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Abstract

Recently, reconciling social networks receives sig-
nificant attention. Most of the existing studies have
limitations in the following three aspects: multi-
plicity, comprehensiveness and robustness. To ad-
dress these three limitations, we rethink this prob-
lem and propose the MASTER framework, i.e.,
across Multiple social networks, integrate Attribute
and STructure Embedding for Reconciliation. In
this framework, we first design a novel Constrained
Dual Embedding model by simultaneously embed-
ding and reconciling multiple social networks to
formulate our problem into a unified optimiza-
tion. To address this optimization, we then design
an effective algorithm called NS-Alternating. We
also prove that this algorithm converges to KKT
points. Through extensive experiments on real-
world datasets, we demonstrate that MASTER out-
performs the state-of-the-art approaches.

1 Introduction

Nowadays, social network is becoming increasingly impor-
tant in people’s lives. People often have several social net-
work accounts, e.g., Twitter for news, Facebook for friends
and LinkedIn for jobs. However, these accounts are often
independent from each other. It arises the problem of identi-
fying the corresponding accounts belonging to the same indi-
vidual, which is termed as reconciling social networks. Rec-
onciling social networks can support a wide range of applica-
tions, e.g., network fusion [Zhang and Yu, 2016], link predic-
tion [Zhang et al., 2017b] and cross-domain recommendation
[Man et al., 2017].

This problem still remains open as most of the existing
methods have several limitations as follows:

• Multiplicity: In real world, people usually have sev-
eral social network accounts. However, most of the ex-
isting methods [Kong et al., 2013; Liu et al., 2014;
Korula and Lattanzi, 2014; Liu et al., 2016; Man et al.,
2016] focus on reconciling only two social networks and
cannot pairwise reconcile multiple social networks due
to the global inconsistency.
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Figure 1: This figure demonstrates the problem of reconciling across
multiple social networks. Graphs of different colors denote differ-
ent social networks. Nodes (social accounts) are associated with
attributes (e.g., screen name, gender and hobby). Black lines denote
the correspondences among the nodes. The full lines are known in
advance while the dotted ones (with marks) are to be identified.

• Comprehensiveness: Social networks usually have two
categories of spaces, i.e., attribute space and structure
space. However, most of existing methods [Korula
and Lattanzi, 2014; Liu et al., 2016; Man et al., 2016;
Mu et al., 2016] do not comprehensively exploit the in-
formation of both spaces to reconcile social networks.

• Robustness: The social network is noisy and most of the
existing methods [Zafarani and Liu, 2013; Kong et al.,
2013; Liu et al., 2014; Zhang et al., 2015] struggle in
defining effective features sensitive to data. Therefore,
they are still away from robustly reconciling networks.

These limitations motivate us to rethink: Can we compre-
hensively and robustly reconcile multiple social networks?

The answer is YES! In this paper, for the first time, we pro-
pose the MASTER framework, i.e., across Multiple social
networks, integrate Attribute and STructure Embedding for
Reconciliation. In this framework, there are two main chal-
lenges: (1) Modeling: To the best of our knowledge, there is
no embedding model reconciling multiple social networks in
the literatures. Both spaces of multiple networks should be in-
tegrated and, moreover, the problem of global inconsistency
is to be addressed in the embedding. (2) Optimizing: The
network embedding problem is often formulated as an opti-
mization problem. In our framework, the optimization prob-
lem behind tends to be non-convex and hence much tougher.
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To address the issue (1), we design a novel Constrained
Dual Embedding (CDE) model to formulate the reconciling
social network problem. The core idea of CDE is to simul-
taneously embed and reconcile multiple social networks in
the joint latent space via uni- and joint-embedding. For uni-
embedding, we perform collaborative matrix factorization to
independently embed each network into a latent space, which
collaboratively captures the observations of attribute space
and structure space. For joint-embedding, we align these em-
bedded social networks at the known correspondences to con-
struct the joint latent space for consistent reconciliation and
we finally give the formulation of the unified optimization.

To address the issue (2), we design an effective NS-
Alternating algorithm to approach the optima of the high-
order matrix optimization. Specifically, we first reformu-
late the optimization problem, inspired by a recent advance
in computational mathematics. We then alternately solve
the representation matrices subproblem and the kernel ma-
trices subproblem of the reformulated problem via first-order
method and semidefinite programming, respectively. More-
over, we make analysis of the convergence property in depth
and give the sufficient condition of Karush–Kuhn–Tucker
(KKT) convergence.

We validate MASTER through extensive experiments on
real-world datasets and show that MASTER outperforms sev-
eral state-of-the-art methods.

