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Abstract. We study synchronization of two chaotic oscillators in a master-slave configuration.
The two dynamic systems are coupled via a directed feedback that randomly switches among a finite
set of given constant functions at a prescribed time rate. We use stochastic Lyapunov stability theory
and partial averaging techniques to show that global synchronization is possible if the switching
period is sufficiently small and if the two systems globally exponentially synchronize under an average
feedback coupling. The approach is applied to the synchronization of two Chua’s circuits.
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1. Introduction. Chaos synchronization is a topic of great interest, due to its
observation in a huge variety of phenomena of different nature. In many biological sys-
tems, synchronization plays an important role in self-organization of organisms’ groups
[10]. Examples of synchronization include communication among fireflies [9, 36], lo-
comotion of animals [13], molecular and cellular activity [24] and cardiac stimulation
[21, 27, 42]. The study of neural activity [44, 54, 63] and brain disorders [3, 53] is a
correlated issue as well. Other examples and applications can also be found in eco-
logical systems [5], meteorology [16], chemistry [24, 37], gas-liquid bubbling dynamics
[57, 61] and optics [55, 62]. Many reviews on chaos synchronization are currently
available (see for example [2, 6, 12, 23, 43, 48, 50]).

In the literature, different paradigms have been studied to describe synchroniza-
tion of two or more chaotic oscillators. We mention, among the others, peer-to-peer
coupling [22, 52, 56, 59], back-stepping [7], generalized synchronization [64, 65], phase
synchronization [6] and master-slave synchronization [11, 33, 40, 60]. In this work, we
focus on master-slave synchronization. In this case, one system acts as a “master” by
driving the other system that behave consequently as a “slave”.

Most of the research efforts on master-slave synchronization focus on time invari-
ant coupling (see for example [11, 26, 33, 40, 45, 46, 47]). Nevertheless, experimental
and numerical evidences show that synchronization can also be achieved using in-
termittent, time-varying master-slave coupling [20, 32, 65, 66]. In [20], experimental
results on synchronization of two periodically coupled chaotic circuits are presented.
In [32, 65], the slave system is driven by a sequence of samples of the master’s state
(impulsive synchronization). In [32, 66], the signal transmission from the master to
the slave system is adaptively controlled. That is, the driving signal is transmitted
only when it is expected to reduce the synchronization error (selective synchroniza-
tion).

The main goal of this work is to establish sufficient conditions for global synchro-
nization of master-slave coupled chaotic systems with time-varying coupling. We fo-
cus on the general case where the intermittent coupling changes randomly over time.
Intermittent coupling is made possible through a switching function, that changes
randomly over time, assuming values among a finite set of constant functions. The
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synchronization problem is transformed into a nonlinear stochastic stability problem
and it is studied using partial averaging techniques (see for example [25, 29, 49]),
nonlinear system theory (see for example [35]) and stochastic stability theory (see
for example [38, 39]). We associate to the stochastic system a partially averaged
system characterized by a constant coupling. This auxiliary system can be studied
using well-established and manageable Lyapunov based techniques as those presented
in [33]. Under suitable regularity conditions, we show that if the partially averaged
system is globally exponentially stable and the switching period is sufficiently small,
the stochastic system is globally asymptotically synchronized.

The type of intermittent coupling considered in this paper has been also analyzed
in the framework of consensus theory [30, 51]. We note that, in consensus theory, the
individual systems’ dynamics is linear while in the present case the coupled systems are
strongly nonlinear. Partial averaging techniques have been used in the synchronization
literature by [52, 59]. Both these efforts deal with peer-to-peer coupling and only local
asymptotic synchronization results based on linearized dynamics are presented. In this
paper the inherent non linear nature of the coupled systems is retained and global
exponential results are presented.

The system studied in this paper finds many practical applications. For example,
in communication and signal processing, chaotic behavior can be used for message
encryption and secure communication [15, 17, 18, 31, 34, 41]. Higher communication
efficiency can potentially be achieved through sporadic transmission of the driving
signal. This is particularly useful when the available resources are shared and the
amount of information that can be transmitted is limited (for example this is the case
of Internet communication). Furthermore, in many biological systems, interactions
happen only sporadically and randomly [4] (see for example the neurons’ activity in
the brain or the synchronous flashing behavior of the fireflies).

