
398 IEEE TRANSACTIONS ON BIOMETRICS, BEHAVIOR, AND IDENTITY SCIENCE, VOL. 4, NO. 3, JULY 2022

Master Face Attacks on Face Recognition Systems
Huy H. Nguyen , Member, IEEE, Sébastien Marcel , Senior Member, IEEE,

Junichi Yamagishi , Senior Member, IEEE, and Isao Echizen , Member, IEEE

Abstract—Face authentication is now widely used, especially
on mobile devices, rather than authentication using a personal
identification number or an unlock pattern, due to its conve-
nience. It has thus become a tempting target for attackers using
a presentation attack. Traditional presentation attacks use facial
images or videos of the victim. Previous work has proven the
existence of master faces, i.e., faces that match multiple enrolled
templates in face recognition systems, and their existence extends
the ability of presentation attacks. In this paper, we report an
extensive study on latent variable evolution (LVE), a method
commonly used to generate master faces. An LVE algorithm was
run under various scenarios and with more than one database
and/or face recognition system to identify the properties of mas-
ter faces and to clarify under which conditions strong master
faces can be generated. On the basis of analysis, we hypothe-
size that master faces originate in dense areas in the embedding
spaces of face recognition systems. Last but not least, simu-
lated presentation attacks using generated master faces generally
preserved the false matching ability of their original digital forms,
thus demonstrating that the existence of master faces poses an
actual threat.

Index Terms—Master face, wolf attack, face recognition
system, latent variable evolution.

I. INTRODUCTION

PASSWORDS should be strong, which can make them dif-
ficult to remember, and should be changed regularly to

ensure security. Personal identification numbers and unlock
patterns are more convenient than passwords, but the user is
still required to remember them, and people nearby may be
able to steal a peek at them. An even more convenient method
is biometric authentication, which uses a biometric trait unique
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to the user, eliminating the need to remember anything.
This advantage has led to the widespread usage of biomet-
ric authentication on many portable devices including laptops
and smartphones. The two most commonly used biometric
traits for authentication are a fingerprint and the face [1].
Since smartphones using this type of authentication may have
a digital wallet (or e-wallet) for making e-payments, they
are a prime target for attackers. An attacker may attempt to
unlock such a device by performing a presentation attack [2].
For example, the attacker might attempt a presentation attack
in which a printed facial image of the victim (known as a
presentation attack instrument, or PAI) is displayed in front
of the smartphone’s camera.

The probability of a presentation attack succeeding is higher
if the PAI matches multiple enrolled templates. In the facial
domain, the creation of PAIs by blending together two or
more faces is called face morphing [5]. The morphed face
should match all source faces when used against a face
recognition (FR) system and possibly even fool a human
observer. This ability has made morphing a commonly used
attack against automated border control systems in which the
attacker “borrows” the identity of the victim to enter or exit
a location [5]. The face morphing approach is limited by the
requirement that target faces be available. Another approach
is to generate a “master biometric” sample [4], [6]–a kind
of “wolf sample” that matches multiple enrolled templates in
a biometric recognition system [7]. This approach was first
developed by Bontrager et al. [6] for the fingerprint domain.
In our previous work [4] and this extended work, we have
adopted this approach and extended it to the facial domain.
Unlike the face morphing approach, the attacker’s advantage
in this “master face” approach is that it does not require any
information about the victim. Moreover, using an ordinary
PC and materials easily obtained from the Internet is enough
to generate master faces. Before this work, the nature and
characteristics of master faces were not well (or sufficiently)
understood.

The stages in master biometrics research are shown in
Fig. 2. Our contributions can be summarized as follows:
• Building on our previous work [4], we are the first to

generate master faces that can match multiple faces with
different identities. This ability means that FR systems
are vulnerable to a master face attack.

• We extend our previous work by analyzing the effect of
using multiple databases (DBs) and/or multiple FR systems
for the latent variable evolution (LVE) algorithm used to
generate master faces. Some DB/FR system combinations
boosted overall attack performance while others did not due
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Fig. 1. Original master face generated using two face recognition systems
(top left) and its PAI forms printed on plain paper (top right), photo paper
(bottom left), and displayed on a 13-inch Apple MacBook Pro screen (bottom
right).

to intra-component conflicts. Knowledge of the successful
combinations is critical to understanding under which
conditions strong master faces can be generated and to
appropriately assessing the potential risks.

• We expand the scope of our previous work by introducing
more scenarios and by using an additional facial database
and an additional FR system trained with the angular
margin loss [8] for the defender side. Furthermore, we
introduce visualization in the face embedding (identity)
space to obtain more insights into master faces. These
insights are invaluable as they can be used to improve
the robustness of FR systems.

• To demonstrate the actual threat posed by the existence
of master faces, we evaluated master face attacks by per-
forming presentation attacks using printed images and
the corresponding digital images displayed on a computer
screen. Three of the PAIs we used are shown in Fig. 1.

The rest of the paper is organized as follows. First, we
provide background information on facial image generation,
FR systems, wolf attacks, master biometric attacks, and the
LVE algorithm in Section II. Then, we discuss the existence
of master faces and introduce an improved LVE algorithm
using multiple databases and/or FR systems in Section III.
Our experiments are covered in two sections: we first discuss
generating master faces and their analysis in Section IV and
then discuss using master faces to perform presentation attacks
in Section V. Next, in Section VI, we discuss ways to reduce
the risk of master face attacks. Finally, we summarize the key
points and make some closing remarks in Section VII.

