., 2011). One important IL-33-induced mast
cell-mediated effect is to initiate an orchestration of the inflam-
matory response with production of pro-inflammatory cytokines
(IL-6, TNF), Th2 cytokines (IL-5, IL-10, IL-13, GM-CSF) and
chemokines which direct the recruitment of inflammatory cells
(CXCL8 and CCL1) (Allakhverdi et al., 2007b; Ho et al., 2007;
Iikura et al., 2007; Moulin et al., 2007; Silver et al., 2009). IL-6 and
IL-13 belongs to the cytokines produced by mouse mast cells upon
IL-33 stimulation (Ho et al., 2007).

One important function of IL-33 is when it works in con-
cert with other stimuli, such as activation of the high-affinity
IgE-receptor, FcεRI. In this case the combination of IgE-receptor
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activation with IL-33 induces a more robust activation of the
cells with degranulation and associated release of leukotrienes and
prostaglandins together with a synergistically higher production of
the cytokines IL-6, IL-13, TNF, and chemokines than IgE-receptor
cross-linking alone (Ho et al., 2007; Iikura et al., 2007; Silver et al.,
2009). Another example is the effect of thymic stromal lymphopoi-
etin (TSLP) on human mast cells. TSLP requires presence of IL-1
to be able to induce activation of mast cells (Allakhverdi et al.,
2007a). With TSLP as catalyzer, human mast cells produce higher
amounts of IL-5 and IL-13 upon IL-33 stimulation than is pro-
duced with IL-33 as the only stimuli (Allakhverdi et al., 2007b).
Other identified synergizers are nerve growth factor, the adenosine
receptor agonist NECA and C5a (Silver et al., 2009).

Both human and mouse mast cells have been described to
express IL-33 mRNA upon IgE-receptor cross-linking and treat-
ment with ionomycin, but so far no extracellular release has been
detected (Ohno et al., 2009; Hsu et al., 2010). In contrast to some
other cell types, IL-33 expression in mast cells is not induced upon
treatment with bacterial LPS (Ohno et al., 2009).

THE ROLE OF IL-33 IN INFLAMMATORY DISEASES
Although being a recently identified cytokine, the tissue expression
of IL-33 and its biological functions have already been investigated
in a number of clinical settings and experimental models. IL-33
and its receptor ST2 have been attributed both protective func-
tions, in, e.g., atherosclerosis, cardiac remodeling, and helminth
infections; as well as damaging effects in diseases such as autoim-
mune disorders and asthma (Liew et al., 2010). Both positive
and negative effects of IL-33 can be related, at least in part, to
its Th2 promoting capacities. A Th2 response is characterized by
infiltration of CD4 positive T-lymphocytes, release of IL-4 and
IL-5, IgE-synthesis, and activation of eosinophils, basophils, and
mast cells.

ASTHMA
Asthma is usually regarded as a Th2 driven disease, with strong
contribution in the pathogenesis of T-lymphocytes, eosinophils,
and mast cells. Besides airway hyperresponsiveness, inflammation,
and tissue remodeling, there is also a damage of the airway epithe-
lial cell layer, which might lead to release of DAMPs; e.g., IL-33.
In a genome-wide association study of more than 10,000 subjects
with asthma, a single-nucleotide polymorphism in the IL-33 gene
turned out to be one of few genes that significantly associated with
the disease (Moffatt et al., 2010). Similar findings were reported
recently where the study had been performed on other subjects
(Torgerson et al., 2011). These findings strengthens the hypoth-
esis that IL-33 released from structural lung cells, e.g., damaged
epithelial cells, is a link to the immune system that activates airway
inflammation. It has previously been demonstrated that expres-
sion of IL-33 is increased in the airways of subjects with severe
asthma. IL-33 protein and mRNA was described to be increased
in airway smooth muscle cells (Prefontaine et al., 2009), and thus
these cells are one of the sources of IL-33 that can be detected in
bronchial alveolar lavage fluid (Prefontaine et al., 2010). Another
source of IL-33 is the airway epithelial cells that demonstrate
strong nuclear staining (Prefontaine et al., 2010; Kouzaki et al.,
2011). Of interest for pulmonary inflammation is the finding that

extracts of Alternaria or cockroach can induce secretion of IL-33
from human bronchial airway epithelial cells (Kouzaki et al., 2011).
The release is mediated via increase of extracellular ATP accumu-
lation that acts on P2 purinergic receptors leading to IL-33 release.
This is of particular interest since increased airborne exposure
to especially Alternaria allergens has been associated with acute
asthma exacerbations (Bush and Prochnau, 2004).

