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Conserved quantities, bi·hamiltonian formulation, recursive structure and hereditary symmetries 
are obtained for a number of lattice systems with physical significance. Furthermore, for the 
multisoliton solutions the gradients of the angle variables are given. Apart from the well investigat· 
ed Toda lattice these systems include: Volterra lattice, lumped Network system, Kac·Moerbeke· 
Langmuir lattice and a class of Network equations. No use is made of the Lax representation or any 
other additional information about the equations under consideration. All quantities are found in a 
purely algorithmic way by use of mastersymmetries. 

§ 1. Introduction 

Ever since the pioneering work on the Fermi-Pasta-Ulam problem!) discrete 
nonlinear systems have been in the focus on nonlinear studies since many interesting 
physical phenomena can be modeled by them. Of special interest are those systems 
admitting large symmetry groups since contrary to early expectations usually no 
equipartition of energy between the different modes of the system takes place. This 
shows that systems with nontrivial nonlinear interactions can behave like linear 
systems. Apart from such phenomena of physical relevance these systems are inter
esting from the mathematical viewpoint since they usually provide excellent discrete 
approximations for completely integrable nonlinear partial differential equations. 

Nowadays, since the introduction of a system with exponential interaction by 
Toda2

) describing vibrations of particles in a one-dimensional lattice, many such 
systems with infinite dimensional symmetry groups are known. These systems play 
a major role in solid state physics. 

Usually, the complete integrability of such a system is shown via the exhibition 
of a Lax pair· which mostly is found by ingenuity, and no algorithm seems to be known 
telling whether or not a given system is completely integrable. Even then the explicit 
treatment of a completely integrable nonlinear lattice system is difficult because the 
computation of the relevant quantities (symmetry generators, conservation laws, 
angle variables) out of a given Lax pair is a nontrivial task. 

We have developed an algorithm which tells whether a system (of a certain class) 
is completely integrable. Furthermore, if the answer is affirmative, then the recur
sive structure of the system under consideration is computed automatically. This 
algorithm is briefly sketched and will be reported in full detail elsewhere. Since we 
have imph~mented a prerelease version of this algorithm· by means of computer 
algebra we are able to exhibit easily the recursive structure and the explicit form of 
relevant quantities for many nonlinear systems. The results of these studies are 
given in this paper, they include: recursion formulas for symmetry group generators, 
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bi-hamiltonian formulations, hereditary symmetries (recursion operators) yielding 
Lax pairs, mastersymmetries and gradients of angle variables for the multisoliton 
solutions. These structures are found for the following equations: the Toda lattice,2) 
a Volterra-type lattice,3) lumped Network systems,4) Kac-Moerbeke-Langmuir lattice,5) 
and a class of Network equations.3),6) Many new explicit formulas for these 
systems can be found in this paper. It should be remarked that similar studies have 
been performed7

) for the relativistic Toda lattice of Schneider and Ruijsenaars and 
nonlinear quantum mechanical spin-1/2 systems.S

) 

§ 2. Basic notation 

We will consider evolution equations of the form 

ut=K(u) , (2·1) 

where u is a point in a space S={u=(ul, .. ·,um)lu:z....;pm} of (vector valued) 
sequences and K is a vectorfield over this space. We will assume certain boundary 
conditions for these sequences, which are to ensure that the infinite summations 
turning up in the following make sense. The dual space S* is again a space of (vector 
valued) sequences acting 011 S via the pairing 

<u*, u>= ~ (u*(n), u(n)); u*=(u*(n))ES*, u=(u(n))ES, (2'2) 
nEZ 

where (.,.) is the usual euclidean scalar product on Rm. If A is some function of uES, 
then its directional derivative at the point u into the direction of a vector vES is 
given by 

A'(u)[v]= oc-LoA(u+c-v). (2·3) 

For example, if A takes values in S, then this derivative has the form 

(A'(u)[v])(n)= k~Z v(n+k) o~~(~~) . (2·4) 