We organize the paper as follows. In Section 2, we define the master-slave syn-
chronization problem in the case of a stochastic linear feedback. In Section 3, we
present a few general results on stability of nonlinear stochastic systems. In Section
4, we apply these results to the synchronization problem. As a sample case, in Section
5 we consider the case of two stochastically coupled Chua’s circuits. Section 6 is left
for the conclusions.

2. Problem Statement. We consider the master system

ẋ(t) = Ax(t) + g(x(t)) + u(t) (2.1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rn is the input vector, A ∈ Rn×n is a
constant matrix, g is a non linear function, n is a positive integer and t ∈ R+ indicates
the time variable. We construct a slave system for (2.1)

˙̃x(t) = Ax̃(t) + g(x̃(t)) + u(t) + K(t)(x(t)− x̃(t)) (2.2)

System (2.2) is unidirectionally coupled to the master system (2.1) through the feed-
back matrix function K(t). We consider the case where K(t) is a piecewise constant
signal that in every time interval [σk, σk+1], with k ∈ Z+ and σ0 = 0, equals the
random variable Kk. We assume that the random variables Kk are finite-state, inde-
pendent and identically distributed in the state space {K1,K2, ..., KN}, with N ∈ Z+.
We further assume that switching occurs at equally spaced time instants σk, with
|σk+1 − σk| = ε, where ε > 0 is a fixed time duration.
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Following [33], we assume that

g(x)− g(x̃) = Mx,x̃(x− x̃)

for some bounded matrix Mx,x̃, whose elements depend on x and x̃. As discussed in
[33], this condition applies to a large variety of chaotic systems.

We express the system of equations (2.1) and (2.2) in terms of the error function
e = x− x̃

ė(t) = Ae(t) + g(x(t))− g(x̃(t))−K(t)e(t)
= (A−K(t))e(t) + Mx(t),x(t)−e(t)e(t) (2.3)

Equation (2.3) can be compactly rewritten as

ė(t) = y(e(t), t)−K¦(t/ε)e(t) (2.4)

where y(e(t), t) = (A − Mx(t),x(t)−e(t))e(t) and K¦(t/ε) = K(t). We note that the
matrix function K¦ switches at a unit rate. Equation (2.4) shows that two different
time scales are involved in the problem: a fast time scale t/ε representing the switching
process and a slow time scale t describing the chaotic dynamics. By considering the
error function e, the synchronization problem reduces to the stability analysis of the
stochastic and nonautonomous nonlinear system in equation (2.3).

We associate to the stochastic system (2.4) a partially averaged deterministic
system whose synchronizability can be assessed through well-established Lyapunov
stability techniques [33]. We show that if the switching rate is sufficiently fast and
the Lyapunov function of the deterministic system is sufficiently regular, the stability
properties of the partially averaged system are inherited by the stochastic system.

3. Preliminary results on global stability through fast switching. We
consider the integral equation in Rn

x(t) = x(σk) +
∫ t

σk

f(x(ξ), ξ, Ω)dξ (3.1)

where t ∈ [σk, σk+1], σ0 = 0, |σk+1 − σk| = ε, and k ∈ Z+. The function f is
defined in Rn × R+ × Θ. Here, Ω is a finite-state random variable taking values in
Θ = {ω1, ..., ωN}, with N ∈ Z+. We assume that f(0, t, ωj) = 0, ∀t ∈ R+, j = 1, ..., N
and that for every ω ∈ Θ the function fω(x, t) = f(x, t, ω) is globally Lipschitz in
R+, with Lipschitz constant Lω,ε. We further require that Lω,ε < L, where L is a
constant independent of ω and ε. We note that (3.1) describes a Markovian nonlinear,
nonhomogeneous jump system (see for example [14]). We look for a solution of (3.1)
for t ≥ t0 and initial conditions x(t0) = x0. In the sequel, we use E[•] to indicate
expectation and we denote probability with P{•}.