The role of IL-33 and ST2 in allergic airway inflammation
has been studied in several mouse models, including mice defi-
cient in either ST2 or IL-33. Administration of IL-33 through
intra-nasal installation generates an allergic inflammation with
increased levels of IL-5, IL-13, and eotaxin; enhanced mucus
production and cellular infiltration of mainly eosinophils and T-
lymphocytes (Kondo et al., 2008; Kurowska-Stolarska et al., 2008;
Louten et al., 2011). IL-33 deficient mice sensitized and challenged
with ovalbumin exhibit an attenuated airway inflammation and
airway hypersensitivity to methacholine compared to wild type
mice (Oboki et al., 2010; Louten et al., 2011). Similar findings
have been obtained when ST2 deficient mice were used, or where
an anti-ST2 blocking antibody was applied to the model. Defi-
cient ST2 activity results in an attenuated airway inflammation
and IL-5 production (Kurowska-Stolarska et al., 2008). Of par-
ticular interest is the finding that administration of an anti-ST2
antibody during the post challenge period reduces the AHR to
background levels, as well as reduction in mucus production and
lymphocytic lung infiltration (Kearley et al., 2009). These in vivo
studies suggest that the IL-33–ST2 pathway are not only important
for the development of allergic airway inflammations, but also for
its maintenance.

Although mast cells have a central role in the pathogenesis of
asthma (Bradding et al., 2006), it still remains to decipher the
impact of the IL-33 – mast cell axis in asthma. With the current
knowledge one might foresee that mast cells are activated in the
asthmatic lung by released IL-33, which thereby contributes to the
airway inflammation.

RHEUMATOID ARTHRITIS
Mast cells have an impact on the development and disease sever-
ity of different inflammatory and autoimmune conditions such as
rheumatoid arthritis (RA), multiple sclerosis, and type 1 diabetes
(Walker et al., 2012), which is suggested to be mainly through
release of TNF and/or recruitment of neutrophils as a common
mechanism (Walker et al., 2012). Other common denominators
for these conditions are involvement of IL-33 (Matsuyama et al.,
2010; Miller, 2011) and necrosis (Merrill and Scolding, 1999; Kim
et al., 2007; Goh and Midwood, 2011), which likely could be the
underlying explanation for the involvement of mast cells in these
diseases.

The levels of IL-33 in sera and synovial fluid significantly corre-
lates with disease specificity, and in some cases also disease severity;
with RA patients being positive for IL-33 whereas patients with
osteoarthritis, psoriatic arthritis, or infectious disease and healthy
controls do not have IL-33 present in their sera or synovial fluid
(Matsuyama et al., 2010; Mu et al., 2010; Talabot-Ayer et al., 2012).
However, not all patients with RA do have high levels of IL-33
in their sera, whereas most of them have increased levels in their
synovial fluid (Matsuyama et al., 2010).
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If disease models can be transferred to mast cell deficient mice
the involvement of mast cells can be estimated. Depending on the
experimental model of arthritis, mast cells, and IL-33 have been
claimed to be important or of no importance (Xu et al., 2008,
2010; Verri et al., 2010). In one of the models (collagen-induced
arthritis), IL-33 augments arthritis through mast cell production
of cytokines inducing Th17 cells (Xu et al., 2008), and in another
model (methylated BSA-induced arthritis) IL-33 functions as a
chemoattractant for neutrophils, either directly or indirectly by
first activating synoviocytes and macrophages independently of
mast cells (Verri et al., 2010). In a third model (autoantibody-
induced arthritis), IL-33 amplifies autoantibody-induced arthritis
by promoting mast cell degranulation (Xu et al., 2010).