Regarding S as a manifold the vectorfields, i.e., the maps K: S~ S, carry the usual 
Lie algebra structure given by the commutator 

(2·5) 

Vector fields commuting with a given vectorfield K are considered as generators of 
I-parameter groups of symmetry transformations for the dynamical system (2 ·1), we 
will call them symmetries for short. In the following we want to construct a set of 
such symmetries for some given equations, a helpful tool will be so-called recursion 
operators (Refs. 9) and 10)). These are operators ([J(u): S~S satisfying 

[K, ([JC]- ([J[K, C]= ([J'[K]C- K'[ ([JC]+ ([JK'[C] =0 (2·6) 

for all vectorfields C. Obviously such an operator maps symmetries to symmetries. 
Another powerful tool for the construction of symmetries had been introduced in 
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Ref. 11) with the notion of mastersymmetries. A mastersymmetry r for a given 
vectorfield K is a vectorfield satisfying [K, [r, K]]=O and [r, K]*O, i.e., it sends K to 
a (non-vanishing) symmetry [r, K] of K via the commutator. From the Jacobi 
identity one immediately concludes that [r, [r, K]] is again a further symmetry of K. 
Without additional assumptions no further algebraic relations can be derived, hence 
a mastersymmetry essentially has the property of generating 2 symmetries out of K 
by applying the map (Lie derivative) L r : A ~ [r, A]. But assuming the group of 
(time-independent) symmetries o'f K to be abelian, i.e., all the symmetry generators of 
K have to commute, one trivially derives, that the Lie derivative into the direction of 
such a mastersymmetry always maps a symmetry of K to another symmetry. Of 
course, for a given K it is hard -or impossible-to show that all its symmetries will 
commute. But for integrable equations it is known that a large set of commuting 
symmetries (corresp<;mding to action variables in involution) exists, i.e., the Lie 
derivative into the direction of a mastersymmetry will be a selfmap on this set of 
vectorfields. Hence, for integrable K, a mastersymmetry as defined above will be an 
important heuristic tool: find a mastersymmetry r for K, construct further 
vectorfields by iteratively applying Lr to known symmetries of K (e.g., K itself) and 
then try to verify a posteriori that these vectorfields form an abelian set of 
symmetries for K. A typical way of such an a posteriori proof is given for 
hamiltonian systems, as very often the mastersymmetries lead to the construction of 
Hamiltonian pairslO) and hereditary recursion operators,9),lO) from which the com
mutativity of the constructed vectorfields can be derived easily. 

We briefly review the necessary notation: The gradient of a scalar valued 
function I: S ~ R is the element of S* given by 

(V/(u), v>=I'(u)[v], i.e., (V/(u))(n):= ~~~~~ . (2·7) 

A vectorfield of the form K = PV I is called hamiltonian, where P is a Poisson 
(hamiltonian, implectic lO») operator, i.e., P(u): S* ~ S is a skewsymmetric linear 
operator satisfying the "Jacobi-identity" 

(a*, P'[Pb*]c*> + cyclic permutations=O (2·8) 

for arbitrary elements a*, b*, c*ES*. As a consequence the Poisson bracket {fl,/2} 
= (V /z, PV 11> defines a Lie algebra structure on the space of scalar fields over S. A 
conservation law for (2·1) is a scalar valued function I such that I(u(t)) is constant 
for all solutions of (2·1), i.e., (VI, K>=O. For a hamiltonian vectorfield K =PV I the 
function I automatically is a conservation law and P will map the gradient of any 
conservation law to a symmetry for K. The Lie-derivative of such an operator P 
into the direction of a vectorfield r is given by 

LrP=P'[r]- r'P- Pr'*, (2·9) 

where r'* denotes the adjoint (w.r.t. the duality (2·2)) of the linearization r'. If this 
resulting operator turns out to be Poisson again, then P and LrP automatically form 
a compatible Hamiltonian pair (Ref. 10)), i.e., their sum is again a Poisson operator. 

