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MASUR-VEECH VOLUMES, FREQUENCIES OF SIMPLE

CLOSED GEODESICS AND INTERSECTION NUMBERS OF

MODULI SPACES OF CURVES

VINCENT DELECROIX, ÉLISE GOUJARD, PETER ZOGRAF, AND ANTON ZORICH

Abstract. We express the Masur–Veech volume and the area Siegel–Veech
constant of the moduli space Qg,n of genus g meromorphic quadratic differ-
entials with at most n simple poles and no other poles as polynomials in the

intersection numbers
∫

Mg′,n′
ψ
d1
1
. . . ψ

dn′

n′ with explicit rational coefficients,

where g′ < g and n′ < 2g + n. The formulae obtained in this article are
derived from lattice point counts involving the Kontsevich volume polyno-
mials Ng′,n′ (b1, . . . , bn′ ) that also appear in Mirzakhani’s recursion for the
Weil–Petersson volumes of the moduli spaces Mg′,n′ (b1, . . . , bn′ ) of bordered
hyperbolic surfaces with geodesic boundaries of lengths b1, . . . , bn′ .

A similar formula for the Masur–Veech volume (though without explicit
evaluation) was obtained earlier by M. Mirzakhani through a completely dif-
ferent approach. We prove a further result: the density of the mapping class
group orbit Modg,n ·γ of any simple closed multicurve γ inside the ambient
set MLg,n(Z) of integral measured laminations computed by Mirzakhani, co-
incides with the density of square-tiled surfaces having horizontal cylinder
decomposition associated to γ among all square-tiled surfaces in Qg,n.

We study the resulting densities (or, equivalently, volume contributions)
in more detail in the special case when n = 0. In particular, we compute
explicitly the asymptotic frequencies of separating and non-separating simple
closed geodesics on a closed hyperbolic surface of genus g for all small genera g

and we show that in large genera the separating closed geodesics are
√

2

3πg
· 1

4g

times less frequent.
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1. Introduction and statements of main theorems

1.1. Masur–Veech volume of the moduli space of quadratic differentials.
Let g, n be non-negative integers with 2g+n > 2. Consider the moduli space Mg,n

of complex curves of genus g with n distinct labeled marked points. The total space
Qg,n of the cotangent bundle over Mg,n can be identified with the moduli space of
pairs (C, q), where C ∈ Mg,n is a smooth complex curve with n (labelled) marked
points and q is a meromorphic quadratic differential on C with at most simple
poles at the marked points and no other poles. In the case n = 0 the quadratic
differential q is holomorphic. Thus, as any total space of the cotangent bundle, the
moduli space of quadratic differentials Qg,n is endowed with the canonical (real)
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symplectic structure. The induced volume element on Qg,n is called the Masur–
Veech volume element. In Section 2.1 we provide an alternative, more common
definition of the Masur–Veech volume element and explain why the two definitions
are equivalent up to a global normalization constant.

A non-zero differential q in Qg,n defines a flat metric |q| on the complex curve
C. The resulting metric has conical singularities at zeroes and simple poles of q.
The total area of (C, q)

Area(C, q) =

∫

C

|q|

is positive and finite. For any real a > 0, consider the following subset in Qg,n:

(1.1) QArea≤a
g,n := {(C, q) ∈ Qg,n | Area(C, q) ≤ a} .

Since Area(C, q) is a norm in each fiber of the bundle Qg,n → Mg,n, the set
QArea≤a

g,n is a ball bundle over Mg,n. In particular, it is non-compact. However,
by independent results of H. Masur [Ma1] and W. Veech [Ve1], the total mass
of QArea≤a

g,n with respect to the Masur–Veech volume element is finite. One of the
objectives of this article is to provide a formula for this total mass. Our construction
relies on square-tiled surface counting that we introduce next.

1.2. Square-tiled surfaces, simple closed multicurves and stable graphs.
We have already mentioned that a non-zero meromorphic quadratic differential q
on a complex curve C defines a flat metric with conical singularities. One can
construct a discrete collection of quadratic differentials of this kind by assembling
together identical flat squares in the following way. Take a finite set of copies of the
oriented 1/2× 1/2-square for which two opposite sides are chosen to be horizontal
and the remaining two sides are declared to be vertical. Identify pairs of sides of the
squares by isometries in such way that horizontal sides are glued to horizontal sides
and vertical sides to vertical. We get a topological surface S without boundary. We
consider only those surfaces obtained in this way which are connected and oriented.
The form dz2 on each square is compatible with the gluing and endows S with a
complex structure and with a non-zero quadratic differential q with at most simple
poles. The total area Area(S, q) is 1

4 times the number of squares. We call such a
surface a square-tiled surface.

2γ1
γ2

γ3

2γ4

2γ1

γ2

γ3

2γ4

Figure 1. A square-tiled surface in Q(13,−17), and its associ-
ated multicurve and stable graph.

In order to be consistent with the literature on Masur–Veech volumes, we al-
ways label zeros and poles of our square-tiled surfaces. Each square-tiled surface
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uniquely determines the ambient stratum of quadratic differentials. Given a list
µ = (µ1, . . . , µm) of integers not smaller than −1, whose sum is 4g− 4, the stratum
of quadratic differentials Q(µ) is the set of equivalence classes of pairs: (complex
curve C with m marked points p1, . . . , pm; a quadratic differential q whose divisor
is
∑m

i=1 µipi). The stratum Q(µ) is naturally embedded in Qg,m.
For any pair of nonnegative integers (g, n) satisfying 2g + n > 3, the principal

stratum of meromorphic quadratic differentials in genus g with n simple poles and
with no other poles is Q(14g−4+n,−1n). By definition, Q(14g−4+n,−1n) is a subset
of Qg,4g−4+2n. Under the morphism Qg,4g−4+2n → Qg,n that forgets the points
where the quadratic differential has a simple zero, the image of the principal stratum
Q(14g−4+n,−1n) is open and dense in Qg,n. The fibers of Q(14g−4+n,−1n) → Qg,n

are discrete; they are in a bijective correspondence with different ways in which
one can label the 4g − 4 + n simple zeros of a given generic quadratic differential
in Qg,n.

Remark 1.1. The special cases (g, n) = (0, 3) and (g, n) = (1, 1) which correspond
to 2g + n = 3 are discussed in Appendix C.1. In these two cases Qg,n does not
admit any natural interpretation in terms of meromorphic quadratic differentials
with simple zeros and simple poles.

We denote by ST (Q(µ), N) the set of square-tiled surfaces in the stratum Q(µ)
made of at most N squares. For example, the square-tiled surface in Figure 1 has
genus g = 0. It has 3 simple zeros and n = 7 conical singularities with angle π.
Hence, it belongs to the principal stratum Q(13,−17).

We shall see in Section 2.1 that the principal strata have a natural linear structure
and that the square-tiled surfaces form a covolume one lattice in associated period
coordinates. This justifies the following definition of the Masur–Veech volume of
Qg,n (for (g, n) different from (0, 3) and (1, 1)):
(1.2)

VolQg,n := VolQ(14g−4+n,−1n) = 2d · lim
N→+∞

card(ST (Q(14g−4+n,−1n), 2N)

Nd
,

where d = dimC Q(14g−4+n,−1n) = dimC Qg,n = 6g − 6 + 2n. We emphasize that
in the above formula we assume that all conical singularities of square-tiled surfaces
are labeled. Formula 1.2 is the starting point of our expression for VolQg,n.

Cylinder decomposition, multicurve and stable graph. A square-tiled sur-
face admits a decomposition into maximal horizontal cylinders filled with isometric
closed regular flat geodesics. Every such maximal horizontal cylinder has at least
one conical singularity on each of the two boundary components. The square-tiled
surface in Figure 1 has four maximal horizontal cylinders which are represented in
the picture by different shades.

Let S be a square-tiled surface and let S = cyl1 ∪ . . .∪ cylk be its decomposition
into the set of maximal horizontal cylinders. To each cylinder cyl i we associate
the corresponding waist curve γi considered up to a free homotopy. The curves γi
are non-peripheral (i.e. none of them bounds a disc containing a single pole) and
pairwise non-homotopic. We encode the number of circular horizontal bands of
squares contained in the corresponding maximal horizontal cylinder by the integer
weight Hi associated to the curve γi. The formal linear combination γ =

∑
Hiγi is

a simple closed integral multicurve in the spaceMLg,n(Z) of measured laminations.
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For example, the simple closed multicurve associated to the square-tiled surface as
in Figure 1 has the form 2γ1 + γ2 + γ3 + 2γ4.

The multicurve γ =
∑
Hiγi as above defines the associated reduced multicurve

γreduced =
∑
γi. Here we assume that γi and γj are pairwise non-isotopic for i 6= j.

We associate to γred its stable graph Γ(γreduced) which should be thought as the
dual graph to γreduced. More precisely, Γ(γ) is the decorated graph whose vertices
represent the components of S \ γreduced and are decorated with the genus of the
corresponding component. By convention, when this number is not explicitly indi-
cated, it is zero. The edges of Γ(γ) represent the components γi of γreduced , where
the endpoints of the edge associated to γi are the two vertices corresponding to the
two components of S \ γreduced adjacent to γi. When γi has the same component of
S \ γreduced on both sides, the corresponding edge of Γ(γ) is a loop. Finally, Γ(γ)
is endowed with n “legs“ (or half-edges) labelled from 1 to n. The leg with label
i is attached to the vertex that represents the component that contains the i-th
marked point of S. The right picture in Figure 1 shows the stable graph associated
to the multicurve γ. A formal combinatorial definition of a stable graph is provided
in Appendix B.

The total number of stable graphs (considered up to isomorphism) is finite and
is equal to the number of Modg,n-orbits of reduced multicurves in MLg,n(Z). For
2g + n > 2, we denote by Gg,n the set of stable graphs. Table 1 in Section 1.4 and
Table 2 in Appendix C.4 list all stable graphs in G2,0 and G1,2 respectively. The
special cases G0,3 and G1,1 are considered in Appendix C.1.

Given a pair of nonnegative integers (g, n) satisfying 2g+n > 3 and a stable graph
Γ in Gg,n, let us consider the subset ST Γ,H(Q(14g−4+n,−1n)) of those square-tiled
surfaces, for which the associated stable graph is Γ and the heights of the cylinders
are H = (H1, . . . , Hk). Let us denote by ST Γ(Q(14g−4+n,−1n)) the analogous
subset without restriction on the heights. Let us define Vol(Γ,H) and Vol(Γ) to be
respectively the contributions to VolQg,n of square-tiled surfaces from the subsets
ST Γ,H(Q(14g−4+n,−1n)) and ST Γ(Q(14g−4+n,−1n)):

Vol(Γ,H) := 2d · lim
N→+∞

card(ST Γ,H(Q(14g−4+n,−1n), 2N)

Nd
,(1.3)

Vol(Γ) := 2d · lim
N→+∞

card(ST Γ(Q(14g−4+n,−1n), 2N)

Nd
,(1.4)

where d = 6g − 6 + 2n. The results in [DGZZ2] imply that for any Γ in Gg,n the
above limits exist, are strictly positive, and that

(1.5) VolQg,n =
∑

Γ∈Gg,n

Vol(Γ) =
∑

Γ∈Gg,n

∑

H∈NE(Γ)

Vol(Γ,H) .

Dividing both sides of (1.5) by VolQg,n we see that the ratio Vol(Γ)/VolQg,n can
be interpreted as the “asymptotic probability” that a square-tiled surface taken at
random has Γ as stable graph associated to its horizontal cylinder decomposition.

Remark 1.2. A stable graph is commonly used to encode the boundary classes of
the Deligne-Mumford compactification Mg,n of Mg,n. Informally speaking, the

stable curves in the boundary of Mg,n are obtained by pinching along appropriate
multicurves γreduced. In our situation, this can be done algebraically in the follow-
ing way. Let (C, q) be a quadratic differential whose horizontal cylinders fill the
associated flat surface S. Consider the sequence of quadratic differentials (Ct, qt)



6 V. DELECROIX, É. GOUJARD, P. G. ZOGRAF, AND A. ZORICH

obtained as follows. Define qt := Re(q) + iet Im(q). The differential qt is meromor-
phic for a unique complex structure Ct. The horizontal cylinder decompositions of
all (Ct, qt), t ∈ R, are topologically identical. Metrically, cylinders of (Ct, qt) are e

t

times higher than cylinders of (C, q). The path (Ct, qt) in Qg,n converges towards

a stable quadratic differential (C∞, q∞) in Qg,n with exactly double poles at the
nodes of C∞. Each double pole corresponds to a half-infinite cylinder associated to
the corresponding boundary component of S \ γreduced .
1.3. Ribbon graphs, intersection numbers and volume polynomials. In
this section we introduce multivariate polynomials Ng,n(b1, . . . , bn) that appear in
different contexts. They are an essential ingredient to our formula for the Masur–
Veech volume.

Let g, n be non-negative integers with 2g + n > 2. Let b1, . . . , bn be variables.
For a multi-index d = (d1, . . . , dn) we denote by b2d the product b2d1

1 · · · · · b2dn
n , by

|d| the sum d1 + · · ·+ dn and by d! the product d1! · · · dn!
Define the homogeneous polynomial Ng,n(b1, . . . , bn) of degree 6g− 6+2n in the

variables b1, . . . , bn as

(1.6) Ng,n(b1, . . . , bn) =
∑

|d|=3g−3+n

cdb
2d ,

where

(1.7) cd =
1

25g−6+2n d!
〈ψd1

1 . . . ψdn
n 〉

(1.8) 〈ψd1
1 . . . ψdn

n 〉 =
∫

Mg,n

ψd1
1 . . . ψdn

n ,

where ψ1, . . . , ψn are the ψ-classes on the Deligne–Mumford compactificationMg,n.

That is, ψi is the first Chern class of the i-th tautological bundle over Mg,n. In-
formally, the fiber of this bundle over (C, p1, . . . , pn) is the cotangent line T ∗

pi
C to

C at the i-th marked point. Note that Ng,n(b1, . . . , bn) contains only even powers
of bi, where i = 1, . . . , n. For small g and n we get:

N0,3(b1, b2, b3) = 1

N0,4(b1, b2, b3, b4) =
1

4
(b21 + b22 + b23 + b24)

N1,1(b1) =
1

48
(b21)

N1,2(b1, b2) =
1

384
(b21 + b22)(b

2
1 + b22) .

