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In this paper time-delay effects on the master–slave synchronization scheme are investigated.
Sufficient conditions for master–slave synchronization of Lur’e systems are presented for a
known time-delay in the master and slave systems. A delay-dependent synchronization cri-
terion is given based upon a new Lyapunov–Krasovskii function. The derived criterion is a
sufficient condition for global asymptotic stability of the error system, expressed by means of a
matrix inequality. The feedback matrix follows from solving a nonlinear optimization problem.
The method is illustrated for the synchronization of Chua’s circuits, 5-scroll attractors and
hyperchaotic attractors.

1. Introduction

Since the work of Pecora and Carroll [1991], the re-
search on chaotic synchronization has received con-
siderable attention. It basically deals with sufficient
conditions for synchronization of identical or non-
identical systems [Wu & Chua, 1994]. Synchroniza-
tion schemes have been investigated with local and
global synchronization [Hasler, 1994], robust syn-
chronization [Suykens et al., 1999], partial synchro-
nization [Hasler et al., 1998] and generalized syn-
chronization [Kocarev et al., 1996]. An overview
of synchronization methods has been recently pre-
sented in [Chen & Dong, 1998]. Synchronization
has opened the way to investigate an engineering
application of chaos, which is chaotic communica-
tions. Since 1992, a number of chaotic commu-
nication schemes have been proposed [Oppenheim
et al., 1992; Hasler, 1994; Wu & Chua, 1994]. In this
paper, we deal with propagation delay in master–
slave synchronization schemes. This problem has
been recently reported in [Chen & Liu, 2000] which
introduces the possibility of applying chaotic syn-

chronization to optical communication. Chen and
Liu [2000] called this problem a phase sensitivity
due to the distance between two remote chaotic
systems and has reported that the existence of a
time-delay can destroy synchronization. Further-
more, the synchronization and bifurcation phenom-
ena of two chaotic circuits which are coupled by a
delay line have been investigated e.g. by Koike et al.
[1997]. Experimental confirmation of synchroniza-
tion of two chaotic circuits with the existence of
delay has been studied by Kawate et al. [2000].
However, theoretical studies of this problem are still
lacking.
On the other hand, in the area of control the-

ory time-delay systems have been investigated and
it is well known that delays often result in insta-
bilities. Therefore, stability analysis of time-delay
systems is an important subject in control the-
ory [Hale, 1977; Mori et al., 1983; Kamen, 1982,
1983; Tissir & Hmamed, 1996]. In the literature,
stability criteria for time-delay systems are classi-
fied into two main categories: delay-independent
criteria [Kamen, 1982, 1983; Chen & Latchman,
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1995] and delay-dependent criteria [Mori, 1985;
Mori & Kamen, 1989; Chen, 1995]. Recently,
time-delay systems have been intensively studied in
[Mahmoud, 2000]. The Lyapunov–Krasovskii func-
tion [Krasovskii & Brenner, 1963] is a candidate
function for asymptotical stability analysis of lin-
ear time-delay systems. Boyd et al. [1994] derived
linear matrix inequalities (LMI’s) for multiple de-
lay [Boyd et al., 1994] from a Lyapunov–Krasovskii
function.
In this paper we consider master–slave schemes

with identical Lur’e systems. Lur’e systems are a
class of nonlinear systems which can be represented
as a linear dynamical system, feedback intercon-
nected to a nonlinearity that satisfies a sector con-
dition. We suppose that the output of the master
system is received at the slave system with delay
(τ), which is assumed to be a known value. A delay-
dependent criterion for global asymptotic stability
of the error system is given which is expressed as a
matrix inequality and is derived from an extended
Lyapunov–Krasovskii function. The theoretical re-
sult is illustrated by a number of simulation ex-
amples for Chua’s circuits, n-scroll attractors and
hyperchaotic systems.
This paper is organized as follows. In Sec. 2

we present the master–slave synchronization
scheme of Lur’e systems with time-delay. In Sec. 3
the error system and sufficient conditions for
global asymptotic stability based on a Lyapunov–
Krasovskii function for the delay-dependent and
delay-independent cases are derived. In Sec. 4 we
introduce a new Lyapunov function for the master–
slave synchronization scheme and a sufficient con-
dition for global asymptotic stability is given. Fi-
nally, in Sec. 5 examples are given for Lur’e systems:

Chua’s circuit, 5-scroll attractors and hyperchaotic
attractors.