In the examples of the next section the relevant vectorfields and operators will be 
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formulated in terms of the following basic operations S -4 S: An element aE S (or 
S*) gives rise to a multiplication operator 

a: u-4(au)(n)=a(n)u(n) , 

and by [n] we will denote the multiplication 

[n]: u-4([n]u)(n)=nu(n). 

(2-10) 

(2-11) 

Let T+ and T- be the shift operators given by (T±u)(n):=u(n±l), we abbreviate 

(2 -12) 

Apart from these local operations we will need the linear operator Ll-1 given by 

1 -I = 
(Ll- 1u)(n):=z(2L u(n+ 1 +2k)- ~I u(n-1 +2k» (2-13) 

(assuming suitable boundary conditions for u). Note that LlLl-1=Ll-1Ll=1, i.e., (2-13) 
defines the inverse of the difference operator Ll when acting on elements of S. For a 
constant sequence c(n)=l we define (Ll- 1c)(n)=n/2. We remark that the inverses of 
the difference operators 1 - T- and T+ -1 can be expressed in terms of the above 
operator, one finds 

(2-14) 

All these operations can also be applied to elements of S*. For the transposed 
operators (w.r.t. (2-2» one finds T+ *= T-, T-*= T+. lIence Ll and Ll-1 are skew 
symmetric operators, whereas all multiplication operators are symmetric. 

§ 3_ Results for some integrable lattice equations 

We will construct infinite sets of commuting symmetries and conservation laws 
for some'lattiee equations. For those of the examples admitting a bi-hamiltonian 
formulation the results can be summarized by the following: 

THEOREM 10),12),13) 

Let KI = Pof7 11 = Plf7 10 be a vectorfield admitting two different hamiltonian 
formulations w.r.t. two compatible Poisson operators'Po and Pl. Then (for invertible 
Po) the operator ({)=PIPO- I is a hereditarylO) recursion operator for all the vector fields 
K defined by Ki+I:= ({)K, and there exists a set of functions {f;, i=O, 1,2, ... } such that 
Ki+I = Pof7 Ii+I = Plf7 /;. The operators defined by Pi+I = ({)P; are all Poisson and the 
vector fields K admit further hamiltonian formulations w. r. t. these "higher" Poisson 
operators: Ki+j=P;f7/i. The functions Ii are in involution w.r.t all the Poisson 
brackets given by the Pj's, the vectorfields Ki commute. 

Assume that the pair Po, PI as well as the function 10 admit a conformal symmetry 
generated by a vectorfield To, i.e., 

(3-1) 

for some scalar factors a, fJ and y. Defining a set of vector fields Ti+l = ({)r; one finds 
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[ri, K j]=(,8+ y+(j -1)(,8- a»Ki+j , 

[r;, rJ=(,8-a)(j-i)ri+j, 

L rPj=(,8+ (j - i -1)(,8- a»Pi+j (3·2) 

for all admissible indices i and j. The set of functions in involution can be construct
ed using the recursion relations 

(3'3) 

So obviously the above vectorfields K; form an infinite set of commuting 
symmetries, the functions Ii are conservation laws in involution for all the 
hamiltonian equations Ut=Kj(u). In this sense all these dynamical' systems are 
integrable. The set of vectorfields ri shall be called the mastersymmetries for this 
integrable system (d. Refs. 11) and 12», they obviously provide an iterative scheme to 
obtain the higher symmetries and conservation laws for the K's using (3·2) and (3'3). 
These r's are related to time-dependent symmetries of the K's (d. Refs. 11) and 12». 