II. RELATED WORK

A. Facial Image Generation

Image generation is a major topic in deep learning research,
and the face is a common target. There are two major
approaches to image generation: using variational autoen-
coders (VAEs) [9] and using generative adversarial networks

(GANs) [10]. In the beginning, they could only generate
small images with low quality. VAEs tended to generate
blurry images while GANs were difficult to train. Subsequent
improvements in GANs (WGAN [11] and WGAN Gradient
Penalty (WGAN-GP) [12]) resolved the training problem, and
GANs then began to be used to generate master prints [6].

Recently improved versions of both VAEs [13], [14] and
GANs [15]–[18] can generate high-resolution images. By
gradually adding more layers during training to output larger
images, Karras et al. were able to generate 1024 × 1024
pixel images with their progressive GAN [16]. In subsequent
work, they combined the ideas of progressive training and
style transfer to create a better disentanglement network called
StyleGAN [17]. Unlike traditional GANs, which directly use
a latent vector for generating images, StyleGAN uses a map-
ping network to transfer this latent vector into intermediate
style vectors used for synthesizing images. Controlling these
intermediate style vectors changes the facial attributes. With
the abilities of strong disentanglement and high-quality facial
image generation, StyleGAN and its subsequent version [18]
are the best methods for generating master faces [4].

B. Face Recognition

The release of large databases (e.g., the CASIA-WebFace
database [19] and the MS-Celeb database [20]) and recent
advances in convolutional neural networks (CNNs) have
substantially improved the performance of FR systems
and enabled them to work effectively in heterogeneous
domains [21]. Most state-of-the-art FR systems [8], [21], [22]
make use of a network architecture that achieved high
performance in the ImageNet Challenge [23], such as the VGG
(Visual Geometry Group) network architecture [24] and the
inception network architecture [25]. Parkhi et al. trained the
VGG-16 network on a custom-built large-scale database [26]
to create the VGG-Face network. Wu et al. proposed a
lightweight CNN that has ten times fewer parameters than
the VGG-Face network [27]. The inception architecture was
used by de Freitas Pereira et al. to build heterogeneous FR
networks [21] and by Schroff et al. to build the FaceNet
network [22]. Sandberg re-implemented FaceNet as an open-
source system [28]. Taigman et al. introduced DeepFace in
which explicit 3D face modeling is used to improve the facial
alignment phase and a CNN is used to extract face representa-
tion [29]. Unlike previous methods, which use discriminative
classifiers, the generative classifier proposed by Tran et al.,
called DR-GAN, learns a disentangled representation [30].

More recent approaches focus on optimizing the embedding
distribution. Deng et al. proposed using the additive angular
margin loss (ArcFace) instead of the commonly used cosine
distance loss to improve the discriminative power of the FR
model and to stabilize the training process [8]. Duan et al.
argued that the distribution of the features plays an impor-
tant role and therefore proposed using a uniform loss to
learn equidistributed representations for their UniformFace FR
system [31].

FR systems are vulnerable to presentation attacks, which
present an artifact or human characteristic to the biometric
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Fig. 2. Stages in master biometrics research. First stage was partial master fingerprints, as proposed by Bontrager et al. [3]. Next stage was our preliminary
work on master faces [4]. Current stage (this work) builds upon previous work and introduces extensions in algorithm, analysis, visualization, and test scenarios.

(facial) capture subsystem to interfere with the intended policy
of the biometric (FR) system.1 A photo attack is a presentation
attack in which the attacker displays a photograph of the victim
to the sensor of the FR system. This photograph can be printed
on paper or displayed on a device’s screen (e.g., a smart-
phone, a tablet, or a laptop) [32]. A replay attack is another
presentation attack in which a victim’s video is played instead
of displaying a photograph [32]. A presentation attack detector
can be integrated into an FR system to mitigate presentation
attacks [32].

To study the security threat posed by master faces, we built
on some of the advances discussed above and conducted rig-
orous experiments with four recent (and conceptually diverse)
state-of-the-art FR systems. Please note that a presentation
attack detector was not integrated into these FR systems.

C. Wolf Attack and Master Biometric Attack

A “wolf sample” is an input sample that can be falsely
accepted as a match with multiple user templates (“enrolled
subjects”) in a biometric recognition system [7]. Wolf sam-
ples can be either biometric or non-biometric. A wolf sample
is used in a wolf attack against a biometric recognition system.
An example wolf attack is shown in Fig. 3. Wolf attacks were
initially used to target fingerprint recognition systems [33].
Success is theoretically characterized by the wolf attack prob-
ability (WAP)–the maximum probability of a successful attack
with one wolf sample [7]. Inuma et al. [34] presented a princi-
ple for mitigating wolf attacks against biometric authentication
systems: construct a secure matching algorithm that calculates
the entropy of the probability distribution of each input value.

A master biometric attack is a wolf attack in which the
sample looks like an actual biometric trait. Two example
traits are partial fingerprint images [6] and facial images [4].

1ISO/IEC CD 30107-1 definition. Accessed at [https://www.iso.org/obp/ui/
#iso:std:iso-iec:30107:-1:ed-1:v1:en:term:3.5?]

Fig. 3. Operation of typical FR system. There are two phases: enrollment
(blue path) and verification/identification (red path). The master face (face 3)
was falsely matched with the two faces of two enrolled subjects. Best viewed
in color.

They are generated by GANs using the LVE algorithm to
maximize the false matching rates (as a result, WAPs are
also maximized). A master print attack [6] targets partial
fingerprint recognition systems using small sensors with lim-
ited resolution while a master face attack targets FR systems,
which require higher resolution images [4]. In this work, we
used multiple FR systems and databases when running the
LVE algorithm to generate master faces. We also simulated
presentation attacks using master faces to ascertain their actual
threat.

