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For a nonequilibrium system characterized by its state space, by a dynamics defined 
by a transfer matrix and by a reference equilibrium dynamics given by a detailed- 
balance transfer matrix, we define various nonequilibrium concepts: relative en- 
tropy, dissipation during the relaxation to the stationary state, path entropy, cost for 
maintaining the system in a nonequilibrium state, fluctuation-dissipation theory, 
and finally a tree integral formula for the stationary state. 0 I996 American 

Znstitute of Physics. [SOO22-2488(96)02808-31 

1. INTRODUCTION 

For systems that are not in equilibrium, much of the general power of thermodynamics and 
statistical mechanics is lost. For chemical reactions, for fluids, for dynamic critical phenomena, or 

metastable states, and for many, many natural, social, and economic systems, specific methods 
have been developed to deal with time-dependent collective phenomena (see among many pos- 
sible references le9). Th e a sence b of overriding laws, such as the entropy-related variational 
principles of equilibrium statistical mechanics, has long been lamented, although there have been 
many attempts, for example to define generalizations of thermodynamic functions (see Refs. 1, 2, 
6, and lo-12 for recent definitions). In the present paper we use a dynamical framework broad 
enough to cover most of the phenomena of interest and find that there are general statements that 
can be made. Of course, there is a kind of complementarity principle. The vast range of nonequi- 
librium phenomena in open systems precludes certain kinds of specific predictions and forces on 
us a level of abstraction that may limit usefulness. 

The framework is the master equation. A state space and transition probabilities between 
states are given. This will not describe situations where quantum interference is important, but is 
nevertheless rather comprehensive-even finite memory effects can be included by enlarging the 
state space. In its various forms, for example, the Fokker-Planck equation, the master equation 
has already been used in many contexts., Our goal will be to seek general versions of the broadest 
kind of equilibrium information, things analogous to entropy inequalities, fluctuation-dissipation 
theorems, and the characterization of the steady state, when there is one. 

Label the states x, y E X and the transition probabilities R,, , defined as the (conditional) 
probability that the state of the system at time t+ At is x, given that it was y at time t. For most 
of the present paper, we take X and At finite. The stochastic matrix R is not assumed to satisfy 
detailed balance (for any vector) and indeed it is this feature that is of greatest interest. To avoid 
irrelevant mathematical complications, R is assumed to be irreducible. 

For some of our results it would be easy to take continuum limits. Indeed in previous works 
(Refs. 13-15) we used the master equation approach advocated here to define a metastable state 
and in Ref. 16 to establish “self-organized criticality” (see Refs. 17 and 18) in a model system. 
These results were based on showing the disappearance of an energy gap, clearly going beyond the 
finite state context. Similarly, in Ref. 19 various critical properties in directed percolation derive 
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from the spectrum and eigenfunctions of the matrix R, in particular, its infinite.size limit. 
Within this framework there emerges the important general concept of current. By this we 

mean the flow of probability that can exist, even in the stationary state: JxY= R&- RyXj7X, 

where Rp=j?. Currents, in particular current loops, which do not exist at equilibrium, are essential 
to anything one would consider complex as a dynamical system (see, e.g., Ref. 20 for different 
perspectives and Ref. 21 for other opinions). One must be careful here to distinguish currents in X 
from currents in an underlying physical coordinate space. For example, in this terminology, heat 
conduction with detailed balance is not complex, even though it is not in equilibrium. We shall 
discuss these matters in another publication. 

The present paper is intended as an exposition of our general framework. In developing this 
framework we have had a number of examples in mind and in future publications we intend to 
exhibit these applications. However, because the present exposition is already rather lengthy, we 
will give only minimal indications of these examples. It is also clear that the wealth of potential 
applications will require tweaking of our framework. For example, directed percolation on finite 
systems generally has a trivial (absorbing) stationary state. By minor modification of the dynamics 
the interesting behavior of such systems can be studied with the present techniques (see, for 
example Ref. 22). However, in the present paper we do not focus-on those issues. 

Summary of results. A natural construct is the relative entropy S(plq) = - Z,p, log(p,lq,) of 
two distributions. For equilibrium theory this is already important [e.g., if q is the Gibbs state, 
S(plq) is essentially a thermodynamic potential] and it is also used extensively in information 
theory. It is easy to show (and well known) that 

Much of this work focuses on the invariant state of R, which is called E Thus p= RF The 

analog of the entropy increase in equilibrium’systems is the fact that S(plpT can only increase as 
R is successively applied to p. In fact, we have a stronger statement: If 6 is small and 

pdx)=Fb)exp(&#)h then S(PS~~ - - 8(&),7/2. This allows bounds on the rate of approach 
to stationarity (i.e., p->. Let ‘R be the transpose of R and (‘R)* be its adjoint with respect to the 
inner product using pas a weight. Let ‘pi be the eigenvector of ‘R(‘R) * with maximum eigenvalue 
h,, , different from 1, then 

This is a statement about dissipation and fluctuations, although in a moment we shall get to the 
usual form. In this context we are also able to get results on “excess work,” a concept that has 
been used in the chemical literature.” 

One question of great interest is, what does it “cost” to keep the system out of equilibrium? 
The matrix R can describe a system with temperature gradients, with sunlight, with wind, with 
currency exchange rate shifts. How can one associate a general cost? Given the broad nature of 
our goals, we preferred not to model the reservoirs that maintain R’s imbalances. Rather, we 
assume that R is to be compared with a fiducial W, which is a transition matrix with an equilib- 
rium state and detailed balance [W,,p,,(y) = W,,p,,(x)]. For example, if R describes Rayleigh- 
Benard flow, then W could represent a world uniformly at the temperature of the upper (or the 
colder) plate. The cost should then be what it takes to heat the lower plate. The choice of W is 
made by the observer and is partly conventional, depending on what the observer or designer 
intends to do with the R matrix. For example, in a Camot cycle completed by a necessarily 
out-of-equilibrium engine, depending on whether the cycle is used to move a car or function as a 
refrigerator, W would be the thermal state at low or high temperature, respectively. However, 
within our general framework one is not committed to such a detailed point of view. 

By considering a path entropy, we find it appropriate to define 
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AtY(R,F,W)=-x R,,F(y)log 
X,Y 

to be the dissipation per time step required to maintain the state p, against a tendency to relax to 
equilibrium. The following remarkable inequality emerges: 

This inequality is proved for Fnear equilibrium. It means that if we start with a certain stationary 
state and switch off the reservoirs defining R, so that Fstarts to relax to the equilibrium peq by the 
W evolution, the dissipation per unit time is always less than four times the cost to maintain F, as 

defined by the path entropy. 
To state a nonequilibrium fluctuation-dissipation theorem in a form similar to its usual equi- 

librium formulation, it is necessary to climb down from the grand generality adopted until this 
point. A distinction must be drawn between fast and slow variables-the motion of one dissipates 
while the others fluctuate. In the context of our master equation model we achieve this result. In 
fact, what we get is stronger than what is known in the equilibrium case. In particular, we have 
independent expressions for fluctuation and dissipation and the comparison of these expressions 
gives the fluctuation-dissipation statement, while traditional derivations do not give separate ex- 
pressions for fluctuation and dissipation. Note that the state around which this generalized fluc- 
tuation dissipation theorem holds is nor equilibrium but is the stationary state g More precisely, 
let A be a slow variable of the system that is chosen to be a left eigenvector of the transfer matrix 
R whose eigenvalue is close to 1, and let pn be a perturbation of the stationary state, such that 
(A(0)),a (average of A at time 0 in the state p,) is given, then the dissipation is 

(A(At)-A(0))-(A(O)),U(A- 11, 

while the fluctuation is 

((AtAr)-A(O)))-(A- W&42),a)+W). 

The elimination of X- 1 then provides the analog of the fluctuation-dissipation relation in a 
nonequilibrium stationary state. 

Finally, we state a generalization of the Onsager reciprocity relations for a general nonequi- 
librium system. The Onsager coefficients Lkj are not, in general, symmetric, but they are sym- 
metric in the case of detailed balance dynamics. 