Having constructed a set of functions Ii in involution, i.e., the action variables of 
the integrable system, the natural question for the angle variables arises. It turns out 
that for many systems the mastersymmetries are linked to these quantities: 

If the mastersymmetries are hamiltonian, one can apply the Lie algebra 
homomorphism induced by the hamiltonian operator to map the time-dependent 
symmetries onto the scalar fields yielding conservation laws linear in time (i.e., angle 
variables). This happens for integro-differential equations such as the Benjamin
Ono, the Kadomtsev-Petviashvili and all the other completely integrable systems in 
(2 + 1) dimensions. In these cases no recursion operators (in the usual sense) have 
been found although recently recursion operators in an extended sense as well as 
(generalized) non-hamiltonian mastersymmetries have been discovered.14

) The situa
tion changes drastically when the mastersymmetries are not hamiltonian, i.e., the Lie 
derivative of the hamiltonian operator Po into the direction of the mastersymmetries 
does not vanish. This Lie derivative then yields a second invariant operator H, 
which usually gives rise" to a second hamiltonian formulation for the system under 
consideration. Hence, in this case each nontrivial mastersymmetry immediately 
leads to a bi-hamiltonian formulation. This happens for equations like the Korteweg 
de Vries, the modified Korteweg de Vries, the sine-Gordon, the Nonlinear Schr5dinger 
and so on. Now, taking 

(3'4) 

one finds a recursion operator for the system, which is automatically hereditary, if the 
second operator H was found to be hamiltonian. 

So in any case finding a nontrivial mastersymmetry yields the recursive structure 
of the hierarchy under consideration. But in addition the angle-variables, at least for 
the multisoliton manifolds, can be obtained by the mastersy~metries even if those are 
not hamiltonian. In the first case, where the mastersymmetries are hamiltonian, the 
construction of the angie-variables is obvious: They are given by the hamiltonian 
functions of the mastersymmetries. In the other case additional arguments have to 
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be applied, this will be reported in detail elsewhere,15) here we just review the results: 
Let Ut=Kl(U) be a dynamical system admitting a hereditary recursion operator 

r]) and a mastersymmetry n. Application of r]) to the first mastersymmetry n yields 
a sequence of mastersymmetries 

j=l, 2, 3, ... (3'5) 

satisfying the relations 

[rj, rk]=(k-j)rk+j (3'6) 

(after an appropriate rescaling of n). The vectorfields defined via 

(3'7) 

are the symmetry generators of the system (or the members of the hierarchy, if one 
likes). Now, if one considers the following invariant submanifold: 

N+l 
{ul ~ aiKi=O, aiER} , 

i=l 
(3'8) 

then thjs turns out to be the N-soliton manifold9
),16) being of dimension 2N. The 

parametrization of this manifold is given by time, the N - 1 phases and the N different 
asymptotic speeds (represented by the variables aJ A detailed study reveals that, 
although the r;"s are not hamiltonian, the following linear combinations 

N 

AT=BT~ai(r)ri+T' r=l, ···,N 
i=l 

(3'9) 

are hamiltonian on the reduced manifold given by (3·8). Here the ai(r) are the 
coefficients of the polynomials 

(3'10) 

the BT are suitable integrating factors and the AT are the zeros of the polynomial 

(3'11) 

The hamiltonian functions of the vectorfields AT given by (3'9) correspond to conser
vation laws with a linear time dependence, i.e., we thus have found the angle variables 
on the above multisoliton manifolds. 

Example 1: The Toda lattice2
) 

The bi-hamiltonian formulation of the Toda lattice 

(3'12) 

is given by Kl=P0f7/1=Hf7/o, with (d. Ref. 2)) 
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(3'13) 

As all these quantities are homogeneous expressions in the field variable u, we have 
a conformal symmetry transformation u-4exp(c:)u generated by LO(U)=U, one finds: 

LroPo=-Po, LroH=O, <[7/0,LO)=/0. (3'14) 

With 

(3 ·15) 

one finds the recursion operator ([J=HPo- 1 and the first nontrivial mastersymmetry 

(3'16) 

. Verifying Lr1PO= -2PI, one checks the compatibility of the hamiltonian pair Po and 
H. Hence all the assumptions of the theorem are satisfied and we can construct all 
the higher invariants of the Toda lattice using ([J or n. 