A ribbon graph G is a connected graph endowed at each vertex with a cyclic
ordering of adjacent edges. The cyclic ordering determines faces, so one can con-
sider a tubular neighborhood of G as a surface with boundary, where boundary
components correspond to faces of G. We denote by Rg,n the set of isomorphism
classes of trivalent ribbon graphs of genus g with n faces labeled from 1 to n. For
each trivalent ribbon graph G in Rg,n and any collection of integers b1, . . . , bn,
denote by NG(b1, . . . , bn) the number of integral metrics on G (assigning a positive
integral length to each edge) such that the perimeters of the faces get lengths b1,
. . . , bn.
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Theorem (Kontsevich). Consider a collection of positive integers b1, . . . , bn such
that

∑n
i=1 bi is even. The weighted count of genus g connected trivalent metric rib-

bon graphs G with integer edges and with n labeled boundary components of lengths
b1, . . . , bn is equal to Ng,n(b1, . . . , bn) up to the lower order terms:

∑

G∈Rg,n

1

|Aut(G)| NG(b1, . . . , bn) = Ng,n(b1, . . . , bn) + lower order terms ,

where Rg,n denotes the set of (nonisomorphic) trivalent ribbon graphs G of genus
g and with n boundary components.

This Theorem is a part of Kontsevich’s proof [Kon] of Witten’s conjecture [Wi].

Remark 1.3. P. Norbury [Nb] and K. Chapman–M. Mulase–B. Safnuk [ChMuSa]
refined the count of Kontsevich proving that the function counting lattice points in
the moduli space Mg,n corresponding to covers of the sphere ramified over three
points (the so-calledGrothendieck’s dessins d’enfants) is a quasi-polynomial in vari-
ables bi. In other terms, when considering all ribbon graphs (and not only trivalent
ones) the lower order terms in Kontsevich’s theorem form a quasi-polynomial. This
quasi-polynomiality of the expression on the left hand side endows the notion of
“lower order terms” with a natural formal sense.

We also use the following common notation for the intersection numbers (1.8).
Given an ordered partition d1 + · · ·+ dn = 3g − 3 + n of 3g − 3 + n into a sum of
non-negative integers we define

(1.9) 〈τd1 . . . τdn
〉 =

∫

Mg,n

ψd1
1 . . . ψdn

n .

1.4. Formula for the Masur–Veech volumes. Following [AEZ2] we consider
the following linear operators Y(H) and Z on the spaces of polynomials in variables
b1, b2, . . . , where H1, H2, . . . are positive integers. The operator Y(H) is defined
on monomials as

(1.10) Y(H) :
k∏

i=1

bmi

i 7−→
k∏

i=1

mi!

Hmi+1
i

,

and extended to arbitrary polynomials by linearity. The operator Z is defined on
monomials as

(1.11) Z :

k∏

i=1

bmi

i 7−→
k∏

i=1

(
mi! · ζ(mi + 1)

)
,

and extended to arbitrary polynomials by linearity. In the above formula ζ is the
Riemann zeta function

ζ(s) =
∑

n≥1

1

ns
,

so for any collection of strictly positive integers (m1, . . . ,mk) one has

Z
(

k∏

i=1

bmi

i

)
=
∑

H∈Nk

Y(H)

(
k∏

i=1

bmi

i

)
.
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Remark 1.4. For even integers 2m we have

ζ(2m) = (−1)m+1B2m(2π)2m

2 (2m)!

where B2m are the Bernoulli numbers. Consider a homogeneous polynomial in k
variables of degree 2m − k with rational coefficients, such that all powers of all
variables in each monomial are odd. The observation above implies that the value
of Z on such polynomial is a rational number multiplied by π2m.

Given a stable graph Γ denote by V (Γ) the set of its vertices and by E(Γ) the set
of its edges. To each stable graph Γ ∈ Gg,n we associate the following homogeneous
polynomial PΓ of degree 6g − 6 + 2n. To every edge e ∈ E(Γ) we assign a formal
variable be. Given a vertex v ∈ V (Γ) denote by gv the integer number decorating v
and denote by nv the valency of v, where the legs adjacent to v are counted towards
the valency of v. Take a small neighborhood of v in Γ. We associate to each half-
edge (“germ” of edge) e adjacent to v the monomial be; we associate 0 to each leg.
We denote by bv the resulting collection of size nv. If some edge e is a loop joining
v to itself, be would be present in bv twice; if an edge e joins v to a distinct vertex,
be would be present in bv once; all the other entries of bv correspond to legs; they
are represented by zeroes. To each vertex v ∈ E(Γ) we associate the polynomial
Ngv,nv

(bv), where Ng,v is defined in (1.6). We associate to the stable graph Γ the
polynomial obtained as the product

∏
be over all edges e ∈ E(Γ) multiplied by the

product
∏
Ngv ,nv

(bv) over all v ∈ V (Γ). We define PΓ as follows:

(1.12) PΓ(b) =
26g−5+2n · (4g − 4 + n)!

(6g − 7 + 2n)!
·

1

2|V (Γ)|−1
· 1

|Aut(Γ)| ·
∏

e∈E(Γ)

be ·
∏

v∈V (Γ)

Ngv ,nv
(bv) .

Table 1 in Section 1.4 and Table 2 in Appendix C.4 list the polynomials associ-
ated to all stable graphs in G2,0 and in G1,2.

Theorem 1.5. The Masur–Veech volume of the stratum of quadratic differentials
with 4g − 4 + n simple zeros and n simple poles has the following value:

(1.13) VolQg,n = VolQ(14g−4+n,−1n)

=
∑

Γ∈Gg,n

Vol(Γ) =
∑

Γ∈Gg,n

∑

H∈NE(Γ)

Vol (Γ,H) ,

where the contributions of individual stable graphs Γ defined by (1.3) (respectively
the contributions of pairs (Γ,H) defined by (1.4)) are equal to

(1.14) Vol(Γ) = Z(PΓ) and Vol (Γ,H) = Y(H)(PΓ).

Table 1 below illustrates the computation of the polynomials PΓ and of the con-
tributions Vol(Γ) to the Masur–Veech volume VolQg,n in the particular case of
(g, n) = (2, 0). To make the calculation tractable, we follow the structure of For-

mula (1.12). The first numerical factor 128
5 represents the factor 26g−5+2n·(4g−4+n)!

(6g−7+2n)! .

It is common for all stable graphs in G2,0. The second numerical factor in the first
line of each calculation in Table 1 is 1

2|V (Γ)|−1 , where |V (Γ)| is the number of ver-
tices of the corresponding stable graph Γ (equivalently — the number of connected
components of the complement to the associated reduced multicurve). The third
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numerical factor is 1
|Aut(Γ)| . Recall that neither vertices nor edges of Γ are labeled.

We first evaluate the order of the corresponding automorphism group |Aut(Γ)| (this
group respects the decoration of the graph), and only then we associate to edges of
Γ variables b1, . . . , bk in an arbitrary way.

b1
128
5 · 1 · 1

2 · b1 ·N1,2(b1, b1) =

b1 1
= 64

5 · b1
(

1
384 (2b

2
1)(2b

2
1)
)
= 2

15 · b51
Z7−→ 2

15 ·
(
5! · ζ(6)

)

= 16
945 · π6

b1

128
5 · 1

2 · 1
2 · b1 ·N1,1(b1) ·N1,1(b1) =

b1
1 1

= 32
5 · b1 ·

(
1
48b

2
1

) (
1
48b

2
1

)
= 1

360 · b51
Z7−→ 1

360 ·
(
5! · ζ(6)

)

= 1
2835 · π6

b1 b2
128
5 · 1 · 1

8 · b1b2 ·N0,4(b1, b1, b2, b2) =

b1 b2
0

= 16
5 · b1b2 ·

(
1
4 (2b

2
1 + 2b22)

)
=

= 8
5 (b

3
1b2 + b1b

3
2)

Z7−→ 8
5 ·2·3!ζ(4)·1!ζ(2)

= 8
225 · π6

b1

b2

128
5 · 12 · 12 ·b1b2 ·N0,3(b1, b1, b2)·N1,1(b2)

b1 b2
0 1

= 32
5 · b1b2 ·

(
1
)
·
(

1
48b

2
2

)
= 2

15 · b1b32
Z7−→ 2

15 ·1!ζ(2)·3!ζ(4)
= 1

675 · π6

b1

b2

b3
128
5 · 12 · 18 ·b1b2b3 ·N0,3(b1, b1, b2)·

b1 b2
b30 0

·N0,3(b2, b3, b3) =
8
5 ·b1b2b3 ·(1)·(1)

Z7−→ 8
5 · (1! ζ(2))3

= 1
135 · π6

b1

b2
b3

128
5 · 12 · 1

12 ·b1b2b3 ·N0,3(b1, b1, b2)·

b1 b2 b3

0

0

·N0,3(b2, b3, b3) =
16
15 ·b1b2b3 ·(1)·(1)

Z7−→ 16
15 · (1! ζ(2))3

= 2
405 · π6

Table 1. Computation of VolQ2,0. The left column represents
the stable graphs Γ and their associated multicurves; the middle
column gives the polynomials PΓ; the right column provides Vol(Γ).

Taking the sum of the six contributions we obtain the answer, matching the value
found in [G2] by implementing the method of A. Eskin and A. Okounkov [EO2].

VolQ2,0 =
((

16
945 + 1

2835

)
+
(

8
225 + 1

675

)
+
(

1
135 + 2

405

))
π6 = 1

15π
6 .
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Remark 1.6. In genus 0, the formula simplifies considerably. It was conjectured by
M. Konstevich and proved by J. Athreya, A. Eskin and A. Zorich in [AEZ2] that
for all n ≥ 4

(1.15) VolQ0,n = VolQ(1n−4,−1n) =
π2n−6

2n−5
.

Note that in genus 0 all correlators of ψ-classes admit a closed explicit expression.
Rewriting all polynomials N0,nv

(bv) for all stable graphs in G0,n in Formula (1.13)
for VolQ0,n in terms of the corresponding multinomial coefficients we get the for-
mula originally obtained in [AEZ1]. A lot of techniques in this article are borrowed
from [AEZ1]. Note, however, that the proof of (1.15) is indirect and is based on an-
alytic Riemann–Roch–Hierzebruch formula and on fine comparison of asymptotics
of determinants of flat and hyperbolic Laplacians as (X, q) in Q0,n approaches the
boundary.

Remark 1.7. In the recent paper [CMöS] D. Chen, M. Möller, A. Sauvaget proved
an alternative formula for VolQ(14g−4+n,−1n) expressing it as a weighted sum
of certain linear Hodge integrals. Their approach is based on intersection theory.
Combined with the recursive formula for the linear Hodge integrals obtained by
M. Kazarian in [Kaz], it allows to compute the exact values of VolQ(14g−4+n,−1n)
for g up to 250 and, basically, for any n. In particular, it provides an alternative
proof of (1.15).

Note the following important feature of Formula (1.13) which distinguishes it
from the approach of Eskin–Okounkov [EO1, EO2] based on the quasimodularity of
certain generating functions or from the approach of Chen–Möller–Sauvaget [CMöS]
based on intersection theory. Formula (1.13) allows us to analyze the contribution
of individual stable graphs to VolQg,n. In particular, it allows us to study the
statistical geometry of random square-tiled surfaces as in Sections 1.9 and statistical
properties of random simple closed hyperbolic geodesics as in Section 4.

Formula (1.13) also implies the following asymptotic lower bound for the Masur–
Veech volume VolQg,0 and a conjectural asymptotic value.

Theorem 1.8. The following inequality holds for any g ≥ 2:

(1.16) VolQg,0 >

√
2

3πg
·
(
8

3

)4g−4

·
(
1− 2

6g − 7

)
.

Theorem 1.8 is proved in Section 4.2.

Conjecture 1.9. The Masur–Veech volume of the moduli space of holomorphic
quadratic differentials has the following large genus asymptotics1:

(1.17) VolQg,0
?
=

4

π
·
(
8

3

)4g−4

·
(
1 +O

(
1

g

))
as g → +∞ .

The exact values of VolQg,0 obtained by combining results [CMöS] and [Kaz]
corroborate the conjectural Formula (1.17). The work [YZZ] also corroborates and
develops this conjecture suggesting several first terms of the asymptotic expansion
in the negative powers of g.

1After a journal submission of the current paper a stronger form of this Conjecture was proved
by A. Aggarwal in [Ag3].
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A conjectural generalization of Formula (1.17) to other strata of meromorphic
quadratic differentials and numerical evidence beyond this conjecture are presented
in [ADGZZ]. The statistical geometry of random square-tiled surfaces of large genus
and of random simple closed multicurves on surfaces of large genus is discussed in
the separate paper [DGZZ5].

Remark 1.10. By the result of A. Eskin and A. Okounkov [EO1] the Masur–Veech
volume of any stratum of Abelian differentials is a rational multiple of π2g. For
the strata of meromorphic quadratic differentials the results [EO2] directly imply
slightly weaker property: the Masur–Veech volume is a polynomial in powers of π2

with rational coefficients, see the proof of Proposition 5.10 in [G2]. Actually, one
can derive from the results [EO2] a stronger statement, namely, that the Masur–
Veech volume of any stratum of meromorphic quadratic differentials is a rational
multiple of π2geff , where the integer number geff denotes the effective genus of
the stratum. However, this implication is already non-trivial and was never written
down. Alternative proofs of the latter statement were recently obtained by D. Chen,
M. Möller, and A. Sauvaget for the principal stratum in [CMöS] and by V. Koziarz
and D.-M. Nguyen in [KozNg] for certain more general arithmetic affine GL(2,R)-
invariant submanifolds of the strata.

By construction, the polynomial PΓ(b) associated to a stable graph Γ ∈ Gg,n

by Expression (1.12) is a homogeneous polynomial of degree 6g − 6 + 2n− |E(Γ)|.
Moreover, each variable be in each monomial appears with an odd power. Thus,
Formula (1.13) implies that the contribution Vol(Γ) of each stable graph Γ ∈ Gg,n

to VolQg,n is already a rational multiple of π6g−6+2n. Moreover, using the refined
version of Ng,n(b1, . . . , bn) due to Norbury [Nb] expressing the counting functions
of ribbon graphs as quasi-polynomials in bi, one can even show that the generating
series of square-tiled surfaces corresponding a given stable graph is a quasi-modular
form. This result develops the results of Eskin-Okounkov [EO2] that say that in
each stratum, the generating series for the count of pillowcase covers (in the sense
of A. Eskin and A. Okounkov) is a quasimodular form and the analogous result of
P. Engel [En1], [En2] for the count of square-tiled surfaces.

