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In this paper, we derive the master equations for gravitational perturbations of vector
and scalar type for static vacuum Lovelock black holes. Together with our previous work on
the tensor type perturbation, we now provide the full set of master equations that governs all
types of gravitational perturbations of static vacuum Lovelock black holes in any dimensions.
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§1. Introduction

There is a long history in black hole perturbation theory since the seminal paper
by Regge and Wheeler.1)–3) It is well known that there exist master equations for
gravitational perturbations of static black holes in 4 dimensions.1)–5) Surprisingly,
the master equations have been obtained even for stationary black holes.3),6) It
should be mentioned that the master equations for gravitational perturbations have
played an important role in gravitational wave physics.

Recently, higher-dimensional black holes have attracted much attention. This
is because higher-dimensional black holes could be created at the LHC.7) In fact,
in the context of the braneworld with large extra dimensions, the predicted pro-
duction rate of black holes is within reach of accelerators. Another reason is that
higher-dimensional black holes have been used to analyze strongly coupled finite tem-
perature field theories through the AdS/CFT correspondence. Needless to say, the
master equations of gravitational perturbations of black holes in higher dimensions
are crucial for the developments of these subjects.

The master equations for gravitational perturbations of higher-dimensional sta-
tic black holes have been obtained by Kodama and Ishibashi.8) For stationary black
holes, unfortunately, there exist only partial results. To investigate the stability of
rotating black holes, a group theoretical method is developed.9) The method is used
to obtain the master equations for gravitational perturbations of squashed black
holes10)–12) and 5-dimensional rotating black holes with equal angular momenta.13)

The master equations for a special class of rotating black holes in more than 5 di-
mensions are also studied.14)–16) Still, it is an open issue if the master equations
exist for general rotating black holes and black rings.

We should notice that, in higher dimensions, Einstein theory is not a unique
theory with the second-order differential equations. Indeed, the most general theory
of gravity is Lovelock theory which is degenerated into Einstein theory in 4 dimen-
sions. In fact, Lovelock theory is a natural extension of Einstein theory in that
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the Lovelock theory contains terms only up to the second order derivatives in the
equations of motion. In Lovelock theory, it is known that there exist static spherical
symmetric black hole solutions17) and topological black hole solutions.18) Hence, it
is legitimate to suppose black holes produced at the LHC are of this type.19) Thus,
it is important to obtain master equations in order to study these Lovelock black
holes.

The following argument also stresses the importance of Lovelock theory. The
point is that black holes are produced at the fundamental scale of higher-dimensional
theories. At such high energy, Einstein theory would be no longer valid. In fact, as is
well known, string theory predicts Einstein theory only in the low energy limit.20) In
string theory, there are higher curvature corrections in addition to Einstein-Hilbert
term.20) Thus, it is natural to extend gravitational theory into those with higher
power of curvature in higher dimensions. It is Lovelock theory that belongs to such
class of theories.21)

In the case of second order Lovelock theory, the so-called Einstein-Gauss-Bonnet
theory, the master equation for tensor perturbations has been obtained.22) The re-
sult has also been extended to the scalar and vector perturbations.23) Although
Einstein-Gauss-Bonnet theory is the most general theory in five and six dimensions,
it is not so in more than six dimensions. For example, when we consider ten dimen-
sional black holes, we need to incorporate the fourth order Lovelock term. Indeed,
when we consider black holes at the LHC, it is important to consider these higher
order Lovelock terms.24) Hence, in this paper, we derive the master equations for
gravitational perturbations of black holes in any order Lovelock theory, namely, in
any dimensions. We have already derived the master equation for tensor perturba-
tions of static Lovelock black holes in any dimensions.25) In this paper, we derive
master equations for vector and scalar perturbations of static Lovelock black holes.

The organization of this paper is as follows. In §2, we briefly review Lovelock
theory and static Lovelock black hole solutions. In §3, we express the linear Lovelock
tensor in terms of the perturbed Riemann tensor. In §4, for completeness, we derive
previous results for tensor perturbations.25) In §5, we derive the master equation for
vector perturbations. In §6, we deduce the master equation for scalar perturbations.
The final section 7 is devoted to the conclusion.

§2. Static Lovelock black holes

In this section, we review Lovelock theory and introduce static black hole solu-
tions.