We remark that a further conservation law C(u)=~ln(uI(n» exists for the 
integrable system. This function C turns out to be a Casimir (see e.g., Ref. 17» for 
the operators Po and H, i.e., Po[7C=H[7C=O. From LroH=O one concludes that LO 
should be hamiltonian w.r.t. PI. Indeed, one finds Lo=H[7~n In(uI(n». We mention 
that LO and il are the only local mastersymmetries, i.e., all higher L'S involve the 
nonlocal operator LJ-1

• Among the hamiltonian operators the first three, i.e., Po, H 
and 

r 

ul(T+U2-U2T-)UI ; UI(UI2(T+-1)+(T+-1)U22-T_UI21 
+ T+uI2T+) 

P2(U)= ((1- T_)uI2+u22(1- T-) 2 ( 2T T 2) ; U2 UI +- -Ul 

+uI2T+- T_UI2T_)uI +2(uI2T+- T_UI2)U2 
(3'17) 

are local, the higher ones again involve LJ- I
• All the K's as well as the conserved 

functions /i are local, which follows from the fact that all these objects can be 
constructed using the local LI (note that this argument does not hold for the higher L'S 

and P's, as [n, n]=O and L n P2=0). 
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Example 2: The Volterra lattice3
) 

The bi-hamiltonian formulation of the Volterra lattice3
) 

(3-18) 

is found to be KI = P0[7/1 = PI[7/0 with 

H(U)=[ uI(T+U2-U2T-)UI ; UI(UI(T+-1)+(T+-1)U2)U2] 
uz«l- T-)UI + u2(1- T-»uI ; U2(UI T+- T-UI)U2 

(3-19) 

The Poisson operators are homogeneous expressions in the field variable u, so we 
again have a conformal symmetry transformation u--->exp(€)u generated by ro(u)=u, 
one finds: 

LroPo=O, 'LroH=H, [7([7/0, ro>=O. (3-20) 

With 

~L1-1(1 + T+)~ 1 
UI U2 

o 
(3-21) 

one finds the recursion operator (/J=HPo -I and the first nontrivial mastersymmetry 

(3-22) 

Verifying L"Po= - H, one checks the compatibility of the hamiltonian pair Po and H. 
Hence all the assumptions of the theorem are satisfied and we can construct all the 
higher invariants of the Volterra lattice using (/J or rl. The function /0 turns out to 
be a Casimir of Po, an additional conservation law exists for the integrable system 
with C(u)=L!(ln(uI(n»-ln(u2(n»), which is a Casimir for both Po and H. The 
scaling field ro turns out to be hamiltonian: ro= Po[7L!n(ln(ul(n» + In(u2(n». Again ro 
and n are the only local mastersymmetries, Po and H are the only local operators 
among the P;,s. 

Example 3: The Lumped Network system 4) 

Performing the transformation 
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[ 
UI(n)] ~ [ uI(n)+ A] 
u2(n) AuzCn) 

(3-23) 

in the Volterra system (3'18) and then taking the limit A~CO, one obtains the Lumped 
Network equation 

~[ UI(n)]_K( )_[ uzCn+1)-u2(n) ] 
dt u2(n) - I U - uzCn)(uI(n)-u/n-1)) 

(3'24) 

A bi-hamiltonian formulation KI = Pof7 II = Ftf7 10 for (3 -24) is found with 

(3-25) 

Again, the dynamical system as well as the Poisson operators are homogeneous 
expressions in the field variable u, so we again. have a conformal symmetry transfor
mation generated by ro, one finds: 

[ 
uI(n)] 

ro(u)= 2uzCn) , LroPo= - Po, <f7/o, ro>= /0. (3'26) 

With 

(3-27) 

one finds the recursion operator (/J=PtPO-
I and the first nontrivial mastersymmetry 

( ) _ [ ]K( ) [UI
2
+2U2+2T+U2] 

rl U -2 n I U + . 
ulu2+3u2T-UI 

(3-28) 