2. Time-Delay Synchronization
Scheme

Consider the following master–slave synchroniza-
tion scheme with static error feedback and time-
delay τ

M :

{

ẋ(t) = Ax(t) +Bσ(Cx(t))

p(t) = Hx(t)

S :

{

ẏ(t) = Ay(t) +Bσ(Cy(t)) + u(t)

q(t) = Hy(t)

C :
{

u(t) = G(p(t− τ)− q(t− τ))

(1)

with master system M, slave system S and con-
troller C (Fig. 1). The master and slave systems are
Lur’e systems with state vectors x, y ∈ Rn, output
of subsystems p, q ∈ Rl, respectively, and matrices
H ∈ Rl×n, A ∈ Rn×n, B ∈ Rn×nh , C ∈ Rnh×n.
σ(·) satisfies a sector condition [Vidyasagar, 1993;
Khalil, 1993] with σi(·) i = 1, 2, . . . , nh belonging
to sector [0, k], i.e. σi(ξ)[σi(ξ) − kξ] ≤ 0, ∀ ξ for
i = 1, 2, . . . , nh. The scheme aims at synchroniz-
ing the master system to the slave system by ap-
plying full state error feedback to the slave system
with control signal u ∈ Rn and feedback matrix
G ∈ Rn×l. Master–slave synchronization has been
studied for τ = 0 in [Wu & Chua, 1994; Curran
et al., 1997]. The difference between this work and
the present paper is the time-delay in the outputs,
i.e. p(t − τ) and q(t − τ) instead of p(t) and q(t),
respectively.

Fig. 1. Synchronization scheme.
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3. Error System of Time-Delay
Synchronization Scheme

Defining the signal e(t) = x(t) − y(t) one obtains
the error system E

E : ė = Ae+Bη(Ce; y) + Fe(t− τ) (2)

with e = e(t), F = −GH and η(Ce; y) = σ(Ce +
Cy) − σ(Cy). One assumes that the nonlinearity
η(Ce, y) belongs to sector [0, k] [Curran & Chua,
1997; Suykens & Vandewalle, 1996]

0 ≤
ηi(c

T
i e; y)

cTi e
=
σi(c

T
i e+ c

T
i y)− σi(c

T
i y)

cTi e
≤ k ,

∀ e, y; i = 1, 2, . . . , nh (3)

The following inequality holds then [Boyd et al.,
1994; Khalil, 1992; Vidyasagar, 1993]

ηi(c
T
i e; y)[η(c

T
i e; y)− kc

T
i e] ≤ 0 ,

∀ e, y; i = 1, 2 . . . , nh . (4)

Stability of the error system without time-delay
(τ = 0) in the feedback has been derived for
quadratic Lyapunov functions [Wu & Chua, 1994;
Curran & Chua, 1997] and Lur’e–Postnikov func-
tions [Curran et al., 1997]. The Lyapunov–
Krasovskii function is a candidate Lyapunov func-
tion for time-delay systems [Krasovskii & Brennel,
1963; Hale, 1977; Mahmoud, 2000]:

V1(e) = e
TPe+

∫ 0

−τ
e(t+ s)TQe(t+ s)ds ,

P = P T > 0 , Q = QT > 0 .

(5)

By taking Lyapunov–Krasovskii function Eq. (5), it
is straightforward to find a sufficient condition for
global asymptotic stability of the error system E .

Theorem 1. Let Λ = diag{λi} be a diagonal ma-
trix with λi ≥ 0 for i = 1, 2, . . . , nh then a suffi-
cient condition for global asymptotic stability of the
error system E , based on the Lyapunov–Krasovskii
function, is given by the matrix inequality

Y =







ATP + PA+Q PB + kCTΛ PF

BTP + kΛTC −2Λ 0

FTP 0 −Q






< 0 .