Remark 1.11. Up to a normalization constant given by the explicit Formula (3.17)
(depending only on g and n), the polynomial Ng,n(b1, . . . , bn) coincides with the top
homogeneous part of Mirzakhani’s volume polynomial Vg,n(b1, . . . , bn) providing the
Weil–Petersson volume of the moduli space of bordered Riemann surfaces [Mi1].
The classical Weil–Petersson volume of Mg,n corresponds to the constant term
of Vg,n(b1, . . . , bn) when the lengths of all boundary components are equal to zero.

This relation between correlators 〈ψd1
1 . . . ψdn

n 〉 and Weil–Petersson volumes allowed
Mirzakhani to provide an alternative proof of Witten’s conjecture.

In the paper [ABCD], J. E. Andersen, G. Borot, S. Charbonniery, V. Delecroix,
A. Giacchetto, D. Lewański, and C. Wheeler define a Masur–Veech polynomial
whose top degree term is also (a rescaled) version ofNg,n(b1, . . . , bn) and its constant
term is the Masur–Veech volume.

Both the Weil–Petersson polynomial and the Masur–Veech polynomial satisfy a
topological recursion that allows direct computations without relying on formulae
such as (1.13) which involves the (huge) list of stable graphs.

Note that contrarily to the volume polynomial Vg,n, the topological recursion for
the Masur–Veech polynomial does not admit a geometric interpretation yet.
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Remark 1.12. Formulae (1.12)–(1.14) admit a generalization allowing one to ex-
press Masur–Veech volumes of those strata Q(d1, . . . , dn), for which all zeroes have
odd degrees di, in terms of intersection numbers of ψ-classes with the combinatorial
cycles in Mg,n associated to the strata (denoted by Wm∗,n in [ArCo], where m∗

is the sequence of multiplicities of the zeroes). In this more general case the for-
mula requires additional correction subtracting the contribution of those quadratic
differentials which degenerate to squares of globally defined Abelian differentials.
This generalization is a work in progress.

Remark 1.13. Note that the contribution of square-tiled surfaces having a fixed
number of cylinders to the Masur–Veech volume of more general strata of quadratic
differentials might have a much more sophisticated arithmetic nature. In [DGZZ3]
we describe the contribution of square-tiled surfaces having a single maximal hori-
zontal cylinder to the Masur–Veech volume of any stratum of Abelian or quadratic
differentials. We conjecture that the contribution of k-cylinder square-tiled surfaces
to the Masur–Veech volume of the ambient stratum is expressed as a polynomial
with rational coefficients in multiple-zeta values.

1.5. Siegel–Veech constants. We now turn to a formula for the Siegel–Veech
constants of Qg,n. We first recall the definition of Siegel–Veech constants that
involves the flat geometry of quadratic differentials.

Let (C, q) be a non-zero quadratic differential in Qg,n. It naturally defines a
Riemannian metric |q| which is flat with conical singularities exactly at the zeros
and poles of q. This metric allows to define geodesics and we say that a geodesic is
regular if it does not pass through the singularities of q. Closed regular flat geodesics
appear in families composed of parallel closed geodesics of the same length. Each
such family fills a maximal flat cylinder cyl having a conical singularity (possibly
the same) at each of the two boundary components. The length of any regular
geodesic in this family is called the width (or circumference) of the cylinder . The
height of the cylinder is the distance between its boundary components measured
inside the cylinder. In particular, the flat area of the cylinder is the product of its
width and its height.

For S = (C, q) in Qg,n \ {0} and any L ∈ R, the number of maximal cylinders in
S filled with regular closed geodesics of bounded length w(cyl) ≤ L is finite. Thus
the following quantity is well-defined:

(1.18) Narea(S,L) :=
1

Area(S)

∑

cyl⊂S
w(cyl)≤L

Area(cyl) .

For any pair of nonnegative integers (g, n) satisfying 2g + n > 3, choose the
Masur–Veech volume element dVol in Qg,n which coincides with the Masur–Veech
volume element on the principal stratum Q(14g−4+n,−1n). This volume element
induces a canonical volume element dVol1 on any level hypersurface QArea=a

g,n . The
following theorem is a special case of the fundamental result of W. Veech, [Ve2]
developed by Y. Vorobets in [Vo].

Theorem (W. Veech; Ya. Vorobets). Let (g, n) be a pair of non-negative integers
such that 2g+n > 3. There exists a strictly positive constant carea(Qg,n) such that
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for any strictly positive numbers a and L the following holds:

(1.19)
a

πL2

∫

QArea=a
g,n

Narea(S,L) dVol1(S) = Vol1 QArea=a
g,n · carea(Qg,n) .

This formula is called the Siegel–Veech formula, and the corresponding constant
carea(Qg,n) is called the Siegel–Veech constant. Note that carea(Qg,n), actually,
does not depend on the choice of the normalization of the Masur–Veech volume.

Eskin and Masur [EMa] proved that for almost all S = (C, q) in Qg,n (with
respect to the Masur–Veech measure)

(1.20) lim
L→+∞

Area(S) · Narea(S,L)

πL2
= carea(Qg,n) .

Remark 1.14. Beyond its geometrical relevance, let us mention that the area Siegel–
Veech constant is the most important ingredient in the Eskin–Kontsevich–Zorich
formula for the sum of the Lyapunov exponents of the Hodge bundle along the
Teichmüller geodesic flow [EKoZo].

An edge of a connected graph is called a bridge if the operation of removing this
edge breaks the graph into two connected components. We define the following
function χΓ : E(Γ) → { 1

2 , 1} on the set of edges of any connected graph Γ:

χΓ(e) =

{
1
2 if the edge e is a bridge ,

1 otherwise .

We define the following operator ∂Γ on polynomials P in variables be associated
to the edges of stable graphs Γ ∈ Gg,n. For every e ∈ E(Γ) let

(1.21) ∂eΓP := χΓ(e) be
∂P

∂be

∣∣∣∣
be=0

,

and let

(1.22) ∂ΓP :=
∑

e∈E(Γ)

∂eΓP .

Theorem 1.15. Let g, n be non-negative integers satisfying 2g + n > 3. The
Siegel–Veech constant carea(Qg,n) satisfies the following relation:

(1.23) VolQg,n · carea(Qg,n) =
3

π2
·
∑

Γ∈Gg,n

Z (∂ΓPΓ) .

As an illustration of the above Theorem we compute carea(Q2,0) and carea(Q1,2)
in appendices C.2 and C.4 respectively.

1.6. Masur–Veech Volumes and Siegel–Veech constants. The Siegel–Veech
constant can be expressed in terms of the Masur–Veech volumes of certain boundary
strata. The formula for strata of Abelian differentials was obtained in [EMaZo] and
for strata of quadratic differentials in [G1]. Before presenting a reformulation of
Corollary 1 in [G1] we introduce the following conventions for (g, n) being (0, 3) or
(1, 1) (see Appendix C.1 for a discussion)

VolQ0,3 := 4 ,(1.24)

VolQ1,1 := 2π2

3 .(1.25)
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Theorem ([G1]). Let g, n be non-negative integers with 2g + n > 3. Under Con-
ventions (1.24)–(1.25) the following formula is valid:

carea(Qg,n) · VolQg,n =
1

8

∑

g1+g2=g
n1+n2=n+2

gi≥0,ni≥1,di≥1

ℓ!

ℓ1!ℓ2!

n!

(n1 − 1)!(n2 − 1)!
·(1.26)

· (d1 − 1)!(d2 − 1)!

(d− 1)!
VolQg1,n1 ×VolQg2,n2 +

+
1

16
· (4g − 4 + n)n(n− 1)

(6g − 7 + 2n)(6g − 8 + 2n)
VolQ0,3 ×VolQg,n−1 +

+
ℓ!

(ℓ − 2)!

(d− 3)!

(d− 1)!
VolQg−1,n+2 .

Here d = dimC Qg,n = 6g−6+2n, di = 6gi−6+2ni, ℓ = 4g−4+n, ℓi = 4gi−4+ni .
For g = 0 and any integer n satisfying n ≥ 4 the following formula is valid:

(1.27) carea(Q0,n) ·VolQ0,n =
1

8

∑

n1+n2=n+2
ni≥4

(n− 4)!

(n1 − 4)!(n2 − 4)!
·

· n!

(n1 − 1)!(n2 − 1)!
· (2n1 − 7)!(2n2 − 7)!

(2n− 7)!
VolQ0,n1 ×VolQ0,n2+

+
1

16
· (n− 4)n(n− 1)

(2n− 7)(2n− 8)
VolQ0,3 ×VolQ0,n−1 .

The terms which involve (g, n) = (0, 3) in the formulae above can be interpreted
as particular cases of the corresponding general terms under the following conven-
tion. In the context of the formulae above it is natural to define

(1.28)
(di − 1)!

ℓi!

∣∣∣∣ g=0
ni=3

:=
(2ni − 7)!

(ni − 4)!

∣∣∣∣
ni=3

:= lim
n→3

Γ(2n− 6)

Γ(n− 3)
=

1

2
.

Note that the expressions appearing in the right-hand sides of (1.23), (1.26)
and (1.27) can be seen as polynomials in correlators. More precisely, in the defini-

tion of Ngv ,nv
(bv) one can keep the correlators 〈ψd1

1 . . . ψdk

k 〉 = 〈τd1 . . . τdk
〉 in (1.7)

without evaluation. We extend the operators Z and ∂Γ to polynomials in the vari-
ables be and in “unevaluated” correlators by linearity. For example, under such
convention one gets

VolQ0,5 =
π2

9

(
5〈τ30 τ1〉 〈τ30 〉+ 4〈τ30 〉3

)
and

π2

3
carea(Q0,5)VolQ0,5 =

5

9
〈τ30 〉3.

Numerical values of volumes VolQg,n and of Siegel–Veech constants carea(Qg,n)
for small g and n are presented in Table 3 in Appendix D. The corresponding
expressions in terms of the intersection numbers are available in [DGZZ4].

Viewed in this way, the right-hand sides of (1.23) and of (1.26) in the case of
g ≥ 1 (respectively, the right-hand sides of (1.23) and of (1.27) in the case g = 0)
provide identities between polynomials in intersection numbers. We show that these
identities are, actually, trivial.

Theorem 1.16. The right-hand sides of (1.23) and of (1.26) for g ≥ 1 (respec-
tively, the right-hand sides of (1.23) and of (1.27) for g = 0) considered as poly-
nomials in intersection numbers of ψ-classes coincide.
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Theorem 1.16 is proved in Section 2.8.

1.7. Frequencies of multicurves (after M. Mirzakhani). Let g, n be non-
negative integers with 2g + n > 2. We say that two integral multicurves on the
same smooth surface of genus g with n punctures have the same topological type
if they belong to the same orbit of the mapping class group Modg,n. As we have
already seen, topological types of primitive multicurves (respectively multicurves)
are in bijection with stable graphs in Gg,n (respectively stable graphs in Gg,n labeled
with a height H i at each edge).

Let C be a complex curve, C ∈ Mg,n. We denote by X the underlying Riemann
surface endowed with its hyperbolic metric of constant curvature −1. Following
M. Mirzakhani, given an integral multicurve γ in MLg,n(Z) we define sX(L, γ) as
the number of simple closed geodesic multicurves on X of length at most L having
the same topological type as γ. M. Mirzakhani analyzed the asymptotic behavior
of sX(L, γ) which involves several quantities that we define now.

The hyperbolic length function ℓX defined on multicurves admits a continuous
extension to MLg,n, see [Ker]. Hence, we can consider the unit ball BX defined as

(1.29) BX := {γ ∈ ML : ℓX(γ) ≤ 1} .
in MLg,n and the associated volume with respect to Thurston’s measure2

B(X) = µTh(BX) .

Next, we define the number bg,n as the mean value of B(X)

(1.30) bg,n :=

∫

Mg,n

B(X) dX .

Here we integrate with respect to the Weil–Petersson volume form dX on Mg,n.
We can now state one of the main results of M. Mirzakhani from [Mi3].

Theorem (M. Mirzakhani). Let (g, n) be non-negative integers with 2g + n > 2.
Let γ be a multicurve in MLg,n(Z). Then there exists a positive constant c(γ) such
that for any Riemann surface X of genus g with n punctures we have

sX(L, γ) ∼ B(X) · c(γ)
bg,n

· L6g−6+2n ,

as L→ +∞.

Note that in this beautiful asymptotic formula all information about the hyper-
bolic metric X is carried by the factor B(X) (which does not depend on γ) and
the topological information about γ is carried by the constant c(γ) (which does not
depend on X). Mirzakhani showed furthermore that

(1.31) bg,n =
∑

[γ]∈P

c(γ) ,

where the sum of c(γ) is taken with respect to representatives [γ] of all orbits P of
the mapping class group Modg,n in MLg,n(Z) as in the sum (1.5).

2Thurston’s measure on MLg,n admits two natural normalizations which differ by a constant
factor. Following W. Thurston and M. Mirzakhani, we use the normalization under which the

set MLg,n(Z) of integral multicurves, playing the role of an integer lattice, has covolume one in
the ambient piecewise-linear space MLg,n. The alternative normalization is induced from the
symplectic structure, see [MoT], [ErSo] and Corollary 1.27 below for further details and for the
value of the constant factor relating the two normalizations.
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This allows to interpret the ratio c(γ)
bg,n

as the probability to get a multicurve of

type γ taking a “long random” multicurve (in the same sense as the probability
that the coordinates of a “random” point in Z2 are coprime equals 6

π2 ). More

precisely, M. Mirzakhani showed that the asymptotic frequency c(γ)
bg,n

represents the

density of the orbit Modg,n ·γ inside the set of all integral simple closed multicurves
MLg,n(Z). This density is analogous to the density 6

π2 of integral points with

coprime coordinates in Z2 represented by the SL(2,Z)-orbit of the vector (1, 0).
We now present a consequence of the bridge between square-tiled surfaces and

multicurves that will appear in the next section. Let g ≥ 2. There is a single
topological type of a nonseparating simple closed curve in MLg,0 and ⌊g/2⌋ classes
of separating simple closed curves. We define

cg,nonsep := c(γnonsep) , cg,sep :=
∑

[γsep]

c(γsep) ,

where γnonsep is the non-separating simple closed curve and the sum in the second
term is over the ⌊g/2⌋ classes of separating simple closed curves.