Studies of experimental arthritis in mice have demonstrated
that blocking of IL-33, either targeting ST2 signaling by using
anti-ST2 antibodies (Palmer et al., 2009), soluble ST2 (Leung et al.,
2004) or indirectly by anti-TNF therapy (Verri et al., 2010), dimin-
ishes the severity, and even protects against the progression of
arthritis. In addition, clinical studies also point in the same direc-
tion; RA patients receiving etanercept (TNF blocker) treatment
showed lowered levels of IL-33 in serum as well as reduced disease
activity after 3 and 6 months of treatment (Kageyama et al., 2011).
Treatment with infliximab (anti-TNF) also decreased the serum
IL-33 levels (Mu et al., 2010). However, 30–40% of the patients do
not respond to treatment targeting TNF and these non-responders
have high serum levels of IL-33 (Matsuyama et al., 2011). In
experiments using fibroblast-like synoviocytes, IL-1β as well as
TNF could induce expression of IL-33 (Kaieda et al., 2010; Mat-
suyama et al., 2011), suggesting that in the absence of TNF, IL-1β

could still potentially induce IL-33 expression in non-responders
(Matsuyama et al., 2011).

SKIN INFLAMMATIONS
Mast cells are strategically located in the upper dermis of normal
skin, where they are exposed to external insults such as antigens
and microbes. During certain challenges of the skin homeosta-
sis such as wounding (Weller et al., 2006), microbial infection (Di
Nardo et al., 2003; Marshall, 2004), inflammation in atopic eczema,
psoriasis, and skin sclerosis (Harvima and Nilsson, 2011; Ribatti
and Crivellato, 2011), the number and/or reactivity of mast cells
increase in order to regain or rather create new homeostasis. IL-33
is constitutively expressed in skin (Schmitz et al., 2005; Moussion
et al., 2008), and coincidentally there is also a increased expres-
sion of IL-33 in many of these conditions (Pushparaj et al., 2009;
Alves-Filho et al., 2010; Manetti et al., 2010; Theoharides et al.,
2010; Hueber et al., 2011; Yanaba et al., 2011). The exact trigger(s)
for IL-33 expression in skin is to a large part unknown (Hueber
et al., 2011). However, physical cellular injury induced by wound-
ing, tape stripping, scratching in atopic eczema or UVB radiation,
as well as biological challenge such as bacterial infection are stim-
uli that potentially induce IL-33 production (Ohno et al., 2009;
Dickel et al., 2010; Byrne et al., 2011).

Some of the actions of IL-33 through mast cells are augmented
with IgE as a companion (Ho et al., 2007; Iikura et al., 2007;
Moulin et al., 2007; Pushparaj et al., 2009; Silver et al., 2009). Atopic
eczema is a chronic inflammatory skin disease associated with ele-
vated serum IgE levels and involvement of mast cells (Scheynius

et al., 2002; Harvima and Nilsson, 2011). An elevated expression
of IL-33 can be demonstrated in skin biopsies of atopic eczema
patients with more expression in lesional than in non-inflamed
skin (Pushparaj et al., 2009). For IL-33 to induce degranulation
and increased activation of mast cells, combined action with IgE
sensitization or IgE-receptor cross-linking is desirable (Ho et al.,
2007; Iikura et al., 2007; Moulin et al., 2007; Pushparaj et al., 2009;
Silver et al., 2009). Furthermore, IgE sensitization alone induces
increased ST2 expression by mast cells (Ho et al., 2007; Pushparaj
et al., 2009). Moreover, there is a significant genetic association
between a single-nucleotide polymorphism in the distal ST2 pro-
moter and the risk of developing atopic eczema (Shimizu et al.,
2005). With a predisposition for elevated ST2 expression, very low
levels of IL-33 might have an impact on the induction of atopic
eczema.