In this section, we establish sufficient conditions for global stability of the stochas-
tic system (3.1). First we recall the definitions of global mean square exponential
stability (see for example [19]), global almost surely stability and global asymptotic
stability (see for example [39]).

Definition 3.1. The system (3.1) is globally mean square exponentially stable if
there exist α ≥ 0 and β > 0 such that for any t0 ∈ R+, and any x0 ∈ Rn

E[‖x(t)‖2] ≤ α‖x0‖2e−β(t−t0)
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Definition 3.2. The system (3.1) is globally almost surely stable if for any ρ > 0
and µ > 0, there is δ(ρ, µ) > 0 such that if ‖x0‖ < δ(ρ, µ), then

P

{
sup

∞>t≥0
‖x(t)‖ ≥ µ

}
≤ ρ (3.2)

Definition 3.3. The system (3.1) is globally almost surely asymptotically stable
if it is globally almost surely stable and x(t) a.s.−→ 0 for all x0 ∈ Rn.
Here, the notation x(t) a.s.−→ 0 indicates almost sure convergence (see for example [28]).

From classical Lyapunov stability theory, it is well known that a deterministic
dynamical system is asymptotically stable if there exists a Lyapunov function whose
time derivative along the solutions of the system is negative definite (see for example
[35]). In [1], this condition is relaxed and it is shown that if the Lyapunov function
decreases when evaluated at a discrete sequence of time instants, the system is asymp-
totically stable. In this case, the time derivative of the Lyapunov function can assume
positive and negative values. The following Theorem extends the results of [1] from
the deterministic to the stochastic case and it is used in what follows to establish our
main claim.

Theorem 3.4. Consider the system (3.1) and suppose that there exists a function
V : Rn × R+ → R such that ∀(x, t) ∈ Rn × R+

λmin‖x‖2 ≤ V (x, t) ≤ λmax‖x‖2 (3.3)

with λmin and λmax positive nonzero real constants. Assume also that there exists ν,
with 0 < ν ≤ 1, such that

E[V (x(σk+1), σk+1)|x(σk)]− V (x(σk), σk) ≤ −νV (x(σk), σk) (3.4)

for every k ∈ Z+. Then (3.1) is globally mean square exponentially stable and globally
almost surely asymptotically stable.

Proof. See Appendix A

Remark 1. The arguments given in the proof of Theorem (3.4) not only establish
the global mean square exponential stability and the global almost sure asymptotic
stability, but provide further insights on the asymptotic behavior of the solution of
(3.1). In fact, from (A.16) and (A.17) we have

P

{
sup

∞>(t−t0)≥T

‖x(t)‖ ≥ ψγ

}
≤ ce−ϕT (3.5)

where c = c(1 − ν)‖x(t0)‖2 and ϕ = − ln(1 − ν)/ε. Equation (3.5) implies that the
probability that ‖x(t)‖ is greater or equal than a certain quantity decreases with an
exponential decay. This corresponds to the definition of global exponential stability
presented in [39].

We associate to (3.1) the partially averaged system

ẋ(t) = f(x(t), t) = E[f(x(t), t, Ω)] (3.6)
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Equation (3.6) represents a deterministic, time-varying, non linear system. We notice
that f(0, t) = 0, ∀t ∈ R+. If (3.6) is globally exponentially stable, by the Converse
Theorem of Lyapunov (see [35], Theorem 3.12) we know that there exists a Lyapunov
function V (x, t), whose time derivative is negative definite along its trajectories. In
the following theorem, we show that if V (x, t) satisfies further regularity conditions
and the switching period is sufficiently small, the original system (3.1) is globally
mean square exponentially stable and almost surely asymptotically stable.