Theorem 1.17. The frequency of separating simple closed geodesics on a closed hy-
perbolic surface of large genus g is exponentially small with respect to the frequency
of non-separating simple closed geodesics:

(1.32)
cg,sep

cg,nonsep
∼
√

2

3πg
· 1

4g
as g → +∞ .

Theorem 1.17 follows from analyzing some individual contributions of partic-
ularly simple stable graphs to the Masur–Veech volume of Qg,0 and is proved in
Section 4.3. The proof is based on the large genus asymptotic formulae for 2-
correlators 〈ψd1

1 ψd2
2 〉 uniform for all partitions d1 + d2 = 3g − 1. This formula is

obtained in Section 4 using results of [Zog].

Remark 1.18. In order to go beyond the case of simple closed curve, one has to
carry a much more involved asymptotic analysis of correlators that we perform in
full generality in [DGZZ5].

Figure 2. Simple closed curves on a six-punctured sphere

Using hyperbolic geometry and the recursion relations for Weil–Petersson vol-
umes, M. Mirzakhani found an explicit expression for the coefficient c(γ) and for the
global normalization constant bg,n in terms of the intersection numbers of ψ-classes.
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Example 1.19. For any hyperbolic metric X on a sphere with 6 cusps as in Figure 2,
a long simple closed geodesic separates the cusps into groups of 3 + 3 cusps with
probability 4

7 and into 2 + 4 cusps with probability 3
7 (see (2) on page 123 in [Mi3]

for calculation).

Remark 1.20. These values were confirmed experimentally in 2017 by M. Bell;
see [Be] for a description of the computations. They were also confirmed by more
implicit independent computer experiment by V. Delecroix.

1.8. Frequencies of square-tiled surfaces of fixed combinatorial type. The
following Theorem bridges flat and hyperbolic count. Recall from Section 1.1 that
weighted stable graphs are in bijection with topological classes of multicurves.

Theorem 1.21. Let (g, n) be a pair of non-negative integers satisfying 2g + n >
3 and different from (2, 0). Let γ ∈ MLg,n(Z) be a multicurve and (Γ,H) the
associated stable graph and weights. Then the volume contribution Vol(Γ,H) to the
Masur–Veech volume VolQg,n coincides with the Mirzakhani’s asymptotic frequency
c(γ) of closed geodesic multicurves of topological type γ up to an explicit factor
depending only on g and n:

(1.33) Vol(Γ,H) = 2 · (6g − 6 + 2n) · (4g − 4 + n)! · 24g−3+n · c(γ) .
Theorem 1.21 is proved in Section 3.

Example 1.22. A one-cylinder square-tiled surface in the moduli spaceQ0,6 can have
3 simple poles on each of the two boundary component of the maximal horizontal
cylinder or can have 2 simple poles on one boundary component and 4 simple
poles on the other boundary component. The asymptotic frequency of square-tiled
surfaces of the first type is 4

7 and the asymptotic frequency of the square-tiled

surfaces of second type is 3
7 ; compare to Example 1.19.

Combining (1.5), (1.31) and (1.33) we get the following immediate Corollary:

Corollary 1.23. For any pair of non-negative integers satisfying 2g + n > 3 and
different from (2, 0), the Masur–Veech volume VolQg,n and the average Thurston
measure of a unit ball bg,n are related as follows:

(1.34) VolQg,n = 2 · (6g − 6 + 2n) · (4g − 4 + n)! · 24g−3+n · bg,n .
Remark 1.24. In the case, when n = 0, M. Mirzakhani established in Theorem 1.4
in [Mi4] a relation similar to (1.34) between bg = bg,0 (computed in Theorem 5.3
in [Mi3]) and the volume of Qg. However, Mirzakhani does not give any for-
mula for the value of the normalization constant presented in (1.34). This con-
stant was recently computed by F. Arana–Herrera [AH1] and by L. Monin and
I. Telpukhovkiy [MoT] simultaneously and independently of us by different meth-
ods. The same value of the constant in (1.34) is obtained by V. Erlandsson and
J. Souto in [ErSo] through an approach different from all the ones mentioned above.

Despite the fact that our main formula in Theorem 1.5 is obtained by completely
different method, it has, basically, the same structure as Mirzakhani’s formula for
bg,n. We provide a detailed comparison of these two formulae in Section 3.

Our announcement of the explicit relation between flat and hyperbolic counts
described in the current paper inspired F. Arana–Herrera to suggest in [AH1] an
alternative geometric proof of these results in the spirit of M. Mirzakhani.
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Remark 1.25. The pairs (0, 3), (1, 1) and (2, 0) of (g, n) are exceptional by several
reasons, which affect, in particular, Expression (1.30) for bg,n. The cases of (0, 3)
and (1, 1) are discussed in appendix C.1 and in Remark 3.3; see also the footnotes 1
and 2 on pages 9 and 12–13 respectively in [Wr].

The following observation distinguished the case (g, n) = (2, 0). Any complex
curve C in M2 admits a hyperelliptic involution τ . Any holomorphic quadratic
differential q is invariant under this involution, τ∗q = q. Suppose that q belongs
to the principal stratum Q(14), i.e., suppose that q has four distinct simple zeroes.
Then, the zeroes of q are arranged into two groups of two zeroes in each group,
and the hyperelliptic involution interchanges the zeroes in each of the two groups.
Thus, there are 4!/2 ways to label these 4 zeroes and not 4! ways as suggests the
factor (4g − 4 + n)! in the general Formulae (1.33) and (1.34).

Formula (1.13) from Theorem 1.5 allows to compute VolQg,n for all sufficiently
small values of (g, n). Since recently, more efficient methods are now known (see
Remark 1.7). Corollary 1.23 thus provides explicit values of bg,n for all such pairs.

When g = 0 the value VolQ0,n admits closed Formula (1.15) obtained in [AEZ2].
Corollary 1.23 translates this formula into the following explicit expression for b0,n.

Corollary 1.26. The quantity b0,n defined in (1.30) is equal to:

(1.35) b0,n =
1

(n− 3)!
·
(π
2

)2(n−3)

.

By Stirling’s formula we get the following asymptotics for large n:

(1.36) b0,n ∼ 1√
2πn

·
(
π2e

4n

)n−3

as n→ +∞ .

M. Mirzakhani notes in [Mi3] with a reference to [Mi6] that the frequency of
simple closed curves of any fixed topological type γ can be described in a purely
topological way as

lim
N→+∞

card
(
{λ an integral multi-curve |ι(λ, γ) ≤ N}/ Stab(γ)

)

N6g−6+2n
= c̃(γ) .

J. Souto attracted our attention to the fact that Theorem 1.21 implies the following
Corollary.

Corollary 1.27 (J. Souto). The frequencies c(γ) and c̃(γ) are related by the fol-
lowing scaling factor:

(1.37) c(γ) = 22g−3+n · c̃(γ) .
Proof. The subset of the set {an integral multi-curve λ | ι(λ, γ) ≤ N}/ Stab(γ) for
which the pair (λ, γ) is not filling has cardinality o

(
N6g−6+2n

)
. The complimen-

tary subset for which the pair (λ, γ) is filling are images under the morphism that
forgets the labelling of square-tiled surfaces in ST Γ(Q(14g−4+n,−1n)) defined in
Section 1.2. Hence (1.4) implies that

Vol(Γ,H) = 2(6g − 6 + 2n) · (4g − 4 + n)! · 26g−6+2n · c̃(γ) ,
where (Γ,H) is the weighted stable graph corresponding to γ. The factor (4g −
4 + n)! comes from possible ways to label the (4g − 4 + n) zeroes and the factor
26g−6+2n comes from

card
(
ST γ(Q(14g−4+n,−1n), 2N)

)
∼ 26g−6+2n · card

(
ST γ(Q(14g−4+n,−1n), N)

)
.
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It remains to apply (1.33). �

An alternative proof based on the result [MoT] of L. Monin and I. Telpukhovskiy
is suggested in [ErSo].

1.9. Statistical geometry of square-tiled surfaces. Theorem 1.5 provides a de-
tailed description of the statistical geometric properties of square-tiled surfaces in
Qg,n tiled with large number of squares. It has the same spirit as the result [Mi5,
Theorem 1.2] of M. Mirzakhani describing statistics of lengths of simple closed
geodesics in random pants decomposition. More precisely, she fixes a reduced mul-
ticurve γ = γ1 + · · ·+ γ3g−3 decomposing the surface of genus g into pairs of pants
and considers its Modg-orbit. For any hyperbolic metric, she describes the asymp-
totic distribution of (normalized) lengths of simple closed geodesics represented by
the components γi, i = 1, . . . , 3g − 3, of the multicurve γ.

Our result concerns, in particular, the asymptotic statistics of (normalized)
perimeters of a random square-tiled surface corresponding to a given stable graph
Γ tiled with large number of squares. The resulting statistics disclose the geometric
meaning of the coefficients of the polynomials PΓ associated to a stable graph Γ
appearing in our formulae for the Masur–Veech volumes as in Theorem 1.5 and for
the Siegel–Veech constants as in Theorem 1.15.

As we have seen in Section 1.8, asymptotic statistical properties of random
square-tiled surfaces can be translated into asymptotic statistical properties of ge-
odesic multicurves on random hyperbolic surfaces and vice versa. This general
correspondence translates the results mentioned above into analogs of a mean ver-
sion of Theorem 1.2 in [Mi5], in the sense that we obtain the average of her statistics
over all hyperbolic surfaces in Mg, where the average is computed using the Weil–
Petersson measure on Mg.

Let us define the operator X (x,H) on polynomials Q[b1, . . . , bk] as follows. We
define it on monomials

X (x,H)

(
k∏

i=1

bmi

i

)
= (m1 + · · ·+mk + k)! ·

k∏

i=1

xmi

i

Hmi+1
i

and extend it by Q-linearity. We denote by

∆k := {(x1, . . . , xk) |xi ≥ 0; x1 + . . .+ xk ≤ 1}
the standard k-dimensional simplex. The operator X generalizes both Y(H) and Z
(defined by (1.10) and (1.11) respectively) in the sense that we can recover Y(H)
and Z by integration

Y(H)(P ) =

∫

∆k

X (x,H)(P ) dx1 . . . dxk ,(1.38)

Z(P ) =
∑

Hi≥1

∫

∆k

X (x,H)(P ) dx1 . . . dxk .(1.39)

To any square-tiled surface S in ST (Q(14g−4+n,−1n)) we associate the following
data (

Γ,H,
b

2N

)
∈ Gg,n × Nk ×∆k ,

where Γ is the stable graph associated to the horizontal cylinder decomposition, k is
the number of maximal horizontal cylinders (i.e., number of edges of Γ), and H =
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(H1, . . . , Hk) and b = (b1, . . . , bk) are respectively the heights and perimeters of the
maximal horizontal cylinders measured in those units, in which the square of the
tiling has unit sides. Consider the set ST (Q(14g−4+n,−1n), 2N) of all square-tiled
surfaces in Q(14g−4+n,−1n) tiled with at most 2N squares as in (1.2). Recall that
ST Γ,H(Q(14g−4+n,−1n), 2N) denotes the set of square-tiled surfaces associated to
the stable graph Γ and having the vector of heights H with at most 2N squares.

For each stable graph Γ ∈ Gg,n, each H ∈ Nk, where k = |E(Γ)|, and each

N ∈ N, we can define the following measure µ
γ(Γ,H)
g,n,N on the simplex ∆k:

µ
γ(Γ,H)
g,n,N := 2(6g − 6 + 2n) · 1

Nd

∑

S∈ST Γ,H(Q(14g−4+n,−1n),2N)

1

|Aut(S)| δb(S)/(2N) ,

where δb(S)/(2N) is the Dirac measure concentrated at the point b(S)
2N ∈ ∆k. We can

disintegrate the discrete part (Γ,H) defining the following measure on ∆k:

µΓ
g,n,N =

∑

H

µ
γ(Γ,H)
g,n,N .

Let g, n be non-negative integers with 2g + n > 3. Let µ
γ(Γ,H)
g,n,N and µΓ

g,n,N be
the measures defined above.

Theorem 1.28. For each stable graph Γ ∈ Gg,n and each H ∈ Nk we have weak
convergence of measures:

(1.40)
(
µ
γ(Γ,H)
g,n,N

)
N

→ X (x,H)(PΓ) dx as N → +∞ .

Here PΓ = PΓ(b1, . . . , bk) is the global polynomial associated to the stable graph Γ
by Formula (1.12) and dx = dx1 . . . dxk is the Lebesgue measure on the simplex ∆k.

Similarly, we have the weak convergence of measures:

(1.41) (µΓ
g,n,N )N →

∑

H

X (x,H)(PΓ) dx .

Theorem 1.28 is proved in Section 2.5.
Comparing (1.38) and (1.39) with (1.14) we conclude that the total masses of

the limiting measures are finite and have the following geometric meaning:
∫

∆k

X (x,H)(PΓ) dx = Y(H)(PΓ) = Vol
(
Γ,H

)
,

∫

∆k

∑

H

X (x,H)(PΓ) dx =
∑

H

∫

∆k

X (x,H)(PΓ) dx = Z(PΓ) = Vol(Γ) .

The above theorem allows us to describe some statistical properties of random
square-tiled surfaces. For example, it allows us to compute the asymptotic prob-
ability that a random square-tiled surface tiled with a large number of squares
corresponds to a given stable graph Γ. Considering only square-tiled surfaces asso-
ciated to a given stable graph Γ, we can compute asymptotic distributions of the
heights H of the maximal horizontal cylinders and asymptotic distribution of their
areas normalized by the area of the surface. We can also compute asymptotic sta-
tistics of perimeters of the cylinders under appropriate normalization; for example
statistics of the ratios of any two perimeters. Note, that for the ratios of length



MASUR–VEECH VOLUMES, SIMPLE CLOSED GEODESICS, INTERSECTION NUMBERS 21

variables, the unit of measurement becomes irrelevant, in particular,

Hi

Hj
=
hi
hj

and
bi
bj

=
wi

wj
.

We will use the notation EΓ (respectively EΓ,H) to denote the asymptotic ex-
pectation values of quantities evaluated on square-tiled surfaces with given cylinder
decomposition associated to Γ (respectively associated to Γ and given heights H).
Let us consider several simple examples.