To summarize, we make the following contributions:

• To the best of our knowledge, our proposed MASTER is
the first attempt to robustly reconcile multiple social net-
works comprehensively exploiting attribute and struc-
ture information via an embedding approach.

• We design a novel model (CDE) to formulate the prob-
lem of reconciliation into a unified optimization.

• We design an effective NS-Alternating algorithm to ad-
dress the optimization and prove that it converges to
KKT points.

• We conducted extensive experiments on real-world
datasets and the experiment results demonstrate the su-
periority of our approach.

2 Problem Definition

In this paper, we consider a set of M social networks

{S(m)}. A social network S(m) of N (m) users is denoted as

(G(m),A(m)). The adjacency matrix G
(m) ∈ R

N(m)×N(m)

represents the structure space, where binary G
(m)
ij indicates

whether or not a social connection exists between user ac-
count v

(m)
i and v

(m)
j . G

(m) is symmetric as the network is

considered to be undirected. A(m) ∈ R
N(m)×l represents the

attribute space and its ith row a
(m)
i denotes the l-dimensional

attribute vector associated with v
(m)
i . Part of the user account

correspondences can be obtained from user profiles or some
third-party platforms. Such information is represented in a

label set L̂ = {L(m,n)}, where L(m,n) is the set of known

account pairs between S(m) and S(n) of the same individual.

Without loss of generality, we assume that social networks
are partially overlapped. We formally define the problem of
reconciling multiple social networks as follows:

Problem Definition. Given the set {S(m)} with labels L̂, the
problem of reconciling multiple social networks is to find a
φ(m), mapping the user account to its owner, for each S(m)

so that φ(1)(v
(1)
(·) ) = ... = φ(m)(v

(m)
(·) ) = ... = φ(M)(v

(M)
(·) )

to identify correspondences of shared users.

To address this problem, we propose the MASTER frame-
work. In MASTER, we design a novel model, Constrained
Dual Embedding (CDE), to formulate the problem into a uni-
fied optimization (Section 3). To address the optimization,
we design an effective NS-Alternating algorithm (Section 4).

3 Modeling: Constrained Dual Embedding

In CDE, we independently embed each social network via
uni-embedding and simultaneously reconcile these embedded
networks via joint-embedding.

3.1 Uni-embedding

The goal of uni-embedding is, for each social network S(m),

to obtain the representation matrix H
(m) ∈ R

N(m)×d (d ≪
min{N (m)}), whose ith row h

(m)
i is the d-dimensional vec-

tor of v
(m)
i in the latent space, capturing the observations of

both structure and attribute space.
To achieve this goal, first, we construct the similarity ma-

trix M
(m) of structure space. Note that G

(m)
ij encodes the

first-order proximity, defined in [Tang et al., 2015], which is

measured by whether or not v
(m)
i and v

(m)
j have a direct con-

nection. Obviously, it is necessary to preserve the first-order
proximity as it depicts the original structure of the social net-
work. However, the observed edges are usually sparse in the
network. For two user accounts with no direct connection,
an alternative way to imply the proximity is to measure their
neighbors. Intuitively, the more similar their neighbors are,
the higher proximity they share. Therefore, we formally de-
fine the second-order proximity as follows:

Definition (second-order proximity). Given the adjacency
matrix (or first-order proximity matrix) G

(m), the second-

order proximity Ḡ
(m)
ij between v

(m)
i and v

(m)
j is the similarity

of G
(m)
i and G

(m)
j , where G

(m)
i is the ith row of G(m).

The inner product similarity is into account in this paper, i.e.,

Ḡ
(m) = G

(m)2 as G
(m) is symmetric. To incorporate the

first- and second-order proximity, M(m) = G
(m) + ηḠ(m)

where η is a non-negative weight.

Second, we derive the similarity matrix W
(m) of attribute

space by computing the pairwise inner product of the attribute

vector, i.e., W(m) = A
(m)

A
(m)T .

Finally, we approximate the pairwise similarity in each

space by the inner product of h
(m)
i . Assume that h

(m)
i is

projected onto structure space and attribute space via differ-
ent projection ϕ(.). We introduce kernel technique to bridge

the inner product 〈·, ·〉 of the ϕ(h
(m)
i ) with that of h

(m)
i ,
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i.e., 〈ϕ(h(m)
i ), ϕ(h

(m)
j )〉 = h

(m)
i K

(m)
ϕ h

(m)
j , where K

(m)
ϕ is

semidefinite. Let B(m) and C
(m) denote K

(m)
ϕ of the pro-

jection onto structure space and attribute space respectively.