In Ref. 21), the most general symmetric, divergence free rank (1,1) tensor is
constructed out of a metric and its first and second derivatives. The corresponding
Lagrangian can be constructed from m-th order Lovelock terms

Lm =
1

2m
δλ1σ1···λmσm
ρ1κ1···ρmκm

Rλ1σ1
ρ1κ1 · · ·Rλmσm

ρmκm , (2.1)

where Rλσρκ is the Riemann tensor in D dimensions and δλ1σ1···λmσm
ρ1κ1···ρmκm

is the general-
ized totally antisymmetric Kronecker delta defined by
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δ
μ1μ2···μp
ν1ν2···νp = det

⎛
⎜⎜⎜⎝

δμ1
ν1 δμ1

ν2 · · · δμ1
νp

δμ2
ν1 δμ2

ν2 · · · δμ2
νp

...
...

. . .
...

δ
μp
ν1 δ

μp
ν2 · · · δ

μp
νp

⎞
⎟⎟⎟⎠ .

Then, Lovelock Lagrangian in D dimensions is defined by

L =
k∑

m=0

cmLm , (2.2)

where we defined the maximum order k ≡ [(D−1)/2] and cm are arbitrary constants.
Here, [z] represents the maximum integer satisfying [z] ≤ z. Hereafter, we set
c0 = −2Λ, c1 = a1 = 1 and cm = am/m (m ≥ 2), for convenience. Taking variation
of the Lagrangian with respect to the metric, we can derive the Lovelock equation

0 = Gνμ = Λδνμ −
k∑

m=1

1
2(m+1)

am
m
δνλ1σ1···λmσm
μρ1κ1···ρmκm

Rλ1σ1
ρ1κ1 · · ·Rλmσm

ρmκm . (2.3)

As shown in Refs. 17) and 18), there exist static exact black hole solutions of
the Lovelock equations. Let us consider the following metric:

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2γ̄ijdx

idxj , (2.4)

where γ̄ij is the metric of n ≡ D − 2-dimensional constant curvature space with a
curvature κ = 1, 0 or−1. Using this metric ansatz, we can calculate Riemann tensor
components as

Rtr
tr = −f

′′

2
, Rti

tj = Rri
rj = − f

′

2r
δi
j ,

Rij
kl =

(
κ− f

r2

)(
δi
kδj

l − δi
lδj

k
)
. (2.5)

Substituting (2.5) into (2.3) and defining a new variable ψ(r) by

f(r) = κ− r2ψ(r) , (2.6)

we obtain an algebraic equation

W [ψ] ≡
k∑

m=2

⎡
⎣am
m

⎧⎨
⎩

2m−2∏
p=1

(n− p)

⎫⎬
⎭ψm

⎤
⎦ + ψ − 2Λ

n(n+ 1)
=

μ

rn+1
. (2.7)

In (2.7), we used n = D − 2 and μ is a constant of integration which is related to
the ADM mass of black holes as26)

M =
2μπ(n+1)/2

Γ ((n+ 1)/2)
, (2.8)

where we used a unit 16πG = 1.
In the following sections, we study gravitational perturbations around the gen-

eral vacuum solutions (2.6) obtained by solving algebraic equation (2.7).
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§3. Linear Lovelock tensor

In this section, we present general formulas for the linear Lovelock tensor around
the solution (2.4). The method introduced in this section is based on symmetry of
the static Lovelock black holes. In detail, the point is that only Rtr

tr, Rtitj , Rrirj

and Rijkl have nonzero value for the Riemann tensor due to the metric ansatz (2.4).
From now on, we use μ, ν, · · · for (t, r, xi), x, y, · · · for (r, xi), and i, j, · · ·

for (xi), respectively. With this notation, we can show that

δj1j2···jmi1i2···im δi1j1 = {n− (m− 1)}δj2j3···jmi2i3···im (3.1)

by induction. This formula is useful for later calculations. It is also easy to see that
the linear Lovelock tensor reads

δGνμ = −
k∑

m=1

am

2(m+1)
δνλ1σ1···λmσm
μρ1κ1···ρmκm

×Rλ1σ1
ρ1κ1 · · ·Rλm−1σm−1

ρm−1κm−1δRλmσm
ρmκm . (3.2)