Example 1.29. Consider the following stable graph Φ1 in G2,0 and the associated
reduced multicurve:

b1 b2
0 1Φ1 b1

b2

From Table 1 we see that Vol(Φ1) =
1

675 ·π6 and VolQ2,0 = 1
15 ·π6. Thus, a random

square-tiled surface in Q2,0 (tiled with very large number of squares) corresponds

to the stable graph Φ1 with (asymptotic) probability Vol(Φ1)
VolQ2,0

= 1
45 .

We have also computed in Table 1 the polynomial PΦ1 = 2
15b1b

3
2. For any given

H = (H1, H2) we get

EΦ1,H

(
b1
b2

)
=

∫
∆2 X (x,H)

(
b1
b2
PΦ1(b1, b2)

)
dx1dx2

∫
∆2 X (x,H) (PΦ1 (b1, b2)) dx1dx2

=

=

∫
∆2

(
x2
1x

2
2

H3
1H

3
2

)
dx1dx2

∫
∆2

(
x1x3

2

H2
1H

4
2

)
dx1dx2

=
2! · 2!
1! · 3!

H2

H1
=

2

3
· H2

H1
.

In other words, if we impose to a square-tiled surface “of type Φ1” to have cylinders
of the same height, then the perimeter b2 of the “separating” cylinder is in average
slightly longer than the perimeter b1 of the “non-separating” cylinder. However, if
we impose a large height H2 to the “separating” cylinder, its perimeter becomes
proportionally shorter in average, which is quite natural.

What might seem somehow counterintuitive is that if we do not fix H , we obtain

EΦ1

(
b1
b2

)
=

∫
∆2

∑
H X (x,H)

(
b1
b2
PΦ1(b1, b2)

)
dx1dx2

∫
∆2

∑
H X (x,H) (PΦ1 (b1, b2)) dx1dx2

=

=

∫
∆2

∑
H

(
x2
1x

2
2

H3
1H

3
2

)
dx1dx2

∫
∆2

∑
H

(
x1x3

2

H2
1H

4
2

)
dx1dx2

=

(∑
H∈N2

1
H3

1H
3
2

)
·
∫
∆2 x

2
1x

2
2 dx1dx2(∑

H∈N2
1

H2
1H

4
2

)
·
∫
∆2 x1x32 dx1dx2

=

=
ζ(3)ζ(3)

ζ(2)ζ(4)
· 2! · 2!
1! · 3! ≈ 0.811605 · 2

3
≈ 0.54107 ,
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while

EΦ1

(
b2
b1

)
=

∫
∆2

∑
H X (x,H)

(
b2
b1
PΦ1(b1, b2)

)
dx1dx2

∫
∆2

∑
H X (x,H) (PΦ1 (b1, b2)) dx1dx2

=

=

∫
∆2

∑
H

(
x4
2

H1H5
2

)
dx1dx2

∫
∆2

∑
H

(
x1x3

2

H2
1H

4
2

)
dx1dx2

=

(∑
H∈N2

1
H1H5

2

)
·
∫
∆2 x

4
2 dx1dx2(∑

H∈N2
1

H2
1H

4
2

)
·
∫
∆2 x1x32 dx1dx2

=

=
ζ(1)ζ(5)

ζ(2)ζ(4)
· 0! · 4!
1! · 3! = +∞ .

Example 1.30. Now consider the following graph Φ2 with two edges:

b1 b2
0

Φ2 b1 b2

It was computed in Table 1 that PΦ2 = 8
5 (b

3
1b2 + b1b

3
2). Then for any given H =

(H1, H2) we have

EΦ2,H

(
b1
b2

)
=

4!·0!
H5

1H2
+ 2!·2!

H3
1H

3
2

3!·1!
H4

1H
2
2
+ 1!·3!

H2
1H

4
2

=
2H2

(
H2

1 + 6H2
2

)

3H1 (H2
1 +H2

2 )
.

In particular, in the symmetric case, when H1 = H2, we have

EΦ2(2),H

(
b1
b2

)
= EΓ,H

(
b2
b1

)
=

7

3
.

Example 1.31. Note also, that we get for free the averaged version of [Mi5, The-
orem 1.2]. Namely, when the stable graph Γ ∈ Gg,0 has the maximal possible
number 3g−3 of vertices (i.e., when the corresponding multicurve provides a pants
decomposition of the surface), Equation (1.12) for PΓ takes the following form:

PΓ(b) = (numerical factor) · b1 . . . b3g−3 ·
∏

v∈V (Γ)

N0,3(bv) .

Since N0,3 = 1 identically, we conclude that for H1 = H2 = · · · = H3g−3 the density
function of statistics of the normalized lengths is the product x1 · · · · · x3g−3 up to
a constant normalization factor depending only on the genus g

µ
γ(Γ,(1,...,1))
g,n,N → X (x, (1, . . . , 1))(C1(g) · b1 . . . b3g−3) dx =

= C2(g) · x1 · · · · · x3g−3 dx1 . . . dx3g−3 as N → +∞ .

Mirzakhani proved in [Mi5, Theorem 1.2] that the same asymptotic length sta-
tistics is valid for any individual hyperbolic surface in Mg (and not only in average,
as we do). F. Arana Herrera and M. Liu independently proved in [AH2], [AH3] and
in [Liu] a generalization of this result to arbitrary multicurves. Namely, for any
stable graph Γ ∈ Gg,n, any associated collection of positive integer weights H and
any hyperbolic surfaceX ∈ Mg,n, the asymptotic statistics of normalized lengths of
components of hyperbolic geodesic multicurves in Modg,n ·γ(Γ,H) coincides (up to
a global normalization constant depending only on g and n) with X (x,H)(PΓ) dx.
In particular, it does not depend on the hyperbolic metric X .
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We complete this section considering two examples describing statistics of heights
of the maximal horizontal cylinders of a random square-tiled surfaces. We start with
the following elementary lemma.

Lemma 1.32. Consider a random square-tiled surface in Qg,n having a single max-
imal horizontal cylinder. The asymptotic probability that this cylinder is represented

by a single band of squares (i.e. that H1 = 1) equals
1

ζ(6g − 6 + 2n)
.

Proof. When a stable graph Γ ∈ Gg,n has a single edge b1, Formula (1.12) gives

PΓ = (numerical factor) · b6g−7+2n
1 , and the Lemma follows. �

In terms of multicurves this means that a random single-component integral
multicurve nγ in ML(Z) (where n ∈ N and γ is a simple closed curve) is reduced
(i.e. n = 1) with asymptotic probability 1

ζ(6g−6+2n) .

Note that ζ(x) tends to 1 exponentially rapidly as the real-valued argument x
grows. Thus, our result implies, that when at least one of g or n is large enough,
a random one-cylinder square-tiled surface is tiled with a single horizontal band
of squares with a very large probability, and a random single-component integral
multicurve is just a simple closed curve with a very large probability.

The polynomial PΓ enables to compute analogous probabilities for any given
stable graph Γ. For example, a random square-tiled surface in Q2 associated to
the stable graph Φ1, considered earlier in this section, has both cylinders of height
H1 = H2 = 1 with probability

Y(1, 1)(PΦ1)

Z(PΦ1)
=

1

ζ(2)ζ(4)
=

540

π6
≈ 0.561687 .

A random square-tiled surface in Q2 associated to the stable graph Φ2, considered
earlier in this section, has heights Hi of both horizontal cylinders bounded by 2
with probability

Y(1, 1)(PΦ2) + Y(1, 2)(PΦ2) + Y(2, 1)(PΦ2) + Y(2, 2)(PΦ2)

Z(PΦ2)
=

=
2 + 2

16 + 2
4 + 2

64

2ζ(2)ζ(4)
=

85
64

ζ(2)ζ(4)
≈ 0.745991 .

1.10. Structure of the paper. In Section 2 we prove Theorem 1.5 stated in
Section 1.4 providing the formula for the Masur–Veech volume VolQg,n and The-
orem 1.15 stated in Section 1.5 providing the formula for the area Siegel–Veech
constant carea(Qg,n).

In Section 3 we compare our Formula 1.13 for VolQg,n with Mirzakhani’s formula
for bg,n and our Formula (1.14) for Vol(Γ) for a stable graph Γ with Mirzakhani’s
formula for the associated c(γ) for the associated multicurve γ. We elaborate the
translation between the two languages and prove Theorem 1.21 stated in Section 1.8
evaluating the normalization constant 1.33 between the corresponding quantities.

In Section 4 we state a uniform asymptotic Formula (4.3) for correlators 〈τd1τd2〉,
which has independent interest. We apply it to the computation of the asymptotic
frequencies cg,sep and cg,nonsep of separating and of non-separating simple closed
hyperbolic geodesics on a hyperbolic surface of large genus g thus proving Theo-
rem 1.17 stated in Section 1.7.
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In Appendix A we present the proof of the asymptotic Formula (4.3) used in
Section 4. This proof consists of a sequence of combinatorial manipulations with
expressions in binomial coefficients. For the sake of completeness, we present a
detailed formal definition of a stable graph in Appendix B. Appendix C provides
examples of explicit calculations of the Masur–Veech volume VolQg,n and of the
Siegel–Veech constant carea(Qg,n) for small g and n. Appendix D presents tables
of VolQg,n and of carea(Qg,n) for small g and n.
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2. Proofs of the formulae for the Masur–Veech volumes and for

the Siegel–Veech constants

We start this section by recalling the necessary background and normalization
conventions that are used in the subsequent sections of the paper.

2.1. The principal stratum and Masur–Veech measure. In this section we
recall the canonical construction of the Masur–Veech measure on Q(14g−4+n,−1n)
and its link with the integral structure given by square-tiled surfaces.
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Consider a compact nonsingular complex curve C of genus g endowed with a
meromorphic quadratic differential q with ℓ = 4g − 4 + n simple zeroes and with
n simple poles. Any such pair (C, q) defines a canonical ramified double cover

π : Ĉ → C such that π∗q = ω̂2, where ω̂ is an Abelian differential ω̂ on the

double cover Ĉ. The ramification points of π are exactly the zeroes and poles of

q. The double cover Ĉ is endowed with the canonical involution ι interchanging
the two preimages of every regular point of the cover. The stratum Q(1ℓ,−1n)
of such differentials is modelled on the subspace of the relative cohomology of the

double cover Ĉ, anti-invariant with respect to the involution ι. This anti-invariant

subspace is denoted by H1
−(Ĉ, {P̂1, . . . , P̂ℓ};C), where {P̂1, . . . , P̂ℓ} are zeroes of

the induced Abelian differential ω̂. For (g, n) with 2g + n > 3, the image of the
stratum Q(1ℓ,−1n) is open and dense in Qg,n (its complement in Qg,n is closed
and of positive codimension). In what follows we always work with the principal
stratum.

We define a lattice in H1
−(Ŝ, {P̂1, . . . , P̂ℓ};C) as the subset of those linear forms

which take values in Z⊕ iZ on H−
1 (Ŝ, {P̂1, . . . , P̂ℓ};Z). The integer points in Qg,n

are exactly those quadratic differentials for which the associated flat surface with
the metric |q| can be tiled with 1/2 × 1/2 squares. In this way the integer points
in Q(1ℓ,−1n) are represented by square-tiled surface as defined in Section 1.2.

We define the Masur–Veech volume element dVol on Q(1ℓ,−1n) as the linear

volume element in the vector spaceH1
−(S, {P̂1, . . . , P̂ℓ};C) normalized in such a way

that the fundamental domain of the above lattice has unit volume. The Masur–
Veech volume element dVol in Q(1ℓ,−1n) induces a volume element on the level

sets of the Area function. In particular on the level hypersurface QArea= 1
2

g,n we get

(2.1) VolQ(1ℓ,−1n) := Vol1 QArea= 1
2 (1ℓ,−1n) = 2 · d ·VolQArea≤ 1

2 (1ℓ,−1n) .

Here d = 6g − 6 + 2n = dimC Qg,n. The right-hand side term in the above formula
can be considered as the definition of the middle term and of the left-hand-side
term.

By construction, the volume element dVolsymplectic inQg,n induced by the canon-
ical symplectic structure considered in Section 1.1 and the linear volume element
dVolperiod in period coordinates defined in this section belong to the same Lebesgue
measure class. It was proved by H. Masur in [Ma2] that the Teichmüller flow is

Hamiltonian, in particular, that dVolsymplectic is preserved by the Teichmüller flow.
By the results of H. Masur [Ma1] and W. Veech [Ve1], the volume element dVolperiod

is also preserved by the Teichmüller flow. Ergodicity of the Teichmüller flow now
implies that the two volume forms are pointwise proportional with constant coeffi-
cient.

We postpone evaluation of this constant factor to another paper. Through-
out this paper we consider the normalization of the Masur–Veech volume element
dVol = dVolperiod as defined in the current section and then define VolQg,n =
VolQ(1ℓ,−1n) by means of (2.1). This definition incorporates the conventions on
the choice of the lattice, on the choice of the level of the area function, and the
convention on the dimensional constant. We follow [AEZ1], [AEZ2], [G2], [DGZZ2],
[DGZZ3] in the choice of these conventions; see Section 4.1 in [AEZ2] and Appen-
dix A in [DGZZ2] for the arguments in favor of this normalization.
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2.2. Jenkins–Strebel differentials and stable graphs. A quadratic differential
q in Qg,n is called Jenkins-Strebel if its horizontal foliation contains only closed
leaves. Any Jenkins–Strebel differential can be decomposed into maximal horizontal
cylinders with zeroes and simple poles located on the boundaries of these cylinders.
We call these boundaries singular layers. Each singular layer defines a metric
ribbon graph representing an oriented surface with boundary. When the quadratic
differential belongs to the principal stratum Q(14g−4+n,−1n), the ribbon graph has
vertices of valence three at simple zeroes of q, vertices of valence one at simple poles
of q and no vertices of any other valency. Throughout this paper we always assume
that the quadratic differential q belongs to the principal stratum.

Every ribbon graph G considered as an oriented surface with boundary has a
certain genus g(G), number n(G) of boundary components, and number p(G) of
univalent vertices often called leaves of the graph. The number m(G) of trivalent
vertices can be expressed through these quantities as

(2.2) m(G) = 4g(G)− 4 + 2n(G) + p(G)

Figure 3. This ribbon graph G has genus g(G) = 1; it has
n(G) = 2 boundary components and p(G) = 2 univalent vertices.