D. Latent Variable Evolution

Evolution algorithms are commonly used in artificial intel-
ligence applications to approximate complex, multimodal, and
non-differentiable functions since they do not require any
assumption about the underlying fitness landscape. The covari-
ance matrix adaptation evolution strategy (CMA-ES) is a
powerful strategy designed for non-linear and non-convex
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functions [35]. Bontrager et al. used CMA-ES with a pre-
trained GAN to perform interactive evolutionary computation
to improve the quality of generated samples [3]. This strat-
egy was used in subsequent work on the LVE algorithm to
maximize the WAP of generated partial fingerprint images [6].
In our previous work [4], we modified the LVE algorithm scor-
ing method so that it could work smoothly with high-resolution
facial images generated by StyleGAN [17].

Given n random initial vectors Z = {z1, z2, . . . , zn}, a
generation model G, a scoring function F , and m enrolled
templates T = {t1, t2, . . . , tm}, the LVE algorithm runs in a
loop in which n samples are first generated by G using Z .
Each sample is then matched with m templates in T to obtain
a mean score s. An evolution algorithm (e.g., CMA-ES) takes
the set of the mean scores s to evolve n new latent vectors Z ′
for the next loop.

We have now added one more database and/or FR system to
the LVE algorithm to better approximate the target FR system
and database so that the generated master faces have better
generalizability.

III. DEEP MASTER FACES

A. Existence of Master Faces

Before describing the proposed master face generation algo-
rithm, we briefly explain why master faces exist. For a typical
FR system (or biometric recognition systems in general), there
are four phases (Fig. 3): pre-processing the input, extracting
its features, matching them with those of the enrolled sub-
ject(s) in the model database, and making a decision. The
feature extractor plays the role of a mapping function. It maps
the facial image domain to the identity domain. The objective
when training the feature extractor is to optimize the mapping
function so that the mappings of the same-identity faces are
close together in the identity space and vice versa. Since this
is an optimization problem, the solution is simply an approx-
imation. Furthermore, there is no guarantee that the mapping
function will work well on new data due to the possible lack
of generalizability.

Master faces may exist because the identity (embedding)
space used by FR systems is not uniformly distributed, result-
ing in dense areas in this space. If we generate an identity
corresponding to a point in a dense area, it may falsely match
several nearby faces in the identity space. The LVE algorithm
aims to find such a position in a dense area in the identity
space after several evolutions. To intuitively and empirically
show this, we visualize the identity space and one of the master
faces generated in this work using uniform manifold approxi-
mation and projection (UMAP) [36] in Fig. 4. The master face
generated by our algorithm (described in the next section) is at
such a position (red dot) surrounded by many embeddings. All
faces from these surrounding embeddings are falsely matched
with the master face by the FR system. The no-match embed-
dings are scattered far from the master face and lie in less
dense areas. We explain how to generate such master faces in
the next section.

To verify our hypothesis of dense areas in the identity
space, we searched for the real faces that were closest to a

Fig. 4. UMAP visualization of identity space containing embeddings of a
master face and of “match” and “no-match” faces of 18 enrolled subjects. For
each cluster (match or no match), symbols with the same color correspond to
the same subject. Best viewed in color.

Fig. 5. The first and second master faces generated using the LVE algorithm
and the three real faces closest to the first master face and their corresponding
false matching rate. The two master faces were generated using the training
set of the LFW - Fold 1 database and the Inception-ResNet-v2 based FR
system trained on the CASIA-WebFace database. The false matching rates
were calculated on the development and evaluation sets of the Labeled Faces
in the Wild (LFW) - Fold 1 database.

generated master face and checked whether they had wolf
characteristics like this master face. These real faces were
chosen from the facial database used to generate the master
face. We used the cosine distance between two embeddings
for selection. The result, which is shown in Fig. 5, confirms
our hypothesis. However, the real wolf faces had lower false
matching rates (FMRs) than the master faces. Therefore, using
synthesized master faces rather than real faces to carry out
wolf attacks should increase the success rate.

B. Latent Variable Evolution With Multiple Databases
and/or Face Recognition Systems

We extended our previous work by using one more database
and/or FR system to generate master faces, which requires
support from the LVE algorithm. The extended LVE algorithm
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Fig. 6. Overview of extended LVE algorithm. Latent vectors are fed into
StyleGAN [17] to generate facial images. One or more surrogate FR system(s)
then calculates mean score for each image on the basis of the subjects in one
or more database(s). For example, for the combination 3 setting described
in Table III, database 1 is LFW - Fold 1, database 2 is mobile biometry
(MOBIO), FR system 1 is Inception-ResNet-v2 network (trained on MS-
Celeb database), and FR system 2 is DR-GAN network. The CMA-ES [35]
algorithm uses these scores to generate new latent vectors.

