
Citation: Hu, J.; Al-Salihy, A.; Zhang,

B.; Li, S.; Xu, P. Mastering the D-Band

Center of Iron-Series Metal-Based

Electrocatalysts for Enhanced

Electrocatalytic Water Splitting. Int. J.

Mol. Sci. 2022, 23, 15405. https://

doi.org/10.3390/ijms232315405

Academic Editor: Jing Yu

Received: 8 November 2022

Accepted: 2 December 2022

Published: 6 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Review

Mastering the D-Band Center of Iron-Series Metal-Based
Electrocatalysts for Enhanced Electrocatalytic Water Splitting
Jing Hu 1,2,*, Adel Al-Salihy 2 , Bin Zhang 2, Siwei Li 3 and Ping Xu 2,*

1 School of Energy and Environment, Anhui University of Technology, Ma’anshan 243002, China
2 MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage,

School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
3 Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi’an Jiaotong University,

Xi’an 710049, China
* Correspondence: jennyhu@ahut.edu.cn (J.H.); pxu@hit.edu.cn (P.X.);

Tel.: +86-0555-2312885 (J.H.); +0451-86403808 (P.X.)

Abstract: The development of non-noble metal-based electrocatalysts with high performance for
hydrogen evolution reaction and oxygen evolution reaction is highly desirable in advancing electro-
catalytic water-splitting technology but proves to be challenging. One promising way to improve
the catalytic activity is to tailor the d-band center. This approach can facilitate the adsorption of
intermediates and promote the formation of active species on surfaces. This review summarizes
the role and development of the d-band center of materials based on iron-series metals used in
electrocatalytic water splitting. It mainly focuses on the influence of the change in the d-band centers
of different composites of iron-based materials on the performance of electrocatalysis. First, the
iron-series compounds that are commonly used in electrocatalytic water splitting are summarized.
Then, the main factors affecting the electrocatalytic performances of these materials are described.
Furthermore, the relationships among the above factors and the d-band centers of materials based
on iron-series metals and the d-band center theory are introduced. Finally, conclusions and perspec-
tives on remaining challenges and future directions are given. Such information can be helpful for
adjusting the active centers of catalysts and improving electrochemical efficiencies in future works.

Keywords: electrocatalysis; iron-series metal-based materials; d-band center; hydrogen evolution
reaction; oxygen evolution reaction

1. Introduction

Hydrogen production through water electrolysis has become a key link that cannot
be omitted from the whole production process and has thus become one of the pillars of
the future large-scale new energy industry. Electrochemical water splitting for oxygen
and hydrogen production and applications is the main pollution-free way to obtain clean
hydrogen energy, drive fuel cells, and realize carbon-free emission [1–3]. In recent years,
the energy conversion efficiency of electric energy has been greatly improved with the
rapid development of electrolytic water technology. Moreover, the cost of electrolytic water
splitting has also been drastically reduced due to the exploration of catalysts for water
electrolysis that are cheap, efficient, stable, easy to prepare, and result in low environmental
pollution [4–7].

Electrochemical water splitting, a powerful technique, involves applying voltage to a
system to promote the decomposition of the water molecules adsorbed on the electrode
surface to produce hydrogen and oxygen [8–12]. Given that the use of catalysts with high
electrocatalytic activity could reduce the applied voltage, selecting the appropriate catalysts
can minimize energy consumption to the greatest extent. In other words, the properties of
the catalysts directly affect the efficiency of water splitting [13,14].
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Until now, the catalysts with outstanding activities for the oxygen evolution reaction
(OER) are still mainly based on Ir- and Ru-based materials, and those for the hydrogen
evolution reaction (HER) are still mainly based on Pt-based materials [15–19]. The com-
mercial applications of precious metals are severely limited by their expensive cost and
scare supply. Therefore, the preparation of non-precious metal-based catalysts that can
replace those based on precious metals is one of the most important topics in the field of
electrocatalytic water splitting [20,21]. Cheap substitutes for electrolytic water electrode
materials have been developed. They mainly include oxides [22,23], hydroxides [24,25],
hydroxyl oxides [26,27], phosphates [28,29], and sulfides [30,31]. Their catalytic active
centers are generally transition metal atoms and a few alkali metal atoms because the
d orbitals of transition-state elements with underfilling electrons can accept electrons or
electron pairs [32]. Subsequently, the receptor and donor can form intermediates through
coordination, so as to reduce the activation energy of the reaction and promote the reaction
at lower energy, that is, they act as catalysts for water splitting [33–35].

Among various catalysts, iron-series elements, namely iron-, cobalt-, and nickel-based
materials, have attracted considerable attention [36–41]. On the one hand, these elements
are abundant on earth and therefore the corresponding materials are cost-effective and
easy-to-manufacture. On the other hand, many kinds of Fe-, Co-, and Ni-based materials
exhibit outstanding performance for OER and/or HER. Interestingly, by studying various
reports, we find that these kinds of materials have some characteristics and advantages,
including unfilled d-orbitals that can provide coordination spaces. In other words, tuning
the d-band center of iron transition series metal-based materials is a rough strategy for
developing electrocatalysts for water splitting. However, there has not been a review about
this important topic in electrocatalysis. Therefore, summarizing the results of the research
on catalysts based on iron-series metals is necessary and provides clear ideas for research
in the future. In this review, we attempt to offer the readers a comprehensive review of the
recent progress in the development of descriptors that correlate electrocatalytic activity of
the iron-series electrocatalysts with the d-band center.