In general, most of our statements (with the exception of the statements of Sets. II A and 
II B), hold for states near the stationary state, or for stationary states near an equilibrium state of 
reference (and an R matrix near a detailed balance matrix W). In our general framework, it is 
difficult to estimate how “near” one must be so that our statements remain valid. In particular, we 
do not discuss criticality (although everything we say is valid in this context too). Finally, we 
present a general expression for the stationary state of any stochastic matrix R. This is potentially 
important: for equilibrium theory, merely writing down the Gibbs state, exp( -pH), is a major step 
toward calculating various quantities. Our expression for the state is in terms of a sum over 
spanning trees built out of R and is reminiscent of a path integral formula; actually it is a 
“tree-integral formula.” At the computational level this may turn out to be difficult to work with. 
(An Ising model with 5 spins has a 32X32 transition matrix. The number of spanning trees on 32 
objects is about 1045.) However, for formal manipulations it should be useful; for example, it 
could lead to an abstract definition of nonequilibrium phase transition. 
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II. DISSIPATION DURING THE RELAXATION TO THE STATIONARY STATE 

In the following, X denotes a discrete space with points x,y,... . We start by recalling elemen- 
tary facts about probability distributions and their entropy on X. 

A. Relative entropy of two probability distributions 

Let p and 4 be two probability distributions on X. The relative entropy is defined to be 

P(X) 
s(Plq)= -x2& Pb)log 4(x)’ 

By convention, 0 log O=O. It follows that 

s(Plq)so. 

The proof is immediate. We have 

(2.1) 

S(plq)= -c P(X)& ps=-x p(rJL(g), 

where L(,$)=[log 5. But L’(a=l+log 5 and L”~)=(l/~>O, so L is convex. As a consequence, 
L(C,q(x)a(x))KZq(x)L(a(x)), provided C,q(x) = 1. So 

S(plq)S-L 
i 

p(x) 
c q(x) q(x) =-L(l)=O. 
x i 

Remark: If pis an equilibrium distribution of the form F(x) =exp(-PE,)/R, the quantity S is 
(up to ,a sign) the corresponding thermodynamic potential. Specifically, S( qlp) = p[ p- FJ , 

where F = - T log F (the usual free energy) and F, = ( E)g - T( -Zq log q). 

B. increase of the relative entropy 

The result below, Eq. (2.2), is derived as in Ref. 23 but adapted to our notation. 
We consider two distributions po,qo and a Markov chain on X, with transition matrix R,, 

Wxy=Ly is the probability that starting from y, one has a transition y--+x in unit time step). We 
call pl, q, the probability distributions at time 1, 

~dx)=c R,,Po(Y), q,(x)=2 R,,qo(y). 

Then 

~(Pol~o)~~(Pllql). (2.2) 

Proof Consider the states of the Markov chain at times 0 and 1, namely {x0 ,x1}. If the initial 
probability distribution is po, the joint law of {x0,x1} is P(xo,xl) = Rxlx$,-,(xg), and if the initial 

probability distribution is qo, the joint law of {xo,xl} is Q(no,xi) = R,l,OqO(xo). Then 

WOJl) 
S(PIQ)=- c P(xo,xl)log Q(xo x1) = -& R,,gpo(xo)log’~‘S(polqa). 

“0 4, , 

Now, we compute S( PI&) in a different way. We can write P and Q by conditioning the past x0 
knowing the future x1 in the following way: 
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where p t(x,) [resp., q,(x,)] are the distribution probabilities of x,, the initial distribution of x0 

being p&d [rev., q&0)1, and where rxlxo is the distribution probability of x0, knowing that the 

position at time 1 of the chain is xt [given the fact that the distribution of x t is p t(x,)], and, in the 
same manner, sxlxo is the distribution probability of x0 knowing that at time 1 the position of the 

chain is x t [given the fact that the distribution of x t is q 1 (x 1)]. 

Then the same computation proves that 

where 

S(r,,,*ls,,,*)=-C rXIXo log hso. 
X0 sxl"O 

So we have 

Remark: For j7=exp( -PE,)IZ, this shows that F, = CE,q(x) - TS( q/ 1) can only decrease. 
(This F, is the same as defined in our remark at the end of the previous section.) 

C. Computation near the stationary state 

Although EIq. (2.2) is known in the information theory context, the matter we now discuss 
appears more relevant to physical and chemical systems as such. To the extent that similar or 
weaker results are known, they arise in the statistical mechanics literature. As we proceed, we 
shall give references wherever appropriate. In any case the results we now derive are not contained 
in Ref. 23. We shall see that they are completely general and do not refer to any special feature of 
the physical or chemical systems we consider. 

As above, our system is described by a state space X and its evolution can be represented by 
a stochastic matrix R,, (which is the probability of a transition y-+x in a unit time step At). We 
assume that R has a unique stationary state F(x) satisfying 

iW=c R,,ZYL 
Y 

Remark: Note that by virtue of (2.2), for any q, 

WqbPS(qlp3. 

We consider a neighboring state ps(x), where S is a small parameter, namely 

where 

(2.3) 

(2.4) 

cp(x,S)=6q1(x)+S2p2(x)+-* . 

Then, for small S, it follows that 
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where ((p:)p is the mean square average of cpl in the state E 

(2.5) 

Proof We start from the definition 

Pa(X) 
s(Pm=c Ps(X)l%T jqq-’ 

Then 

Now we have Epb{x) = 1. Therefore %3p,-(x)/XT=0 and Zd2ps(x)ld8=0. It follows that 

dP&) 2 
scPm--;~ j--&j 7 * 

i il 6=0 

But 

dP&) 
- 6~o=Pa(~MX). 

3s 

D. Variation of entropy near the stationary state 

We again consider a state ps(x) near the stationary state, and for simplicity we drop the S 
index. We note that 

p(x) =Fb)exp(~nb) + a2432(x) +. - *I. 

We consider at time step At (one time step) the evolution of p, namely 

p(-dt) = 2 R,,P(Y ). 
Y 

We know by Eq. (2.2) of Sec. II B that 

~(~bl~~(p(~,A~)Ifi, 

but here we shall find the difference between these two entropies. We can write 

p(x,At)=F(x)exp(S+,(x)+ S2$2(x)+...). 

Now 
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~x)exp(g~l(x)+621C12(x)+...)=C R,y~y)exp(~~l(y)+S2~2(y)+~~~). 
Y 

Comparing the terms of order S, we find 

c R,,~~Y)P~Y)~ 
Y 

or in vector notation, 

Then, in our context, we have 

(2.6) 

(2.6’) 

Wt~&)lFl-St~lp3--; 1 ---=R dias~~~l)2)~(ts~~)2)~]. (2.7) diag p 

We shall study a lower bound for this quantity. To do this, we maximize the quantity 

1 

max (i 
2 

-R dhP4ol , diag p i) i 

subject to the conditions (&;=l 
Xgb(x) = 1, so that Zeta =O.] 

and (~t);=O. [The last condition is a consequence of 

To find this maximum, we introduce a Lagrange multiplier p for the constraint (rp:);= 1 and 
we assume that 50, has been found. Then, for any variation cpt + it, we must have 

2 Wx)[&R diagFvl)x( &R dkzFe1) --PE fi~(x)~~(x)=O. 
x x 

Rearranging, the factor of E*(X) must vanish identically, so that 

‘R diag 
1 

0 
= R(diagFln=,wcp. 
P 

(2.8) 

Denote M=‘R (so MXY= Ryx). We notice that the adjoint M* of M for the scalar product, 

(uIw)p=C Ftxbtx>*wtx>, (2.9) 

is just 

and so Eq. (2.8) can be rewritten as 

MM*R=wl f 

(2.10) 

(2.11) 
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MM* is self-adjoint with respect to the scalar product ( 1 )p. Moreover, all its eigenvalues 
are obviously positive. Call N= MM *. We show that all eigenvalues of N are less than 1. Let cp 
be eigenvector of eigenvalue ,u, 

maxlNdy)lsC Rx, & R,,~z)Icp(z)l~maxlcp(z)l 
YCX z 

2 R,,zl) 
z 

but because of Eq. (2.1 l), Nq=p.cp. We see that if cp+O, @l. 
Obviously the matrix N=MM* has the eigenvalue I with trivial eigenvector (1) because 

z R,, & R$(z>= 1, for all y. 

Now in the variational problem above, we considered an eigenvector cpi that is orthogonal to the 
trivial eigenvector (1) (because we imposed (cpi),-=O). So, we have proved that 

S(p(.,Ar)lp3-S(plp3~~(S250:),-(1--Ccmax), (2.12) 

where hax is the maximal eigenvalue of MM* corresponding to an eigenvector cp, orthogonal to 

the trivial eigenvector { 1). 
It remains to prove that hax<l. Suppose that u(x) is an eigenvector of eigenvalue 1 but 

different from the trivial eigenvector (1); thus V(X) is orthogonal to { 1) for the scalar product 

( I ),-, 

We have 

u(x)=c R 
1 

- Ry$u(z). 
YJ yx ZY) 

But F(x)#O for all x, so that at least one v(x) must be negative. As a consequence, we obtain 
from the preceding inequality a strict inequality, 

or finally 

maxlu(x)l<maxlu(z)l, 

XEX ZEX 

which is a contradiction 
Remark I: All this assumes that F(X) f0 for all x because we need to define ~/F(X) for all X. 