H
(m) can be learned by the optimization of a collaborative

matrix factorization as below:

min
H(m),B(m),C(m)

α

2

∥

∥

∥
M

(m) −H
(m)

B
(m)

H
(m)T

∥

∥

∥

2

F

+
β

2

∥

∥

∥
W

(m) −H
(m)

C
(m)

H
(m)T

∥

∥

∥

2

F

s. t. B
(m),C(m) ∈ S

d
+

(1)

where ||·||F is Frobenius norm, Sd+ denotes semidefinite cone,
and α and β are positive parameters weighting the observed
similarities in structure space and attribute space respectively.

Take Fig. 1 for example. For each social network, e.g.,

S(1), we first calculate the similarity matrices M
(1) and

W
(1). Then, we perform the collaborative matrix factoriza-

tion in optimization (1) to embed S(1) into a latent space,

represented by H
(1). In the latent space, h

(1)
b will be closer

to h
(1)
a than h

(1)
c , and h

(1)
a and h

(1)
c are far away.

3.2 Joint-embedding

Based on uni-embedding, joint-embedding aims to construct

the joint latent space by aligning latent spaces of S(m) at the

known correspondences L̂ so that (1) the h
(·)
l of the corre-

spondences coincides in the joint latent space and (2) the
proximity of both structure and attribute spaces within the

individual networks is captured in h
(m)
(·) .

To achieve the first goal, we leverage natural constraints
to encode the correspondences and thus force alignment. To

give its matrix form, we introduce an elementary matrix E
(m)

for each social network S(m). Each row of E(m) has only one

non-zero element (i.e., 1), to select a h
(m)
(·) according to the

correspondences in L(m,n). We obtain the constraints as
follows:

∀L(m,n) ∈ L̂ : E
(m)

H
(m) = E

(n)
H

(n), (2)

where E
(m) ∈ R

|L(m,n)|×N(m)

and E
(n) ∈ R

|L(m,n)|×N(n)

.
This is an equation system of |L̂| = M · (M − 1) equations.

We further formulate the equation system into a unified
equation pair, despite of the number of networks M . First,

we define rotating matrices D̃p and D̃q . If M is odd,

D̃p =









D

D

. . .

I









D̃q =









I

D

. . .

D









,

otherwise,

D̃p =









D

D

. . .

D









D̃q =









I

D

. . .

I









,

where D =

[

I

I

]

and I is the identity matrix. Second,

we let Rp(X) = D̃pXD̃p and Rq(X) = D̃qXD̃q for rotat-
ing operation. Let ˜ denote the block diagonal matrix, i.e.,

X̃ = diag({X(m)}). We obtain the equivalent equation pair:

Lp(H̃) = ||ẼH̃−Rp(ẼH̃)||2F = 0 (3)

Lq(H̃) = ||ẼH̃−Rq(ẼH̃)||2F = 0 (4)

To achieve the second goal, similarly, we incorporate uni-
embedding preserving the proximity within each network.

Utilizing
∑

i ||X||2F = ||X̃||2F , we obtain the unified objec-
tive, which is equivalent to combining M objectives of uni-
embedding, as follows:

α

2
||M̃− H̃B̃H̃

T ||2F +
β

2
||W̃ − H̃C̃H̃

T ||2F . (5)

Note that, B̃ and C̃ inherit the semi-definiteness while M̃ and
W̃ remain to be symmetric.

Finally, we remove the constraint by adding penalty with a
coefficient γ and obtain the unified optimization objective:

min
H̃,B̃,C̃

α

2

∥

∥

∥
M̃− H̃B̃H̃

T
∥

∥

∥

2

F
+

β

2

∥

∥

∥
W̃ − H̃C̃H̃

T
∥

∥

∥

2

F

+
γ

2
[Lp(H̃) + Lq(H̃)]

s. t. B̃, C̃ ∈ S
Md
+

(6)

Recall the example in Fig. 1. In this example, since the

correspondence {v(1)b , v
(2)
b , v

(3)
b } is known in advance, we

will force h
(1)
b = h

(2)
b = h

(3)
b to align the embedded space

of S(1), S(2) and S(3). Those who are close in the joint latent

space from different S(·) are regarded as good candidates.
The benefits of CDE model are two-folded: (1) both spaces

are comprehensively exploited and (2) the problem of recon-
ciliation is formulated in a unified approach for effective rec-
onciliation, regardless of the number of networks.

4 Optimization: NS-Alternating

To address the optimization problem of the CDE model, in-
spired by Non-convex Spiting framework [Lu et al., 2017],
we design an effective NS-Alternating algorithm. In this al-
gorithm, we first reformulate the problem (6) and alternately
solve the subproblems of the reformulation.