(6)

Proof. By taking the time derivative of the

Lyapunov–Krasovskii function Eq. (5) and apply-
ing the S-procedure [Boyd et al., 1994], using the
inequalities from the nonlinearities, one obtains

V̇1(e) = ė
TPe+ eTP ė+ e(t)TQe(t)

− e(t− τ)TQe(t− τ)

≤ eT (ATP + PA)e+ ηTBTPe+ eTPBη

+ e(t− τ)TFTPe+ eTPFe(t− τ)

+ e(t)TQe(t)− e(t− τ)TQe(t− τ)

−
∑

i

2λiηi(ηi − kc
T
i e)

= ξTY ξ < 0

where ξ = [e(t); η; e(t− τ)]. �

The matrix inequality (6) does not include in-
formation on the delay. Therefore this result is
a delay-independent stability criterion for synchro-
nization. A necessary condition for Y < 0 is that
the linear part of this system (A matrix) must be
stable. An analysis for Chua’s circuit, 5-scroll at-
tractors and hyperchaotic attractors shows that a
feasible point could not be found for these exam-
ples with Y negative definite. For Chua’s circuit,
a Lur’e representation is given by Güzeliş [1993],
which has a stable A matrix, but even in this case
one could not find a feasible point. In the literature
it has been recommended that if delay-independent
criteria fail, delay-dependent conditions should be
applied [Tissir & Hmamed, 1996]. The following
Lyapunov–Krasovskii function is a candidate func-
tion for a delay-dependent condition [Mahmoud,
2000]

V2(e) = e
TPe+ r1

∫ t

t−τ

∫ t

t+θ
[eT (s)ATAe(s)]dsdθ

+ r2

∫ t

t−τ

∫ t

t−τ+θ
[eT (s)FTFe(s)]dsdθ (7)

where P = P T > 0 and r1 > 0, r2 > 0 are weight
factors. However, taking Eq. (7) as a candidate
function and deriving an LMI from this would not
be possible. For this reason we propose a new candi-
date Lyapunov function in the next section in order
to find a sufficient condition for global asymptotic
stability of error system E .
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4. Delay-Dependent Synchronization

Criterion for Lur’e Systems

Now, we propose a new Lyapunov–Krasovskii func-
tion for delay-dependent stability criteria

V3(e) = e
TPe+ r1

∫ t

t−τ

∫ t

t+θ
[eT (s)ATAe(s)]dsdθ

+ r2

∫ t

t−τ

∫ t

t+θ−τ
[eT (s)FTFe(s)]dsdθ

+ r3

∫ t

t−τ

∫ t

t+θ
[ηT (Ce(s);

y(s))BTBη(Ce(s); y(s))]dsdθ (8)

where P = P T > 0 and r1 > 0, r2 > 0, r3 > 0.
By taking this new Lyapunov function Eq. (8) we
find a new sufficient condition for global asymptotic
stability of error system E .

Theorem 2. Let Λ = diag{λi} be a diagonal ma-
trix with λi ≥ 0 for i = 1, 2, . . . , nh and τ

∗ > 0 be a
scalar, then a sufficient condition for global asymp-
totic stability of error system (E) from (8) for any
constant time-delay τ satisfying 0 ≤ τ ≤ τ∗ is given
by the matrix inequality

Y =

[

Z PB + kCΛ

BTP + kΛCT r3τB
TB − 2Λ

]

< 0 (9)

where Z = P (A + F ) + (A + F )TP + r1τA
TA +

r2τF
TF + ((1/r1) + (1/r2) + (1/r3))τPFF

TP .

Proof. We have

e(t− τ) = e(t)−

∫ 0

−τ
ė(t+ θ)dθ (10)

Substituting ė(t+ θ) into Eq. (10) one obtains

e(t− τ) = e(t)−

∫ 0

−τ
{Ae(t + θ) +Bη(Ce(t+ θ);

y(t+ θ)) + Fe(t+ θ − τ)}dθ

Substituting e(t− τ) back into Eq. (2)

ė = (A+ F )e+Bη(Ce; y)

−F

{
∫ 0

−τ
{Ae(t+ θ) +Bη(Ce(t+ θ);

y(t+ θ)) + Fe(t+ θ − τ)}dθ

}

(11)

Taking the time derivative of the Lyapunov function
Eq. (8) along Eq. (11) we obtain