Algorithm 1 Latent Variable Evolution
m← 22 � Population
procedure RUNLVE(m, n)

F = {} � Master face set
S = {} � and corresponding score set
Z = {z1 ← rand(), . . . , zm ← rand()} � Initialize
for n iterations do � Run LVE algorithm n times

F← StyleGAN(Z) � Generate m faces F
s(1) ← 0, s(2) ← 0 � Initialize scores s(1), s(2) ∈ R

m

for face Fi in faces F do
for face E(1)

j in data E(1) do

s(1)
i ← s(1)

i + FaceMatching(1)(Fi, E(1)
j )

s(1)
i ←

s(1)
i
|E(1)| � Mean scores of 1st system

for face E(2)
j in data E(2) do

s(2)
i ← s(2)

i + FaceMatching(2)(Fi, E(2)
j )

s(2)
i ←

s(2)
i
|E(2)| � Mean scores of 2nd system

si = s(1)
i +s(2)

i
2 � Mean scores of both systems

Fb, sb ← GetBestFace(F, s)
F ← F ∪ {Fb} � Append best master face
S ← S ∪ {sb} � and its corresponding score
Z ← CMA_ES(s)

return F ,S
Fb, sb ← GetBestFace(F ,S) � Final (best) master face

is illustrated in Fig. 6 and is formalized in Algorithm 1. First,
m latent vectors {z1, . . . , zm} are initialized randomly. They
are then fed into a pretrained StyleGAN network to generate
m faces. Two face matching functions, FaceMatching(1)(·, ·)
and FaceMatching(2)(·, ·) (corresponding to two FR systems),
calculate the similarity between the generated faces and all
subject faces in databases E(1)

j and E(2)
j , respectively. Two m-

dimension mean score vectors, s(1) and s(2), are obtained from
the results of FaceMatching(1)(·, ·) and FaceMatching(2)(·, ·).
The mean s of these two vectors is used to select the best
local master face Fb among the m generated faces. Finally,
s is fed into the CMA-ES algorithm to generate new latent
vectors {z1, . . . , zm}. This process is repeated n times. The

Algorithm 2 Database Refining
M = {M1, . . . , Mn} � Previous master faces
procedure REFINE_DATABASE(M, E)

E′ = {} � Initialize refined database
for face Ei in data E do

keep ← true
for face Mj in M do

if isMatch(Ei, Mj) is true then
keep ← false

if keep is true then
E′ ← E′ ∪ {Ei}

return E′

final (global) best master face is chosen from among the n
best master faces F obtained in the n iterations.

To generate another master face, all faces matching the
previously generated master face(s) in the training database(s)
need to be removed, as shown in Algorithm 2. This prevents
the new master face from overlapping the previous master
face(s). An example of a second master face is shown in Fig. 5
along with the first master face, the real wolf face, and their
corresponding FMRs The FMR of the second master face is
lower than that of the first one, and this usually holds for any
subsequent master faces.

IV. GENERATING MASTER FACES

To evaluate the risks and threats of a master face attack, we
designed several settings for the LVE algorithm and several
attack scenarios that cover white-box, gray-box, and black-
box attacks. For white-box attacks, both the architecture of the
target FR system and its training database are known while for
gray-box attacks, only one of them is known. For black-box
attacks, there is no information about the target FR system.
Attackers may use more than one FR system for the LVE
algorithm to increase the probability of their attack being a
white-box or gray-box attack. They can also use more than
one database for the LVE algorithm to better approximate the
distribution of the model database of the target FR system.

This section is organized as follows: We first briefly describe
the FR systems and the databases we used in our experiments.
Then, we describe our generation of master faces using several
combinations of single and multiple FR systems with single
and multiple facial databases when running the LVE algorithm.
Next, we analyze the generation processes and the generated
master faces as well as explain their properties. Finally, we
evaluate the false matching performance of the generated mas-
ter faces for several scenarios, including black-box, gray-box,
and white-box attacks.

A. Experiment Materials

1) Face Recognition Systems: We used five mainstream
publicly available high-performance FR systems in our
experiments:
• Inception-ResNet-v2 based FR systems: one trained on

the CASIA-WebFace database [19] and one trained on the
MS-Celeb database [20] by de Freitas Pereira et al. [21].

• Open-source version of FaceNet [22] implemented and
trained on the MS-Celeb database [20] by Sandberg [28].
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TABLE I
DETAILS OF DATABASES USED IN OUR EXPERIMENTS

• DR-GAN [30] trained on a combination of the Multi-PIE
database [37] and the CASIA-WebFace database [19].

• ArcFace [8] trained on the MS-Celeb database [20].
We used the two Inception-ResNet-v2 based FR systems

and DR-GAN for generating master faces and all of the FR
systems for evaluating master face attacks.2 All FR systems
were pretrained and obtained from the Bob toolbox [38].

2) Databases: Seven databases were used for four different
purposes:
• Training StyleGAN: Flickr-Faces-HQ (FFHQ)

database [17].
• Training FR systems: CASIA-WebFace [19], MS-

Celeb [20], and Multi-PIE [37].
• Running LVE algorithm: Training set of LFW - Fold

1 database [39] aligned by funneling [42] and both
male and female components of training set of MOBIO
database [40].

• Evaluating master faces: Corresponding development
(dev) and evaluation (eval) sets of LFW database [39]
and MOBIO database [40] plus dev set of IARPA Janus
Benchmark A (IJB-A) database [41].3 The dev sets were
used for threshold selection for the FR systems (which
was based on the calculated equal error rates).

Details of the databases used are shown in Table I. There
are no overlapping subjects between the databases used for
training StyleGAN, training the FR systems, and running the
LVE algorithm. This demonstrates that the LVE algorithm can
work well even when its components use mutually exclusive
databases.