Theorem 3.5. Consider the system (3.1) and the associated partially averaged
system (3.6) and suppose that there exists a Lyapunov function V (x, t) which satisfies
the following conditions:
1. V (0, t) = 0, ∀t ∈ R+ and there exist positive numbers λmin, λmax such that for
every (x, t) ∈ Rn × R+,

λmin‖x‖2 ≤ V (x, t) ≤ λmax‖x‖2 (3.7)

2. there exists a positive number w such that for every (x, t) ∈ Rn × R+

∂V

∂t
(x, t) +

∂V

∂x
(x, t)f(x, t) ≤ −w‖x‖2 (3.8)

3. ∀t ∈ R+, ∂V
∂x (0, t) = 0 and ∂V

∂x (x, t) is globally Lipschitz, with Lipschitz constant
Kv. Moreover, ∀t ∈ R+, ∂2V

∂x∂t (0, t) = 0, and ∂2V
∂x∂t (x, t) is globally Lipschitz, with

Lipschitz constant Kvt.
There exists an ε∗ > 0 such that ∀ε < ε∗ system (3.1) is globally mean square expo-
nentially stable and globally almost surely asymptotically stable.

Proof. Consider the Lyapunov function V (x, t). Its derivative along the solution
of (3.1) is

V̇ (x(t), t) =
∂V

∂t
(x(t), t) +

∂V

∂x
(x(t), t)f(x(t), t, Ω) (3.9)

For every nonnegative integer k, we define

∆V (σk+1, σk) = E[V (x(σk+1), σk+1)|x(σk)]− V (x(σk), σk). (3.10)

From (3.1), (3.9) and (3.10) we have

∆V (σk+1, σk) = E

[∫ σk+1

σk

V̇ (x(t), t)dt

]
=

= E

[∫ σk+1

σk

∂V

∂t
(x(t), t) +

∂V

∂x
(x(t), t)f(x(t), t, Ω)dt

]
=

= E

[∫ σk+1

σk

∂V

∂x
(x(t), t)f(x(t), t,Ω)− ∂V

∂x
(x(σk), t)f(x(σk), t, Ω)dt

]

+ E

[∫ σk+1

σk

∂V

∂t
(x(t), t)− ∂V

∂t
(x(σk), t)dt

]

+ E

[∫ σk+1

σk

∂V

∂t
(x(σk), t) +

∂V

∂x
(x(σk), t)f(x(σk), t, Ω)dt

]

(3.11)
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We seek an upper bound for the absolute values of the three terms in the sum-
mation above.
We start our analysis by considering the first and the second terms. Using the Lips-
chitz conditions on fω and on the first and second derivatives of V and following the
argument of [49] (see proof of Theorem 2, part II and III), for each realization ω of
Ω, we have

∣∣∣∣
∫ σk+1

σk

∂V

∂x
(x(t), t)f(x(t), t, ω)−

∂V

∂x
(x(σk), t)f(x(σk), t, ω)dt

∣∣∣∣ ≤ 2L2
ω,εKve2εLω,εε2‖x(σk)‖2

∣∣∣∣
∫ σk+1

σk

∂V

∂t
(x(t), t)− ∂V

∂t
(x(σk), t)dt

∣∣∣∣ ≤ Lω,εKvte
2εLω,εε2‖x(σk)‖2

Since
∑N

i=1 P{Ω = ωi} = 1 and Lω,ε < L for each ω, the absolute value of the first
term of the summation (3.11) is less than or equal to

2L2Kve2εLε2‖x(σk)‖2

In addition, the absolute value of second term is less than or equal to

LKvte
2εLε2‖x(σk)‖2

Now, we consider the third term in the right side of (3.11)

E

[∫ σk+1

σk

∂V

∂t
(x(σk), t)+

∂V

∂x
(x(σk), t)f(x(σk), t, Ω)dt

]
=

= E

[∫ σk+1

σk

∂V

∂t
(x(σk), t) +

∂V

∂x
(x(σk), t)f(x(σk), t)dt

]

+ E

[∫ σk+1

σk

∂V

∂x
(x(σk), t){f(x(σk), t, Ω)− f(x(σk), t)}dt

]

By hypothesis, (3.8) provides a bound for the first term in the summation above,
while the second term is equal to zero. Using the bounds above in equation (3.11),
we find