This is the case if R is irreducible. If R is reducible, one can sometimes introduce small matrix 
elements to make it irreducible while preserving its essential features, as in Ref. 22. 

Remark 2: This “universal” inequality, 
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is a kind of fluctuation dissipation inequahy for nearby states, p, because the left side is the 
dissipation (in one time step) and the right side involves a fluctuation (8&) of the relative free 
energy of p with respect to j7 (and a factor that is 1 -c(max). 

Remark 3: If R satisfies detailed balance, then 

M*=‘R 

and 

In general, we see that the relevant operator is MM” and not M2= (‘R)2. 

E. The notion of excess work 

The notion of excess work has been introduced by Ross, Hunt, and Hunt” and’we can give a 
meaning to it in our abstract setting. 

We start from a stationary state j?(x) (and as usual the stochastic matrix, R). We can do two 
things. 

(i) We force a variation of the state j7 (by an external process) so that we have a displaced 

state P(X), 

The relative cost in entropy for doing this is 

s(PlFI- - f c&.4~~~ 

as we know from Eq. (2.5). 
(ii) We start from a certain state q, 

4(x) =FCx)exp(Stl/l(x) f S2$2(x) + e-m), 

and let it evolve in one time step At in such a way that the variation of free energy is exactly 
&(x) (up to 8), so that we want 

This implies 

FMcp,b)+W)l=~ R,,FCYMY). 
Y 

The variation of entropy is then easily seen to be 

S(q(.,At)lp3-S(q(.)lp^)=-; ((cp~),-+Wh),-)~ 

(2.13) 

, 

with $i fixed by Eq. (2.13), or 
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[I-diag(i)R diagd$,--q,, 

Alternatively, 

diagZcpr+cpr)=R(diag~&=-R(diagfi I-drag p R dragp [ . (l) . j-k 

The excess work W,,, is given by (see Ref. 10) 

w,,,=S(q(.,Ar)lp^)-S(q(.)I~+S(plp^) 

= -s’C pl(~)cp~(~)(cp~(~)+ccl,(x)) x 

= 8°C F(x)@,(x) 
x 

‘R diag $R diag p+, 

= s2[(~llM~~)-(~,lMM*~~)l, 

where M = ‘R, M* =diag( llpTR(diag ~3, and the scalar product has the weight F as usual. One 
can rewrite this as 

wexc=a2[ ( @IiF Gl) -(@,IMM*,I)] (2.14) 

Notice that if R satisfies detailed balance, we have seen that 

M”=M=‘R, 

and so, because ‘R -- ( ‘R)220, because ‘R has eigenvalue less than or equal to 1, we have 

which is exactly Ross’ result in our abstract context. 
Remark: Ross et al. derive this result for the stochastic matrix corresponding to a master 

equation of a linear chemical system, in which case it is known that the master equation satisfies 
detailed balance. This is not the case for nonlinear chemical reactions. But we still have an 
expression for the excess work, in general. 

Remark: For a stochastic matrix S that ,is self-adjoint with respect to a scalar product, it is 
clear that 
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Moreover, to prove that the excess work is positive, we would have to prove that 
M + M* - 2MM* is a positive matrix self-adjoint with respect to the scalar product ( I )p. 

III. PATH ENTROPIES AND DISSIPATION TO MAINTAIN THE STATIONARY STATE 

To maintain a system in a nonequilibrium state against an equilibrated environment, it is 
necessary to dissipate energy. We introduce measures for the rate of dissipation of free energy. 

A. Absolute path entropy 

(a) Measure on a space of paths. Let X be our usual state space. A path up to time T( T= n At) 
is a sequence r={xo ,x1 ,.. .,xr} of points in X. A path is then a sequence of transformations. For 
example, a Carnot cycle or a biochemical cycle will be realized by closed paths. 

If p is an initial distribution, we define a probability measure pCL(RVP)($ on the space of paths 
by the formula 

dRTp)( r> = RxTXr.m ,R+ ,xTm2* * *Rx,x$txo). (3.1) 

(b) We define an absolute entropy as 

a(Tkp)= - c jdRq y)log /P*P)( y) 
y=path up to T 

T-l 

As usual, we define recursively 

(Rk~)(x)=C R,,(Rk-‘p)(y>. 
Y 

Then 

? 
dR*P)t ybg Rx,+lxn= c Rxrrr-; * *Rx,+,x, 1% Rxn+,x,(R”~k) 

=,,z,,,, Rx,+,x, 1% Rx~+,x,(~“P)(~~). 

But 

CR 
X,+1 

xn+,,,(R”~)(x,) = 1. 

Because L.( 6) = 5 log 6 is convex, we have 
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c R *?I+ I Jn .n+,x,tR”p)(410g Q+,x, 

(R”~)txn) 1 g c Rxn+,,,W~k,) ) O ( XII 
= 2 tR”+‘~)(~,+,)los(R”+‘p)(x,,l) 

Xn+l 

=--S(R”+‘p) (absolute entropy of R”+‘p). 

Finally, 

T 

~TIRJ~+~ UO). 

In particular, if p =F, 

a(TIR,ac(T+ l)Stfi. 

B. Relative entropy on paths 

The preceding concept involved the transition matrix R alone and, as such, did not measure 
the cost of the process R itself. Now, to quantify the extra dissipation needed to maintain a 
nonequilibrium state in a larger environment, we represent the action of this environment on our 
system by a stochastic matrix W satisfying the detailed balance. Namely, under the influence of W, 

the system X relaxes to an equilibrium state peq and we assume that for all x,y, 

W&q(x) = KyPeq(Y 1. 

On the path space of X, we can consider the measure pCRSp), as well as the measures p(w,qf, 
( W,P,) 

P . 
The extra dissipation needed to maintain the R-dynamics in the larger equilibrium environ- 

ment where action on the system is given by W is represented by the relative path entropy: 

This can be rewritten using our basic quantity, S(plq), the relative entropy of Eq. (2.1), 

R R 

Y(Z-f(R,p),( W,q))=S(plq)- c 
y=path to T 

p(R*P)( y)log W’Pr-‘“*;‘xo . 
XflT-,“’ xlxO 

Analysis of 97 In the preceding equation, the second term is 

T-l R 5+ 15 
#dRyP)( y)log w. 

Xi?+ I+fl 

(3.2) 

Now consider 
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R 

Tp 
(Rq y)log 

X”+ ,+n 
-=x zxn W~)(x,)Rx,,,x, 1s + w 

Xn+lXn n ’ X”+ lXn 

R R 

=c tR”~)(xn) c %,+,xn w 
xn+lx” Z!L!Slog~. (3.3) 

XII X,+1 Xrz+ IX, %I+ IX” 

Using the convexity of tlog 6, this is 

R 

c Kn+,x, j$+ 

R 

c wXn+lX, j$+ , 
XfI+i %I+ lXll x,+1 x”+lx” 

and so, this is positive or zero because Cx,+,R, 
n+1-% 

= 1. Let us define 

A,flRq,W)= -c R,,q(y)log +. 
X,Y X.Y 

(3.4) 

Then, from Eq. (3.3), 

T-l 

~(TItR,p),tW,q))=S(plq)+ tzo A,-VRR’p,W), 
(3.5) 

and we have proved above that 

A,Y(R,q,W)GO. (3.6) 

In particular, 

3TI(RpMW,q))- (3.7) 

Note that this is also decreasing with T, i.e., each increment A,.Y’(R,R’p, W)SO. 

A Particular case: Take p =F, the stationary state, so that R’F=j? for all t. Then 
S(Tl(R,p3,(W,q))=S(dq)+T A,S(R,j?‘,W). In this case, the fundamental quantity, 

A,Y(R,j?,W)=-2 R,,F(y)log 2 
XY XY 

(3.8) 

is the rate of dissipation per unit time step to maintain the stationary state jY(in the R-dynamics) 

against the W dynamics. 