Let us explain how to calculate δGtt in detail and merely present final results
for other components. First of all, we consider the totally antisymmetric Kronecker
delta in δGtt , namely, δtλ1σ1···λmσm

tρ1κ1···ρmκm
. Because of the antisymmetry, t cannot show up

twice in the indexes. Hence, this Kronecker delta can be rewritten as

δ
ty1y2···y2m−1y2m

tx1x2···x2m−1x2m
= δ

y1y2···y2m−1y2m
x1x2···x2m−1x2m , (3.3)

where we used properties δtt = 1 and δtxp
= 0. Thus, we can rewrite δGtt as

δGtt =
∑
m

(
− am

2m+1

)
δ
y1y2···y2m−1y2m
x1x2···x2m−1x2m

×Ry1y2x1x2 · · ·Ry2m−3y2m−2
x2m−3x2m−2δRy2m−1y2m

x2m−1x2m .

Here, when taking the summation of xp and yp, we have to consider three cases. One
is that there is no r index, that is, all xp and yp are ip and jp, respectively. For the
other two cases, we have r index. Assume xp = r, then, there must exist p

′
such

that yp′ = r because the totally antisymmetric delta consists of Kronecker delta.
One possibility is x2q−1 = r or x2q = r (1 ≤ q ≤ m − 1). For this case, p

′
must be

p
′
= 2q−1 or 2q because of the background property (2.5). The remaining possibility

is x2m−1 = r or x2m = r. For this case, we have to take p
′
= 2m − 1 or 2m. The

reason is as follows. If p
′ �= 2m−1 nor p

′ �= 2m, there must exist q
′
(1 ≤ q

′ ≤ 2m−2)
such that yq′ = r. For example, if we take y1 = r, x1 or x2 must be r because of the
formula (2.5). In any case, δy1y2···x1x2··· must be zero because of the antisymmetry. To
summarize, δGtt can be written as

δGtt =
∑
m

(
− am

2m+1

)

×
[
δj1···j2m
i1···i2m

Rj1j2
i1i2 × · · · ×Rj2m−3j2m−2

i2m−3i2m−2δRj2m−1j2m
i2m−1i2m
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+ 4(m− 1)δj1···j2m−1

i1···i2m−1

×Rrj1ri1Rj2j3 i2i3 × · · · ×Rj2m−4j2m−3
i2m−4i2m−3δRj2m−2j2m−1

i2m−2i2m−1

+ 4δj1···j2m−1

i1···i2m−1
Rj1j2

i1i2 × · · · ×Rj2m−3j2m−2
i2m−3i2m−2δRj2m−1r

i2m−1r

]
. (3.4)

Substituting the background quantities (2.5) into (3.4) and using the formula (3.1),
we can proceed as

δGtt =
k∑

m=1

(
− am

2m+1

)

×
[
2m−1

(
κ− f

r2

)m−1

δj1···j2m
i1···i2m

δi1j1 · · · δ
i2m−2

j2m−2
δRj2m−1j2m

i2m−1i2m

+4(m− 1)2m−2

(
− f

′

2r

)(
κ− f

r2

)m−2

×δj1···j2m−1

i1···i2m−1
δi1j1 · · · δ

i2m−3

j2m−3
δRj2m−2j2m−1

i2m−2i2m−1

+4 · 2m−1

(
κ− f

r2

)m−1

δ
j1···j2m−1

i1···i2m−1
δi1j1 · · · δ

i2m−2

j2m−2
δRj2m−1r

i2m−1r

]

=
k∑

m=1

am

[(
−1

4

{2m−1∏
p=2

(n− p)
}(

κ− f

r2

)m−1

+(m− 1)
{2m−2∏

p=2

(n− p)
}(

f
′

4r

)(
κ− f

r2

)m−2
)
δjlikδRjl

ik

−
{2m−2∏

p=1

(n− p)
}(

κ− f

r2

)m−1

δji δRjr
ir

]

= − T
′

2(n− 1)rn−2
δji δ

l
kδRjl

ik − T

rn−1
δji δRjr

ir , (3.5)

where we used the relation δklij δRkl
ij = 2δki δ

l
jδRkl

ij in the last equality. Here, T (r)
is defined by

T (r) ≡ rn−1∂ψW [ψ] = rn−1

⎛
⎝1 +

k∑
m=2

⎡
⎣am

⎧⎨
⎩

2m−2∏
p=1

(n− p)

⎫⎬
⎭ψm−1

⎤
⎦
⎞
⎠ . (3.6)

Similarly, we can deduce other components of the linear Lovelock tensor. The
results are as follows:

δGtt = − T
′

2(n− 1)rn−2
δji δ

l
kδRjl

ik − T

rn−1
δji δRjr

ir ,
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δGrt = − T

rn−1
δji δRjt

ir ,

δGit =
T

′

(n− 1)rn−2
δjkδRtj

ik +
T

rn−1
δRtr

ir ,

δGrr = − T
′

2(n− 1)rn−2
δji δ

l
kδRjl

ik − T

rn−1
δji δRjt

it ,

δGir =
T

′

(n− 1)rn−2
δjkδRrj

ik +
T

rn−1
δRrt

it ,

δGji =
T

′

(n− 1)rn−2

(
δRti

tj + δRri
rj
)

+
T

′′

(n− 1)(n− 2)rn−3
δkl δRik

jl

−δji
[

T

rn−1
δRtr

tr +
T

′

(n− 1)rn−2

(
δRtk

tl + δRrk
rl
)
δkl

+
T

′′

2(n− 1)(n− 2)rn−3
δkl δ

q
pδRkq

lp

]
. (3.7)

Thus, in order to derive the linear Lovelock equations, we need to know the perturbed
Riemann tensor δRμνρλ.

Since Lovelock black holes have n-dimensional symmetric space, we can classify
perturbations into tensor, vector and scalar type perturbations. In following sections,
we treat these three type of perturbations separately.

§4. Master equation for tensor perturbations

In this section, we derive the master equation for tensor perturbations of static
Lovelock black holes.

Tensor perturbations around the solution (2.4) is characterized by

δgab = 0 , δgai = 0 , δgij = r2φ(t, r)h̄ij(xi) , (4.1)

where a, b = (t, r) and φ(t, r) represents the dynamical degrees of freedom. Here,
tensor harmonics h̄ij are defined by

∇̄k∇̄kh̄ij = −γth̄ij , ∇̄ih̄ij = 0 , γ̄ij h̄ij = 0 , (4.2)

where ∇̄i denotes a covariant derivative with respect to γ̄ij and the eigenvalue is
given by γt = �(�+ n − 1) − 2, (� = 2, 3, 4 · · · ) for κ = 1 and positive real numbers
for κ = −1, 0. Note that indexes i, j, · · · are raised or lowered by γ̄ij .

For tensor perturbations, from (3.7), it is clear that components other than δGji
vanish and the terms proportional to δji in δGji also disappear. Therefore, what we
have to calculate are δRtitj , δRrirj and δml δRim

jl. From the metric ansatz (2.4) and
(4.1), these components can be deduced as

δRti
tj =

[
φ̈

2f
− f

′
φ

′

4

]
h̄i
j ,
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δRri
rj =

[
−fφ

′′

2
+

(
−f

′

4
− f

r

)
φ

′
]
h̄i
j ,

δml δRim
jl =

[
−n− 2

2
f

r
φ′ +

2κ+ γt
2r2

φ

]
h̄i
j . (4.3)

Then, substituting these results into (3.7), we can calculate δGji as follows:

(n− 1)rn−2δGij

= T
′ (
δRti

tj + δRri
rj
)

+
rT

′′

(n− 2)
δml δRim

jl

=

[
T

′

2f

(
φ̈− f2φ

′′)−
(
f

′
T

′

2
+
fT

′

r
+
fT

′′

2

)
φ

′
+

(2κ+ γt)T
′′

2(n− 2)r
φ

]
h̄i
j . (4.4)

Separating the variables φ(r, t) = χ(r)e−iωt, we can derive the master equation
for the tensor perturbations from the linear Lovelock equation δGνμ = 0 as follows:

−f2χ
′′ −

(
f2T

′′

T ′ +
2f2

r
+ ff

′
)
χ

′
+

(2κ+ γt)f
(n− 2)r

T
′′

T ′ χ = ω2χ . (4.5)

Here, we should stress that we have assumed nothing for Lovelock coefficients and
f(r). Hence, the master equation we derived is quite general.