4.1 Problem Reformulation

The high-order objective (6) is not jointly convex over H̃, B̃

and C̃. Therefore, we reduce the order by introducing an aux-

iliary matrix V = H̃, and formulate the problem as follows:

min
H̃,B̃,C̃,V

J (H̃, B̃, C̃,V)

=
α

2

∥

∥

∥
M̃− H̃B̃V

T
∥

∥

∥

2

F
+

β

2

∥

∥

∥
W̃ − H̃C̃V

T
∥

∥

∥

2

F

+
γ

2
(Lp(H̃) + Lq(H̃))

s. t. B̃, C̃ ∈ S
Md
+ , H̃ = V, ||Vi||22 < τ, ∀i

(7)

According to the study [Vandaele et al., 2016], problem (6)
is equivalent to problem (7) in the sense of KKT points if

τ =
√
C is sufficiently large (C = max{||M̃||2F , ||W̃||2F } in

our algorithm). That is, the KKT points of problem (6) and
problem (7) have a one-to-one correspondence.

We alternately solve (H̃,V) and (B̃, C̃) of problem (7),
referred to as representation matrices subproblem and kernel
matrices subproblem respectively.
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4.2 Representation Matrix Subproblem

Fixing kernel matrices, the updating rules are given below:

V
(t+1) = arg min

||Vi||22<τ,∀i
L(H̃(t),V;Λ(t)) +

ξ(t)

2
||V −V

(t)||2F (8)

H̃
(t+1) = arg min L(H̃,V(t+1);Λ(t)) (9)

Λ
(t+1) = Λ

(t) + ρ(V(t+1) − H̃
(t+1)) (10)

ξ(t+1) = 6
ρ
· J (H̃(t+1), B̃, C̃,V(t+1)) (11)

L(H̃,V;Λ) = J (H̃, B̃, C̃,V) + ρ
2 ||V − H̃+ Λ/ρ||2F (12)

L(H̃,V;Λ) is the augmented Lagrangian. Note that, proxi-

mal term ||V−V
(t)||2F and penalty parameter ξ(t) are added

according to the study [Lu et al., 2017]. The optimization
w.r.t. V can be decomposed into k separable problems, each
of which can be solved using gradient projection:

V
(r+1)
[i] = projV(V

(r)
[i] − λ(A

(t)
V V

(r)
[i] −BV

(t)
[i] )) (13)

A
(t)
V = αB̃H̃

T
H̃B̃+ βC̃T

H̃
T
H̃C̃+ (ξ(t) + ρ)I (14)

B
(t)
V = αM̃H̃B̃+ βS̃T

H̃C̃+ ξ(t)V(t) + ρH̃−Λ (15)

projV(w) =
√
τw/max{√τ , ||w||2}, ∀w ∈ R

n (16)

where r denotes the inner-iteration number, λ denotes the step
size and V[i] denotes the ith column of matrix V. For a given

vector w, projV(·) projects it onto the feasible set of V[i]. H̃

can be solved via 1st-order method, whose gradient is:

∇
H̃
L = α(H̃B̃V

(t+1)T − M̃)V(t+1)
B̃

T

+ β(H̃C̃V
(t+1)T − S̃)V(t+1)

C̃
T

+ γẼ[Rp(ẼH̃) +Rq(ẼH̃)] + 2γẼT
ẼH̃

+ ρ(H̃−V
(t+1) −Λ

(t)/ρ),

(17)

as D̃p = D̃
−1
p and D̃q = D̃

−1
q .

4.3 Kernel Matrix Subproblem

Utilizing ||X||2F = tr(XT
X), we reformulate the optimiza-

tion w.r.t. B into an inner-product form (C̃-subproblem is the

same as B̃-subproblem, and omitted due to the space limit):

min
B̃

tr(H̃B̃V
T
VB̃H̃

T )− 2tr(MH̃B̃Ṽ
T )

= 〈Q(B̃), B̃〉 − 2〈A, B̃〉, B̃ ∈ S
Md
+ ,

(18)

where Q(B̃) = V
T
VB̃H̃

T
H̃ and A = V

T
M̃H̃. The equal-

ity constraint H̃ = V holds when representation matrix sub-

problem converges. Let H̃T
H̃ = P and we further analyze

Q. For arbitrary X,Y, the following equations hold:

〈Q(X),X〉 = tr(PXPX) = ||PX||2F ≥ 0, (19)

〈Q(X),Y〉 = tr(PXPY) = tr(XPYP) = 〈Q(Y),X〉. (20)

That is, Q is semidefinite (Eq. 19) and self-adjoint (Eq. 20).
According to the study [Toh, 2008], we conclude that:

Theorem 1. B̃-subproblem (C̃-subproblem) is a convex
Quadratic Semi-Definite Programming (QSDP) problem with
Q of PXP form and has the solution of the global optima
with quadratic convergence rate.