We introduce 

Rx, = WxyefxY. (3.9) 

Then 

WTG3V=-~ K,FWf,,. (3.10) 
XY 

Remark: If fXy = cpX-- ‘py then it is immediate that A,S( R,F, W) =O. But in this case we would have 
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so that e%E(y) would be the equilibrium state peq of W. But also ZxRxy= 1, so that 
ErWxye-(Px = e -%. This implies that {e-+‘x} would be the left eigenvector of eigenvalue 1 of W 

and (in the absence of degeneracy) this would be a constant. Then pwould just be the equilibrium 
peq and R=W. 

C. The minimal rate of dissipation of a given state 

In this section, we start with a given E (in a detailed balance dynamics W) and we want to 
build an R-dynamics for which p is stationary but that minimizes the dissipation of energy with 
respect to an underlying detailed balance dynamics W. The rate of dissipation is A,.Y( R,F, W). 

We define, as in Eq. (3.9), 

R,, = Wxye f 7 w 

and we want to minimize 

IA1.5V,ZW)I = c Wxyefx@b)fxy 1 
XY 

subject to the conditions 
(i) C, W,,dw = 1, for ally; 
(ii) R preserves the stationary state F’, or ZyWxyefxrj?(y) = F(X) for all X. We examine the 

effect of a variation 8fxy on IA,.Y(R,F, W)l, 

(3.11) 

The variations of the two constraints are 

6 C WY, exp(f,J - 1 = C Wyx exp(fyx) Vyx , (3.12) 
Y Y 

6 i C WY, ew(fyx)Fb) = C Wyx exptfy,)Zx> afyx. 
Y i X 

As usual, we introduce two Lagrange multipliers, A, for the constraints (3.12) and CL, for the 
constraints (3.13), and write 

O=~AIJTR,EW)I+C A,S c Wyx exp(f,,)-1 
X Y 

+ C ~~6 C Wyx exp(fy,)Fb)-Fty) 
Y X 

After rearrangement, this gives 

O=C sfyx ev(fy.,)WyxCfi~(x)tl +fyx)+h+~yFC~)I. 
YX 

If W,,=O, we have no condition. But, if WY,+0 we obtain 

fyx=- 3 --LLy- 1, 
P(X) 
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and then A, and py are determined using the two constraints: 

1=x W,,exp 
xx 

( 1 
-- exp(-py- 11, 

Y 8x1 

E(Y) = C Wyx exp 
x ( i 

-&j ew(~~y-llfix). ’ 

Then, we see that R,,=O when WY,=0 (this is our ansatz anyway), and 

R,,= Wyx exp(p,- ox>, (3.14) 

when W,,#O, so that we can always use Eq. (3.14). Using (3.14), we can compute the rate of 
dissipation 

kV’VGWl=~ Wyx exp(fyx)fyx~x). 

But 

C Wy,emo~j7(x) =e-PyF(y), C Wyxepy= e”xx, 
x Y 

so that finally the minimal rate of dissipation is 

(3.15) 

D. Analysis near equilibrium 

In this section, we consider an equilibrium state peq with its detailed balance dynamics given 
by the matrix W. We further consider a nonequilibrium state F, which is close to peq, whose 
dynamics are given by a (non-detailed-balance) stochastic matrix R, close to W. We fix the 
notation as follows: 

(3.16) 

RXY= W,, expCf(x,y,S))= W,, exp( SfL.‘+ S’f!$‘+ *e*). 

1. Identities satisfied by fl’) and q, 

(3.17) 

We differentiate the relation EyRyx= 1 with respect to 6 at S=O. This gives 

-q WY&‘= 0. (3.18) 

Similarly, the relation ~(x)=Z,R,,~(y) is differentiated with respect to Sat S=O. This implies 

P&)d4=c Wxyfyt’Pq(Y)+Iz WxydY)Peq(Y)~ 
Y Y 

(3.19) 
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or using detailed balance, 

KyP,(Y) = WyxPeqbL 

m=~ w,xr’,?+c, W,,%(Y). (3.20) 
Y 

2. Variation of the entropy near the equilibrium state 

Suppose that we start from the stationary state j?(z) and let it evolve spontaneously using the 
detailed balance dynamics W. We can compute in one time step At, the variation of relative 
entropy as in Sec. II D, except now P;p, and R+ W. We obtain 

& 

2 

W diag peqe 1) 1 . 
=l 

p-4 

But for detailed balance we have (( Udiag peq)W diag P~)~~=( l/p,,(x)) W,,p,,(y) = Wyx . Thus 

S(~.,At)lp,)-S~.).lp,)=; [((~?),,,-((‘w~l)~),~9]. (3.21) 

3. Rate of dissipation 

We now compute the rate of dissipation jA,flR,$,W)l. In Sec. III C, we obtained 

IAPTR,F,W)I=~ exp~f(x,y,s))~y)f(x,y,S), 
XY 

which is evidently 0 for S=O because f(x,y,O) =O. We expand this quantity in powers of 6 up to 
second order. We write 

~x)=P,q(x)+6Pl(x)+o(62). 

(We will not need the second order term in j?.) 

IA,.F(R,~Qv)~=~ wxy 
i 

i+sfi:)+a2:,‘+~(fl~~)‘] 

x{P,q(Y)+ ~Pl(Y)ws,:‘+ ~2fzyl+w3). 

The first-order term in S is 

7 Peq(Y )T Wxy.fg. 

But this is 0 because of relation (3.15) above, 

T Kysx:i= 0. 

So we compute the second-order terms in 8; these are 
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c W,,P,,(Y)(f’,z,‘+(f(,:.))2)+~ WxygPdY). 
+.Y X.Y 

But expanding Z,R,, = 1 up to second order gives 

2 W ff*)=O [relation (3.18) above], “Y XY x 

c WXY(.@ ) x 
+ ; (j-g)” =o. 

There remains only a single term, so that 

kb-WZJVI= $ ; Kyp,qWtf(,;))2. (3.22) 

4. Minimal rate of dissipation 

Starting from this last equation let us compute the minimal rate of dissipation, given j7and W. 

We thus have to minimize IA,.Y(R,F, W)l with respect to j$) under the conditions (3.18) and 
(3.20). 

Introducing Lagrange multipliers X,, ly for (3.18) and (3.20), we see that 

c WxyPeq(Y)f(,;) (sf,:‘)+~ a Wyx sfj.l’+E id Wyx &$=O. 
X.Y x Y x Y 

This implies that 

Wx,Pe,(Y)fg)+ wxyxy+ cLxwyx=o* 

Using detailed balance, Wyx = W,,p,(y)/p,,(x), we see that either 

(1) Wxy=O, or 

(2) p+L l!lL(J 
P,(Y) + Pe,b) ’ 

which is exactly what we obtained above in a more general setting, namely 

Let us assume that j$’ has this form and determine (T and p using the constraints (3.18) and (3.20) 
above. This gives the following. 

(1) For the constraint (3.18), Z,W,,fi~‘=O, 

a(x)=C p(y)W,, or f~=p’W. 
Y 

(3.23) 

(2) For the constraint (3.20), or(x) = Z,W,J$‘+ ZyW,,,~l(y), 
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cpdx)=~ Wyx(PWdY))fC wy,cpltY) 
Y 

=Pw-~ atYw,x+C wy,cp*tY) 
Y 

=@tz-‘Ww’W))~+~ Wy,dY). 

This can be solved as 

(p*(Z-‘W)=p(Z+‘W)(Z-‘W) 

or 

cp1 =p(Z+‘W). (3.24) 

Now we can compute the minimal rate of dissipation (to maintain pagainst the thermal detailed 
balance dynamics given by W), 

kWV.,;Wl=$ z Wxy~qC~)lfi;))2=$; WxyP,q(Y)(p(4-(+(Y))2. 

Let us expand, using (3.23), cr=p’W, 

c Wxy(Y)(P(x)-c+(Y))2 
X.Y 

=F WxyP,(Y)Pwx~~ Pq(Y)Pb)dY)+~ WxyPe,(Y)4Y)2. 