Furthermore, introducing a new function Ψ(r) = χ(r)r
√
T ′(r) and using tortoise

coordinate r∗ which is defined as dr∗/dr = 1/f(r), we can transform the master
equation (4.5) into Schrödinger type equation

− d2Ψ

dr∗2
+ Vt(r(r∗))Ψ = ω2Ψ , (4.6)

where we have defined the effective potential

Vt(r) =
(2κ+ γt)f
(n− 2)r

d lnT
′

dr
+

1

r
√
T ′ f

d

dr

(
f
d

dr
r
√
T ′
)
. (4.7)

Here, we have assumed T
′
> 0 in order to avoid ghost instability.25)

§5. Master equation for vector perturbations

In this section, we consider vector perturbations of static Lovelock black holes
and derive the master equation.

We take the Regge-Wheeler gauge

δgμν =

⎛
⎝ 0 0 vi

0 0 wi
sym sym 0

⎞
⎠ , (5.1)

where vi and wi satisfy transverse condition ∇̄ivi = ∇̄iwi = 0 and “sym” represents
symmetric part of metric perturbations.
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918 T. Takahashi and J. Soda

From the ansatz (5.1), it is clear that δGtt = δGrr = δGrt = 0. The components
of δRμνρλ which is necessary for calculations of non-zero components of δGνμ are as
follows:

δRtk
ij =

κ− f

r4

(
δjkv

i − δikv
j
)

+
f

′

2r3
(
δjkv

i − δikv
j
)

− 1
2r4

[
−vj |k |i + vi|k |j + κ(δjkv

i − δikv
j)
]

− f

2r3

[
δjk

(
vi

′ − ẇi − 2
r
vi
)
− δik

(
vj

′ − ẇj − 2
r
vj
)]

,

δRtr
ir = − f

′

2r3
vi +

f
′′

2r2
vi ,

δRrk
ij =

κ− f

r4

(
δjkw

i − δikw
j
)

+
f

′

2r3
(
δjkw

i − δikw
j
)

+
1

2r4
[
wj |k |i − wi|k |j − κ(δjkw

i − δikw
j)
]
,

δRtr
ir = − f

′

2r3
wi +

f
′′

2r2
wi − 1

2r3f

(
vi

′ − ẇi − 2
r
vi
)
,

δRti
tj = − 1

2r2f

(
v̇i

|j + v̇j |i
)

+
f

′

4r2
(
wi

|j + wj |i
)
,

δRti
tj =

f
′

4r2
(
wi

|j + wj |i
)

+
f

2r2
(
wi

|j + wj |i
)′

,

δRij
kl =

f

2r3

[
δlj

(
wi

|k + wk |i
)
− δkj

(
wi

|l + wl|i
)

+δki
(
wj

|l + wl|j
)
− δli

(
wj

|k + wk |j
)]

, (5.2)

where we use |i as a covariant derivative with respect to γ̄ij instead of ∇̄i. Then,
substituting these results into (3.7), we can get the linear Lovelock tensor as follows:

2rn+2δGit = − T
′

n− 1
vi|k |k − κT

′
vi − f

{
rT

(
vi

′ − ẇi − 2
r
vi
)}′

,

2rn+2δGir = − T
′

n− 1
wi|k |k − κT

′
wi − rT

f

(
vi

′ − ẇi − 2
r
vi
)·

,

2(n− 1)rnδGji = −T
′

f

(
v̇i

|j + v̇j |i
)

+
{
fT

′ (
wi

|j + wj |i
)}′

, (5.3)

where we used the relation

{rf ′
+ 2(κ− f)}T = (n+ 1)μ , (5.4)

and its derivative with respect to r. Then, after expanding metric perturbations by
vector harmonics V̄i, which satisfies ∇̄k∇̄kV̄i = −γvV̄i with γv = �(� + n − 1) − 1
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Master Equations for Lovelock Black Holes 919

(� ≥ 2) for κ = 1 and non-negative numbers for κ = 0,−1, we can get the linear
Lovelock equation as⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
γv

n−1 − κ
)
vT

′ − f
{
rT

(
v
′ − ẇ − 2

rv
)}′

= 0 ,(
γv

n−1 − κ
)
wT

′ − rT
f

(
v
′ − ẇ − 2

rv
)·

= 0 ,

−T
′

f v̇ +
(
fT

′
w
)′

= 0 .