We summarize the overall process of NS-Alternating in
Algo. 1, where line 4 and line 5 refer to representation matrix
subproblem and kernel matrix subproblem respectively. Re-

call our example. Optimizing via the Algo. 1, we obtain h
(1)
(·) ,

h
(2)
(·) and h

(3)
(·) and then, ∀i, j ∈ {1, 2, 3} (i 6= j), we calculate

||h(i)
(·)−h

(j)
(·) ||2F to identify the candidates for correspondence.

Algorithm 1: NS-Alternating

Input: observed {G(·),A(·)} of S(·) and L̂
Output: H(·) for each S(·) of the joint latent space

1 Compute M̃, W̃, {Ẽ(·,·)};

2 Initialize H̃
(0),V(0) = H̃

(0), B̃(0), C̃(0), n = 0;
3 while not converge do

4 (H̃,V)(n+1) = argmin l(H̃,V, B̃(n+1), C̃(n+1));

5 (B̃, C̃)(n+1) = argmin
B̃,C̃∈SMd

+
l(H̃(n),V(n), B̃, C̃);

6 n = n+ 1;

7 end

8 return {H(·)} from H̃;

4.4 Convergence and Complexity Analysis

Convergence Analysis: Utilizing the convergence properties
[Hong et al., 2016], we can conclude that:

Theorem 2. With given B̃ and C̃, if ρ > max{ρ1, ρ2, ρ3}:

ρ1 = 6Nτ
(

||B̃||4F + ||C̃||4F
)

/
(

||B̃||2F + ||C̃||2F
)

ρ2 + 2||Ẽ||2F = 6
ρ2

(

16N +Nτ
(

||B̃||2F + ||C̃||2F
))2

ρ3 = ||B̃||2F + ||C̃||2F + ||Rp(Ẽ) +Rq(Ẽ)||2F
We can claim that:

• The equality constraint on the auxiliary matrix is satis-

fied in the limit, i.e., limt→∞||H̃(t) −V
(t)||2F = 0.

• The sequence {H̃(t),V(t),Λ(t)} generated by the NS-
Alternating algorithm is bounded, and every limit point
of the sequence is a KKT point of problem (6).

The detailed proof can be found at the website.1

Computational Complexity: The outer loop of Algo 1 (line
3-7) achieves the satisfactory accuracy in a few iterations.

Note that, B̃ and C̃ of convex QSDP, blocks H(·) of H̃ and
columns of V can be computed in parallel. Therefore, the
computational complexity depends on matrix operations in
updating rules. The inversions in QSDP is O(d3) and matrix

multiplication is O(N2
maxd) where Nmax = max{N (m)}

and d ≪ min{N (m)}. Moreover, there are quantities of
optimized libraries (e.g., OpenBLAS) to speed up the most
expensive multiplication operations.

The benefit of our proposed NS-Alternating algorithm lies
in that, besides monotonously non-increasing the objective, it
guarantees to converge to KKT points of the optimization of
CDE with the modest computational complexity.

1http://www.zhongbaozhang.com/publications
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Figure 2: Experimental result on Twitter-Foursquare dataset

5 Experiment

5.1 Experimental Setup

Datasets: We use the Twitter-Foursquare dataset [Kong et
al., 2013]. Since Foursquare can be registered by Twitter ac-
count, we regard this part of data as ground truth. Twitter
dataset consists of 5,220 users and 164,917 connections while
Foursquare dataset consists of 5,315 users and 76,972 con-
nections. There are 1,610 shared users. We evaluated the per-
formance of competing methods in the following two cases:

• Bi-network case: We generated a series of network
pairs with different overlap rates (η), measured by

2Ns

NT+NF
, where Ns, NT and NF denote the number of

shared users, Twitter users and Foursquare users respec-
tively. Specifically, for each network pair, we sample
users from this dataset according to η, called dense pairs.
Moreover, in order to evaluate the robustness, we gener-
ated a sparse pair for each η-overlap dense pair by ran-
domly removing 30% connections.

• Multi-network case: We generated two networks
from Twitter by inheriting all the users and randomly
sampling 70% of the connections and attributes (e.g.,
profiles, generated contents), and also generated two
networks from Foursquare via the same process. Then,
we simulated a series of four-network dense groups and
corresponding sparse groups with different values of η.