We consider the three terms above, 

; W,yP,(Y)Pb)2=c P,b)Pb)2-2c WxyP,(Y)Pb)dY) 
x X.Y 

= -22 (P’W)yP,(Y)(P’W), 7 
Y 

c WxyP,(Y)dY)2=C Peq(Y)a(Y)2=C P,(Y)((P’W)y), 
X.Y Y Y 

so that 

IbWGW)I= f (~~~ll;,-ii~‘W~l;~)~ 

5. Comparison of the rate of dissipation and the variation of S 

We come back to relation (3.21), namely 

S(~.,At)lp,,)-S(p^lp,)=; ~II~~ll~~-II~~f~ll~~l~ 

(3.25) 

(3.26) 
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We see that this is similar to the relation (3.25) for the minimal rate of dissipation in the R- 

dynamics, except for the fact that ql=p(Z+ ‘W). [See the relation (3.24).] 
We know that Ep,(x) pi(x) =0 so that ‘pl can be expanded in terms of the left eigenvectors 

of W with eigenvalues different from 1. Because of the (3.24), the same expansion is possible for 
p, and we therefore write 

where @’ are the left eigenvectors of W of eigenvalue less than 1. 
Moreover, { @LL’} form an orthonormal basis for the equilibrium scalar product pq (because 

‘W is self&joint for this scalar product due to detailed balance). It follows that 

st~.,At)lp,)-S(~.)Ip,)= f 2 lc,121(1 +x,)12t1-Ix~I) II 

and 

IAI~R,~W)I = ; F Ic,12( I - lx;l). 

Because O~]k,l~l, we see that we always have 

(3.27) 

The interpretation of this inequality is clear. If we start with the stationary state pand switch off 
the R dynamics (so that pI starts to evolve by the detailed balance dynamics toward p,,), the 

dissipation is less than four times the cost to maintain p using the dynamics in the larger envi- 
ronment (acting with W) on the system. 

IV. FLUCTUATION AND DISSIPATION FOR SLOW VARIABLES 

A. The macroscopic entropy 

7. Fast and slow variables 

Usually, a system with state space X is characterized by a small number of “slow” variables 
and by other “fast” variables. Such variables can be distinguished in terms of the eigenvalues of 
the master equation, i.e., in our case, in terms of the eigenvalues of the stochastic matrix R. 

Essentially, the slow variables are functions f on X, such that their set of values {fx} (x E X) can 
be decomposed on left eigenvectors of the matrix R associated with eigenvalues of R very close 
to 1 (but not equal to 1). 

In this section, we shall assume that the system is characterized by only one slow variable 
A,(x EX) taking values a,~‘,... . We shall denote by u the other coordinates, so that a point x in 
X is identified with a couple (a,~), with a=A(x). 

2. Reduced description 

At this point, it is customary to describe the system by the variable A alone. This is the 
reduced or macroscopic description, which is a coarse grained description of the full description 
by ( LZ, u) . We also must change the time scale, because in the time scale At (of the R dynamics), 
A does not evolve in an appreciable manner. So the relevant time scale becomes much longer, and 
the general idea is that, relative to this longer time scale, A varies but u readjusts itself instanta- 
neously to its relative stationary distribution. This is the idea of all macroscopic descriptions (see 
Refs. 1, 6, and 7, among many references). 
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In our context, we can make this precise in the following way. We start as usual from a 
stationary state F(X) and we define a reduced (or macroscopic) state p by 

F(x) = {xex& )= 
x (1 

l Fb(x)= c zv>. 
u 

(4.1) 

Following customary practice, we define a function T,(a) by the formula 

F(a)=exp(-Z(a)) (4.2) 

(see, for example, Ref. 1, in the context of an equilibrium situation, and Refs. 2, 6, 10, and 24 for 
generalizations to nonequilibrium situations). Here C(a) is a Lyapunov function for the reduced 
evolution of the A variable, as we shall see below. 

In the case of equilibrium, C(a) is the Einstein entropy. We shall assume now that the 
average of A in the stationary state is 0. 

(A)& A(x)jYi(x) =O. (4.3) 

3. Relation to the relative entropy 

Let us assume that we have prepared the system in the state jTi(~(x> (the stationary state for the 
R-dynamics), but that we observe in a particular sample of the system a certain fluctuation of A, 

so that A takes a value a #O. Then, the probability distribution of the fast variables u, given the 
fact one observes the fluctuation a of A, is the conditional stationary probability distribution 

Zw) 
F=(u)= - 

F(u) ’ 

and the quasistationary state is thus a state qa , 

q&)=i?,(u)S(A(x)-a). (4.5) 

It follows immediately that the relative entropy of qa with respect to F, namely S(q,lfi [see Eq. 
(l.l)], is in fact, -C(u), 

S(dfi= -C(a), (4.6) 

where X(u) is defined as in Eq. (4.2). We calculate this as follows. 

;?,(u> 
s(q,(fi=-c Ea(u)S(A(x)-u)log-=- log -l -=-C(u). 

a Ftw) P(a) 

This explains why Z(u) could be taken as a Lyapunov function for the evolution of a. If we wait 
an appropriate time, a would vary by a small quantity &, while the fast u variables would recover 
their conditional stationary distribution. Our earlier assumption on time scales is precisely the 
assumption that such an appropriate time exists. Then the state qa would become qa+&* by the R 

evolution, the variables u keeping their conditional stationary distribution. Under this circum- 
stance, 

since qa+6a=Rqa [cf. Eq. (2.4)]. This implies 

J. Math. Phys., Vol. 37, No. 8, August 1996 
Downloaded 27 Oct 2000  to 128.153.23.115.  Redistribution subject to AIP copyright, see http://ojps.aip.org/jmp/jmpcpyrts.html.



B. Gaveau and L. S. Schulman: Nonequilibrium statistical mechanics 3917 

Iqu+ Su)Gqu). 

B. Fluctuation dissipation, in general 

The usual near-equilibrium fluctuation dissipation theory is a formal consequence of the fact 
that a certain state peq is a stationary state of the W evolution: Writing the stationarity of the 
equilibrium state explicitly leads to an identity that can then be reinterpreted as a physical relation 
between fluctuation and dissipation (see Refs. 1, 6, 12, and 25 among many references). In the 
language of the previous section, if we are in a stationary state, and if we observe an actual 
fluctuation of A equal to a [this fluctuation has a probability p(u)], then the dissipation induced 
by the reduction to 0 of this fluctuation is related in a natural way to this fluctuation (in a linear 
way), the proportionality coefficient being some given “transport” characteristic of the system 
(see Ref. 23). 

We will show that it is possible to derive the fluctuation-dissipation theory in our context 
using the formalism of Sec. IV A. Moreover, our demonstration is not limited to near-equilibrium 
situations (and gives, in fact, a correction to it, as well as a finite-size effect correction). 

There are various ways to derive fluctuation-dissipation theorems, each of which provides, in 
general, extra information, in particular about the transport or relaxation coefficients. Here we 
shall relate the “transport” coefficient to the eigenvalues of R. In our abstract context, we shall 
choose an analog of linear response theory (as presented, for example, in Ref. 25). We produce 
the fluctuation of the macroscopic variable A using an external force that modifies the stationary 
state F 

C. Linear response theory: General computation 

The general situation is as in Sec. IV A: we distinguish a variable A(x) (x EX) and other 
variables u, so that x = (a, u) , where a = A(x). Moreover, we have the stationary state F(x) with 
respect to the R dynamics as usual. We finally assume that A has average 0 in the stationary state 

[Es. (4.3)1. 

1. The displaced state 

We define, in analogy with the analysis of Sec. II B, a displaced state, 

p,(x) = $ F(x)exp(crA(x) + e++), 
a 

(4.7) 

where CY is a small parameter and the ellipses represents higher-order terms in Q. Then Q can be 
viewed as a “conjugate field,” aA being an extra energy (this field is imposed by an external 
source or observer on which the system does not react). 

We have, because (by assumption) (A( . )),- = 0, 

Z,=c F(x)exp(crA(x)+...)= 1+ g (A(x)*)~+-.- , 
x 

so that one can suppress Z, as being higher order in LY, and write simply 

Now, we have 

so that for small LY, 

P,(x)=F(x)exp(aA(x)+..*). 

(A),~=(A)~+(Y(A*)~+... , 

(4.8) 
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and (A*),_ appears as usual to be the susceptibility for A. 

(4.9) 

2. Variation of the mean value 

We start at time t=O from the state p,(x) given by (4.1). In one time step, the state becomes 

P&Jt)=C R,,P,(Y)=C R,,fiy)exp(~A(y)), 
Y Y 

and at time At. 

bWWpa= c Nx)p,(x&). x 

Expanding 

@(W,,=~ A(x)R,,Ft~)fa~ A(xR,ZY>A(Y>+-* . 
X.Y 1.Y 

The first term is 0 because this is ZJ(x)j?(x). Finally, we have, modulo terms of order 2, 

@W-A(0))pa=a~ A(x)(R,,-G,,)A(y)~ty). (4.10) 

We can also eliminate LY using ECq. (4.9) and get 

(4.11) 

3. Second moment 

We now want to compute ((A(At) -A(0))2),a 

(a) Computation of (A(At)*),,. This is, modulo terms in c?, 

(A(At)*),,=C A(x)*R,,~y)exp(aA(y))=(A*),_+(yC Ab)2R,yFC~M(~). (4.12) 
XSY +.Y 

(b) Computution of (A*),,. Again up to order c?, 

(A(~)~),~=(A~)~+c~(A~)~. 