2. Iron-Series Electrocatalysts for Water Splitting

On the basis of the catalytic reaction that mainly occurs on the active surfaces of
catalysts, various compounds of iron transition series elements and their corresponding
catalytic reactions can be classified as follows:

Nickel oxide: Nickel oxide (NiO) can effectively open the O–H bond of the water
that had adsorbed on surfaces to produce adsorbed hydrogen atoms [42]. Therefore, it is
conducive to the HER. For example, Qiao’s group prepared NiO nanorods with surfaces
that were rich in O-vacancies and showed a low overpotential of ~110 mV to produce the
current density of 10 mA cm−2 for the HER in alkaline solutions [43]. In addition, many
studies have used NiO as catalyst for the OER and also achieved good results [44]. With
the deepening of research, NiOOH instead of NiO has been found to be the real catalyst
for the OER [45]. In fact, this phenomenon is considered as a method for energy storage in
supercapacitors [46]. Therefore, NiO can be used as both the anode and the cathode for
overall water splitting.

Cobalt oxide: There are many kinds of cobalt oxides with different atomic ratios such
as Co3O4, CoO, and Co2O3 [47–49]. Although different cobalt oxides have different atomic
ratios, similar to those of NiO, the catalytic active sites of cobalt oxides are also mainly cobalt
atoms and oxygen vacancies. For example, when CoO is used as the catalyst for HER, O–H
is adsorbed to the Co(111) surface, which is rich in oxygen vacancies, and the remaining
hydrogen atom is connected to the adjacent oxygen atom, thus forming an intermediate
with increased stability. Cai et al. studied the OER properties of Co3O4 with rich oxygen
vacancies and found that when oxygen defects were introduced into single crystalline
ultrathin Co3O4 nanosheets with O-terminated (111) facets under alkaline conditions, the
as-prepared defect-rich Co3O4 nanosheets showed improved OER activity [50]. When
oxygen vacancies were introduced, the increase in the electron concentration of the cobalt
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atoms and the decrease in valence state resulted in interaction with the surrounding oxygen
atoms, thus reducing adsorption energy and changing the OER mode of Co3O4. Meanwhile,
oxygen vacancies can also reduce the band gap of Co3O4, thus increasing the conductivity
of Co3O and accelerating the kinetics of OER. The application of Co2O3 in electrolytic water
splitting has been less studied than that of the first two compounds, which is likely related
to its difficulty in preparation.

Ferric oxide: Iron oxides also have several compounds with different Fe/O ratios,
such as Fe2O3 and Fe3O4. As for Fe3O4, it can be regarded as a mixture of Fe2O3 and FeO,
among which, Fe atoms mainly exist in the valence states of Fe2+ and Fe3+. When Fe2O3 is
used as the electrode material for the OER, iron atoms on the surface of the material would
first adsorb water molecules and then form Fe–O–H. This phenomenon shows that the iron
oxide still needs to undergo a phase transition to form FeOOH during the OER [51]. Among
iron oxides, Fe3O4 is the most commonly used electrode material for OER. However, due
to its low conductivity, it is often combined with other substances or loaded on collectors
with high conductivity. For example, Ni-doped Fe3O4 particles supported on iron foil show
good OER properties because the coexistence of Fe2+ and Fe3+ creates a large number of
active sites that are similar to oxygen vacancies [52].

Hydroxide (M hydroxide; M = Fe, Ni, Co): Given that reducibility follows the order of
Fe(OH)3 > Co(OH)2 > Ni(OH)2, Ni(OH)2 is more suitable and stable for HER than Fe(OH)3,
which is easily reduced into Fe2O3, while Fe(OH)3 is more stable and suitable for the OER.
On the other hand, Co(OH)2 can be used as an electrode material for OER, HER, and overall
water splitting [53]. During the OER, Co(OH)2 is transformed into high-valence cobalt-
based compounds, such as Co3O4 and CoOOH, which acted as the real active materials for
the OER [54].

Hydroxyl oxide (M oxyhydroxide; M = Fe, Ni, Co): For many oxides or sulfides
in alkaline solution, hydroxyl oxide acts as the real active materials for the OER. For
example, during the OER in alkaline solution, Co9S8 transforms into CoOOH and Ni(OH)2
transforms into NiOOH [55,56]. The OER catalytic activities of these three metal hydroxyl
oxides follow the order of FeOOH > CoOOH > NiOOH [57]. Importantly, recent studies
have found that bimetallic hydroxyl oxides are also important electrocatalytic materials.
For example, binary Fe–Co oxyhydroxide, binary Fe–Ni oxyhydroxide, and binary Ni–
Co oxyhydroxide have been proven to have excellent electrocatalytic properties [58–60].
Bimetallic hydroxyl oxides have good OER performance because the combination of these
two substances promotes the gathering of active atoms on the surfaces of the catalyst, thus
resulting in a sharp increase in the number of efficient catalytic active sites.