V̇3(e) = e
T (P (A+ F ) + (A+ F )TP )e+ eTPBη(Ce; y) + ηT (Ce; y)BTPe

− eTPF

∫ 0

−τ
Ae(t+ θ)dθ − eTPF

∫ 0

−τ
Bη(Ce(t+ θ); y(t+ θ))dθ

− eTPF

∫ 0

−τ
Fe(t+ θ − τ)dθ −

∫ 0

−τ
eT (t+ θ)ATFTPedθ

−

∫ 0

−τ
ηT (Ce(t+ θ); y(t+ θ))BTFTPedθ

−

∫ 0

−τ
eT (t+ θ − τ)FTFTPedθ + r1τe

TATAe+ r2τe
TFTFe

+ r3τη
T (Ce; y)BTBη(Ce; y)−

∫ 0

−τ
r1[e

T (t+ θ)ATAe(t+ θ)]dθ

−

∫ 0

−τ
r2[e

T (t+ θ − τ)FTFe(t+ θ − τ)]dθ

−

∫ 0

−τ
r3[η

T (Ce(t+ θ); y(t+ θ))BTBη(e(t+ θ); y(t+ θ))]dθ
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We have the following inequalities from [Mahmoud,
2000, pp. 33–34, p. 401]

−

∫ 0

−τ
eTPFAe(t+ θ)dθ

−

∫ 0

−τ
eT (t+ θ)ATFTPedθ

≤ r−11

∫ 0

−τ
eTPFFTPedθ

+ r1

∫ 0

−τ
eT (t+ θ)ATAe(t+ θ)dθ

and

−

∫ 0

−τ
eTPFFe(t+ θ − τ)dθ

−

∫ 0

−τ
eT (t+ θ − τ)FTFTPedθ

≤ r−12

∫ 0

−τ
eTPFFTPedθ

+ r2

∫ 0

−τ
eT (t+ θ − τ)FTFe(t− τ + θ)dθ

and also

−

∫ 0

−τ
eTPFBη(e(t+ θ); y(t+ θ))dθ

−

∫ 0

−τ
ηT (e(t+ θ); y(t+ θ))BTFTPedθ

≤ r−13

∫ 0

−τ
eTPFFTPedθ + r3

∫ 0

−τ
ηT (e(t+ θ);

y(t+ θ))BTBη(e(t+ θ); y(t+ θ))dθ

Using the above inequalities, we get

V̇3(e) ≤ e
TZe+ eTPBη(Ce; y) + ηT (Ce; y)BTPe

+ r3τη
T (Ce; y)BTBη(Ce; y) .

Applying the S-procedure, by using the inequalities
from the nonlinearities, gives

V̇3(e) ≤ e
TZe+ eTPBη(Ce; y) + ηT (Ce; y)BTPe

+ r3τη
T (Ce; y)BTBη(Ce; y)

+
∑

i

λiηi(ηi − kc
T
∗i
e)

≤ ξTY ξ

where ξ = [e; η].

If V̇3 < 0 for τ
∗, then the following inequality

is satisfied for all τ ∈ [0, τ∗]

τ∗
{

eT
(

r1A
TA+ r2F

TF +

(

1

r1
+
1

r2
+
1

r3

)

Υ

)

e

+ r3η
T (Ce; y)BTBη(Ce; y)

}

≤ −eT (P (A+ F ) + (A+ F )TP )e

− ηT (Ce; y)BTPe− eTPBη(Ce; y)

where Υ = PFFTP . �

The matrix inequality (9) includes information
on the delay. Therefore, this result is a delay-
dependent stability criterion for synchronization.
Note that a necessary condition for synchronization
here is that A+ F must be strictly Hurwitz.

5. Examples

We illustrate Theorem 2 for the examples of
Chua’s circuits, n-scroll attractors and hyperchaotic
attractors.

5.1. Chua’s circuit

Let us take the following representation of Chua’s
Circuit











ẋ = α(y − h(x))

ẏ = x− y + z

ż = −βy

with nonlinear characteristic

h(x) = m1x+
1

2
(m0 −m1)(|x+ c| − |x− c|)

and parameters m0 = −(1/7), m1 = (2/7), α = 9,
β = 14.28, c = 1 in order to obtain the double
scroll attractor [Chua et al., 1986; Madan, 1993].
The system can be represented in Lur’e form by