We used the InsightFace library4 to estimate the age
and gender distributions of the databases used for training
StyleGAN and the FR systems and for generating master
faces. For the MOBIO database, we used its annotated gen-
der information. We ignored the Multi-PIE database since it
contributes only as an additional part of the database for train-
ing the DR-GAN FR system. The estimated distributions are
shown in Fig. 7 and Fig. 8 respectively. The ages are domi-
nantly 21 to 40, especially in the CASIA-WebFace, MS-Celeb,
and MOBIO databases. The LFW - Fold 1 database is more
balanced with a larger proportion of 41 to 60 ages. There
are tiny numbers of child faces in all databases except for
the MOBIO one, which has none. For gender, there are more
male than female faces in all databases. The LFW - Fold 1

2Benchmarks for some of the systems can be found at https://www.idiap.
ch/software/bob/docs/bob/bob.bio.face_ongoing/v1.0.4/leaderboard.html

3There is no eval set for the IJB-A database.
4https://github.com/deepinsight/insightface

Fig. 7. Estimated age distribution of five databases used for training
StyleGAN, FR systems, and generation of master faces. Best viewed in color.

Fig. 8. Estimated gender distribution of five databases used for training
StyleGAN, FR systems, and generation of master faces. Best viewed in color.

and MOBIO databases are the most unbalanced, with less than
25% female faces. This may cause bias in the FR systems as
well as affect the properties of the generated master faces, as
explained in the following section.

B. Latent Variable Evolution Configurations

Since there are many FR systems and databases, evaluat-
ing all possible combinations is impossible with the available
computation and time resources. We thus selected a subset
with the aim of covering a range as broad as possible. We
defined eight settings (Table II) for the LVE algorithm using
three FR systems (two versions of Inception-ResNet-v2, one
trained on the CASIA-WebFace database and one trained on
the MS-Celeb one, and DR-GAN) and two databases (LFW -
Fold 1 and MOBIO). There are five settings in which one
FR system and one database are used (single 1 to single
5) and three settings in which more than one FR system
and/or database is used (combination 1, combination 2, and
combination 3).

Each combination setting combined two single settings and
was selected on the basis of its reasonable coverage of cases.
The main differences among the three combination settings
are highlighted in Table III. In the combination 1 setting,
only one database was used with the LVE algorithm, and the
databases used for training the FR systems were similar. In the
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TABLE II
SETTINGS FOR RUNNING LVE ALGORITHM. “SINGLE” MEANS USING ONLY ONE DATABASE AND ONE FR SYSTEM. “COMBINATION” MEANS

USING MORE THAN ONE DATABASE AND/OR FR SYSTEM. FOR EACH FR SYSTEM, WE SHOW BOTH ITS

NETWORK ARCHITECTURE (TOP ROW) AND ITS TRAINING DATABASE (BOTTOM ROW)

TABLE III
COMPARISON OF THREE COMBINATION SETTINGS FOR LVE ALGORITHM.

FOR FR SYSTEMS, WE COMPARED THEIR ARCHITECTURES AND

TRAINING DATABASES

Fig. 9. Master faces generated using eight settings specified in Table II.

combination 2 setting, two databases were used with the LVE
algorithm, and two FR systems with the same architecture but
trained on different databases were used. In the combination
3 setting, two databases and two FR systems without anything
in common were used with the LVE algorithm. We ran 1000
iterations of the LVE algorithm for each of the eight settings.

The generated master faces corresponding to the eight set-
tings are shown in Fig. 9. All of them are male faces.
One-fourth are child faces, generated using only the Inception-
ResNet-v2 based FR system trained on the MS-Celeb database.
Half are elder faces generated using only the Inception-
ResNet-v2 based FR system trained on the CASIA-WebFace
database or only the DR-GAN FR system trained on the
combination of the CASIA-WebFace and Multi-PIE databases,

Fig. 10. Master face (top left) generated using combination 1 setting and
all matched faces from eval set of LFW - Fold 1 database [39] sorted from
closest to farthest match. Inception-ResNet-v2 based FR system [21] was used
in this case.

or a combination of these two FR systems. The rest (one-
fourth) are middle-aged faces, generated using the combina-
tions of the two FR systems in the previous two cases (one in
each case).

C. Master Face Analysis

The master face generated using the combination 1 set-
ting and the faces it matched using the Inception-ResNet-v2
based FR system [21] on the eval set of the LFW - Fold 1
database [39] are shown in Fig. 10. The master face matched
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those of persons of both genders, of multiple races (White,
Black, and Asian), and of multiple ages (from children to
elders). In many cases, the facial angles and lighting conditions
differed from those of the master face. The subjects are both
wearing and not wearing glasses (eyeglasses or sunglasses). A
typical master face can match about 10 to 50 identities. Since
the LFW database is unbalanced (as shown in Figs. 7 and 8), a
large portion of the matched faces are male. Furthermore, since
the master face falls in the elder cluster (discussed below),
most of the matched faces are those of elders.

To better understand these results, we ran the uniform
manifold approximation and projection (UMAP) dimension
reduction algorithm on the embedding spaces of three FR
systems and then applied a kernel density estimation method to
the reduced spaces to form the density maps. We did that from
both age and gender perspectives. We used two Inception-
ResNet-v2 based FR systems (CASIA-WebFace version and
MS-Celeb version) and the ArcFace FR system to perform
the embedding space density estimation. Among them, the
two Inception-ResNet-v2 FR systems were used on both the
attacker side and the defender side while the ArcFace FR
system was used only on the defender side. The estimated
densities are shown in Fig. 11. We also included the positions
of the intermediate master faces’ and the optimized master
faces’ embeddings in the plots.

From the age perspective, young faces (less than 30 years
old) are separated from the elder faces (more than 60 years
old), while the remaining faces (30 to 60 years old) are scat-
tered throughout both the young and elder faces. From the
gender perspective, the male and female faces are somewhat
separated. To maximize the false matches, the LVE algorithm
placed the master face in a dense area near the border of a
cluster, which increased the probability of matching diverse
faces. Since there are more male than female faces in all
databases, the probability of placement in a dense area in the
male cluster was higher than that of placement in the female
one. However, since they were only somewhat separated, the
master faces could match both male and female faces (with
more male face matches, as shown in Fig. 10).