Performance Metric: We evaluated all the competitive
methods by the hit-precision of the candidate lists, which

is measured by 1
M

∑

m Ei[
(K+1)−hitm(v

(·)
i

)

K
], where E[·]

denotes the expectation and K is set to be 5. For instance,

for social network S(m), we obtain a top-K candidates list

{v(m)
6 , v

(m)
9 , ..., v

(m)
1 } for v

(1)
5 . If v

(m)
9 hits the ground truth,

hitm(v
(1)
5 ) = 2; hitm(v

(1)
5 ) = K + 1 for not hitting.

Competitive Methods: To evaluate the performance of the
proposed MASTER, we compared it with several state-of-
the-art methods listed as follows:

• ULink [Mu et al., 2016]: This method links user identi-
ties by modeling users’ attributes in the latent user space.
We implemented the CCP version of this method.

• PALE [Man et al., 2016]: This method performs rec-
onciliation in an embedding-matching framework. We
implemented this method with the matching of MLP.

• COSNET [Zhang et al., 2015]: This method considers
the local and global consistency in reconciliation.

• MASTER-: We implemented a degraded version of
MASTER ignoring the attribute space to emphasize the
importance of comprehensiveness.

In all the experiments, the dimension of the representation
vector in MASTER and PALE is set to be 100.

5.2 Experimental Results

We repeated each experiment for 10 times and both the mean
and 95% confidence interval are reported. The experimental
results are summarized as follows:

Bi-network Case: We evaluated competitive methods on
dense and sparse pairs with different η = [5%, 10%, ..., 30%].
Experimental results are reported in Fig. 2(a). In all the
experiments, MASTER achieves the highest hit-precision.
MASTER has an improvement of 4.92%, 6.21% and 9.40%
in average compared to COSNET, PALE and ULink respec-
tively. It is expected. The reasons are two-folded: (i) In MAS-
TER, both observations of attribute and structure space are
comprehensively exploited. (ii) The embeddings, capturing
the intrinsic relation between users, facilitate the robust rec-
onciliation. MASTER performs better than MASTER- con-
sistently, demonstrating the necessity of comprehensiveness.
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Model Multiplicity Attributes Structure Robustness

MNA [Kong et al., 2013]
√ √

ULink [Mu et al., 2016]
√ √

COSNET [Zhang et al., 2015]
√ √ √

IONE [Liu et al., 2016]
√ √

PALE [Man et al., 2016]
√ √

MOBIUS [Zafarani and Liu, 2013]
√

HYDRA [Liu et al., 2014]
√ √

User-Matching [Korula and Lattanzi, 2014]
√

MASTER (our model)
√ √ √ √

Table 1: A summary of most of typical reconciliation models

COSNET struggles in defining local consistency and ULink
performs the worst due to that it only considers the attribute
space with lots of noise.

Multi-network Case: We conducted experiments on the
four-network groups with different η = [5%, 10%, ..., 30%],
reported in Fig. 2(b). It is evident that MASTER remains the
best. This is expected owing to following reasons: MASTER
consistently and robustly reconciles multiple social networks
in the joint latent space where the information of both space
is comprehensively captured and global inconsistency is natu-
rally eliminated. In contrast, PALE presents low hit-precision
due to global inconsistency. Although MASTER-, COSNET
and ULink address the problem of global inconsistency, how-
ever, MASTER- ignores the information in attribute space,
COSNET is limited to the sparse information in this case and
ULink still suffers from the noise in attribute space.

Robustness: To further evaluate the robustness of our so-
lution, we conducted experiments the sparse pairs and sparse
groups, reported in Fig. 2(c) and 2(d) respectively. The per-
formances of COSNET become noticeably worser in sparse
pairs (groups) as less information can be leveraged. The
robustness of ULink is not evaluated, since the difference
among them is in the structure space neglected by ULink.
However, the embedding based approaches, i.e., MASTER,
MASTER- and PALE, lose much less hit-precision in sparse
pairs (groups) and MASTER achieves the highest robustness.

The impacts of parameters: To further evaluate MASTER,
we conducted experiments to evaluate the effect of training
ratio θ and the contribution of each space. Regarding the im-
pact of θ, we fix η = 30%, β/α = 2/3, and vary the value
of θ to [0.5%, 1%, 1.5%, ..., 5%]. We report the correspond-
ing result in Fig. 2(e). From this figure, we observe that the
hit-precision of MASTER raises quickly as the training ratio
increases from 0.5% to 2%, and slows down when θ exceeds
2%. That is to say, MASTER can achieve good performance
with relatively less label information. Regarding the impact
of the contribution of each space, we set η = 30%, θ = 5%,
and vary the value of lg(β/α) to [−1,−0.8,−0.6, ..., 1]. We
report the corresponding result in Fig. 2(f). From this figure,
it can be inferred that the structure space has higher contribu-
tion than that in attribute space. A reasonable interpretation
behind this is that people are not willing to provide truthful
personal information (e.g., location, birthday), which results
in lots of noise in the attribute space.