(c) Computation of (A(At)A(0)),e 

=z Nx)R~~A(Y)F~Y)+$ A~R,A(Y)*FCY>. . ’ 

(4.13) 

(4.14) 
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(d) Compuhon of ((A(At)-A(0))2),a From Eqs. (4.12)-(4.14) we obtain, after rearrange- 

ment, 

((A@thW))2),a= -‘g A(x)(R,,- 4y)A(y)S~)+a~ P(x>~~Y>(R,,F~Y) 

-R,,pc(x>)-~~)A(x)A(y)*(R,-~,,)l. (4.15) 

We see that this term is again of order A.t because R,, - S,, is of order At and because we can 
rewrite 

&,AY) -R,&) = (Rx, - 4,)Ft~) - tR,,- ~,,)fix). 

D. The case of a left eigenvector of R 

We shall now take for A a slow variable of the system, i.e., a variable that decays in one of the 
slowest possible modes. One way to do this is to choose for A a left eigenvector of the transfer 
matrix,R with eigenvalue A near 1 (but not exactly 1). (In fact, for our purposes the essential point 
is that the eigenvalue associated with A satisfy l>X%>lh’l for all other eigenvalues h’. The 
closeness of X to 1 is not used significantly.) 

7. First moment 

We assume for all y E X, that 

hA, = 2 A,R,, . 
x 

From Eq. (4.11) we obtain to first order in a, 

@(At) -A(WPL2= (A((%,,@ - 1). (4.16) 

2. Second moment 

We obtain from Eq. (4.15), 

((A(A~)-A(0))*),~=(~-1)[-2(A2),--~(A3),-l+~~ A(x>~A(Y)(R,,~Y>-R,,~x)). 

(4.17) . 

3. The case of detailed balance 

When R satisfies detailed balance, the second term on the right-hand side of Eq. (4.17) above 
vanishes identically and 

((A(At)-A(0))2),a=(1-X)[-2(A2)p+cx(A3)F]. (4.18) 

Moreover, in this case, we can compute the rate of dissipation in one unit time step At starting 
from the state pa and using the R dynamics. This is 

(4.19) 

We saw the same result in Sec. II. To see the correspondence, take c+c~=A and notice that 
M=M* = ‘R, so that the ,u eigenvalue of MM* corresponding to ql=A is p=A2. 
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4. Fluctuation dissipation 

We return to the general (non-detailed-balance) case. If A is decaying slowly, X= 1, and 

S(p,(.,At)lp3-S(p,l~-(A2),_(1 --Xl. (4.20) 

Moreover, let us compare Eqs. (4.16) and (4.17) and let us assume that a(A3);=0. Then elimi- 
nating X- 1 from both equations, we obtain 

tNAtkNO)),e 
(A(w,a . (4.2 1) 

This relation is, in our context, the analog of the standard fluctuation-dissipation theorem. 
Example: The prototype of fluctuation-dissipation theory is obtained for a Langevin particle 

(of mass m = 1) with the equation of motion 

dx=v dt, dv= -fv dt+dB(t), 

where dB(t) is the white noise force, 

(dB(t)dB(s))=2DS(t-s). 

In the sense of our development, the “fast variables” are the sources of the noise. The variables 
x and v are “macroscopic” and “slow.” The Fokker Planck equation is 

This corresponds to a reduced operator (projected onto the slow variables) description of Z-R for 
the discrete time case. The space X consists of the configuration space (x,v) of the Langevin 
particle as well as the degrees of freedom that give rise to the white noise (that the Fokker-Planck 
equation absorbs into the diffusion coefficient). Take for A the function v. Then 

d2 
D jg-fv a+~ ; 

dV 
V=-fv, 

and v is an eigenfunction of L* with eigenvalue -f (but not necessarily of the full operator that 
includes the sources of the noise). Now let us consider, instead of a state p@, a state &v - vc). 
Then 

Whb~~-uo~=j- (v-vcMAt,vbo)dv. 

But 

d 
;;_m, aht (V(At)-uc)S(v-uo)=b (v-uoW,h%h&u I 

= L,m(v-uo)S(u-u,)du 
I 

= -fvo. 

In the same way, 
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j;yo dAt 
a((v(At)-v(0))2)6(u-uo)=l L,*(u-vo)26(v-vo)dvo=2D. 

Then our statement of the fluctuation-dissipation theorem [Eq. (4.21)] becomes 

d 
lim - ((v(Ar)-~(O))~)s(v-v~) 

At-0 aAt 

=2(~~),~ 
(dldAt)tv(At)-vo)s(u-v,) 

)I w&ruo) ’ 

or 

2D=2k,Tf, 

which is the usual Einstein relation for m = 1. So the relation (4.2 1) is the generalization of the 
standard fluctuation-dissipation theory in our context. 

Remark: For initial conditions far from the stationary state, dissipation may be dominated by 
the friction coefficients, “f ,” irrespective of the fluctuations. As such, this way of calculating heat 
production, etc., will not involve the fluctuations. However, the validity of these mean field 
calculations (and use off to derive heat production) does not contradict the fluctuation-dissipation 
theorem because it is a far from stationary-state situation. 

5. The general case 

In fact, Eqs. (4.16) and (4.17), even in the detailed balance case, are more precise than the 
fluctuation-dissipation theorem, because the fluctuation-dissipation theorem (in its usual state- 
ment) is the relation (4.21), relating these two quantities. In our case, we have separately derived 
each of the moments {A (At) - A( O))P, (the dissipation) and ((A (At) - A( 0))2),, (the fluctua- 

tion) separately, and related them to the spectrum of the transfer matrix. 
Equation (4.16) [for (A (At) -A ( O))P,] is straightforward. 

Equation (4.17) [for ((A(At)-A(0))),a)] contains a correction r of cubic order in A and first 

order in CY, 

Notice, also, that if we are away from criticality, both I? and (A3)p would be close to 0. 

E. Summary 

In a sense, the stand&d fluctuation-dissipation theorem is a tautology; namely, the assertion 
that the stationary state is a solution of the stationary equation (see Ref. 12). In our situation, we 
say more because we compute separately the fluctuation and the dissipation in terms of the 
spectrum of the transfer matrix and then deduce the relation between the fluctuation and dissipa- 
tion by eliminating the eigenvalue of the transfer matrix. Still, at our level of abstraction, all these 
identities can only be tautological. (The physics enters in judging the suitability of the stochastic 
description and the time scale separation.) 

We now summarize our results concerning the fluctuation-dissipation theorem. Let A be a 
slow variable of the system, so AR= XR for a A close to 1; it follows that (A)p = 0. Let 

P,(X) =fix(x)exp(aA(x) + O(a2)), (4.22) 
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be a neighboring state of the stationary state j?‘, so that 

(A)P,= a(A2),_+ O(a2). 

Then we have the two relations [see Eqs. (4.16) and (4.17)]: 
dissipation, 

tAtAt)-AtO))pa=tA)p~t~- 1); 

JZuctuation, 

((A-A(o))~),~= -2(x- ~)(A~),_+O(QA~). 

We thus obtain 
jluctuation dissipation: 

((A(At)-A(0))2)p,= 2 (A(Ar)-A(0)),Q. 
PO 

(4.23) 

(4.24) 

(4.25) 

(4.26) . 

In this form we have a statement relating changes in a variable as it returns to the steady state 
(“dissipation”) to its spontaneous fluctuations in that steady state. The term “dissipation,” sug- 
gesting energy flow, may not apply in all applications of this theorem. There will nonetheless be 
inequalities relating this “dissipation” to changes in the relative entropy that we have defined. 

Another (inequivalent) statement is that if 

then 

s01t~,At)l~-Stpl~~M~2~~),-(1-~max)t (4.27) 

where &ax is the maximal (non-l) eigenvalue of the matrix ‘R( l/j?) R diag (p3 [see Eqs. (1.1 l)- 
(1.12)]. 