∆V (σk+1, σk) ≤ [g(ε)− w]‖x(σk)‖2 (3.12)

where the function g(ε) is defined by

g(ε) = (2L2Kve2εL + LKvte
2εL)ε2 (3.13)

Noticing that g(0) = 0 and g′(0) = 0, we have that there exists ε∗ > 0 such that

∆V (σk+1, σk) ≤ −w‖x(σk)‖2 (3.14)

where w = [w − g(ε)] > 0, for every ε < ε∗.
In conclusion, if the switching period ε is sufficiently small, (3.14) and (3.10) imply
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that the hypotheses of Theorems 3.4 are satisfied. Thus the claim follows.

Remark 2. We assumed in Section 2 that ε is a fixed period of time. This
hypothesis can be relaxed. In fact, Theorem 3.5 can be generalized considering not
equally spaced switching instants. If the switching interval is bounded in the interval
[0, εmax], equation (A.9) in Theorem 3.4 still holds with γ = eLεmax , while Theorem
3.5 holds with εmax ≤ ε∗.

4. Stochastic chaos synchronization. In this section we combine the general
findings of Section 3 on stochastic stability of non linear systems with available results
on synchronizability of deterministic systems, to provide sufficient conditions for the
global synchronization of system (3.1). In particular, we make use of the results of
[33], where a criterion for global exponential synchronization of (2.1) and (2.2) is
given in the case of constant feedback gain. The error system equation (2.3), when
K(t) equals the constant K∗, becomes

ė(t) = (A−K∗)e(t) + Mx(t),x(t)−e(t)e(t) (4.1)

For clarity we restate here the main theorem of [33].

Theorem 4.1. The system (4.1) is globally exponentially stable, if the feedback
gain matrix K∗ is chosen such that

li(t) ≤ −w < 0, i = 1, 2, ...n

where li(t)’ s are the eigenvalues of the matrix

Q(t) = (A−K∗ + Mx(t),x(t)−e(t))T P + P (A−K∗ + Mx(t),x(t)−e(t))

and P is a positive definite symmetric constant matrix. A Lyapunov function for
(4.1) can be constructed as

V (e(t), t) = e(t)T Pe(t) (4.2)

with

V̇ (e(t), t) = e(t)T Q(t)e(t) ≤ −w‖e(t)‖2 < 0 (4.3)

We note that, for i = 1, ..., N , the function f(e(t), t,Ki) = (A+Mx,x−e−Ki)e(t) is
globally Lipschitz in R+ with Lipschitz constant Li = ‖A‖+m+‖Ki‖, where ‖M‖ ≤
m. The Lipschitz constants Li are bounded by L = ‖A‖ + m + max1≤i≤N{‖Ki‖}.
We further notice that f(0, t, Ki) = 0, ∀t ∈ R+. We associate to the system (2.3) the
partially averaged system

ė(t) = (A + Mx(t),x(t)−e(t))e(t)−Ke(t) (4.4)

where K = E[K(t)] =
∑N

i=1 piKi. Here, pi indicates the probability of K(t) assuming
value Ki, that is pi = P{K(t) = Ki}.
Since K is constant, we can apply Theorem 4.1 to (4.4). The Lyapunov function (4.2)
constructed for the partially averaged system, can be used to assess the stability of
the stochastic system. In fact V (0, t) = 0 and (3.7) holds for λmin = min{λ(P )} and



8 Maurizio Porfiri and Roberta Pigliacampo

λmax = max{λ(P )}, since P is a constant matrix (here λ(•) indicates the spectrum
of the matrix). Furthermore, (4.3) is equivalent to (3.8) and Condition 3 of Theorem
3.5 is satisfied with Kv = 2‖P‖ and Kvt = 0. Thus equation (3.14), specified for the
case at hand, reads

2L2Kve2Lεε2 − w = 0 (4.5)

and it yields the sought value of ε∗. By applying Theorem 3.5, we claim that the
system (2.3) is globally mean square exponentially stable and globally almost surely
asymptotically stable ∀ε < ε∗. We summarize the above arguments in the following
Corollary.