For age, the selected dense area could be in a young cluster,
a middle-aged cluster, or a elder cluster. Since the training data
for the FR systems was unbalanced in terms of age with only
a few samples for young and elder faces, these systems may
not accurately recognize young and elder faces. The CASIA
version of the Inception-ResNet-v2 based FR system may per-
form poorly on elder male faces, resulting in the generation
of elder male master faces. Interestingly, the master face gen-
erated using the combination 1 setting also lies at the centroid
of the ArcFace FR system, which is used only on the defender
side. For this case, dense areas also exist even if we use the
angular margin loss in training.

On the other hand, the MS-Celeb version of the Inception-
ResNet-v2 based FR system performed poorly on young male
faces, resulting in the generation of boy master faces. For com-
bination 2 (not fully shown in Fig. 11 due to limited space), we
observed that the 30- to 60-year-old faces were scattered in the
embedding spaces of both of these FR systems; it seems that an
“average” middle-aged face is the optimal solution according

to the proposed LVE algorithm. To further verify the effects of
the clusters on the properties of the master faces, we generated
two master faces using only the female part of the MOBIO
database and the Inception-ResNet-v2 FR system (MS-Celeb
version) and the DR-GAN FR system. Both master faces are
female, as shown in Fig 12.

D. False Matching Rate Analysis

Next, we evaluated the performances of attacks using master
faces. The greater the number of enrolled subjects that match
the generated master face, the higher the FMR. Hence, we
compared the FMRs between two tests:
• Normal test: One side of the test pairs included either a

genuine or zero-effort imposter face defined by the test
protocols of the database used.

• Master face test: The master face was paired with the
faces of all the enrolled subjects.

First, we show how the FMRs measured on the master face
set changed during the LVE optimization. As shown in Fig. 13,
the FMRs became higher in six of the eight settings. For the
two remaining settings (combination 2 and 3), the FMR of one
of their component FR systems also became higher while that
of the other one remained almost zero. In these two cases, two
different databases were used with the LVE algorithm, and the
algorithm tried to maximize the similarities between the mas-
ter face and all faces in database 1 as calculated by component
FR system 1 as well as to maximize the similarities between
the master face and all faces in database 2 as calculated by
component FR system 2. This task is difficult, even if the two
FR systems share the same architecture, as they do in the com-
bination 2 setting. Since the LFW and MOBIO databases have
different distributions, finding a master face that matches the
face of many subjects in both of them is challenging. The LVE
algorithm focused on only one database (the LFW database)
and ignored the other (the MOBIO database, which has higher
variability in terms of pose and illumination conditions than
the LFW database). Moreover, the Inception-ResNet-v2 based
FR system trained on the MS-Celeb database was harder to
fool when it was run with the LVE algorithm compared with
its CASIA-WebFace version. In contrast, although two FR
systems were used in the combination 1 setting, they shared
the same database, so the algorithm was able to fool both of
them.

Two rules for designing settings for the LVE algorithm can
be inferred from these results:
• Using more than one database for running the LVE algo-

rithm is difficult as the algorithm may prioritize the
database that is less challenging.

• Using more than two FR systems is OK. They can have
the same or different architectures, trained on similar or
different databases.

Table IV shows the FMRs for the normal tests and the corre-
sponding master face tests using master faces generated using
five single settings and three combination settings. Each cell
has four numbers, the FMRs for the normal test (upper part)
and the master face test (lower part), from the development set
(left) and the evaluation set of the target database (right). Gray
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Fig. 11. Estimated densities of ages (rows 1, 2, and 4) and genders (row 3) of embedded faces extracted by Inception-ResNet-v2 based FR systems trained
on CASIA-WebFace database (row 1) and MS-Celeb database (rows 2 and 3) and by ArcFace FR system (row 4). Plots on left show estimated densities per
class while those on right show estimated densities of all embeddings. Two Inception-ResNet-v2 based FR systems were used on both attacker and defender
sides while ArcFace system was used only on defender side. We also included the embeddings of five intermediate master faces generated during running of
LVE algorithm (blue dots) and of optimized master face (red dot). These embeddings were extracted from the entire training set of the LFW - Fold 1 database
(rows 1, 2, and 4) and of the MOBIO database (row 3). Corresponding LVE settings (see Table II for more detail) used to generate master faces are shown
in figures on left, along with information about target FR system (denoted as FR) and database (denoted as DB). Best viewed in color.

cells indicate that the surrogate database(s) used by attackers
when running the LVE algorithm and the target database(s)
were different while gray cells indicate that they were the

same. Numbers in bold indicate successful master face attacks.
There are several observations regarding the FMRs of the
attacks using the master faces generated using the single and
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TABLE IV
FMRS OF NORMAL TESTS AND CORRESPONDING MASTER FACE TESTS USING MASTER FACES GENERATED USING FIVE Single SETTINGS AND THREE

Combination SETTINGS. FOR EACH FR SYSTEM, WE SHOW BOTH ITS NETWORK ARCHITECTURE (TOP ROW) AND ITS TRAINING DATABASE (BOTTOM

ROW). WITHIN EACH CELL, NUMBER AT UPPER LEFT IS FMR FOR NORMAL TEST FROM DEVELOPMENT SET OF TARGET DATABASE, THAT AT UPPER