The above analysis indicates that hydroxyl oxides based on iron-series metals show
outstanding OER performance and structural stability. At the same time, hydroxides and
metal oxides based on iron-series metals often have superior HER performance and struc-
tural stability. Moreover, the combination of different hydroxyl oxides based on iron-series
metals is helpful for further improving the OER performance of catalysts. The combi-
nation of oxides, hydroxides, or hydroxyl oxides based on iron-series metals is helpful
for improving the catalytic performance mainly because of their surface oxygen vacancy
concentration, exposed catalytic active area, and the conductivity. These factors are also
related to the surface structures of the catalysts. The reported catalyst-related factors
mainly include enriched oxygen vacancy surfaces [61–65], ion adsorption [66,67], edge
effects [68–71], single-atom catalysts [72–77], and high specific surface areas [67,78–82].
These listed factors are common characteristics of high-performance electrocatalysts. How-
ever, the relationships between the electronic structure and performance of the catalysts
have not yet been explored. The interface properties of materials are mainly determined by
their own electronic structures, such as the outer orbital arrangement and the density of
states of the atoms.

The d-band center theory for iron transition series metal-based catalysts with the
unfilled 3d orbitals of iron-series metal atoms has attracted wide attention in recent years
because the energy difference between the d-band center and Fermi level (i.e., Ef − Ec) can
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feasibly predict and explain the adsorption of small molecules, including OH* and H*, on
the metal surface, and can thus explain the relationships between electronic structures and
catalytic performances [83,84].

The d-band center theory is a theoretical model proposed by Nørskov and Hammer in
1995 to explain the adsorption of substances on catalysts [85]. When the adsorbed material
forms a bond with the catalyst, the adsorption capacity is mainly affected by the position of
the d orbital center of the metal atom of the catalyst. Therefore, the d-band center theory
can be reasonably used to explain the relationships between the electronic structure and the
adsorption capacity of the catalyst, as well as to reveal the good coordination ability and
electrocatalytic performance of the catalyst from the perspective of electronic structures
and energy level changes [86]. The d-band centers of the catalyst atoms can be regulated
through the incorporation of dopants, vacancies, strains, and heterostructures. Considering
the relatively low electrocatalytic water-splitting activity of single iron-series compounds,
various efforts have been made to improve electrocatalytic performances through two
effective ways: one is to increase the unit activity on each active site (intrinsic), and the
other is to increase the number of active sites (extrinsic) [87,88].

3. Strategies for Tuning the D-Band Center of Materials Based on Iron-Series Electrocatalysts
3.1. Introduction of Defects/Vacancies

Shifting the d-band center by creating defects or improving vacancies is an effective
way to regulate electronic and geometric structures because downshifting can aid the active
intermediate desorption of active intermediates and upshifting promotes the adsorption of
the active intermediates [89–92], leading to an enhancement in the reactivity of active sites,
which significantly facilitates the activity of electrocatalytic water splitting.

Peng et al. synthesized spinel transitional NiCo2O4 with a unique necklace-like multi-
shelled hollow structure that can offer rich oxygen vacancies (Figure 1a,b), and they found
that the introduction of oxygen vacancies through reduction process caused the PDOS of the
Co d orbital in the reduced NiCo2O4 to shift towards the low-energy direction and present
broadened peaks. The active substances used to compare the d-band center with each other
are all compounded with the necklace-like carbon, thus excluding the influence of carbon
on the d-band center, which is only affected by the introduction of oxygen vacancies. These
changes were indicative of the shifting away of the distribution of electrons in the d-band
from the Fermi level (Figure 1c) that thereby increased the spin polarization of Co, lowered
adsorption energy (Figure 1d–f), and enhanced the electrocatalytic water-splitting activity
of the cobalt site (Figure 1g–i) [22].

In addition, Geng et al. used CoP as a model catalyst to study the actual relationship
between holey structures and varied d-band centers [93]. They found that the hole-creating
method can successfully tune the d-band center, leading to the upward shift of the d-band
center and resulting in an enhanced interaction between hydrogen and cobalt atoms that
was beneficial for obtaining the optimal ∆GH* value (close to 0 eV) of CoP (Figure 2a–d). The
optimized hydrogen adsorption/desorption behavior accounted for the high performance
of the hole-rich CoP with the enhanced pH-universal HER activity of only 84 and 94 mV at
the current density of 10 mA cm−2 in acidic and alkaline solutions (Figure 2e,f).
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Figure 1. (a) SEM image and (b) TEM images of R-NCO. (c) Calculated DOS curves for pristine
NCO and R-NCO. (d) Calculated free−energy diagram of the HER on pristine NCO and R-NCO.
(e,f) Schematic illustration of reaction paths for OER on pristine NCO and R-NCO at (e) zero potential
and (f) equilibrium potential at 1.23 V. (g) OER, (h) HER, and (i) overall water-splitting electrocatalytic
properties of R−NCO and NCO at a scan rate of 5 mV s−1 in 1.0 M KOH. Reproduced with permission
from ref. [22]. Copyright 2018, American Chemical Society.

Furthermore, through the facile strategy of nitrogen plasma, Liu et al. prepared an
unconventional nickel nitride nanostructure enriched with nitrogen vacancies (Ni3N1−x)
and systematically investigated the effect of nitrogen vacancies on the HER performance
by using first-principles calculations [94]. Density functional theory (DFT) calculations
revealed that the downshifting of the d-band center in Ni3N1−x relative to that in Ni3N
due to the presence of nitrogen vacancies facilitated the desorption of hydrogen from its
surface (Figure 3a).