Corollary 4.2. Consider the system (2.3) and the corresponding partially av-
eraged system (4.4). If the feedback gain matrix K(t) is chosen such that

li(t) ≤ −w < 0, i = 1, 2, ...n

where li(t)’ s are the eigenvalues of the matrix

Q(t) = (A−K + Mx(t),x(t)−e(t))T P + P (A−K + Mx(t),x(t)−e(t))

and P is a positive definite symmetric constant matrix, then there exists an ε∗ > 0
such that such that ∀ε < ε∗ the system (2.3) is mean square globally exponentially
stable and globally almost surely asymptotically stable.

5. Case study: synchronization of two chaotic Chua’s circuit. As an
example, we apply our results to synchronization of Chua’s circuits (see for example
[58]). A Chua’s circuit system is described by





ẋ = a(y − x− h(x))
ẏ = x− y + z
ż = −by

(5.1)

where a > 0, b > 0 and the nonlinear function h has the form

h(x) = m1x +
1
2
(m0 −m1){|x + 1| − |x− 1|} (5.2)

with m0 < 0 and m1 < 0. We define

h(x)− h(x̃) = wx,x̃(x− x̃) (5.3)

where wx,x̃ depends on x and x̃ and is bounded by m0 ≤ wx,x̃ ≤ m1 (see for
example [33]).
We consider the case where K(t) is a diagonal matrix. Following (2.2), the slave
system of (5.1) is constructed





˙̃x = a(ỹ − x̃− h(x̃)) + k1(t)(x− x̃)
˙̃y = x̃− ỹ + z̃ + k2(t)(x− x̃)
˙̃z = −by + k3(t)(x− x̃)

(5.4)

Combining (5.1) and (5.4), we obtain equation (2.3), with

A =



−a a 0
1 −1 1
0 −b 0


 , K(t) =




k1(t) 0 0
0 k2(t) 0
0 0 k3(t)


 , g(x) =



−ah(x)

0
0


 .
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We observe that g(x)− g(x̃) = Mx,x−ee, where

Mx,x−e =



−awx,x−e 0 0

0 0 0
0 0 0


 (5.5)

and ‖M‖ ≤ m0m1.
We associate to the system (2.3) the partially averaged system

ė = Ae + Mx,x−ee−Ke (5.6)

where

K =




k1 0 0
0 k2 0
0 0 k3


 (5.7)

By choosing P = I, and by setting

k1 ≥ 1
2
(1− a− 2m0 − w)

k2 ≥ 1
2
(a− 1 + |1− b| − w) (5.8)

k3 ≥ 1
2
(|1− b| − w)

The partially averaged system is globally exponentially stable [33]. We also obtain
Kv = 2 and L = ‖A‖ + m0m1 + max1≤i≤N{‖Ki‖}. Equation (4.5) gives the value
of ε∗ that assures the global mean square exponential stability and the global almost
sure asymptotic stability of the stochastic system ∀ε < ε∗.

Here, we present a few numerical results that illustrate how two stochastically
coupled Chua’s circuits synchronize for a sufficiently fast switching rate. We select
a = 9.78, b = 14.97, m0 = −1.31 and b = −0.75 in order to have chaotic behavior of
the system [33]. We let K(t) switching randomly between the two constant matrices
K1 and K2, where K1 is the zero matrix and

K2 =




20 0 0
0 27.5 0
0 0 20


 (5.9)

For these parameters we have ‖A‖ = 18.8859, max1≤i≤N{‖Ki‖} = ‖K2‖ = 27.5 and
L = 47.3684. Selecting p1 = 0.6 and p2 = 0.4, w can be chosen from (5.8) to be equal
to 0.5. From equation (4.5) we have that for ε = 10−3 the system synchronizes glob-
ally mean square exponentially and globally almost surely asymptotically. Figure 5.1
depicts the trajectories of the master and slave systems on the xy and xz planes.
This figure shows that the two systems synchronize even if the initial conditions are
significantly different.