"\ erifying LnPo= - 2Ft, one checks the compatibility of the hamiltonian pair Po and 
PI. Hence all the assumptions of the theorem are satisfied and we can construct all 
the higher invariants of the Lumped Network lattice using (/J or rt. As before, the 
function 10 is a Casimir for Po, an additional conservation law is found with C(u) 
=~ In(u2(n)) (a . Casimir of both Po and Ft). The scaling field ro turns out to be 
hamiltonian: ro=Ftf7~n In(uzCn)). As before, ro and rt are the only local mastersym
metries. As P2= - LnFt is generated via the local rt and Ft we find a third local 
hamiltonian operator 
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; (ulZ(T+-1)+(T+-1)uz j 
-uzT-+ T+uzT+)uz 

; 2UZ(UI T+- T-Ul)UZ 

(3·29) 

for the above hierarchy. An additional mastersymmetry ("Galilean invariance"') 
r-l(u)=[l,OY is found by performing the above limit from the scaling field of the 
Volterra lattice. One finds <Pr-l = ro and r-l fits into the algebraic relations of the 
theorem. 

Example 4: A class of Kac-Moerbeke-Langmuir lattices 5) 

For the lattice equation 

one finds the bi-hamiltonian formulation Kl=Po£7/1=H£7/0 with 

(3·30) 

(3·31) . 

where E=#=O is an arbitrary parameter. A conformal symmetry is generated by ro(u) 
= u, one finds: 

LroPo=O, LroH=EP1, £7(£7/0, ro)=O. (3·32) 

With Po-1(u)=(1/u)Ll-1(1/u) one finds the recursion operator <P=P1PO-
1 and the first 

nontrivial mastersymmetry 

(3·33) 

Verifying LnPo= - EP1, one checks the compatibility of the hamiltonian pair Po and 
H. Hence all the assumptions of the theorem are satisfied and we can construct all 
the higher invariants of the above lattices using <P or n. The scaling field is 
hamiltonian: ro=Po£7L;.(n/2) In(u(n)). For E=l Eq. (3·30) reduces to the Langmuir 
lattice,5a) for E=2 one finds the Kac-Moerbeke lattice.5b) We remark that all the 
equations (3·30) for different E are related by the simple transformation v(n)=ua(n) 
sending ut=uLlu' to vt=avLlv"a. 

Example 5: A class of Network equations3
),6) 

We consider the equation 

where 

(3·34) 
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(3·35) 

with· arbitrary parameters c, Cl and C2. A hamiltonian formulation is given by Kl 
= Pof7 11 with 

(3·36) 

A first mastersymmetry T! =[n]Kl + ZI was found using the computer algorithms 
briefly described in the next section. Here the translation invariant part is found to 
be 

(3·37) 

The essential property of this vectorfield is that 

(3·38) 

is a symmetry of (3·34). From the Jacobi identity of the vectorfield commutator one 
. concludes that also K3:=[T!, K2] is a further symmetry of (3·34). Assuming the 
commutant Kl(O)={K, [K, Kd=O} of Kl to be abelian one concludes that the above T! 

maps Kl(O) into itself, i.e., the commutator of T! with a (time independent) symmetry of 
Kl should yield another symmetry of (3·34). Hence the sequence of vectorfields 
defined by K H1 :=[T!, K] should yield a hierarchy of commuting symmetries of (3·34). 

Looking for a recursion operator one calculates the Lie derivative L'I Po=O. 
Hence we cannot construct a second hamiltonian operator using T! and Po, instead we 
find that T! is hamiltonian W.r.t. Po: 

(3·39) 

As a consequence the above hierarchy of commuting symmetries of (3·34) consists of 
hamiltonian vectorfields K;=Pof7I;, where the functions in involution can be con
structed from IHl:=<f7f;, T!>. Further conservation laws are given by the 2 Casimir 
functions 

(3·40) 

where 0\,02 and 0 have to satisfy 012c+CI02=0=022c+C202. 
We also found a second mastersymmetry n=[n]K2+ Z2, where the translation 

invariant part is given by 
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Sl(EUl T-ul+ T-UlS2) 