A =







−αm1 α 0

1 −1 1

0 −β 0






,

B = [−α(m0 −m1); 0; 0] , C = [1 0 0]

and σ(ξ) = (1/2)(|ξ+c|−|ξ−c|) belonging to sector
[0, k] with k = 1.
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The matrix inequality (9) is employed as follows

min
Λ,P,F,r1,r2,r3

λmax[Y (P, F, Λ, r1, r2, r3)]

such that











P = P T > 0

Λ ≥ 0

r1, r2, r3 > 0

(12)

according to e.g. Suykens et al. [1997]. Sequen-
tial quadratic programming has been applied in
Matlab’s optimization toolbox for different values
of τ . The matrix G = [6.0229; 1.3367; −2.1264]
stabilizes the error system for τ ∈ [0 0.039]. No
feasible points were found for τ > 0.039. In the ex-
periments H = [1 0 0] was chosen which means
that the master system is connected to the slave
system with the first state variable only.
The synchronization scheme (Fig. 1) has been

modeled in Matlab Simulink and the following sim-
ulation results have been obtained. The first ob-
servation is given in Fig. 2 for maximum delay
τ∗ = 0.039. A second observation is given in Fig. 3
for a smaller delay τ = 0.01 than the maximum de-
lay. During the simulations it has been observed
that two Chua’s circuits synchronize until τ = 0.21
for the same feedback matrix (Fig. 4). Synchro-
nization could not be observed for τ bigger than
0.21. The simulation result for τ = 0.22 is given
in Fig. 5. As initial conditions of the master and
slave systems were taken x(0) = [−0.2; −0.33; 0.2],
y(0) = [0.5; −0.1; 0.66] in the simulations.

5.2. 5-scroll attractors

A more complete family of n-scroll [Suykens & Van-
dewalle, 1993] instead of double and n-double scroll
attractors has been obtained from a generalized
Chua’s circuit proposed in [Suykens et al., 1997].
An experimental confirmation of 3- and 5-scroll at-
tractors has been given by Yalçin et al. [2000]. The
n-scroll circuit is given by











ẋ = α(y − h(x))

ẏ = x− y + z

ż = −βy

(13)

Fig. 2. Simulation result for master–slave synchronization
of two identical Chua’s circuits. The master system is cou-
pled to the slave system with the first state variable and delay
(τ = 0.039): Three-dimensional view on the double scroll at-
tractor generated for (a) master system and (b) slave system.
(c) Error signal (x1(t)− y1(t)) with respect to time.

(a)

(b)

(c)
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(a)

(b)

(c)

Fig. 3. Delay (τ = 0.01).

(a)

(b)

(c)

Fig. 4. Delay (τ = 0.21).
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(a) (b)

(c)

Fig. 5. Delay (τ = 0.22).

with a nonlinear characteristic having additional
break points

h(x) = m2q−1x+
1

2

2q−1
∑

i=1

(mi−1−mi)(|x+ci|−|x−ci|)

(14)

where q denotes a natural number [Suykens et al.,
1997]. Here, we will consider the 5-scroll attrac-
tor, which is obtained for m = [0.9/7, −3/7, 3.5/7,
−2.7/7, 4/7, −2.4/7], c = [1, 2.15, 3.6, 6.2, 9],
α = 9, β = 14.28. The system is represented in
another Lur’e form than given in [Suykens et al.,

1997], based upon [Güzeliş, 1993] with −(1 + δ)x+
f(x) = −h(x) and

A =







−α(1 + δ) α 0

1 −1 1

0 −β 0






,

B = [−α; 0; 0] , C = [1 0 0]

and δ = 1 where f(x) belong to sector [0, k] with
k = 2.5. This representation results in nh = 1.
The same optimization procedure has been

applied as for Chua’s circuit. For τ > 0.04 no
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feasible points were found such that Y negative
definite. The feedback vector G = [0.6945; 0.7002;
−0.1645] found for τ = 0.04 has stabilized the error
system between τ ∈ [0 0.04]. In the experiments
H = [1 0 0] was chosen. Figure 6 shows sim-
ulation results for the maximum delay τ∗ = 0.04.
Results for a smaller delay τ = 0.01 are given in
Fig. 7. In Matlab Simulink, synchronization has
been observed until τ = 0.14 (Fig. 8) for the same
feedback matrix. Synchronization has not been ob-
served when the delay was bigger than 0.14. Fig-
ure 9 shows results for τ = 0.15. During the sim-
ulations the initial conditions of master and slave
systems are taken as x(0) = [−1.7; −0.4; −0.2],
y(0) = [0.2; −0.2; 0.33].