F. Generalization to the case of n slow variables 

1. Entropy 

Let us now assume that one can find n slow variables A 1 ,...,A, for the R dynamics. Take these 
such that 

(Aj)~=O, for all j. 

For given values at ,...,a,, , we define 

Ftal ,...,a,)= c 
{xoXIAi(+)=ai for all j} 

fix), 

and we define a function 

C(a , ,..., a,)= -log F(Ul)..., a,). 

As before (Sec. IV A), we have 

Wal ,...,a,)= -stq,lp3, 
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4nb) = ~~ 9 S(Ai(x)-Uj), 

and C will be a Lyapunov function for the evolution of ~~,...,a,. 

2. General linear response theory 

We generalize the results of Sets. IV C and IV D. Call CX=(LY~ ,...,q,), where Lyj is a conjugate 
variable for Aj and define as in Sec. IV C, 

PAX)= ~FCx)exp 

n 

(Y 
zzl ~iAi+O(~‘) 

It is immediate that 

One also proves 

(A,(Ar)ai(o))pm=,IIl ajC Ai(X)(Rxy- a.ry)FCY)Aj(Y) + o(a2) 
X3Y 

and 

3. Choice of A, as eigenvectors 

We now choose the Ai to be left eigenvectors of R, 

C Ai(x)Rxy=XiAi(Y). 

Then, modulo O(d), 

and modulo 0( aA3) terms, 
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We can eliminate the eigenvalues Xi - 1 and obtain modulo 0( aA 3, terms, 

((A,(Ar)-Ai(O))(Aj(Ar)-Aj(O))),~ 

(AAAr)-Ai(0))pa (Aj(Ar)-Aj(0))p, 

(4(0)),a + 

which is the fluctuation-dissipation statement in our general context. 
Remark: If (R,fi satisfies detailed balance, Fvanishes nowhere and A is a left eigenvector of 

R with eigenvalue X, then j?(x)A(x) is a right eigenvector of R with eigenvalue A. When applied 
to the above equations and use is made of the orthogonality of the left and right eigenvectors of R, 

this implies a diagonal susceptibility matrix. In effect this says that choosing left eigenvectors of 
R as the slow variables chooses the macroscopic variables to be in a form diagonalizing the 
susceptibility. 

G. Onsager reciprocity relations for nonequilibrium states 

We consider a stationary state j7 for a stochastic matrix R, and we consider the observables 
A, ,...,A,, with 

(Al)p= 0. 

As usual, we define ~~=jYexp(Ccr,A~+***), and it follows that 

(A~)F= C (AiAj)Faj (4.28) 
j 

(up to powers of a2). We have seen that the relative entropy is 

G&Q = - & (4-Q; ‘(A,),~@,)pa~ 

so that the corresponding forces F, are given by 

(4.29) 

F 
k 

~ _ WJm 
d(A k)pol 

=T 6%A&1h)p,=%. 

Moreover, the current (in one time step At) for A, is given by 

Jk~(Ak(Ar)-Ak(O)),~=~ ajC Ak(x)(R,y-S,y)~Y)Aj(Y). 
j XY 

We can then write 

Jk=C Lkj(Yj’ c LkjFj, 
i j 

where 

Lkj'c Ak(X)(R,1.-S,l.)~((y)Aj(y). 
+Y 
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(4.30) 

(4.3 1) 

(4.32) 

(4.33) 
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In general, the matrix L, is not symmetric. However, when (R,p?) satisfies detailed balance, 
R,&(y) = R,,F(x), one can immediately see that Lkj’  Ljk . Thus, an absence of detailed balance 
in R is manifested at the macroscopic level. 

V. A PATH SUMMATION FORMULA FOR THE STATIONARY STATE 

A. Expresslon of the stationary state in term of determinants 

We consider a general N X N matrix A. Let us suppose that X0 is a nondegenerate eigenvalue 
of A and consider the right eigenvector u and the left eigenvector u of A of eigenvalue A,, so that 

Au=X,,u, vA=X,,u. 

We normalize u,u so that 

(5.1) 

Moreover, call M(X)ij the minor of the element (i,j) in the matrix M-A and C(X) the charac- 
teristic polynomial of A. Then one has the following identity: 

(5.2) 

This identity is derived in Appendix A, but can also be found in Ref. 26. 
We apply this formula to a stochastic matrix R and to its eigenvalue 1, which we assume 

nondegenerate. The right eigenvector is the stationary state Fj and the left eigenvector is ui= 1 for 
all i. The normalization condition of Eq. (5.1) is the normalization of the stationary state. Then Eq. 
(5.2) reduces to 

(5.3) 

In particular, it is convenient to set i=j and arrive at 

_ Mii(l) 

Pi=dc( 1)ldX . 

Using the normalization condition, we deduce the following identity: 

dC(l) v 
r=Fl Mii(l) 

(this is a kind of partition function formula) and 

Mii( l) 

pi=ZIN_ lMjj( 1) ’ 

(5.4) 

(5.5) 

B. Tree summation formula for the stationary state 

We shall now state and derive a “tree integral” formula for the stationary state from Eq. (5.5). 
This result has been independently discovered on several occasions (including by us); we will 
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include our derivation, since the result is not known in the physics literature and is of interest for 
our statistical mechanics application. See Refs. 27-29, which may also be consulted for some of 
our tree-theory terminology. 

We consider a stochastic matrix R of size N. Consider also the set of states {l,.. .,N} and 
among these points, we mark one point, say j,, which we call the root. We can define a spanning 
tree of root j, as an oriented tree of root j, (the orientation going from the leaves to the root), such 
that any state 1 G k C N is a vertex of the tree. 

We call Tj such a tree. Now, any edge (k,l) of TJ such that (k,l) is oriented from k to 1 is 
labeled by R,, . The weight of the tree Tj is defined by 

We have the following result: 
The minor Mij of - 1 ‘Rjj in -I + R vor an N X N stochastic matrix R) is given by 

Mjj=(-l)N-i~ W(Tj), 
I 

(5.6) 

(5.7) 

where the sum is taken over ull spanning trees T/ with root j, as defined above. We shall prove 
this result in Sec. V D, but we can immediately make a number of comments: (i) Apart from the 
overall (- l)‘- ‘, M, is given by a sum of positive terms. (ii) Mjj is homogeneous of degree N- 1 
with respect to the {Rkl} (for k f I). (iii) In a given term, W( Tj), for a fixed Tj , a given R,, does 
not appear twice. Moreover, one cannot have within a particular W(Tj) a product of the type 

RikRlk t but one Can have terms like RkiRkt. Finally, one cannot have closed loops like 

Ri,i,Ri i . 
Thi Lroofs of these statements are a direct consequence of the definition of a tree and of the 

weight W associated with it. 
(i) Is obvious. 
(ii) Is a consequence of the fact that a spanning tree for a set of N points has N- 1 edges. 
(iii) It is obvious that a given R,, appears at most once in a W( Tj). Moreover, since W( Tj) is 

constructed by taking the product of the R,, , starting from the leaves and following the edges up 
to the root j, it is clear that one cannot have a term R,,R,, (this would mean that the vertex k has 
two fathers in the tree), but one can have RaiR,,, (when i and 1 are sons of the same father n). 

Finally, we see that Eq. (5.5) has a natural meaning when we use the calculation of Mjj given 
in Eq. (5.7). The stationary probability of the state j is obtained by summing over all oriented 
paths leading from various points of the state space to the point j, quantities that are, for each path, 
the product of the elements R,, that one encounters along the oriented path. Moreover, these paths 
may have several irreducible components leading to j, and they contain no loop. This is why such 
an oriented reducible path leading to j, is, in fact, a tree with root j. 

C. The case of detailed balance 

Detailed balance means that for all i,j, 

(5.8) 

In particular, this implies that for any closed cycle c = (xi ,x2 ,x3,. . . ,xk ,x,> we have 
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Rx,xkRxkXk-;-Rx2x, 
Z.Z 

R x&x2x3- * * R 
1, 

XtixI 

or with obvious notation, 

3927 

(5.9) 

where C-’ denotes the reverse cycle. On the other hand, we have proved above 

6 Mii 

z= Mjj> 

in the general case. 
Let us now assume that Eq. (5.9) holds for any closed cycle and prove that detailed balance 

holds. To fix everything, take i= 1, j=2 and consider a tree of the type T,. In this tree, there is a 

certain (unique) oriented path y(T,) leading from 2 to 1, and this path has a certain length, Ir(7’,)/. 
Then 

WT,)= & R W(T,Iy(T,)), [ I 
where W(T,I y(T,)) is the product of all the elements of R along the edges of T, that are not on 

fiT,)- 
Now, the edges of T, that are not on AT,) form a collection of N- 1 - 1 y(T,)I edges 

[because W( T,) has N- 1 edges, as we have seen]. These edges form a disjoint union of oriented 
trees with roots on the path tiT,) and with their other vertices outside y(T,) (this union of disjoint 
trees is a “forest”). 