+ ~ E(Kl)1L1-1(1 + T+)( T-UIU2+ Ul T-U2) 

! S2(3EU12U2+3S1 T-U2+ EU2 T+U12+ T+SIU2) 

+ ~ E(K1)2L1-1(1 + T+)(UIU2+ Ul T-U2) 

305 

(3·41) 

This vectorfield is not hamiltonian w.r.t. Po, we find a non-trivial second hamiltonian 
operator P2:=Lr2 Po, which is of such complicated form that we will not give it here 
explicitly. Using computer algebra it was checked that it is an invariant of (3·34) 
and in this sense is a second hamiltonian operator for (3·34). So a hereditary 
recursion operator (j):=P2(PO)-1 is found, We propose that the hierarchies generated 
by the mastersymmetries coincide with the hierarchies generated by the recursion 
operator, e.g., we checked 

(3·42) 

§ 4. Computational aspects 

In this section we briefly describe the simple ideas which lead to the algorithm by 
which the results of the preceeding sections have been obtained. The algorithm will 
be reported in full detail elsewhere and its implementation will then be discussed. 
Eventually, after serious testing, the computer algebra package containing the im
plementations of this algorithm will be made available. 

We essentially rely on the concept of mastersymmetries, i.e., for a given 
dynamical system ut=K(u) we look for a vectorfield r, say, having the property that 
s: = [ r, K] ( =#= 0) is a symmetry of K. Such mastersymmetries exist for most of the 
known integrable equations,8),1l),12) they are an important tool to construct higher 
invariants for integrable systems by applying Lie derivatives to simple invariants.12) 
For example, the commutator of such a mastersymmetry with a symmetry yields a 
new symmetry and the Lie derivative of a hamiltonian operator yields a second 
hamiltonian formulation and hence a hereditary recursion operator for the considered 
equation. So, knowing a single (non-trivial) mastersymmetry gives immediate access 
to almost the entire algebraic structure of the equation. Actually, this was the way 
how the multi-hamiltonian formulations of the preceding examples have been found: 
Exploiting the computer algebra algorithms to be described below we found the first 
non-trivial mastersymmetry n. Then, using a first hamiltonian formulation of the 
equation we constructed further hamiltonian operators by applying the Lie derivative 
into the direction of this mastersymmetry to the first hamiltonian operator. Once a 
second hamiltonian formulation and hence a recursion operator is constructed the 
results can be summarized by the theorem of § 3. 

Hence the computational effort essentially consists of finding one mastersym
metry, i.e., for a given dynamical system ut=K(u) we have to "solve" the equation 
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[K, [K, r]]=O (4·1) 

for r. Before attacking this problem we have to mention some technical details: A 
crucial role is played by a "highest-order projection" for vectornelds. Recall that the 
vectornelds under consideration are polynomial such that if one evaluates the 
vectorneld at the place n of the lattice also field variables at other places do enter 
because there is some interaction between neighboring points. Projecting a 
vectorneld K, say, onto those terms where the interaction reaches farthest (highest 
distances with respect to lattice points) and then taking the highest polynomial degree 
of these projected terms constitutes the highest order projection. The result of this 
projection is denoted by ho(K) and we are able to define a suitable degree function 
yielding these highest order terms. Now an important role in the program is played 
by an approximate solution of the division problem in the Lie algebra of vectorfields. 
By approximate we mean that given vectorfields K and R we are able to find a 
vectorneld X such that 

ho[ho(K), X] = ho(R) . (4·2) 

This routine is called CS(K, R) ("commutator solution") and this subroutine is the 
heart of the whole matter. The· reason why such "commutator solutions" can be 
found lies in the fact that restricting the considerations to terms less than a fixed 
degree more or less simulates the situation of a finite dimennional Lie algebra. 