In addition, the higher adsorption energy (absolute value) of Ni3N1−x enriched with
nitrogen vacancies than that of the stoichiometric Ni3N indicated its superior H2O ad-
sorption capability (Figure 3b). Furthermore, Ni3N1−x with nitrogen vacancies had a
considerably lower surface |∆GH*| value than Ni3N that contributed to the boosted
adsorption–desorption behavior of the intermediately adsorbed hydrogen H* and thus
proved its better activity toward HER (Figure 3c). The decline in the Tafel slope of Ni3N1−x
after the introduction of nitrogen vacancies was indicative of the considerably accelerated
reaction kinetics of water splitting. As a result, Ni3N1−x exhibited superior HER perfor-
mance with 55 mV to achieve the overpotential of 10 mA cm−2 and the low Tafel slope of
54 mV dec−1 (Figure 3d,e). Its electrocatalytic activity can be well maintained for at least
50 h (Figure 3f).
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density difference maps of CoP (c) with and (d) without holes. Yellow and cyan represent electronic
accumulation and depletion, respectively. HER polarization curves with a scan rate of 5 mV s−1 in
(e) 0.5 M H2SO4 and (f) 1.0 M KOH. Reproduced with permission from ref. [93]. Copyright 2021, The
Royal Society of Chemistry.
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Figure 3. (a) The projected electronic TDOS and PDOS of Ni3N1−x. Inset shows the atomic structure
model of Ni3N1−x. The horizontal dashed lines represent the Fermi level (0 eV). (b) Partial charge
density distribution of Ni3N1−x. (c) The calculated free-energy diagram of HER. (d) HER polarization
curves measured in 1.0 M KOH solution (pH 14). (e) Corresponding Tafel plots. (f) LSV curves before
and after the stability test for 50 h. Inset shows the chronoamperometry curve. Reproduced with
permission from ref. [94]. Copyright 2020, Wiley-VCH.
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3.2. Strain Engineering

In addition to defects/vacancies, the d-band widths and d-band center can be reg-
ulated by using the lattice strain in a single compound as a tuning knob to enhance
electrochemical reactions [95–100]. Lattice strain can be introduced through lattice mis-
match, substrate induction, and heteroatom substitution and is usually accompanied by
lattice distortions and rich defects [96].

By using an easy ball-milling method, Zhou et al. enhanced the binding strength of
NiFe hydroxide to oxygenated intermediates via generating tensile strain and then esti-
mated its electrocatalytic OER performance [99]. DFT calculations revealed that introducing
tensile strain into NiFe–LDH upshifted the d-band center toward the Fermi level, therefore
causing the less filled anti-bonding state and a narrow band gap (Figure 4a).
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Figure 4. (a) Schematic illustration of the band structure of NiFe−LDH. (b) The calculated Gibbs
free energy of OER for NiFe−LDH. (c) CV curves after iR and BET−correction. (d) Nyquist plots of
NiFe−LDH. Reproduced with permission from ref. [99]. Copyright 2019, Wiley-VCH.

The adsorption energies for oxygenated intermediates on ball-milled NiFe–LDH were
increased through the introduction of tensile strain, thus proving the fast kinetics of this
material for the OER process (Figure 4b). In addition, after introducing tensile strain into
NiFe–LDH, the Gibbs free energy for every elementary step was optimized, and the energy
barrier was significantly reduced, indicating its excellent potential as an OER electrocatalyst.
With the increase in tensile strain after ball-milling, NiFe–LDH exhibited low charge transfer
resistance (Rct) and fast reaction kinetics, a relatively low OER onset potential of 1.44 V, and
the overpotential of 270 mV vs. RHE for achieving 10 mA cm–2 (Figure 4c,d).

Through a facile and controllable process to photoinduce lattice strain, Cheng et al.
prepared lattice-strained NiFe MOFs as efficient oxygen electrocatalysts [101]. DFT-based
band structure calculations showed that the Fermi level negatively shifted toward the
occupied 3d bands of nickel with the increase in lattice strain. This shift potentially pro-
moted electron exchange and led to increased covalency in the Ni–O bond (Figure 5a).
Further analysis revealed that due to the applied tensile lattice strain, catalytic kinetics
transformed from a low-efficiency catalytic process into a fast and efficient 4e− catalytic
process. The emergence of Ni4+ in the lattice-strained NiFe MOF resulted in the generation
of surface superoxide intermediates, which contributed to the high-efficiency of 4e− oxygen
electrocatalysis (Figure 5b). As a result, the lattice-strained 4.3%-NiFe MOF showed a rela-
tively low overpotential of ~210 mV at 200 mA cm−2 with a Tafel slope of 68 mV decade−1

(Figure 5c,d).
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Figure 5. (a) Schematic illustration of the electron exchange for the lattice−strained NiFe MOF.
(b) Proposed OER catalytic mechanisms for the lattice-strained NiFe MOF. (c) LSV curves and
(d) Tafel slope values of OER for the pristine, 1.7%−, 3.6%− and 4.3%−NiFe MOFs. Reproduced
with permission from ref. [101]. Copyright 2019, Springer Nature.

3.3. Element Doping and Element Substitution

Highly active electrocatalysts for effective water splitting can be developed effectively
through tuning the d-band center positions via element doping and element substitution
into specific iron-series compounds [102–105].