(5.5)

Note that only two equations among these equations are independent. In fact, we
can get the third equation in (5.5) by combining a derivative of the first equation
with respect to t and a derivative of the second equation multiplied by f(r) with
respect to r. Here, we use the second and third equations in (5.5). We have not
considered the exceptional mode γv = (n−1)κ since its treatment is well known.8),27)

In this paper, we assume T
′
is always positive otherwise there exists ghost insta-

bility for tensor perturbations. Under this assumption, we can eliminate v from the
second equation in (5.5) using the third equation. The resultant master equation is
given by

rT

f
ẅ − r3T

f

{
f

r2T
′

(
fT

′
w
)′}′

+
(

γv
n− 1

− κ

)
T

′
w = 0 . (5.6)

Furthermore, under the assumption of positivity of T
′
, we can introduce a new

variable

χ =
f

r

√
T ′w .

We also perform Fourier transformation χ = Ψe−iωt. Thus, using the new variable
and a tortoise coordinate r∗, we can rewrite Eq. (5.6) as

−∂2
r∗Ψ + Vv(r)Ψ = ω2Ψ , (5.7)

where we have defined the effective potential for vector perturbations

Vv(r) = r
√
T ′f∂r

(
f∂r

1

r
√
T

′

)
+
(

γv
n− 1

− κ

)
fT

′

rT
. (5.8)

Note that we have not assumed anything for f(r) and Lovelock coefficients am except
for the positivity of T

′
. In this sense, this Schrödinger type master equation is quite

general.

§6. Master equation for scalar perturbations

In this section, we derive the master equation for scalar perturbations of static
Lovelock black holes.

We use the Zerilli gauge:

hμν =

⎛
⎝ fH̄ H1 0

sym H/f 0
sym sym r2Kγ̄ij

⎞
⎠ , (6.1)
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where “sym” represents symmetric part of metric perturbations.
Following Ref. 23), we derive the master equation from δGji = 0(i �= j), δGrt = 0,

δGtt = 0, δGir = 0 and δGrr = 0. Taking a look at Eq. (3.7), we see that we need δRtitj ,
δRri

rj, δRijkl, δRtirj , δRrijk and δRtrti . With the Zerilli gauge, these components
can be calculated as follows:

δRti
tj =

1
2r2

H̄|i|j +

(
−1
r
Ḣ1 +

1
2f
K̈ − f

′

4
K

′
+
f

2r
H̄

′
+
f

′

2r
H

)
δji ,

δRri
rj = − 1

2r2
H|i|j +

(
1
2r

(fH)
′ − f

′

4
K

′ − f

r
K

′ − f

2
K

′′
)
δji ,

δRij
kl =

1
2r2

[
K|j |kδli −K|i|kδlj −K|j |lδki +K|i|lδkj

]
+
(
− κ

r2
K +

f

r2
H − f

r
K

′
)(

δki δ
l
j − δliδ

k
j

)
,

δRti
rj = − f

2r2
H1|i|j −

(
− f

2r
Ḣ − f

′

4
K̇ +

f

2
K̇

′
+

f

2r
K̇

)
δji ,

δRri
jk =

1
2r3

(
H |jδki −H |kδji

)
− 1

2r2
(
K

′|jδki −K
′|kδji

)
,

δRtr
ti =

1
2r2

[
f

′

2f
(
H + H̄

)
+ H̄

′ − 1
r
H̄ − 1

f
Ḣ1

]|i
, (6.2)

where |i denotes a covariant derivative with respect to γ̄ij . Then, we can calculate
the linear Lovelock equations. Expanding metric perturbations in terms of scalar
harmonics Ȳ which satisfy ∇̄k∇̄kȲ = −γsȲ with γs = �(� + n − 1) for κ = 1 and
positive numbers for κ = 0,−1, we obtain the linear Lovelock equations

δGji = 0 (i �= j) ⇔ T
′
(H̄ −H) = rT

′′
K , (6.3)

δGrt = 0 ⇔ −γsH1 + n

[
r(K −H) + r2K

′ − r2f
′

2f
K

]·
= 0 , (6.4)

δGtt = 0 ⇔
{
−γsT − nr(fT )

′}
H − nTrfH

′
+ rT

′
(nκ− γs)K

+

{
nTr2f

′

2
+ nf(r2T )

′
}
K

′
+ nTr2fK

′′
= 0 , (6.5)

δGir = 0 ⇔ rT
′
(

1
r
H −K

′
)

+T

[
f

′

2f
(H + H̄) + H̄

′ − 1
r
H̄ − 1

f
Ḣ1

]
= 0 , (6.6)
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δGrr = 0 ⇔ nTr2

f

(
2f
r
Ḣ1 − K̈

)
+ rT

′
(nκ− γs)K +

(
nT

′
r2f +

nTr2f
′

2

)
K

′

−nr(Tf)
′
H + γsTH̄ − nTrfH̄

′
= 0 . (6.7)