RIGHT IS FMR FOR NORMAL TEST FROM EVALUATION SET OF TARGET DATABASE, THAT AT LOWER LEFT IS FMR FOR MASTER FACE TEST FROM

DEVELOPMENT SET OF TARGET DATABASE, AND THAT AT LOWER RIGHT IS FMR FOR MASTER FACE TEST FROM EVALUATION SET OF TARGET

DATABASE. GRAY CELLS INDICATE THAT SURROGATE DATABASE(S) USED BY ATTACKERS WHEN RUNNING LVE ALGORITHM AND TARGET

DATABASE(S) WERE DIFFERENT WHILE WHITE CELLS INDICATE THAT THEY WERE THE SAME. NUMBERS IN italics INDICATE THAT

SURROGATE FR SYSTEM(S) AND TARGET FR SYSTEM(S) WERE IDENTICAL IN BOTH ARCHITECTURE(S) AND TRAINING

DATABASE(S). NUMBERS IN BOLD INDICATE SUCCESSFUL MASTER FACE ATTACKS.

Fig. 12. Two female master faces generated using only female part of
MOBIO database and Inception-ResNet-v2 based FR system (MS-Celeb
version) and DR-GAN FR system, respectively.

combination settings shown in Table IV in connection with
the FMR curves shown in Fig. 13.
• All FR systems are vulnerable to master face attacks.

Some systems are easier to fool than others.
• With the combination 1 setting, the master face had the

attack abilities of the master faces generated using the
corresponding single settings (single 1 and single 2). In
this case, there was no conflict.

• With the combination 2 and combination 3 settings, in
which conflict occurred, their master faces were lacking
some attack abilities of the master faces generated using
the corresponding single settings. This is clearly seen for
the combination 2 setting, for which six attacks that were
successful in the single settings failed.

• With the combination 3 setting, for which the two compo-
nent databases and FR systems differed, five attacks that

TABLE V
SUMMARY OF SUCCESSFUL ATTACK RATIOS USING FIVE Single

SETTINGS AND THREE COMBINATION SETTINGS. NUMERATORS ARE

NUMBER OF SUCCESSFUL ATTACKS; DENOMINATORS ARE TOTAL

NUMBER OF ATTACK CASES. NOTE THAT FOR Combination 3, SOME

ATTACKS FALL INTO TWO SETTINGS: “SAME ARCH. - DIFFERENT DB”
AND “DIFFERENT ARCH. - SAME DB.” NUMBERS FOR OVERLAPPED

CASES ARE SHOWN INSIDE PARENTHESES

had been successful were no long successful, and there
were six newly successful ones. Moreover, the FMRs of
the successful attacks were not as high as the those of
the single setting. Although conflict still occurred in this
case, it was less severe than in the combination 2 setting.

The above observations provide valuable clues for effec-
tively designing the LVE algorithm. Using only one database is
a safe way to avoid conflicts when running the LVE algorithm.
Although there negative side effects due to conflicts, using
both different databases and different FR systems may result in
unpredictable successful attacks when the single setting fails.
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Fig. 13. FMRs of each FR system when running LVE algorithm using five single settings and three combination settings. Two Inception-ResNet-v2 (IR-v2)
FR systems were used, one trained on CASIA-WebFace database and one trained on MS-Celeb database. We included intermediate master faces generated
using three single settings (1, 2, and 3) and three combination settings. Best viewed in color.

Table V summarizes the number of successful attacks using
both single and combination settings. An attack is success-
ful if the master face’s FMR is higher than the normal test
set’s FMR. Recall that there were five single settings and
three combination settings. Moreover, the combination set-
tings used more than one database and/or one FR system, and
there were only three databases and five FR systems used for
evaluation. As a result, the total number of black/gray-box
attacks (attacks on different architecture, different database)
with these settings was less than that of attacks with the single
settings.

The overall success ratio of master face attacks was 21%.
White-box attacks had the highest success ratios, followed
sequentially by gray-box and black-box attacks. The suc-
cess rate for the combination settings (24%, overlapped cases
removed) is higher than that for the single settings (19%). This
means that, although the generation process is more difficult
for the combination settings, when the attacks are successful,
the master faces have stronger attack ability. Regarding black-
box attacks (both target database and FR system are unknown),
since we had only a limited number of scenarios (6 in total for
combination settings compared with 30 for single settings), it

is hard to conclude whether master faces generated using com-
bination settings can successfully perform black-box attacks.
The main point of using a combination setting is to increase
the chance of an attack being a gray-box or white-box (if
lucky) attack by using multiple databases and FR systems for
guessing and approximating the target system.

In reality, attackers can mix several databases to create a
single large database with increased generalizability. There are
not many public FR system architectures; therefore, attackers
can prepare in advance several master faces for each one using
a mixed database.

V. PRESENTATION ATTACKS

Finally, we evaluated the risk and threats of presentation
attacks using master faces on FR systems. For master face
candidates, we chose one generated using the single 2 setting
and another generated using the combination 1 setting. For
digital attack candidates, we chose two attack scenarios in the
IJB-A database [41] in which the two master faces were falsely
accepted by the Inception-ResNet-v2 based FR system [21]
(CASIA-WebFace version) and the DR-GAN FR system [30].
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Fig. 14. Overview of presentation attack on FR system.

TABLE VI
FMRS OF MASTER FACE PAI ATTACKS ON DEV SET OF IJB-A

DATABASE [41] USING TWO SETTINGS: Single 2 AND Combination 1.
FIRST LINE IN EACH ROW SHOWS RESULT FOR INCEPTION-RESNET-V2
BASED FR SYSTEM [21] TRAINED ON CASIA-WEBFACE DATABASE,
AND SECOND LINE SHOWS RESULT FOR DR-GAN FR SYSTEM [30].