Chen et al. prepared Fe-substituted Ni2P ((NixFe1–x)2P) nanosheets on NiFe foam and
evaluated their performance in electrocatalytic OER [106]. DFT calculations illustrated
that the Ed energy level of (NixFe1–x)2P had increased compared with that of single Ni2P.
This increment significantly strengthened the interaction between adsorbates and the
electrocatalyst surface and thus enhanced the adsorption ability for intermediates (*O,
*OH, and *OOH) during the OER process in an alkaline electrolyte. The considerably
reduced adsorption free energies of all intermediates after iron substitution were indicative
of superior capability for water splitting (Figure 6a–c). Moreover, (NixFe1–x)2P had a low
work function (ϕ), which demonstrated that it had a weakened electron binding restriction
capacity that promoted electrons to escape from the material surface and participate in the
catalytic reactions (Figure 6d). The (NixFe1–x)2P electrocatalyst showed stable OER activity
in 1.0 M KOH with the overpotential of only 166 mV at the current density of 10 mA cm−2

and a lower Tafel slope of 59.3 mV dec−1 (Figure 6e,f).
Through an Fe-incorporated topochemical deintercalation method, Zhong and co-

workers redesigned the polyhedrons in Co9S8 to regulate the d-band center [107]. DFT
calculations were performed on the band structure and reaction energy profile of the
catalyst, and their corresponding results showed that the d-band center was gradually
upshifted when the doping amount of heteroatomic iron was increased. This change
contributed to aiding the adsorption of reaction radicals (Figure 7a). In addition, the
summarized d-band centers of the corresponding Fe/Co tetrahedrons and octahedrons
showed that the six-coordinated iron octahedron exhibited a high d-band center that was
upshifted relative to the Fermi level with the amount of iron content, implying that the
elevation of the overall d-band can be mainly due to the iron octahedrons (Figure 7b).
Benefitting from these features, the best sample of Fe–0.15–Co9S8 exhibited superior OER
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activity over the other as-prepared samples and displayed an overpotential of 255 mV at
the current density of 10 mA cm−2 and a Tafel slope of 49 mV dec−1 (Figure 7c,d).

Figure 6. (a) d−band centers. (b) Schematic illustration of bond formation between the reaction
surface and the adsorbate. (c) The calculated free−energy (eV) diagram. (d) Schematic of work
functions. (e) LSV curves and (f) Tafel plots of the prepared samples. Reproduced with permission
from ref. [106]. Copyright 2020, American Chemical Society.

Figure 7. (a) Density of states of (Co1−xFex)9S8 for x = 0, 0.05, 0.1, 0.15, 0.2, respectively. The black
solid line shows the d-band center of the bulk phase. (b) The d-band center of Fe and Co in various
polyhedrons coordinated with 4 or 6 S atoms. (c) iR−corrected linear sweep voltammetry curves.
(d) Tafel plots of the prepared samples. Reproduced with permission from ref. [107]. Copyright 2020,
Wiley-VCH.
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Furthermore, Wang et al. successfully manipulated Co4N nanosheets (NSs) for HER
catalysis through tailoring their d-band centers by doping with the transition metal V [108].

DFT calculations revealed that the free energy of the adsorbed hydrogen (∆GH*) on
V–Co4N was closer to the thermoneutral value than that of Co4N (−0.56 eV), suggesting
that hydrogen adsorption/desorption was aided (Figure 8a). Moreover, after V doping,
the d-band center became distant from the Fermi level, thus decreasing the adsorption
energy of hydrogen and facilitating hydrogen desorption from the catalyst surface for
HER catalysis (Figure 8b). As a result, the V–Co4N NSs exhibited superior electrocatalytic
performance with the overpotential of 37 mV at 10 mA cm−2 and a relatively low Tafel
slope of 44 mV dec−1 (Figure 8c,d). Importantly, W and Mo doping had been verified to
exhibit similar behaviors in tuning the positions of the d-band center (Figure 8e).
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Figure 8. (a) The geometric configuration of V−Co4N (111) with V atoms replacing the subsurface
Co atoms. (b) Free−energy diagram for the HER. (c) The density of states (DOS) plots as well as
the corresponding schematic illustration of bond formation between the catalyst surface and the
adsorbates. (d) LSV curves and (e) the Tafel slopes of the prepared samples. (f) The LSV curves
of Co4N, W−Co4N, and Mo−Co4N. Reproduced with permission from ref. [108]. Copyright 2018,
Wiley-VCH.

Chen et al. prepared M-doped CoP (M = Ni, Mn, Fe) HPFs catalysts for HER
in both acid and alkaline media through the self-templating transformation strategy
(Figure 9a) [109]. As revealed by XANES, XPS, AES, UPS, and DFT calculations, the
d-band center of the M-CoP/HPF catalyst was downshifted away from the Fermi level
relative to that of its counterparts. This result suggested that the interaction of metal-P
caused the change in the valence band structure of M-CoP/HPFs. The downshifted d-band
center of Ni-CoP/HPFs decreased the adsorption energy of hydrogen, and thus helped the
desorption of hydrogen from the surface of the M-CoP/HPFs for HER (Figure 9b,c). As
expected, the Ni-CoP/HPFs exhibited excellent catalytic activity with the overpotentials of
144 mV (0.5 M H2SO4) and 92 mV (1 M KOH) to achieve a current density of 10 mA cm−2

in HER, and excellent robustness with slight variations after a 21 h long-term stability test
(Figure 9d–h).
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Figure 9. (a) Synthesis scheme of the Ni-CoP/HPFs. (b) The calculated free-energy diagram of
Ni−CoP, Mn−CoP, Fe−CoP, and CoP. (c) Calculated DOS curves for CoP and Ni−CoP. (d,f) LSV
curves, (e,g) Tafel plots in 0.5 M H2SO4 and 1 M KOH, respectively. (h) Time-dependent of current
density curves over Ni−CoP/HPFs catalyst during electrolysis at −0.15 V vs. RHE in 0.5 M H2SO4

and −0.1 V vs. RHE in 1 M KOH [109]. Copyright 2019, Elsevier B.V.