5.3. Hyperchaotic system

We consider the following system which consists of
two unidirectionally coupled Chua circuits











































ẋ1 = a(x2 − h(x1))

ẋ2 = x1 − x2 + x3

ẋ3 = −bx2

ẋ4 = a(x5 − h(x5))

ẋ5 = x4 − x5 + x6 +K(x5 − x2)

ẋ6 = −bx5

(15)

with nonlinear characteristic

h(xi) = m1xi +
1

2
(m0 −m1)(|xi + c|

− |xi − c|), i = 1, 4 (16)

and parameters m0 = −(1/7), m1 = 2/7, a =
9, b = 14.28, c = 1, K = 0.01. The sys-
tem exhibits hyperchaotic behavior with a double–
double scroll attractor [Kapitaniak & Chua, 1995].
This system was represented in Lur’e form by

Fig. 6. Simulation result for master–slave synchronization
of two identical 5-scroll attractors. The master system is
coupled to the slave system with the first state variable and
delay (τ = 0.04): Three-dimensional view on the 5-scroll at-
tractors generated at (a) master system and (b) slave system.
(c) Error signal (x1(t)− y1(t)) with respect to time.

(a)

(b)

(c)
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(a)

(b)

(c)

Fig. 7. Delay (τ = 0.01).

(a)

(b)

(c)

Fig. 8. Delay (τ = 0.14).
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(a) (b)

(c)

Fig. 9. Delay (τ = 0.15).

Suykens et al. [1998]. h(x) belongs to sector [0, 1]
and

A =



























−am1 a 0 0 0 0

1 −1 1 0 0 0

0 −b 0 0 0 0

0 0 0 −am1 a 0

0 −K 0 1 −1 +K 1

0 0 0 0 −b 0



























,

B =























−a(m0 −m1) 0

0 0

0 0

0 −a(m0 −m1)

0 0

0 0























,

C =

[

1 0 0 0 0 0

0 0 0 1 0 0

]

.

Sequential quadratic programming has been applied
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(a) (b)

(c)

Fig. 10. Simulation result for master–slave synchronization of two identical hyperchaotic systems. The master system is
coupled to the slave system with the first and fourth state variable and delay (τ = 0.038): Double-double scroll attractor
generated for (a) master system (projection onto the x1 − x4 plane) and (b) slave system (projection onto the y1 − y4 plane).
(c) Error signal (x1(t)− y1(t)) with respect to time.

similar to the other examples. For τ > 0.038 no feasible points were found such that Y is negative definite.
The feedback matrix

G =

[

7.6909 2.1313 −3.9865 −0.3491 0.1811 −0.5180

−1.0520 0.0835 0.3455 8.0879 1.8021 −4.8256

]

which is found for the maximum delay τ∗ = 0.038,
has stabilized the error system for τ ∈ [0 0.038].
In the experiments H = [1 0 0 0 0 0; 0 0 0 1 0 0]
has been taken. In Fig. 10 the result is given for

the maximum obtained delay τ∗ = 0.038. Sim-
ulation results for a smaller delay τ = 0.01 are
shown in Fig. 11. In Matlab Simulink, synchroniza-
tion has been observed until τ = 0.17 (Fig. 12) for
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(a)

(b)

(c)

Fig. 11. Delay (τ = 0.01).

(a)

(b)

(c)

Fig. 12. Delay (τ = 0.17).
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(a) (b)

(c)

Fig. 13. Delay (τ = 0.18).

the same feedback matrix. Synchronization has not
been observed when the delay was larger than 0.17.
Figure 13 shows the result for τ = 0.18. During
the simulations, the initial conditions of the master
and slave systems are taken as x(0) = [−0.2; −0.2;
−0.33; 0.2; 0.9; 0.33], y(0) = [0.2; −0.2; 0.33; 0.2;
−0.2; 0.33].

6. Conclusion

In this paper a master–slave synchronization
scheme for Lur’e systems has been investigated

for a known delay existing between master and
slave systems. Synchronization criteria have been
classified into two categories: delay-independent
and delay-dependent synchronization criteria. Suf-
ficient conditions for global asymptotic stability
of the error system have been given for these
two categories. Delay-independent criteria have
been applied to Chua’s circuit, 5-scroll attrac-
tors and hyperchaotic attractors but feasible points
could not be found. Therefore, a new Lyapunov–
Krasovskii function has been introduced, which
gives a delay-dependent synchronization criterion.
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This condition has been successfully applied to the
chaotic and hyperchaotic systems.
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