NUMBERS IN BOLD FONT INDICATE SUCCESSFUL ATTACKS ALTHOUGH

THERE WAS DEGRADATION IN THE FMR IN SOME CASES

We compared the FMRs of these two digital attacks with those
of the corresponding presentation attacks.

A. Experiment Design

To simulate simple presentation attacks like the one shown
in Fig. 14, we needed to prepare PAIs and cameras. For the
PAIs of each of the two selected master faces, we used three
kinds of materials:
• Color photos printed on plain A4 paper.
• Color photos printed on 127 mm × 178 mm photo paper.
• Color photos displayed on the screen of an Apple 13-inch

MacBook Pro 2017.
For the cameras, we used two types:
• the rear camera in an iPhone XR.
• a Canon EOS 60D DSLR camera with a Canon EF 40mm

F2.8 STM lens.
For simplicity, we used these cameras to take photos of the

PAIs under normal room conditions. We adjusted the position
of the cameras such that they were relatively perpendicular to
the surface of the PAIs so they could capture the displayed
PAIs as much as possible without loosing any contents. This
condition is close to that of real-world presentation attacks.
Three example PAIs are shown in Fig. 1.

B. Results

The FMRs of the attacks using PAI master faces are shown
in Table VI along with those of attacks using digital master
faces and those of the normal dev set of the IJB-A database.
The attacks were successful in 19 of the 24 cases, demon-
strating that PAI master faces can be effective in real-world
attacks. In eight cases, the FMRs were higher than those of

attacks using digital master faces. This is attributed to the dis-
tribution of PAI master faces being closer to the distribution
of faces in the facial databases (which contain faces also cap-
tured with a camera) thanks to the camera processing. The
lower rate in the other cases is attributed to artifacts from the
PAI materials playing a bigger role than the effect of the cam-
era processing. All of the PAI attacks using plain paper were
successful while seven of the eight PAI attacks using a com-
puter screen were successful. The attacks using photo paper,
which easily reflects light, had the worst performance. Those
using photos taken with the iPhone camera were more suc-
cessful than those using ones taken with the Canon camera.
This is attributed to the Canon camera being able to capture
more detailed PAI artifacts.

VI. DEFENSE AGAINST MASTER FACE ATTACKS

What is the main problem of existing FR systems that causes
the existence of master faces? We hypothesized that it comes
from the distributions of the embedding spaces where the
extracted features are not well distributed. This results in the
formation of clusters, not only multi-identity clusters but also
age and gender ones. There are two possible origins of this
problem: (1) the training data and (2) the objective function
design. Regarding the training data, as shown in Figs. 7 and 8,
the training data was unbalanced in terms of age and gender.
This could affect the distribution of the embeddings for which
the FR systems discriminate faces in the majority group better
than in the minority one. For example, the 30-60 year-old face
embeddings were scattered more uniformly than the others, as
shown in Fig. 11.Simply enlarging the database has a certain
effect on the robustness of the FR systems (the MS-Celeb ver-
sion of the Inception-ResNet-v2 based FR system had fewer
successful master face attacks than the CASIA-WebFace ver-
sion); however, they are still vulnerable. It is thus important
to balance the training data.

Regarding the objective function design, the objective func-
tions are mainly designed so that same-identity embeddings
stay close together while different-identity ones stay far apart.
The introduction of the angular margin loss [8] improves this
ability while the uniform loss [31] forces the embeddings to
be uniformly distributed. Although these improvements reduce
the risk of master face attacks, they mainly focus on identity.
Since gender, age, and race are also important [43], the attack
is successful in some cases. This suggests that the design of
the objective functions used for training the FR systems needs
further improvement.

Beside harnessing FR systems, using master face detec-
tors could mitigate master face attacks. Since master faces are
generated using a GAN, GAN image detectors [44]–[46] or
deepfake detectors [47] could be used to detect them. Although
looking realistic from the human perspective, computer-
generated images have different properties than natural ones
captured by cameras. Some GAN artifacts may exist in
the generated images; therefore, most GAN image detectors
focus on detecting their presence. We could also integrate a
presentation attack detector [47] with an FR system to prevent
master face attacks as well as other traditional presentation
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attacks using images or videos of the victims. However, gen-
eralization of these detectors is still a huge challenge. The
StyleGAN used in the LVE algorithm could be replaced
with a more advanced facial generator to fool fake image
detectors. Although some degree of generalizability has been
achieved, performance is still not good enough for real-world
applications. Therefore, further research on generalizability is
needed.

VII. CONCLUSION

We have again demonstrated, especially in our presentation
attack experiment, that master face attacks pose a severe
security threat if the FR systems are not properly protected.
Our intensive evaluation of the performance of the LVE
algorithm using several settings, including both single and
combination settings, has brought to light several properties
of master faces as well as of the LVE algorithm. Some of the
combination settings caused intra-component conflicts while
others produced interesting positive results. Being aware of
the existence of master faces and their properties is critical
to improving the robustness of FR systems. Combining the
use of an FR system with a well-designed objective func-
tion trained on a large balanced database with a fake image
detector could mitigate master face attacks. Since digital attack
detectors (GAN image detectors and deepfake detectors) and
presentation attack detectors still have difficulty with gener-
alization and since master face attacks continue to improve,
these attacks cannot be taken lightly. Future work will focus
on designing a better method to generate master faces and one
to detect master face attacks.
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