In another example, Sun and co-workers recently reported that Fe-doped NiO coupled
nickel cluster hollow nanotube arrays (Fe–NiO–Ni CHNAs) prepared through the in situ
anodic oxidation strategy are efficient OER catalysts [110]. X-ray absorption fine structure
revealed that the pre-edge of the O k-edge in Fe–NiO–Ni CHNAs was negatively shifted,
which indicated that the Fe-doping downshifted the d-band (Figure 10a). The downshifting
of the d-band center of M sites can reduce the adsorption energy of the intermediates and
facilitate OER kinetics, thus causing the Ni/Fe 3d and O 2p centers in Fe-NiO-Ni CHNAs
to move close to each other and leading to the increase in M–O covalency (Figure 10b).
The increased M–O covalency can accelerate electron transfer between M cations and O
adsorbates, and help the extraction of electrons from oxygen, thereby greatly promoting the
OER process (Figure 10c,d). As a result, the Fe–NiO–Ni CHNAs electrocatalyst presented
the overpotential of 245 mV to deliver the current density of 10 mA cm−2, and to exhibit
excellent stability for over 24 h that surpassed the stability of most transition metal oxides
(Figure 10e,f).



Int. J. Mol. Sci. 2022, 23, 15405 12 of 22

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 12 of 22 
 

 

NiO-Ni CHNAs to move close to each other and leading to the increase in M–O covalency 

(Figure 10b). The increased M–O covalency can accelerate electron transfer between M 

cations and O adsorbates, and help the extraction of electrons from oxygen, thereby 

greatly promoting the OER process (Figure 10c,d). As a result, the Fe–NiO–Ni CHNAs 

electrocatalyst presented the overpotential of 245 mV to deliver the current density of 10 

mA cm−2, and to exhibit excellent stability for over 24 h that surpassed the stability of most 

transition metal oxides (Figure 10e,f). 

 

Figure 10. (a) Schematic diagram of the band structure of Fe−NiO−Ni CHNAs and NiO−Ni CHNAs. 

(b) Proton−electron transfer pathway and nonconcerted proton–electron transfer pathway of OER. 

(c) Free-energy diagrams of OER for Fe−doped NiO with proton−electron transfer pathway. (d) LSV 

curves of the prepared samples in 1 M KOH at a scan rate of 5 mV s−1 after iR correction. (e) LSV 

curves of Fe−NiO−Ni CHNAs before and after 2000 CVs. (f) E-t curves of Fe-NiO−Ni CHNAs and 

NiO−Ni CHNAs at current density of 10 mA cm−2 [110]. Copyright 2020, Elsevier B.V. 

3.4. Alloying 

Alloying multiple iron-series elements to construct specific nanostructures is also an 

effective method for improving the catalytic activities of materials by modulating elec-

tronic structures through tuning the position of the d-band center [111–114]. The incorpo-

ration of one iron-series transition metal into another iron-series transition metal can mod-

ify electronic structures. In view of this, a monolithic alloy was prepared to improve the 

OER activity of single iron-series transition metal catalysts [115–118].  

Ma and coworkers proposed an e-beam evaporation alloy-UV/O3 oxidation method 

for the fabrication of optically transparent NiCo bimetallic alloy oxide electrocatalysts for 

OER in 1.0 M KOH electrolyte through introducing the nickel heteroatom into CoOx (Fig-

ure 11a) [119]. Experimental and theoretical calculations confirmed that the oxygen va-

cancy concentration can be regulated by changing the Ni/Co proportion of the alloy to 

obtain additional active sites on the surfaces and edges of the defective spinel structure. 

DFT-based calculations demonstrated that the d-band center of cobalt in the structure of 

the NiCoOx-Vo model was below the Fermi level and had a lower energy than that of the 

CoOx-Vo model and the pristine Co3O4 model. These characteristics indicated that the 

NiCoOx-Vo model had suitable adsorption for oxygen species (Figure 11b). As a result, f-

Ni0.1Co0.9Ox exhibited excellent OER performance with the ultrahigh catalytic mass activ-

ity of 3055 A g−1 at the overpotential of 250 mV and a Tafel slope of 70.1 mV dec−1, thus 

presenting a mass activity that was almost 190 and 7.5 times higher than the mass activi-

ties of commercial RuO2 and f-CoOx, respectively (Figure 11c,d). 

Figure 10. (a) Schematic diagram of the band structure of Fe−NiO−Ni CHNAs and NiO−Ni CHNAs.
(b) Proton−electron transfer pathway and nonconcerted proton–electron transfer pathway of OER.
(c) Free-energy diagrams of OER for Fe−doped NiO with proton−electron transfer pathway. (d) LSV
curves of the prepared samples in 1 M KOH at a scan rate of 5 mV s−1 after iR correction. (e) LSV
curves of Fe−NiO−Ni CHNAs before and after 2000 CVs. (f) E-t curves of Fe-NiO−Ni CHNAs and
NiO−Ni CHNAs at current density of 10 mA cm−2 [110]. Copyright 2020, Elsevier B.V.

3.4. Alloying

Alloying multiple iron-series elements to construct specific nanostructures is also an
effective method for improving the catalytic activities of materials by modulating electronic
structures through tuning the position of the d-band center [111–114]. The incorporation
of one iron-series transition metal into another iron-series transition metal can modify
electronic structures. In view of this, a monolithic alloy was prepared to improve the OER
activity of single iron-series transition metal catalysts [115–118].