6 Related Work

The MASTER reconciles multiple social networks in an em-
bedding approach. We briefly summarize the related work in
the problem of reconciliation and network embedding:
Reconciliation: The problem is generally regarded as a
(semi-) supervised task as the labels can be observed [Shu et
al., 2017]. Most of the existing models focus on reconciling
only two social networks. A few models reconcile multiple
networks, however, ULink [Mu et al., 2016] suffers from the
noise in attribute space while COSNET [Zhang et al., 2015]

and UniRank [Zhang et al., 2017a] struggle in defining lo-
cal consistency. Most of the typical models are summarized
in Table 1. The difference between our model and the others
lies in that we, for the first time, address all these limitations.
Network embedding: Network embedding can be addressed
through several techniques: (1) matrix factorization, e.g.,
TADW [Yang et al., 2015], HOPE [Ou et al., 2016], LANE
[Huang et al., 2017], M-NMF [Wang et al., 2017b]; (2) deep
neural network, e.g., SDAE [Cao et al., 2016], SiNE [Wang
et al., 2017a]; (3) random walk, e.g., DeepWalk [Perozzi
et al., 2014], Node2Vec [Grover and Leskovec, 2016]. More-
over, both DeepWalk and LINE [Tang et al., 2015] are proved
to be equivalent to matrix factorization recently [Qiu et al.,
2018]. However, different from all these models, our model
is tailored for reconciling multiple social networks.

7 Conclusion

To address the problem of robustly reconciling multiple social
networks, we, for the first time, propose the MASTER frame-
work. In MASTER, we design the CDE model to formulate
the reconciliation problem into a unified optimization where
we embed and reconcile multiple social networks in the joint
latent space constructed by uni- and joint-embedding. We de-
sign an effective NS-Alternating algorithm to solve the non-
convex optimization of CDE and further prove the KKT con-
vergence of the algorithm. We conducted extensive experi-
ments on real-world datasets and demonstrate that MASTER
outperforms several state-of-the-art methods.

Acknowledgments

This work was supported in part by the following fund-
ing agencies of China: National Key Research and Devel-
opment Program under Grant 2016QY01W0200 and Na-
tional Natural Science Foundation under Grant 61602050 and
U1534201.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

3868



References

[Cao et al., 2016] Shaosheng Cao, Wei Lu, and Qiongkai
Xu. Deep neural networks for learning graph represen-
tations. In Proceedings of the AAAI, pages 1145–1152,
2016.

[Grover and Leskovec, 2016] Aditya Grover and Jure
Leskovec. node2vec: Scalable feature learning for net-
works. In Proceedings of the SIGKDD, pages 855–864,
2016.

[Hong et al., 2016] Mingyi Hong, Zhi-Quan Luo, and
Meisam Razaviyayn. Convergence analysis of alternating
direction method of multipliers for a family of non-convex
problems. SIAM Journal on Optimization, 26(1):337–364,
2016.

[Huang et al., 2017] Xiao Huang, Jundong Li, and Xia Hu.
Label informed attributed network embedding. In Pro-
ceedings of the WSDM, pages 731–739, 2017.

[Kong et al., 2013] Xiangnan Kong, Jiawei Zhang, and
Philip S Yu. Inferring anchor links across multiple het-
erogeneous social networks. In Proceedings of the CIKM,
pages 179–188, 2013.

[Korula and Lattanzi, 2014] Nitish Korula and Silvio Lat-
tanzi. An efficient reconciliation algorithm for social net-
works. Proceedings of the VLDB, 7(5):377–388, 2014.

[Liu et al., 2014] Siyuan Liu, Shuhui Wang, Feida Zhu,
Jinbo Zhang, and Ramayya Krishnan. Hydra: Large-scale
social identity linkage via heterogeneous behavior model-
ing. In Proceedings of the SIGMOD, pages 51–62, 2014.

[Liu et al., 2016] Li Liu, William K Cheung, Xin Li, and
Lejian Liao. Aligning users across social networks using
network embedding. In Proceedings of the IJCAI, pages
1774–1780, 2016.

[Lu et al., 2017] Songtao Lu, Mingyi Hong, and Zhengdao
Wang. A nonconvex splitting method for symmetric non-
negative matrix factorization: Convergence analysis and
optimality. IEEE Trans. on Signal Processing, 2017.