Conversely, given a directed path y leading from 2 to 1, and a forest F of trees having their 
roots in y and their other vertices outside y and with a total number of edges N- 1 --Id, the union 
of y and F is a spanning oriented tree with root 1. This means that one can write 

M11= 
rimoFitoI(?R)@(y)~ 

where @p(y) is defined to be 

WY)=? W(F), (5.11) 

where the sum is taken over all the oriented forests F having N - I- 1 rf edges, their roots on ‘y, and 
their other vertices outside y, and W(F) is the product of the R on all edges of F. In the same way, 

M22= c 
y’ leading from 1 to 2 

(5.12) 

Now, for any path from 2 to 1, ‘y, one can find the inverse path y-’ from 1 to 2 so that Eq. (5.12) 
can be rewritten, 

M22= c 
y leading from 2 to I 
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But it is clear that 

and moreover, because of Eq. (5.9), 

n$ R12 -=- 

l-I+R R,,’ 

so that 

R12 
Mll=Ma -3 

R21 

from which we deduce Eq. (5.8). 

D. Proof of Eq. (5.7) 

We shall prove something slightly more general. In the following, Latin indices run from 1 to 
N and Greek indices run from 1 to p. We consider b,i and Uij (i #j) to be positive numbers. (For 
emphasis, numerical values taken by Greek indices are underlined. We make this distinction 
because at a later stage we will need to deal with switches between one sort of index and the 
other.) 

We define the following determinant: 

DN(b,a)=de t 

P N 

- C bal-C ail 
a=1 i=2 

a12 
. .1 

ulN 

a21 u2N 

i#2 

uN2 
. . . _ 2 baN-C uitt 

a=1 i+N 

It is obvious that if all bs are zero, this determinant is zero because the sum of all lines is zero. 
Moreover, DN(b,u) is a homogeneous function of degree N of the bs and the us. We now 

consider the set {I,...,p}U{l ,...,N}, and for each (Y we consider an oriented tree T, with root (Y and 
with other vertices in jl,...,N}. To any oriented edge (k,l) or (n, cu) of T,, we associate the late1 
ufk or b,, . We define 

(5.14) 

We call a spanning forest a union of disjoint trees {Ta) for c~=i,...,p as before, such that all 
other vertices 1SiGN belong to a tree T, of the forest (and then to a unique one), 

WF)=F=$ l WT,), 
a 

(5.15) 
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with the convention that, if T, contains no edge, W( T,) = 1. In particular, a spanning forest has N 
edges. 

The main result of this section is that 

D,(bd)=(- l’“? W(F), (5.16) 

where the sum is taken on all spanning forests, as defined before. The proof of this statement is by 
induction on N. 

First, for N=2 we have 

bal --a21 P P 
D,(b,u)=det - b&a+ c ba,alzf 2 basz 7 

a=! lx=! 
a21 a=! 

which obviously has the structure of Eq. (5.16). 
We now assume that the statement is true for all determinants of size less than N, and we 

consider DN as defined by Eq. (5.13). It is clear that D, is symmetric by permutation of the Latin 
indices. As we have seen, it is a polynomial in the baj of degree <N without a constant term 
[because DN(O,U) =O]. Moreover, it is clear that in a given monomial, one cannot have products 
b,jbgj, uikajk, because they correspond to terms in the same CO~UIIXI of D,(b,u). 

By symmetry, we can consider only the terms containing bll as a factor. Such a term is 
obviously 

-b,,de, 

But the determinant multiplying -bl, is a determinant of the type DN- , (b’,u’), where now the 

P N 

-g, ba2-c& ui2 u23 
. . . 

Q32 ba3-czl Ui3 **. 
i+3 

u2N 

a3N 

new greek indices vary in the new set: 

U,...,P,Pf l)={l,...9p,l} 

(i.e., p + 1 is the old latin index I), and the set {I ,..., N} has been replaced by (2 ,..., N} and with the 

identifications 

b’ p+l,icul,it 2SisN, 
- 

(q!j=a.. ,J, 2sifjSN. 
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But now, DN- I(b ’ ,a ‘) is a sum over all spanning forests F’ (with N- 1 edges) of the weight of 
these forests. Each forest F’ is a union of trees {T&} with roots in {i,,..,p,l} and with other vertices 
in {2,...,N} and 

WF’)= me1 WtTiJ WT;). L I 
It may happen that some trees have no edge. Then we rewrite 

b!,W(r”)=(b!,W(r;)W~T~))~~2 W(T&). 

But this is exactly 

bi,WF’)=fil WTA 

with 

T,= T&, for ff=&...,p, 

T,=T;WUWJT;h 
(5.17) 

where ((1 l)UT,) denotes a tree having as the root the point 1 and obtained by taking the edge (11) 
from 1 to 1 and attaching to it the tree Ti of root 1 (if it has some edge). Then 

where 

b!,W(F’)= W(F), 

Conversely, any spanning forest F that contains the oriented edge, (1 i), is obviously a union of 
disjoint trees T!, . . . , Tp with T! given as in Eq. (5.17), namely 

T1=T;U(UIW-;), 

with Ti having its root in 1 and vertices in {2,..., N} and T{ having its root in 1 and its vertices in 
{2,...,N}. 

Thus, in DN( b ,u) the terms containing b 11 are of the type (- l)NZZ i 1 E F W( F) . This proves Eq. 
(5.16). 

Proof of Eq. (5.7) for M, : Eq. (5.7) is a particular case of Eq. (5.16). In this case, p= 1 =j, 
the N-2 indices Z#j correspond to the Latin indices, and the Greek index (Y can take only the 
value j. Finally b,l=Ujl and for l,kfj, alk=Rik. 

In this case a spanning forest for {1}U{l,...,N-2) having its root at j and other indices at 
points k # j is exactly a spanning tree with root at j. 
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APPENDIX: MATRIX FORMULAS 

In this appendix, we derive the formulas of Sec. V A. We consider a matrix A and an 
eigenvalue Ai of A. Call X, ,..., Ap the other distinct eigenvalues. Then the matrix A can be decom- 

posed in the Jordan normal form and we call E*j the subspace associated with the eigenvalue kj 
in this decomposition. We call P*j the projector on E,, defined by 

P*jIEA =I, 
I 

PXjl)& =O, j# 1. 
I 

Take a contour rj in the complex plane surrounding Xi once, but no A, for I #j. Then 

Pi,= & 
s 

(z-A)-’ dz. 
yi 

(Al) 

642) 

Formula (A2) is obvious: take a vector u in the space E+ for I # j. Then (z-A) - ‘u is holomor- 

phic in a neighborhood of ~j and 

I (z-A)% dz=O, 
yj 

Now, if u is in the space Exj, we can write on Ekj, 

AIEh,=(diag Xj)+T, 
I 

where T is an upper triangular matrix. Then 

(z-A)-‘lq,=diag(z-Xj)-‘+T’, 
I 

where T’ is another upper triangular matrix (depending holomorphically on z in a neighborhood of 
Aj). Then 

1 
- j- (z-A)-‘u dz=u, 
2i7r rj 

so that the Cauchy integral on the right-hand side of (A2) is given exactly by (Al). In particular, 
since (z - A),’ = ( - l)“+‘[Mr~(z)lC(z>], we have, from (A2), 

(Pxj)ni=(-l)n+’ Residuehi s . 
i i 

If Ai is a simple eigenvalue, then E,j is generated by the right eigenvector u and the projector is 
simply given by 

mjh= +JI 3 

with the normalization condition of Eq. (5.1). 
In the case of a stochastic matrix R, if we take, say M,, , it is easy to see that 

M,,=(- l)‘+‘MI, directly (write down M,, explicitly, then replace row number I by the sum of 

all rows of Ml 1 and use the stochastic property Cr= iRln = 1). In general, 
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M,,=( - l)“+94r,I 

But because det(l-R)=O, we have 

~ (s,j-Rlj)(-l)j~Mlj=O, l=l,...,N, 
j=l 

which implies that the vector with components M,, is an eigenvector of eigenvalue 1 of R. 
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