Ma and coworkers proposed an e-beam evaporation alloy-UV/O3 oxidation method
for the fabrication of optically transparent NiCo bimetallic alloy oxide electrocatalysts
for OER in 1.0 M KOH electrolyte through introducing the nickel heteroatom into CoOx
(Figure 11a) [119]. Experimental and theoretical calculations confirmed that the oxygen
vacancy concentration can be regulated by changing the Ni/Co proportion of the alloy to
obtain additional active sites on the surfaces and edges of the defective spinel structure.
DFT-based calculations demonstrated that the d-band center of cobalt in the structure of
the NiCoOx-Vo model was below the Fermi level and had a lower energy than that of the
CoOx-Vo model and the pristine Co3O4 model. These characteristics indicated that the
NiCoOx-Vo model had suitable adsorption for oxygen species (Figure 11b). As a result,
f -Ni0.1Co0.9Ox exhibited excellent OER performance with the ultrahigh catalytic mass
activity of 3055 A g−1 at the overpotential of 250 mV and a Tafel slope of 70.1 mV dec−1,
thus presenting a mass activity that was almost 190 and 7.5 times higher than the mass
activities of commercial RuO2 and f -CoOx, respectively (Figure 11c,d).
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of PDOS. Electrochemical OER performance assessments without any ohm compensation. (c) Polar-
ization curves of Ni/Co alloy oxides. (d) Tafel plots. Reproduced with permission from ref. [119].
Copyright 2021, Elsevier B.V.

Furthermore, Li et al. boosted the intrinsic OER activity of Co-based bimetallic nanopar-
ticles by incorporating them into alloys through a melamine bridged self-construction
strategy [120].

It should be noted that the active substances used to compare the d-band center with
each other here are compounded with N-doped carbon sphere, thus excluding the influence
of carbon on the d-band center, which is only affected by alloying. The calculation results for
the d-band center of the prepared samples indicated that the position of the d-band center
sites could be controllably tailored through the alloying of cobalt and another transition
metal M (M = Ni, Fe, Mn, and Cu) (Figure 12a). The balance between the adsorption
of OH species and the desorption of O2 was thus altered by the changes in the d-band
center sites of Co-based bimetallic nanoparticles, eventually improving the intrinsic OER
activity of CoM (Figure 12b). Through association with the above unique open hierarchical
pore structure, the CoNi-e-PNC catalyst presented optimal OER performance with the
overpotential of 240 mV and demonstrated high electrocatalytic activity for up to 100 h at
10 mA cm−2 in alkaline solutions (Figure 12c–e).
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for the OER reaction process of CoM−e−PNC catalysts. (c) Polarization curves. (d) Tafel plots.
(e) i−t curves obtained at 10 mA cm−2 for CoNi−e−PNC catalyst. Reproduced with permission
from ref. [120]. Copyright 2019, Wiley-VCH.

3.5. Composite of Two or More Iron Transition Series Metal-Based Compounds

In addition to that of catalysts consisting of an iron-series metal and a compound
based on an iron-series metal, the investigation of materials that consist of two or more iron
transition series compounds as efficient electrocatalysts for water splitting has attracted
great interest.

Through typical hydrothermal and electrodeposition methods, Zhang et al. prepared a
series of Ni3S2@MOOH/NF (M = Fe, Ni, Cu, Mn, and Co) hybrid structures with enhanced
HER performance [121]. Various spectral analysis and DFT calculations indicated that the
d-band center of the Ni3S2@NiOOH heterogeneous interface had moved slightly to the left
compared with that of Ni3S2 and was slightly shifted to the right relative to that of NiOOH.
These shifts were indicative of the weakened binding of the adsorbed hydrogen on the
catalytic site and the optimized binding energy of the active site to H* at the interface of
the Ni3S2@NiOOH heterogeneous structure.

These effects contributed to the improved catalytic activity and optimized electronic
structure of Ni3S2@NiOOH (Figure 13a,b). As a result, the synthesized Ni3S2@NiOOH core–
shell structure presented good HER performance in alkaline media with the overpotential
of 79 mV at the current density of 10 mA cm−2 and a significantly low Tafel slope of 75.1 mV
per dec−1, which is one of the best catalytic activities reported so far (Figure 13c,d).

Gao et al. carried out a simple solvothermal method to design self-supported NiO/
Co3O4 heterogeneous structures for the OER [122]. DFT calculations were performed to
calculate the d-band centers of the cobalt atoms at different positions to study the effects
of heterojunctions.

The d-band center of the interfacial cobalt was lower than that of sub-interfacial
cobalt in NiO/Co3O4, and the d-band center of cobalt at the heterointerface further shifted
negatively in the NiO/Co3O4–Ov sample (Figure 14a,b). Therefore, the cobalt atoms at the
interface with the lower d-band center may exhibit weaker and more suitable adsorption
for oxygen species than other atoms, thereby accelerating the kinetics and enhancing the
catalytic activity for OER. In experiments, the NiO/Co3O4 heterostructures presented a
relatively low overpotential of 262 mV at the current density of 10 mA cm−2 with a low
Tafel slope of only 58 mV dec−1 for the OER (Figure 14c,d).
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Figure 13. Density of states for Ni3S2@NiOOH, (a) Ni, (b) O, and (c) S. (d) Density of states of H2O
for Ni3S2, NiOOH, Ni3S2@NiOOH, and Ni3S2@FeOOH. (e) Polarization curves for HER at a scan
rate of 5 mV s−1 in 1.0 M KOH and (f) the corresponding Tafel plots [121]. Copyright 2021, The Royal
Society of Chemistry.
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4. Conclusions and Future Perspectives