To every Jenkins–Strebel differential q as above we associate a stable graph Γ =
(V,H, α, ι, g, L) in the same way as we did it in Section 1.2 in the particular case
when Jenkins–Strebel differential q represents a square-tiled surface. (A formal
definition of a stable graph can be found, for example, in [OP]; we reproduce it in
Appendix B for completeness.) We recall briefly the construction of Γ.

The vertices of Γ encode the singular layers. The set of all vertices (singular
layers) is denoted by V . A tubular neighborhood of a singular layer v is a surface
with boundary, which has some genus gv. The genus decoration g = (gv)v associates
to each v ∈ V the non-negative integer gv. Any maximal horizontal cylinder of
q has two boundary components which are canonically identified with appropriate
boundary components of tubular neighborhoods of appropriate singular layers vi, vj
(where vi and vj coincide when the cylinder goes from the singular layer to itself).
In this way, each maximal horizontal cylinder defines an edge of Γ joining the
boundary layers vi, vj . Finally, simple poles of q are encoded by the legs of Γ. By
convention the n simple poles are labeled, so the legs of Γ inherit the labeling L.
Relation (2.2) implies the stability condition 2gv − 2 + nv > 0 for every vertex v of
Γ.

Remark 2.1. Consider the following trivial stable graph: it has a unique vertex
decorated by the integer g; it has n legs; it has no edges. Such graph does not
correspond to any (non-zero) Strebel differential. For (g, n) 6= (0, 3) it provides
zero contribution in Formulae (1.13) for VolQg,n and (1.23) for carea(Qg,n).
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2.3. Conditions on the lengths of the waist curves of the cylinders. Having
a square-tiled surface and its associated stable graph Γ, we denote by k = |E(Γ)|
the number of maximal cylinders filled with closed horizontal trajectories. Denote
by w1, . . . , wk the lengths of the waist curves of these cylinders. Since every edge of
any singular layer v is followed by the boundary of the corresponding ribbon graph
twice, the sum of the lengths of all boundary components of each singular layer V
is integral (and not only half-integral).

Let Γ be a stable graph and let us consider the collection of linear forms lv =∑
e∈Ev(Γ)

we in variables w1, . . . , wk, where k = |E(Γ)|, v runs over the vertices

V (Γ), and Ev(Γ) is the set of edges adjacent to the vertex v (ignoring legs). It is
immediate to see that the (Z/2Z)-vector space spanned by all such linear forms has
dimension |V (Γ)| − 1.

Let us make a change of variables passing from half-integer to integer parameters
bi := 2wi where i = 1, . . . , k. Consider the integer sublattice LΓ ⊂ Zk defined by
the linear relations

(2.3) lv(b1, . . . , bk) =
∑

e∈Ev(Γ)

be = 0 (mod 2)

for all vertices v ∈ V (Γ). By the above remark, the sublattice LΓ has index 2|V (Γ)|−1

in Zk. We summarize the observations of this section in the following criterion.

Corollary 2.2. A collection of strictly positive numbers w1, . . . , wk, where wi ∈ 1
2N

for i = 1, . . . , k, corresponds to a square-tiled surface realized by a stable graph
Γ ∈ Gg,n if and only if k = |E(Γ)| and the corresponding vector b = 2w belongs

to the sublattice LΓ. This sublattice has index |Zk : LΓ| = 2|V (Γ)|−1 in the integer
lattice Zk.

We complete this section with a generalization of Lemma 3.7 in [AEZ1] which
would be used in the proof of our main Formula (1.14) for the Masur–Veech volume
VolQg,n.

Lemma 2.3. Let L be a sublattice of finite index |Zk : L| in the integer lattice Zk

and let m1, . . . ,mk ∈ N be any positive integers. The following formula holds

(2.4) lim
N→+∞

1

N |m|+k

∑

b·H≤N
bi,Hi∈N

b∈L

bm1
1 · · · bmk

k =

=
1

|Zk : L| ·
1

(|m|+ k)!
·

k∏

i=1

(
mi! · ζ(mi + 1)

)
=

=
1

|Zk : L| ·
1

(|m|+ k)!
· Z(bm1

1 · · · bmk

k ) .

Moreover, the sum in H and the limit commute:

lim
N→+∞

1

N |m|+k

∑

b·H≤N
bi,Hi∈N

b∈L

bm1
1 · · · bmk

k =
∑

H
Hi∈N

lim
N→+∞

1

N |m|+k

∑

b·H≤N
bi∈N

b∈L

bm1
1 · · · bmk

k
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and we have

lim
N→+∞

1

N |m|+k

∑

b·H≤N
bi∈N

b∈L

bm1

1 · · · bmk

k =
1

|Zk : L| ·
1

(|m|+ k)!
· Y(H)(bm1

1 · · · bmk

k ) .

Proof. The limit with omitted restriction b ∈ L is computed in Lemma 3.7 in the
paper [AEZ1]. Note that the inversion of sum and limits here is valid by virtue of the

dominated convergence theorem. More precisely, under the substitution xi =
biHi

N
the sum approximates the integral from below.

The restriction b ∈ L rescales the volume element in the corresponding integral
sum by the index |Zk : L| of the sublattice L in Zk which produces the extra factor
|Zk : L|−1.

Finally, the last equality in (2.4) and the last equality in the last line of the
assertion of Lemma 2.3 are just the Definitions (1.11) and (1.10) of Z and of Y
respectively. �

2.4. Counting trivalent metric ribbon graphs with leaves. We need the
following elementary generalization of the theorem of M. Kontsevich stated in sec-
tion 1.3 allowing to our metric ribbon graph have univalent vertices (leaves) in
addition to trivalent vertices.

We use the letter p to denote the number of leaves. Consider a collection of
positive integers b1, . . . , bn such that

∑n
i=1 bi is even. Similarly to Ng,n(b1, . . . , bn)

defined in section 1.3, let us denote by Ng,n,p(b1, . . . , bn) the weighted count of
connected metric ribbon graphs G of genus g with n labeled boundary components
of integer lengths b1, . . . , bn and p univalent vertices. In other words

Ng,n,p(b1, . . . , bn) :=
∑

G∈Rg,n,p

1

|Aut(G)|NG(b1, . . . , bn) ,

where Rg,n,p is the set of equivalence classes of ribbon graphs of genus g, with
n boundary components and p univalent vertices. The counting function Ng,n,p

generalizes Kontsevich’s polynomials.

Proposition 2.4. Consider n-tuples of large positive integers b1, . . . , bn such that∑n
i=1 bi is even. The following relation holds:

Ng,n,p(b1, . . . , bn) = Ng,n+p,0(b1, . . . , bn, 0, . . . , 0︸ ︷︷ ︸
p

)(2.5)

= Ng,n+p(b1, . . . , bn, 0, . . . , 0︸ ︷︷ ︸
p

) + lower order terms ,(2.6)

where the Kontsevich polynomials Ng,n are defined by Formula (1.6).

The proof of Proposition 2.4 is the combination of the following two Lemmas.

Lemma. Suppose that for some g, n, p the leading term of Ng,n,p(b1, . . . , bn) is
a homogeneous polynomial N top

g,n,p(b1, . . . , bn) in b1, . . . , bn. Then the leading term

of Ng,n,p+1(b1, . . . , bn) is also a homogeneous polynomial N top
g,n,p+1(b1, . . . , bn) in

b1, . . . , bn. Moreover, it satisfies the relation

(2.7) N top
g,n,p+1 =

1

2
· I(N top

g,n,p) ,
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where I =
∑n

i=1 Ibi , and the operators Ibi are defined on monomials by

Ibi(bj11 . . . b
ji−1

i−1 · bjii · bji+1

i+1 . . . b
jn
n ) = bj11 . . . b

ji−1

i−1 · b
ji+2
i

ji + 2
· bji+1

i+1 . . . b
jn
n

and are extended to arbitrary polynomials by linearity.

Proof. This Lemma mimics Lemma 3.5 in [AEZ1]. Formally speaking, in [AEZ1]
the corresponding statement is formulated only for g = 0, but it is immediate to
see that the inductive proof is applicable without any changes to any genus as soon
as the base of induction, corresponding to p = 0 is valid. �

Lemma. The polynomials Ng,n defined by Equation (1.6) satisfy the relations:

(2.8) Ng,n+p+1(b1, . . . , bn, 0, . . . , 0) =
1

2
· I(Ng,n+p(b1, . . . , bn, 0, . . . , 0)) .

Proof. Using the explicit expressions of Ng,n+p+1 and of Ng,n+p in terms of ψ-
classes we see that the above relation is equivalent to the following one:

〈ψd1
1 ψ

d2
2 . . . ψdn

n 〉g,n+p+1 = 〈ψd1−1
1 ψd2

2 . . . ψdn

n 〉g,n+p+

+ 〈ψd1
1 ψ

d2−1
2 . . . ψdn

n 〉g,n+p + · · ·+ 〈ψd1
1 ψ

d2
2 . . . ψdn−1

n 〉g,n+p ,

which is the well-known identity for the intersection numbers known as “string
equation”, see [Wi]. �

Proof of Proposition 2.4. For p = 0 (when there are no poles at all) the statement
corresponds to the original theorem of Kontsevich stated in Section 1.3. We use
this as the base of induction in p for any fixed pair (g, n). It remains to notice that
Equations (2.7) and (2.8) recursively define the corresponding polynomials for any
(g, n, p) starting from (g, n, 0). �

2.5. Proof of the volume formula. A square-tiled surface corresponding to a
fixed stable graph Γ can be described by three groups of parameters. The param-
eters in different groups can be varied independently. The parameters in the first
group are responsible for the lengths of horizontal saddle connections. In this group
we fix only the lengths w1, . . . , wk of the waist curves of the cylinders filled with
closed horizontal trajectories, where k is the number of edges in Γ. This leaves a
certain freedom for the choice of the lengths of horizontal saddle connections. The
criterion of admissibility of a given collection w = (w1, . . . , wk) is given by Corol-
lary 2.2. The count for the number of choices of the lengths of all individual saddle
connections for a fixed choice of w is given in Proposition 2.4.

There are no restrictions on the choice of strictly positives integer or half-integer
heights h1, . . . , hk of the cylinders.

Having chosen the widths w1, . . . , wk of all maximal cylinders (i.e. the lengths of
the closed horizontal trajectories) and the heights h1, . . . , hk of the cylinders, the
flat area of the entire surface is already uniquely determined as the sum w · h =
w1h1 + · · ·+ wkhk of flat areas of individual cylinders.

However, when the lengths of all horizontal saddle connections and the heights
hi of all cylinders are fixed, there is still a freedom in the third independent group
of parameters. Namely, we can twist each cylinder by some twist φi ∈ 1

2N before
attaching it to the layer. Applying, if necessary, appropriate Dehn twist we can
assume that 0 ≤ φi < wi, where wi is the perimeter (length of the waist curve)
of the corresponding cylinder. Thus, for any choice of lengths of horizontal saddle
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connections realizing some square-tiled surface with the stable graph Γ and for any
choice h1, . . . , hk of heights of the cylinders we get (2w1) · . . . · (2wk) square-tiled
surfaces sharing the same lengths of the horizontal saddle connections and same
heights of the cylinders.

In Proposition 2.4 we assume that the lengths of the edges of the metric rib-
bon graph are integer. Clearly, if we allow these lengths to be also half-integer,
we get Ng,n+p

(
2w1, . . . , 2wn, 0, . . . , 0

)
as the leading term of the new count. The

realizability condition 2w ∈ LΓ from Corollary 2.2 translates as the compatibility
condition of the parity of the sum of the lengths of the boundary components of
each individual connected ribbon graph as in Proposition 2.4.

We are ready to write a formula for the leading term in the number of all square-
tiled surfaces tiled with at most 2N squares represented by the stable graph Γ when
the integer bound N becomes sufficiently large:

card(ST Γ(Q(14g−4+n, 2N))) ∼

∼ (4g − 4 + n)! · 1

|Aut(Γ)| ·
∑

w·h≤N/2
wi,hi∈

1
2N

2w∈LΓ

(2w1) · · · (2wk) ·
∏

v∈V (Γ)

Ngv ,nv
(2wv) ,

The notation in the above expression mimic notation in (1.13), namely k = |E(Γ)|,
and wv is defined analogously to bv in (1.13). The factor (4g−4+n)! represents the
number of ways to label the 4g−4+n trivalent vertices of the ribbon graphs, which
correspond to ℓ = 4g − 4 + n simple zeroes of the corresponding Strebel quadratic
differential q. Note that by convention the univalent vertices (leaves) (corresponding
to simple poles of q and also to n marked points) are already labeled.

Making a change of variables bh := (2wh) ∈ N and Hi := (2hi) ∈ N we can
rewrite the above expression as

(2.9) card(ST Γ(Q(14g−4+n,−1n), 2N)) ∼

∼ (4g − 4 + n)! · 1

|Aut(Γ)| ·
∑

b·H≤2N
bi,Hi∈N

b∈L
k

b1 · · · bk ·
∏

v∈V (Γ)

Ngv ,nv
(bv) .

The expression above is a homogeneous polynomial of degree 6g − 6 + 2n − k.
For any individual monomial the corresponding sum was evaluated in Lemma 2.3.
It remains to adapt Formula (2.4) to our specific context.

By Corollary 2.2 the sublattice LΓ in the above formula has index 2|V (Γ)|−1 in
Zk. The corresponding factor 1/2|V (Γ)|−1 appears as the first factor in the second
line of Definition (1.12) of PΓ(b).

The degree of the homogeneous polynomial denoted by |m| in Formula (2.4)
equals in our case to 6g − 6 + 2n− k, so

|m|+ k = 6g − 6 + 2n = dimC Q(14g−4+n,−1n) = d .

Note also that in (2.4) we perform the summation under the condition b ·H ≤ N
while in the above formula we sum over the region b · H ≤ 2N . This provides
an extra factor 2d. Finally, passing from card(ST Γ(Q(14g−4+n,−1n), 2N)) in (2.9)
to VolQg,n by (1.2) we introduce the extra factor 2(6g − 6 + 2n). The resulting



MASUR–VEECH VOLUMES, SIMPLE CLOSED GEODESICS, INTERSECTION NUMBERS 31

product factor

2(6g − 6 + 2n) · 2
d

d!
· (4g − 4 + n)! =

26g−5+2n · (4g − 4 + n)!