[Man et al., 2016] Tong Man, Huawei Shen, Shenghua Liu,
Xiaolong Jin, and Xueqi Cheng. Predict anchor links
across social networks via an embedding approach. In IJ-
CAI, pages 1823–1829, 2016.

[Man et al., 2017] Tong Man, Huawei Shen, Xiaolong Jin,
and Xueqi Cheng. Cross-domain recommendation: An
embedding and mapping approach. In Proceedings of the
IJCAI, pages 2464–2470, 2017.

[Mu et al., 2016] Xin Mu, Feida Zhu, Ee-Peng Lim, Jing
Xiao, Jianzong Wang, and Zhi-Hua Zhou. User identity
linkage by latent user space modelling. In Proceedings of
the SIGKDD, pages 1775–1784, 2016.

[Ou et al., 2016] Mingdong Ou, Peng Cui, Jian Pei, Ziwei
Zhang, and Wenwu Zhu. Asymmetric transitivity preserv-
ing graph embedding. In Proceedings of the SIGKDD,
pages 1105–1114, 2016.

[Perozzi et al., 2014] Bryan Perozzi, Rami Al-Rfou, and
Steven Skiena. Deepwalk: Online learning of social rep-
resentations. In Proceedings of the SIGKDD, pages 701–
710, 2014.

[Qiu et al., 2018] Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian
Li, Kuansan Wang, and Jie Tang. Network embedding
as matrix factorization: Unifying deepwalk, line, pte, and
node2vec. In Proceedings of the WSDM, 2018.

[Shu et al., 2017] Kai Shu, Suhang Wang, Jiliang Tang, Reza
Zafarani, and Huan Liu. User identity linkage across on-
line social networks: A review. ACM SIGKDD Explo-
rations Newsletter, 18(2):5–17, 2017.

[Tang et al., 2015] Jian Tang, Meng Qu, Mingzhe Wang,
Ming Zhang, Jun Yan, and Qiaozhu Mei. Line: Large-
scale information network embedding. In Proceedings of
the WWW Conference, pages 1067–1077, 2015.

[Toh, 2008] Kim-Chuan Toh. An inexact primal–dual path
following algorithm for convex quadratic sdp. Mathemat-
ical programming, 112(1):221–254, 2008.

[Vandaele et al., 2016] Arnaud Vandaele, Nicolas Gillis,
Qi Lei, Kai Zhong, and Inderjit Dhillon. Efficient and
non-convex coordinate descent for symmetric nonnegative
matrix factorization. IEEE Trans. on Signal Processing,
64(21):5571–5584, 2016.

[Wang et al., 2017a] Suhang Wang, Jiliang Tang, Charu Ag-
garwal, Yi Chang, and Huan Liu. Signed network embed-
ding in social media. In Proceedings of the SDM, pages
327–335, 2017.

[Wang et al., 2017b] Xiao Wang, Peng Cui, Jing Wang, Jian
Pei, Wenwu Zhu, and Shiqiang Yang. Community pre-
serving network embedding. In Proceedings of the AAAI,
pages 203–209, 2017.

[Yang et al., 2015] Cheng Yang, Zhiyuan Liu, Deli Zhao,
Maosong Sun, and Edward Y Chang. Network represen-
tation learning with rich text information. In Proceedings
of the IJCAI, pages 2111–2117, 2015.

[Zafarani and Liu, 2013] Reza Zafarani and Huan Liu. Con-
necting users across social media sites: a behavioral-
modeling approach. In Proceedings of the SIGKDD, pages
41–49, 2013.

[Zhang and Yu, 2016] Jiawei Zhang and Philip S Yu. Pct:
partial co-alignment of social networks. In Proceedings of
the WWW Conference, pages 749–759, 2016.

[Zhang et al., 2015] Yutao Zhang, Jie Tang, Zhilin Yang,
Jian Pei, and Philip S Yu. Cosnet: Connecting heteroge-
neous social networks with local and global consistency.
In Proceedings of the SIGKDD, pages 1485–1494, 2015.

[Zhang et al., 2017a] Zhongbao Zhang, Qihang Gu, Tong
Yue, and Sen Su. Identifying the same person across two
similar social networks in a unified way: Globally and lo-
cally. Information Sciences, 395:53–67, 2017.

[Zhang et al., 2017b] Zhongbao Zhang, Jian Wen, Li Sun,
Qiaoyu Deng, Sen Su, and Pengyan Yao. Efficient incre-
mental dynamic link prediction algorithms in social net-
work. Knowledge-Based Systems, 132:226–235, 2017.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

3869