The development of electrocatalyst design for clean energy conversion has gained
extensive attention from researchers over the last decade. Given that iron, cobalt, or nickel
elements can form a variety of oxides or hydroxides with different crystalline phases, and
selenides, sulfides, nitrides, and phosphates with different element ratios, they provide
a material basis for regulating the electronic structure of the catalyst interface through
recombination between different compounds.
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The interfacial properties of compounds based on iron-series metals can be changed
due to the following factors: The interaction between anions and metal cations in different
compounds based on iron-series metals changes the density of the interfacial electron cloud;
the difference of work functions can lead to the movement of electrons at the interface.
Recombination leads to the generation of a large number of defects and the transformation
from crystalline materials into amorphous materials, resulting in the reduction of atomic
valence at the interface. It can be seen that the electron movement at the interface after the
recombination contributes to changing the properties of the interface. That is, the electron
movement leads to the changes in the valence state, electron cloud density, and the orbital
filling degree of the atom, thus resulting in the positive or negative movement of the d-band
center of the catalytically active atom.

The d-band theory states that the upshifting of the d-band center promotes hydrogen
adsorption and that the downshifting of the d-band center facilitates hydrogen desorption.
Therefore, the band center has been confirmed as an efficient descriptor for boosting the per-
formance of electrocatalytic water splitting. Many powerful strategies have been employed
in boosting the catalytic performance of electrocatalysts through tuning the d-band center
of the transition metals. These strategies include (i) introduction of defects/vacancies,
(ii) strain engineering, (iii) element doping/substitution, (iv) alloying, and (v) composites
of two or more iron transition series metal-based compounds. These methods may have
different regulation effects on the d-band center in different chemical environments, that is,
the upshifting of the center is close to the Fermi energy level, and the downshifting of the
center is far away from the Fermi energy level. However, whether the center rises or falls, it
will be regulated by the experimental methods, which is beneficial to the ultimate catalytic
activity. It can be said that for different types of catalysts, there is a suitable position for
the d-band center. Although the above strategies have exhibited high potential and enable
HER or OER in acid or alkaline solutions with very low overpotential and good stability,
several issues need to be taken into consideration for stable and economical operation. In
addition, the geometrical area of the electrode cannot fully reflect the actual electrochem-
ical active area of the three-dimensional electrode, which may cause some errors when
evaluating the d-band effect. Therefore, the electrochemical active surface area rather than
the geometric area is the most important and accepted to objectively reflect the impact of
d-band regulation when normalizing the current density.

In addition, all of these d-center metals/compounds along with the HER and OER
parameters mentioned in this manuscript have been summarized in Table 1.

Table 1. Relationships between the d-band center and catalytic performances of catalysts using
different regulation methods.

Catalysts D-Band Center HER (at 10 mA cm−2) OER (at 10 mA cm−2) Ref.

NiCo2O4 downward shift 135 mV in 1 M KOH 240 mV in 1 M KOH [22]

CoP upward shift
84 and 94 mV in acidic

and alkaline media,
respectively

/ [93]

Ni3N1−x downward shift 55 mV in 1 M KOH / [94]
NiFe–LDH upward shift / 270 mV in 1 M KOH [99]

NiFe MOFs negatively shifted / 210 mV at 200 mA
cm−2 in 0.1 M KOH [101]

Fe-substituted Ni2P upward shift / 166 mV in 1 M KOH [106]
Co9S8 upward shift / 255 mV in 1 M KOH [107]

V–Co4N downward shift 37 mV in 1 M KOH / [108]
M-doped CoP downward shift 144 mV in 0.5 M H2SO4 92 mV in 1 M KOH [109]
Fe-doped NiO downward shift / 245 mV in 1 M KOH [110]

NiCo bimetallic alloy oxide downward shift / 268 mV in 1 M KOH [119]
Co-based bimetallic nanoparticles tailored / 240 mV in 1 M KOH [120]

Ni3S2@MOOH/NF downward shift 79 mV in 1 M KOH / [121]
NiO/Co3O4 downward shift / 262 mV in 1 M KOH [122]
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It can be seen from Table 1 that the effective regulation of the d-band center can
be achieved by changing the chemical environment of iron-series metal atoms, and the
position of the d-band center is related to the preparing method and element types.
The d-band center needs to be adjusted to an appropriate position to play an optimal
electrocatalytic activity.

Recently reported articles have shown that the shift of the d-band center only offers a
qualitative explanation for the strengthening or weakening of the binding ability of the key
intermediates on the surfaces of electrocatalysts. Therefore, a precise algebraic expression
of the relationship between the descriptor and the intrinsic activity of the electrocatalysts
is needed for the further design of electrocatalysts with the desired activity and stability.
However, only a single descriptor is often proposed for the prediction of the electrocatalytic
activity of the catalysts. This situation may run into failure under certain circumstances.
Given the complexity of electrochemical systems, a multidimensional descriptor matrix
that includes multiple physicochemical properties of the materials may be the solution to
this issue. Therefore, the descriptor of the d-band center should be combined with other
parameters, such as the pH value, hydrogen-bonding strength, elemental valences, and
interfacial water, to describe the mechanism underlying electrochemical catalysis with
increased comprehensiveness.
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