(6g − 7 + 2n)!

is the factor in the first line of Definition (1.12) of PΓ(b).
Theorem 1.5 is proved.
The Lemma below is a straightforward combination of Lemma 2.3 stated in

terms of densities and of Theorem 1.5. This Lemma corresponds to Relation (1.41)
from Theorem 1.28. The other statements of Theorem 1.28 are proved analogously.

Lemma 2.5. Let F : ∆k×Nk → R be a continuous function integrable with respect
to the density X (bm1

1 . . . bmk

k )δHdx defined in (1.41). Let L be a lattice of finite

index in Zk. Then

lim
N→+∞

1

N |m|+k

∑

b·H≤2N
bi,Hi∈N

b∈L

F

((
b1H1

2N
, . . . ,

bkHk

2N

)
,H

)
bm1

1 · · · bmk

k =

=
1

|Zk : L| ·
∑

H

∫

∆k

F (x,H)X (bm1
1 · · · bmk

k ) dx .

2.6. Yet another expression for the Siegel–Veech constant. For any square-
tiled surface S define the following quantity. Suppose that S has k maximal cylin-
ders filled with closed horizontal trajectories. Denote as usual by wi the length of
the closed horizontal trajectory (length of the waist curve) of the i-th cylinder and
denote by hi its height. Define

M(S) :=
k∑

i=1

hi
wi

.

The GL(2,R)-orbit of any square-tiled surface S is a closed invariant submanifold
L(S) in the ambient stratum of quadratic (or Abelian) differentials. In the same
way in which we defined in Section 1.5 the area Siegel–Veech constant carea(Qg,n)
for Qg,n, we can define the area Siegel–Veech constant carea(L(S)) for L(S). It
satisfies, in particular, analogs of (1.19) and (1.20). Theorem 4 in [EKoZo] proves
the following assertion.

Theorem ([EKoZo]). For any square-tiled surface S, its Siegel–Veech constant
satisfies:

(2.10) carea(L(S)) =
3

π2
· 1

card(SL(2,Z) · S)
∑

Si∈SL(2,Z)·S

M(S)

Recall that we denote by ST (Q(14g−4+n,−1n), N) the set of square-tiled surfaces
in the principal stratum Q(14g−4+n,−1n) tiled with at most N squares. Define now
the quantity:

DST (Q(14g−4+n,−1n), N) :=
∑

S∈ST (Q(14g−4+n,−1n),N)

M(S) .

The latter quantity has the following geometric interpretation. Consider all
square-tiled surfaces obtained from square-tiled surfaces as above by cutting exactly
one cylinder cyl i along the closed horizontal trajectory at the level h, where 0 ≤ h <
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hi and h is integer in the case of Abelian differentials and half-integer in the case of
quadratic differentials. In other words, we do not chop the squares along the cut.
The above quantity enumerates bordered square-tiled surfaces obtained in this way.
Indeed, we lose the twist parameter wi (correspondingly 2wi) along the cylinder
which is now cut open, but we gain the new height parameter hi (correspondingly
2hi) responsible for the level of the cut.

As a corollary of the above theorem, D. Chen and A. Eskin proved the following
result.

Theorem (D. Chen, A. Eskin, Appendix A in [C]). The area Siegel–Veech constant
carea(Qg,n) = carea(Q(14g−4+n,−1n)) has the following value:

(2.11) carea(Q(14g−4+n,−1n)) =
3

π2
· lim
N→∞

DST (Q(14g−4+n,−1n), 2N)

card(ST (Q(14g−4+n,−1n), 2N))
.

Formally speaking, the original Theorem is proved only for the components of
the strata of Abelian differentials. However, all the arguments are applicable to any
arithmetic GL(2,R)-invariant submanifold, in particular to the loci induced from
strata of quadratic differentials by the ramified double covering construction.

An alternative way to derive (2.11) is to use the following more elaborate tech-
nique. Neglecting exceptional orbits of square-tiled surfaces in Q(14g−4+n,−1n)
containing negligibly small number of square-tiled surfaces, we can arrange other
orbits in a sequence of affine invariant manifolds for which the natural SL(2,R)-
invariant measures supported on the orbits converge to the invariant measure of the
ambient stratum. By Theorem 2.8 from [BEW] all individual Lyapunov exponents
of affine invariant manifolds converge to the Lyapunov exponents of the ambient
stratum. Results from [EKoZo] now imply that the area Siegel–Veech constants of
the corresponding arithmetic Teichmüller discs converge to the area Siegel–Veech
constant of the ambient stratum, which implies (2.11).

2.7. Proof of the formula for the area Siegel–Veech constant. We have
already evaluated the denominator in (2.11). Evaluating the numerator following
the lines of the initial computation we reduce the problem to the evaluation of the
sum (2.9) counted with the weight hi

wi
= Hi

bi
, for each i = 1, . . . , k, where we use

the notation of Formula (2.9):

(2.12)
∑

b·H≤2N
bj ,Hj∈N

b∈LΓ


b1 · · · bk ·

∏

v∈V (Γ)

Ngv ,nv
(bv)


 · Hi

bi

The numerator in (2.11) is the sum of the above expressions with respect to the
summation index i varying from 1 to k.

Denote by P (b1, . . . , bk) the homogeneous polynomial
∏
Ngv ,nv

(bv) in the for-
mula above. It is easy to see that the condition biHi < b · H ≤ 2N implies that
the contribution of any monomial of P (b1, . . . , bk) containing the variable bi to the
above sum is of order o(Nd), so it does not contribute to the limit (2.11). Thus,
up to lower order terms the sum (2.12) coincides with the sum

(2.13)
∑

b·H≤2N
bj ,Hj∈N

b∈LΓ

b1 · · · bi−1 ·Hi · bi+1 · · · bk · P (b1, . . . , bi−1, 0, bi+1, . . . , bk) .
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It is sufficient to interchange the notation bi and Hi to see that

∑

b·H≤2N
bi,Hi∈N

b1 · · · bi−1 ·Hi · bi+1 · · · bk · P (b1, . . . , bi−1, 0, bi+1, . . . , bk) =

=
∑

b·H≤2N
bi,Hi∈N

b1 · · · bk · P (b1, . . . , bi−1, 0, bi+1, . . . , bk) .

We already know how to evaluate the latter sum, so it remains to study the impact
of the extra condition b ∈ LΓ present in the sum (2.13).

Recall the strategy of evaluation of the sum (2.13) (see the proof of analogous
Lemma 3.7 in [AEZ1] for reduction to integral sums and the proof of Lemma 2.3 for
the impact of the sublattice condition). The variablesH1, . . . , Hi−1, bi, Hi+1, . . . , Hk

are considered as parameters. For each collection of such parameters we evaluate
the corresponding integral sum over a simplex in the k-dimensional space with
coordinates b1, . . . , bi−1, Hi, bi+1, . . . , bk. After that we perform summation with
respect to the parameters H1, . . . , Hi−1, bi, Hi+1, . . . , Hk,

When the edge of the graph Γ corresponding to the variable bi is a bridge (i.e.
when this edge is separating), the parameter bi is always even. The space of inte-
gration now has coordinates b1, . . . , bi−1, Hi, bi+1, . . . , bk; the sublattice LΓ in it is
defined by the system of Equations (2.3) where we let bi = 0. Such sublattice has
index 2|V (Γ)|−2 and not 2|V (Γ)|−1 as before. Thus, on the level of integration we
gain the factor 2 with respect to the initial count. However, since the parameter
bi is now always even, evaluating the corresponding sum with respect to possible
values of this parameter we get the sum

1

22
+

1

42
+

1

62
· · · = 1

4
· ζ(2)

instead of the original sum

1

12
+

1

22
+

1

32
· · · = ζ(2) .

Thus, when bi corresponds to a bridge (i.e. to a separating edge), we get

∑

b·H≤2N
bj ,Hj∈N

b∈LΓ

b1 · · · bi−1 ·Hi · bi+1 · · · bk · P (b1, . . . , bi−1, 0, bi+1, . . . , bk) =

=
1

2
·
∑

b·H≤2N
bj ,Hj∈N

b∈LΓ

b1 · · · bk · P (b1, . . . , bi−1, 0, bi+1, . . . , bk) .

When bi corresponds to a non separating edge, the parameter bi in the sum (2.13)
can take even and odd values. The new space of integration has coordinates
b1, . . . , bi−1, Hi, bi+1, . . . , bk; where the sublattice in it is defined by the system
of Equations (2.3) in which we substitute bi = 0 or bi = 1 depending on the parity
of the value of the parameter bi. The sublattice is linear in the first case and affine
in the second case. Such a sublattice has index 2|V (Γ)|−1 as before. Thus, when bi
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corresponds to a non-separating edge, we get
∑

b·H≤2N
bj ,Hj∈N

b∈LΓ

b1 · · · bi−1 ·Hi · bi+1bk · P (b1, . . . , bi−1, 0, bi+1, . . . , bk) =

=
∑

b·H≤2N
bj ,Hj∈N

b∈LΓ

b1 · · · bk · P (b1, . . . , bi−1, 0, bi+1, . . . , bk) .

We have proved that

∑

b·H≤2N
bj ,Hj∈N

b∈LΓ


b1 · · · bk ·

∏

v∈V (Γ)

Ngv ,nv
(bv)


 ·

(
k∑

i=1

Hi

bi

)
=

=
∑

b·H≤2N
bj ,Hj∈N

b∈LΓ

b1 · · · bk · DΓ




∏

v∈V (Γ)

Ngv ,nv
(bv)


 + lower order terms ,

where operator DΓ is defined in Formula (1.22). Applying to the latter sum the
same technique as in the end of the proof of Theorem 1.5 we complete the proof of
Theorem 1.15.

2.8. Equivalence of two expressions for the Siegel–Veech constant. In this
section we prove Theorem 1.16.

We start the proof by establishing a natural correspondence between the sum-
mands of the two expressions. For any stable graph Γ ∈ Gg,n and any edge e of
Γ we define a combinatorial surgery Cute Γ of Γ. We describe it separately in the
case when e is a bridge (i.e. a separating edge), and when it is not.

We start with the case when e is a bridge. Cut the edge e transforming it into two
legs. Assign index 1 to one of the resulting graphs, and index 2 to the remaining one.
We do not modify the genus decoration of the vertices. The set of vertices V (Γ)
gets naturally partitioned into two complementary subsets V = V1 ⊔ V2. Define
gi =

∑
v∈Vi

gv for i = 1, 2. Similarly, the n original legs are partitioned into n1 legs
which go to Γ1 and into n2 legs which go to Γ2. For i = 1, 2, relabel the ni legs of
Γi to the consecutive labels 1, 2, . . . , ni preserving the order of labels. Assign the
label ni+1 to the new leg of Γi created during the surgery. The stability condition
2gv − 2 + nv > 0, which is valid for every vertex v of Γ, implies that we get two
stable graphs Γi ∈ Ggi,ni+1.

The only ambiguity in this construction is the choice of the label (1 or 2) for one
of the components Γi of the graph Γ with removed bridge e. In general, there are
two choices, except the case when there is a symmetry of Γ acting on the edge e as
a flip (i.e. a symmetry which sends e to itself exchanging its two ends).

Note that the surgery is reversible in the following sense. Given two stable
graphs Γi ∈ Ggi,ni+1 we can glue the endpoint of the leg with index n1 + 1 of Γ1

to the endpoint of the leg with index n2 + 1 of Γ2 creating a connected graph with
n = n1 + n2 legs and with an extra bridge joining Γ1 to Γ2. The only ambiguity
in this construction is in relabeling the n = n1 + n2 legs to a consecutive list
(1, 2, . . . , n); there are

(
n
n1

)
ways to do it.
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We describe now the surgery Cute Γ in the remaining case when the edge e of Γ
is not a bridge (i.e. is not separating). Cutting such edge we transform it into two
legs. We keep the same labels for the preexisting legs and we associate labels n+1
and n+2 to the two created legs. In general, there are two ways to do that, except
when there is a symmetry of Γ acting on the edge e as a flip (i.e. a symmetry which
sends e to itself exchanging its two ends). We get a stable graph Γ′ ∈ Gg−1,n+2.

The inverse operation (applicable to stable graphs with at least two legs) consists
in gluing the two legs of higher index together transforming them into an edge and
keeping the same labeling for the other legs. Once again we do not modify the
genus decoration of the vertices.

Note that the operator ∂Γ is defined in (1.22) as a sum
∑
∂eΓ over edges e ∈ E(Γ)

of a stable graph Γ. Thus, our key sum
∑

Γ∈Gg,n
Z (∂ΓPΓ) in the right-hand side

of (1.23) in Theorem 1.15 can be seen as the sum over all pairs (Γ, e), where
Γ ∈ Gg,n and e ∈ E(Γ). We show below that for every such pair (Γ, e), the
corresponding term of the resulting sum has simple expression in terms of the
product Z(PΓ1)Z(PΓ2) when e is a bridge and in terms of Z(PΓ′) when e is not
a bridge, where Γ1 ⊔ Γ2 (respectively Γ′) are the stable graphs obtained under
applying the surgery Cute Γ.

Having a stable graph Γ we associate to it the polynomial

ΠΓ(b) :=
∏

v∈V (Γ)

Ngv ,nv
(bv) .

By Definition (1.12) of PΓ(b) we have

PΓ(b) = (combinatorial factor) ·


 ∏

e∈E(Γ)

be


 ·ΠΓ(b) .

A pair (Γ, e0) provides a nonzero contribution to the sum in the right-hand side

of (1.23) if and only if the term ∂e0Γ = χΓ(e0)be0
∂

∂be0

∣∣∣
be0=0

in the operator ∂Γ

applied to
(∏

e∈E(Γ) be

)
· ΠΓ(b) does not identically vanish (see given by (1.21)).