Another important point that is essential to find solutions of (4 ·1) in an algorith
mic way is the fact that the explicit form of the mastersymmetries is known to a 
certain extent; from experience we know that the typical form of these vectorfields is 
given by 

r(u)=[n]S(u)+ Z(u) , 

where 5 and Z are translation invariant (i.e., do not explicitly depend on the lattice 
point n) and 5 is a symmetry of K. The following algorithms use this structure by 
starting with a "first approximation" r=[n] symmetry for the wanted solution of (4·1). 

For a given symmetry 5 of K we now attack (4·1) by splitting it into 2 parts: 
1) First we determine the new symmetry 5 = [r, K]. On the basis of the observation 
that the highest order term of r can be assumed to be given by the highest order term 
of [n]S, we know that the highest order term of S=[r, K] is given by the highest 
order term of [[n]S, K] and we can use the following algorithm SYM of successive 
approximation to find S=[r, K]=:SYM(K, 5): 

PROCEDURE SYM (K, 5): 

{The procedure SYM determines that symmetry 5 of K with ho(S)=ho([[n]S, K).} 

Step 0: Put S:=[[n]S, K]. 

Step 1: Put R:=[S, K]. If R=O then RETURN(S) else GO TO Step 2. 

Step 2: Determine 85:= CS(K, R), where CS( ) is applied by restricting the considera
tions to terms of degree less than the degree of S. If there is no· solution then 
RETURN ("There is no symmetry of this form") else GOTO Step 3. 
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Step 3: Put·5:=5+oS and GOTO Step 1. 

Obviously, in Step 0 the wanted new symmetry 5 is computed correctly in its highest 
order and each run computes 5 correctly up to one order less. Hence the algorithm 
either has to stop after a number of runs given by the degree of 5 thus finally giving 
the correct symmetry 5, or it stops before by telling us that for the given S there is 
no symmetry whose highest order is generated by [[n]S, Kl Although, as a language 
problem, this algorithm does not have finite length it terminates since all descending 
chains (with respect to degree) are finite. Of course, this algorithm is based on a 
symmetry S which has to be known already. But observe that one can always use 
S=K. 
2) Now, once the new symmetry 5 has been found we can use the following algorithm 
to solve 5 = [r, K] for r: 

PROCEDURE MAS (K, N): 

{The procedure MAS determines the mastersymmetry r with [r, K]=SYM(K, S).} 

Step 0: Put 5:=SYM(K, S), r:=[n]K. 

Step 1: Put R:=[r, K]- 5. If R=O then RETURN(r) else GOTO Step 2. 

Step 2: Determine or:=CS(K, R), where CS( ) is applied by restricting the considera
tions to terms of degree less than the degree of r. If there is no solution then 
RETURN ("There is no solution'') else GO TO Step 3. 

Step 3: Put r: = r + or and GOTO Step 1. 

The program package is implemented in MAPLE/8
) a formula manipulation system 

developed by the University of Waterloo. The choice for a formula manipulation 
system was mainly based on our desire for rapid prototyping and on the fact that for 
these systems many sophisticated algorithms are available. 

§ 5. Conclusions 

As can be seen from the theorem given in § 3, mastersymmetries provide all the 
information which can be obtained from the hereditary symmetries (recursion opera
tors), since these can be recovered from the mastersymmetries (and the hamiltonian 
operator). Furthermore, they usually yield the recursive structure of completely 
integrable systems even when hereditary operators cannot be found. 

From the computational viewpoint the approach to completely integrable systems 
via mastersymmetries seems to be more powerful compared to the attempt of finding 
hereditary recursion operators or Lax pairs. The obvious reason is that vectorfields 
(satisfying the required properties) are easier to detect than tensor fields of higher 
degree. So, mastersymmetries seem to be the ideal tools in order to design computer 
programs for the study of complete integrability. 

It should be remarked that the development of computer programs for the 
determination of symmetry groups goes back to Schwarz.19) However, there is an 
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essential difference between his work and ours: We rely on the existence of a 
nontrivial (higher) mastersymmetry, which-translating these structures into the 
framework of differential equations-corresponds to a Lie-Baecklund symmetry, 
whereas Schwarz determines all the Lie-point symmetries of a given equation. 
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