Now we derive the master equation for scalar perturbations from these equations.
We do not consider exceptional gauge dependent modes γs = 0 and γs = nκ modes
since treatment of these modes is well known.8),27) We also assume T

′
> 0 outside

the horizon again. First of all, we show that all perturbative variables H̄, H1, H
and K can be expressed by a single master function φ defined later. From Eq. (6.3),
H̄ can be expressed by H and K as

H̄ = H +
rT

′′

T ′ K . (6.8)

By inspecting Eq. (6.4), we see that it is convenient to define a master function φ as

H1 ≡ r

f

(
φ̇+ K̇

)
. (6.9)

Then, we can express H using φ and K by integrating (6.4) with respect to t. The
result is given by

H = − γs
nf

φ+ rK
′ − A(r)

2nf
K , (6.10)

where

A(r) = −2nf + 2γs + nrf
′
. (6.11)

Note that there may exist an arbitrary function of r as a constant of integration.
However, this function can be absorbed into the definition of φ. From Eqs. (6.8)–
(6.10), it turns out that we need to express K by φ in order to express all variables
in terms of φ. Substituting (6.10) into (6.5), we obtain such a formula

K = − 2
A

[
nrfφ

′
+

(
γs + nrf

T
′

T

)
φ

]
, (6.12)

where we used a relation

(AT )
′
= 2γsT

′
+ n{(rf ′ − 2f)T}′

= 2(γs − nκ)T
′
, (6.13)

which can be derived from (5.4).
Now, we are in a position to derive the master equation for the master variable

φ. From Eqs. (6.6) and (6.7), we can make the following combination:

nfr × (l.h.s of (6.6)) + (l.h.s of (6.7))

=
AT

2
H̄ − (γs − nκ)rT

′
K +

nTrf
′

2

(
rK

′ −H
)

+
nTr2

f

(
f

r
Ḣ1 − K̈

)
. (6.14)
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Substituting (6.8)–(6.10) and (6.12) into the above equation (6.14), we get the master
equation for scalar perturbations

φ̈− f2φ
′′

+ f2

(
ln
(

A2

r2fT
′

))′

φ
′
+Qφ = 0 , (6.15)

where we have defined

Q =
f

nTr2

[(
2
(AT )

′

AT
− T

′′

T ′

)
(γsrT + nr2fT

′
) − n(r2fT

′
)
′
]
. (6.16)

Finally, we change the normalization of φ as

φ = N(r)χ , N =
A

r
√
T

′ . (6.17)

It is also convenient to move on to Fourier space as χ = Ψe−iωt. Substituting
these into the master equation (6.15) and using a tortoise coordinate r∗, we obtain
Schrödinger type equation

−∂2
r∗Ψ + Vs(r)Ψ = ω2Ψ , (6.18)

where we have defined the effective potential for scalar perturbations

Vs(r) = 2γsf
(rNT )

′

nNTr2

− f

N
∂r (f∂rN) + 2f2N

′2

N2
− f

T
∂r(f∂rT ) + 2f2T

′2

T 2
+ 2f2N

′
T

′

NT
. (6.19)

We assumed that T
′

is always positive because tensor perturbation has ghost in-
stability if this assumption is not fulfilled. However, except for this assumption, we
have not imposed any conditions on the Lovelock coefficient am and f(r). Therefore,
the master equation we have derived is again quite general.

§7. Conclusion

We have succeeded in deriving master equations for gravitational perturbations
of static Lovelock black holes. The results can be regarded as a generalization of
master equations in Einstein theory derived by Kodama and Ishibashi. Of course, it
is possible to extend our analysis to charged black holes and other black holes.28),29)

Moreover, our result would serve a starting point for studying stationary black holes
in Lovelock theory. It is also interesting to consider Euclidean version of our results
in the light of black hole thermodynamics.30)

There are many applications of our master equations. In an accompanying
paper, using the master equations, we show that static Lovelock black holes with
small masses are unstable in the asymptotically flat cases.31) The application to
asymptotically AdS cases is also interesting from the point of view of the AdS/CFT
correspondence,32)–34) in particular, in relation to stability of holographic supercon-
ductors.35),36)
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