6. Conclusions. In this paper we presented a general criterion for global syn-
chronization of two chaotic oscillators in a master-slave configuration. The two sys-
tems are coupled through a stochastic unidirectional feedback, realized through a
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Fig. 5.1. Trajectories of the master and slave systems in the xy and xz plane

switching function, that switches randomly among a finite set of constant values. Us-
ing tools based on Lyapunov stability and partially averaging we showed that, under
suitable regularity conditions, the synchronization characteristics of the partially av-
eraged system are inherited by the stochastic system. Our findings are illustrated
through numerical simulations on Chua’s circuits.
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Appendix A. Proof of Theorem 3.4.
Proof. We start by proving the global mean square exponential stability. Consider

arbitrary initial time t0 ∈ R+ and initial condition x0 ∈ Rn. We define the index k̂
so that t0 ∈ [σk̂−1, σk̂]. Specifying equation (3.4) at the k̂-th and (k̂ + 1)-th switching
instants, we have

E[V (x(σk̂+1), σk̂+1)|x(σk̂))] ≤ (1− ν)V (x(σk̂), σk̂) (A.1)

E[V (x(σk̂+2), σk̂+2)|x(σk̂+1)] ≤ (1− ν)V (x(σk̂+1), σk̂+1) (A.2)

By taking the conditional expected value of (A.2) we obtain

E[E[V (x(σk̂+2), σk̂+2)|x(σk̂+1)]|x(σk̂)] ≤ (1− ν)E[V (x(σk̂+1), σk̂+1)|x(σk̂)] (A.3)

Using the smoothing lemma for martingales (see e.g. [28] Lemma 1.1 p. 474) and
(A.1) in (A.3), we have

E[V (x(σk̂+2), σk̂+2)|x(σk̂)] ≤ (1− ν)2V (x(σk̂), σk̂)

Iterating the argument above for any n > k̂, we obtain

E[V (x(σn), σn)|x(σk̂)] ≤ (1− ν)n−k̂V (x(σk̂), σk̂) (A.4)

By using the bounds in (3.3), equation (A.4) gives

E[‖x(σn)‖2|x(σk̂)] ≤ λmax/λmin(1− ν)n−k̂‖x(σk̂)‖2 (A.5)

Equation (A.5) can be used to derive an upper bound for the unconditioned expected
value, that is needed to assess the global mean square exponential stability according
to Definition 3.1. Since k̂ is a given instant of time and x0 is a prescribed initial
condition, x(σk̂) is a finite-state random variable taking values in {x1(σk̂), ..., xN (σk̂)}.
From the definition of conditional expectation (see for example [8]) we have

E[‖x(σn)‖2] =
N∑

i=1

E[‖x(σn)‖2|xi(σk̂)]P{xi(σk̂)} (A.6)

where P{xi(σk̂)} is the probability that xi(σk̂) is the realization of the random variable
x(σk̂). Hence, using inequality (A.5), equation (A.6) yields

E[‖x(σn)‖2] ≤
N∑

i=1

λmax

λmin
(1− ν)n−k̂‖xi(σk̂)‖2P{xi(σk̂)} (A.7)

In order to assess the global mean square exponential stability we need to ana-
lyze the system dynamics inside every switching interval. Given a generic switching
interval [σk, σk+1] and an instant t ∈ [σk, σk+1], using the triangle inequality, ∀t ≥ t
in [σk, σk+1], equation (3.1) yields

‖x(t)‖ ≤ ‖x(t)‖+
∫ t

t

‖f(x(ξ), ξ,Ω)‖dξ (A.8)

Since the functions fω are globally Lipschitz in R+ and all the corresponding Lipschitz
constants are bounded by a constant L, equation (A.8) yields

‖x(t)‖ ≤ ‖x(t)‖+
∫ t

t

L‖x(ξ)‖dξ
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Using the Gronwall-Bellman inequality (see [35], Lemma 2.1) we have

‖x(t)‖ ≤ γ‖x(t)‖ (A.9)

with γ = eLε. Therefore, using (A.9) in (A.7), we find that ∀t ∈ [σn, σn+1]