Physiologically relevant doses of sun light radiation (consisting
of both UVA and UVB) induce IL-33 mRNA and protein expres-
sion in the nucleus and cytoplasm of epidermal keratinocytes and
dermal fibroblasts (Byrne et al., 2011). Neutrophils are rapidly
recruited, possibly through IL-8/CXCL8 from activated mast cells,
epidermal keratinocytes (Strickland et al., 1997), or Langerhans
cells (Nakagawa et al., 1999), to the radiated skin where they are
found adjacent to mast cells and the IL-33 expressing cells (Byrne
et al., 2011).

Collectively, IL-33 induces skin inflammation, where at least
some of the reactions are mast cell dependent (Theoharides et al.,
2010; Byrne et al., 2011; Hueber et al., 2011).

PROTECTIVE ROLES OF IL-33
While many studies have demonstrated that IL-33 can exacerbate
or in other ways play detrimental roles in certain diseases, there is
also a growing body of evidence that IL-33 in other diseases can
have a protective role. For instance, it has been shown that IL-33
has important roles in helminth infections, thus providing evi-
dence of functionality for the much studied fact that IL-33 induces
Th2 responses, which are essential for parasite expulsion. In a par-
asite infection model in mice, Humphreys et al. (2008) showed
that infected mice could expulse the parasite if treated with IL-33.
Here, IL-33 treatment prevented a Th1 polarized response, and
instead induced IL-4, IL-9, and IL-13. In a recent study, IL-33 was
also demonstrated to have a beneficial role in sepsis. By utiliz-
ing an experimental model of sepsis in mice by cecal ligation and
puncture, it was demonstrated that mice treated with IL-33 dis-
played reduced mortality compared to PBS treated mice, following
cecal ligation and puncture (Alves-Filho et al., 2010). IL-33-treated
mice recruited more neutrophils into the peritoneum, and could
thus more effectively combat infection. Interestingly, it was also
shown that patients not recovering from sepsis had increased lev-
els of soluble ST2 compared to surviving patients. Increased levels
of sST2 in sera leads to suppression of the IL-33 function with
lowered recruitment of neutrophils. Furthermore, IL-33 has also
been shown to have a cardioprotective role. By inducing cardiac
pressure overload trough transverse aortic constriction in mice,
Sanada et al. (2007) demonstrated that IL-33 treatment can reduce
hypertrophy and fibrosis and thus improve survival. In addition,
Miller et al. (2008) have reported that IL-33 treatment can reduce
atherosclerosis development in mice.
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FIGURE 2 | Mast cells respond to IL-33 released during cell injury by

initiating a pro-inflammatory response. During cell injury, for instance
induced by mechanical trauma, structural cell types such as epithelial cells
release IL-33. Mast cells recognize IL-33 through the T1/ST2 receptor, which
initiates MyD88-dependent signaling mechanisms eventually resulting in

NFkB activation and the subsequent transcription of several pro-inflammatory
genes. Release of cytokines, chemokines, and lipid mediators together
initiates a inflammatory response, for instance resulting in neutrophil
recruitment, activation and migration of dendritic cells, and polarization of
T cells.

SUMMARY
IL-33 has emerged as an important alarmin that alerts the sentinel
cells of the body to initiate an inflammatory response. Animal
models also suggest that IL-33 plays a role in perpetuation of
chronic inflammations by activating inflammatory cells of both
the innate and adaptive immune system. In this context mast
cells recognize IL-33 through the expression of ST2 which medi-
ates a signal to produce inflammatory cytokines, and possibly
eicosanoids. These inflammatory mediators recruit and activate

other cells like neutrophils and dendritic cells to the site (Figure 2).
The IL-33-induced mast cell activation is probably an underlying
mechanism in acute inflammations induced by cell injury, but also
in chronic inflammatory diseases where IL-33 is released either
from necrotic cells or by active secretion. Future studies, in human
and animal models, will clarify in more detail how important the
IL-33 – mast cell – inflammatory axis is, and if this can be a possible
target for new therapies of, e.g., asthma and other inflammatory
diseases.
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