E[‖x(t)‖2] ≤ γE[‖x(σn)‖2] ≤ γ

N∑

i=1

λmax

λmin
(1− ν)n−k̂‖xi(σk̂)‖2P{xi(σk̂)} (A.10)

Inequality (A.9) can also be used to find an upper bound for ‖x(σk̂)‖ in terms of
the initial conditions. In fact, since t0 ∈ [σk̂−1, σk̂] according to the definition of k̂,
(A.9) holds for t = t0 and t ≥ t0. Since σk̂ ≥ t0, we obtain

‖x(σk̂)‖ ≤ γ‖x(t0)‖ (A.11)

Finally, using (A.11) to bound the right side of (A.10), we obtain

E[‖x(t)‖2] ≤ γ2
N∑

i=1

λmax

λmin
(1− ν)n−k̂‖x(t0)‖2P{xi(σk̂)}

≤ γ2 λmax

λmin
(1− ν)n−k̂‖x(t0)‖2

≤ α‖x(t0)‖2e−β(t−t0) (A.12)

where α = γ2(1− ν)λmax/λmin and β = −ln(1− ν)/ε. Therefore, according to Defi-
nition 3.1, the system (3.1) is globally mean square exponentially stable.

In the second part of the proof, we establish the global almost surely asymptotic
stability. We notice that, since (3.4) holds and V (x(σk), σk) is a positive quantity,
the sequence of V (x(σk), σk) is a supermartingale (see for example Definition 2.4 in
[28]). Therefore, we can apply the supermartingale inequality (see [38], Proposition 1
p. 31) and obtain that for every η > 0

P

{
sup

∞>k≥n
V (x(σk), σk) ≥ η

}
≤ E[V (x(σn), σn)|x(σk̂)]

η
(A.13)

Substituting (A.4) into (A.13) we obtain

P

{
sup

∞>k≥n
V (x(σk), σk) ≥ η

}
≤ (1− ν)

η

n−k̂

V (x(σk̂), σk̂) (A.14)

By hypothesis V (x, t) ≤ λmax‖x‖2. Thus, equation (A.14) yields

P

{
sup

∞>k≥n
‖x(σk)‖2 ≥ η

λmax

}
≤ λmax

η
(1− ν)n−k̂‖x(σk̂)‖2 (A.15)

Using (A.11) in (A.15) we have

P

{
sup

∞>k≥n
‖x(σk)‖ ≥ ψ

}
≤ c(1− ν)n−k̂‖x(t0)‖2 (A.16)



Stochastic synchronization of chaotic oscillators 13

where ψ =
√

η/λmax and c = γ2/ψ2.
Defining the events A = {‖x(σk)‖ ≥ %} and B = {‖x(t)‖/γ ≥ %} we notice, since
(A.9) holds for t = σk, that B is included in A and therefore

P

{
sup

∞>(t−t0)≥T

‖x(t)‖ ≥ %γ

}
≤ P

{
sup

∞>k≥n
‖x(σk)‖ ≥ %

}
(A.17)

with T = nε. Since 0 ≤ (1 − ν) < 1 and (A.9) holds with t = σk and t ∈ [σk, σk+1],
from (A.16) and (A.17) we derive

P

{
sup

∞>(t−t0)≥T

‖x(t)‖ ≥ ψγ

}
≤ c‖x(t0)‖2 (A.18)

which provides the global almost surely stability of system (3.1).
From (A.16) we also obtain that for every ψ > 0

∞∑

n=k̂

P

{
sup

∞>k≥n
‖x(σk)‖ ≥ ψ

}
< ∞ (A.19)

Thus, by directly applying the Borel-Cantelli lemma (see [28] Corollary 18.1), we find
that

sup
∞>k≥n

‖x(σk)‖ a.s.−→ 0 (A.20)

Since ‖x(σk)‖ is a positive sequence, from (A.20) we have that ‖x(σk)‖ a.s.−→ 0 as
k → ∞. As (A.9) holds for t = σk, it follows that x(t) a.s.−→ 0 as t → ∞. Therefore,
according to Definition 3.3, system (3.1) is globally almost surely asymptotically sta-
ble.
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