The latter is equivalent to the condition that the polynomial ΠΓ|be0=0 does not

identically vanish.
If the edge e0 is a bridge, consider the stable graphs Γ1,Γ2 obtained under

the surgery Cute Γ. The polynomial ΠΓ|be0=0 splits naturally into the product:

ΠΓ|bj=0 = ΠΓ1ΠΓ2 , so when e0 is a bridge, and when ΠΓ|be0=0 does not identically

vanish, we get

(2.14) Z
(
∂e0Γ

(
∏

e

be · ΠΓ

))
= Z

(
1

2
·
∏

e

be · ΠΓ|be0=0

)

= Z


1

2
· be0 ·

∏

e∈E(Γ1)

be ·ΠΓ1 ·
∏

e∈E(Γ2)

be · ΠΓ2




=

=
1

2
· π

2

6
· Z


 ∏

e∈E(Γ1)

be · ΠΓ1


 · Z


 ∏

e∈E(Γ2)

be ·ΠΓ2


 .
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If the edge e0 is not a bridge and ΠΓ|be0=0 does not identically vanish, we get

ΠΓ|be0=0 = ΠΓ′ so

(2.15) Z
(
∂e0Γ

(
∏

e

be · ΠΓ

))
=

= Z


be0 ·

∏

e∈E(Γ′)

be ·ΠΓ′


 =

π2

6
· Z


 ∏

e∈E(Γ′)

be ·ΠΓ′


 .

Rewrite the right-hand side of (1.23) as

3

π2
·
∑

Γ∈Gg,n

Z (∂ΓPΓ) =
3

π2
·
∑

Γ∈Gg,n

∑

e∈E(Γ)

Z (∂eΓPΓ)

Apply (2.14) and (2.15) to the resulting sum, keeping the intersection numbers as

formal expressions and simplify the product of the factors 3
π2 and π2

6 .
Suppose now that g ≥ 1 (the consideration in the case g = 0 is completely

analogous). Consider the sum in the right-hand side of (1.26) and replace VolQgi,ni

for i = 1, 2 and VolQg−1,n+2 in it by the corresponding sums (1.13) over Gg1,n1 ×
Gg2,n2 and Gg−1,n+2 respectively (where we keep the intersection numbers as formal
expressions. It is easy to see, that we get term-by-term the same sum as above.
Theorem 1.16 is proved.

3. Comparison with Mirzakhani’s formula for bg,n

3.1. Mirzakhani’s expression for the volume of Qg. Consider a pair (X,λ),
where X is a hyperbolic surface of genus g without punctures and λ is a measured
lamination on X . In the paper [Mi4] M. Mirzakhani associates to almost any such
pair (X,λ) a unique holomorphic quadratic differential q = F (λ,X) on the complex
curve C = C(X) corresponding to the hyperbolic metric X .

Consider the measure µWP on the moduli space Mg coming from the Weil–
Petersson volume element and consider Thurston measure µTh on the space of
measured laminations MLg. Using ergodicity arguments, M. Mirzakhani proves
in [Mi4] that the pushforward measure

(3.1) µg := F∗(µWP ⊗ µTh)

on Qg under the map

F : Mg ×MLg → Qg

is proportional to the Masur–Veech measure. Equation (3.1) should be considered
as the definition of Mirzakhani’s normalization of the Masur—Veech measure on
Qg.

Remark 3.1. Note that under such implicit definition of the Masur–Veech mea-
sure it is not clear at all why its density should be constant in period coordinates.
Definition (3.1) does not provide any distinguished lattice in period coordinates
either. Thus, though we know, by results of Mirzakhani, that the density of the
Masur–Veech measure defined by (3.1) differs from the Masur–Veech volume ele-
ment defined in section 2.1 by a constant numerical factor which depends only on
g, evaluation of this factor is not straightforward.
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M. Mirzakhani proves in [Mi4] that the map F identifies the length ℓλ(X) of
the measured lamination λ evaluated in the hyperbolic metric X with the norm
‖q(λ,X)‖ =

∫
C
|q| of the quadratic differential q (defined as the area of the flat

surface associated to the pair (C, q)):

(3.2)

∫

C(X)

|q(λ,X)| = ℓλ(X) .

Relation (3.2) implies that as the image of F restricted to the total space of the
bundle of “unit balls” BX over Mg, defined by Equation (1.29), one gets the total
space Q≤1

g of the bundle of “unit balls” in Qg, where

(3.3) QArea≤1
g = {(C, q) ∈ Qg | Area(C, q) ≤ 1} .

We have seen in Section 1.1 that the real hypersurface

(3.4) QArea=1
g = {(C, q) ∈ Qg,n | Area(C, q) = 1} .

can be seen as the unit cotangent bundle to Mg (denoted by Q1Mg in [Mi4]).
M. Mirzakhani defines the Masur–Veech volume of Qg as

(3.5) VolMir Qg := µg(QArea≤1
g ) .

The above observations imply the following formula for VolMirQg (see Theorem 1.4
in [Mi4]):

Theorem (Mirzakhani). The Masur–Veech volume of the moduli space of holo-
morphic quadratic differentials on complex curves of genus g defined by (3.5) under
normalizations (3.1) satisfies the following relation

(3.6) VolMir Qg = bg.

where bg = bg,0 is defined by (1.30).

Formula (1.34) from Corollary 1.23 relating VolQg = VolQg,0 and bg = bg,0
implies that the Masur–Veech volume VolMirQg in Mirzakhani’s normalization (3.6)
and the Masur–Veech volume VolQg in normalization of Formula (1.13) are related
by the following factor:

(3.7) VolQg =
(
(12g − 12) · (4g − 4)! · 24g−3

)
·VolMir Qg .

3.2. Mirzakhani’s formulae for the Masur–Veech volume of Qg and for
asymptotic frequencies of simple closed geodesic multicurves. As we have
seen, VolMir Qg that appears in Formula (3.6) is a particular case of the more general
quantity bg,n defined in (1.30). The quantity bg,n is computed in Theorem 5.3 on
page 118 in [Mi3]. To reproduce the corresponding formula and closely related
formula for the asymptotic frequencies c(γ) of simple closed geodesic multicurves γ
of fixed topological type we need to remind the notation from [Mi3].

Simple closed multicurves. Depending on the context, we denote by the same
symbol γ a collection of disjoint, essential, nonperipheral simple closed curves, no
two of which are in the same homotopy class; a disjoint union of such curves;
the corresponding primitive multicurve; and the corresponding orbit in the space
MLg,n under the action of the mapping class group Modg,n,

γ = γ1 ⊔ · · · ⊔ γk = γ1 + · · ·+ γk = (γ1, . . . , γk) .

(M. Mirzakhani uses in [Mi3] symbols γ, γ̂ and γ̃ for these objects depending
on the context.) To every such multicurve γ M. Mirzakhani associates in [Mi3] a
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collection of quantities N(γ),M(γ), Sym(γ), bγ ,VolWP(Mg,n(γ, x)) involved in the
formula for bg,n. For the sake of completeness, and to simplify formulae comparison
we reproduce the definitions of these quantities; see the original paper [Mi3] of
M. Mirzakhani for details.

The collection Sg,n of all topological types of primitive multicurves. Re-
call that by Sg,n we denote a smooth orientable topological surface of genus g with
n punctures. Consider the finite set Sg,n defined as

(3.8) Sg,n := {γ | γ is a union of simple closed curves on Sg,n}/Modg,n .

(see formula (5.4) on page 118 in [Mi3]). It is immediate to see that Sg,n is in a
canonical bijection with the set Gg,n of stable graphs defined in section 1.4,

(3.9) Sg,n ≃ Gg,n .

Symmetries Stab(γ) and N(γ) of a primitive multicurve. For any set A of
homotopy classes of simple closed curves on Sg,n, Mirzakhani defines Stab(A) as

Stab(A) := {g ∈ Mod g, n | g · A = A} ⊂ Modg,n .

Having a multicurve γ on Sg,n as above, Mirzakhani defines

Sym(γ) := Stab(γ)/ ∩k
i=1 Stab(γi) ,

(see the beginning of section 4 on page 112 of [Mi3] for both definitions). For any
single connected simple closed curve γi one has | Sym(γi)| = 1.

For each connected simple closed curve γi define Stab0(γi) ⊂ Stab(γi) as the
subgroup consisting of elements which preserve the orientation of γi. Define N(γ)
as

N(γ) :=

∣∣∣∣∣

k⋂

i=1

Stab(γi)/

k⋂

i=1

Stab0(γi)

∣∣∣∣∣ .

(see page 113 of [Mi3]).
Consider a stable graph Γ(γ) associated to a primitive multicurve γ. It follows

from definitions of Stab(γ), N(γ) and Aut(γ) that

(3.10) |Aut(Γ(γ))| = | Sym(γ)| ·N(γ) .

Number M(γ) of one-handles. Consider now the closed surface

(3.11) Sg,n(γ) =

s⊔

j=1

Sgj ,nj

obtained from Sg,n by cutting along all γ1, . . . , γk. Here Sg1,n1 , . . . , Sgs,ns
are the

connected components of the resulting surface Sg,n(γ). Define

M(γ) := |{i | γi separates off a one-handle from Sg,n}| ,
(see this formula in the statement of Theorem 4.1 on page 114 of [Mi3]). By
definition, a “one-handle” is a surface of genus one with one boundary component,
i.e., a surface of type S1,1.

Remark 3.2. There is one very particular case, when the index i in the definition
of M(γ) should be counted with multiplicity 2. Namely, when γ is a connected
separating simple closed curve on a surface S2 = S2,0 it simultaneously separates
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off two one-handles, and thus should be counted with multiplicity 2. In other words,
the quantity M(γ) might be defined as

(3.12) M(γ) := number of surfaces of type S1,1 in decomposition (3.11)

without any exceptions and multiplicities.

A. Wright suggested an alternative way to fix this issue; see footnote 2 on pages
12–13 in [Wr].

Volume polynomials Vg,n. In [Mi1] and [Mi2] M. Mirzakhani proves the follow-
ing statement, that we reproduce from Theorems 4.2 and 4.3 in [Mi3].

Theorem (Mirzakhani). The Weil–Petersson volume VolWP Mg,n(b) of the mod-
uli space of bordered hyperbolic surfaces of genus g with hyperbolic boundary com-
ponents of lengths b1, . . . , bn is a polynomial Vg,n(b1, . . . , bn) in even powers of
b1, . . . , bn; that is,

VolWPMg,n(b) = Vg,n(b) =
∑

α
|α|≤3g−3+n

Cα · b2α ,

where Cα > 0 lies in π6g−6+2n−2|α| ·Q. The coefficient Cα is given by

Cα =
1

2|α| · α! · (3g − 3 + n− |α|)!

∫

Mg,n

ψα1
1 · · ·ψαn

n · ω3g−3+n−|α| ,

where ω is the Weil–Petersson symplectic form, α! =
∏n

i=1 αi!, and |α| =∑n
i=1 αi.

Remark 3.3 (M. Kazarian). For one particular pair (g, n), namely for (g, n) = (1, 1),
Mirzakhani’s normalization

(3.13) VolMir
WP M1,1(b) =

1

24
(b2 + 4π2) ,

(see equation (4.5) on page 116 in [Mi3] or [Mi2]) is twice bigger than the nor-
malization in many other papers. Topologically M1,1 is homeomorphic to CP1.
However, since every elliptic curve with a marked point admits an involution, the
fundamental class of the orbifold M1,1 used in the integration equals [M1,1] =
1
2

[
CP1

]
∈ H2(CP

1) which gives the value

(3.14) VolWPM1,1(b) =
1

48
(b2 + 4π2) .

Denote by V top
g,n (b) the homogeneous part of the top degree 6g−6+2n of Vg,n(b).

It follows from the definition of the volume polynomial Vg,n(b) that

(3.15) V top
g,n (b) =

∑

|α|=3g−3+n

Cα · b2α ,

where Cα is given by

(3.16) Cα =
1

23g−3+n · α!

∫

Mg,n

ψα1
1 · · ·ψαn

n .

Comparing the definition of V top
g,n (b) with the Definition (1.6)–(1.8) of the polyno-

mial Ng,n(b) we get the following result.
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Lemma 3.4. The homogeneous parts of top degree of Mirzakhani’s volume polyno-
mial Vg,n and of Kontsevich’s polynomial Ng,n coincide up to the constant factor:

(3.17) V top
g,n (b) =

{
22g−3+n ·Ng,n(b) for (g, n) 6= (1, 1) ;

2 · 22g−3+n ·Ng,n(b) for (g, n) = (1, 1) .

In the exceptional case (g, n) = (1, 1) the polynomial V top
1,1 (b) = 1

24b
2 used by

Mirzakhani is twice larger than N1,1(b) =
1
48b

2. The origin of this extra factor 2 is
explained in Remark 3.3.

Volume polynomial VolWP(Mg,n(γ, x)) associated to a multicurve γ. As-
suming that the initial surface Sg,n is endowed with a hyperbolic metric, and that
the simple closed curves γ1, . . . , γk are realized by simple closed hyperbolic geodesics
of hyperbolic lengths x1 = ℓγ1(X), . . . , xk = ℓγk

(X), the boundary ∂Sg,n(γ) gets
k pairs of distinguished boundary components of lengths x1, . . . , xk. We assume
that the n marked points of Sg,n are represented by hyperbolic cusps, i.e. by hy-
perbolic boundary components of zero length. Denote by gj the genus and by nj

the number of boundary components (including cusps) of each surface Sj, where
j = 1, . . . , s. To each boundary component of each surface Sj we have assigned a
length variable which is equal to xi if the boundary component comes from the cut
along γi, or is equal to 0 if the boundary component comes from a cusp (one of the
n marked points). Consider the corresponding Mirzakhani–Weil–Petersson volume
polynomial Vgj ,nj

(x) and define

(3.18) VolWP(Mg,n(γ, x)) :=
1

N(γ)

s∏

j=1

Vgj ,nj
(x) ,

(see formula (4.1) on page 113 of [Mi3]). Denote by (2d1, . . . , 2dk)γ the coefficient
of x2d1 · · ·x2dk in this polynomial and let

(3.19) bγ(2d1, . . . , 2dk) := (2d1, . . . , 2dk)γ

∏k
i=1(2di + 1)!

(6g − 6 + 2n)!
,

(see equation (5.3) on page 118 in [Mi3]).
Now everything is ready to state Mirzakhani’s result and to prove Theorem 1.21.

Mirzakhani’s results and proof of comparison theorems. Let γ = γ1+ · · ·+
γk be a primitive simple closed multicurve as above. Let γa =

∑k
i=1 aiγi, where

ai ∈ N for i = 1, . . . , k. (To follow original notation of Mirzakhani, we denote
integer weights of components of a multicurve by ai and not by Hi as before.)

Theorem (Mirzakhani [Mi3]). The frequency c(γa) of a multi-curve γa =
∑k

i=1 aiγi
is equal to

(3.20) c(γa) =
2−M(γ)

| Sym(γ)| ·
∑

d
|d|=3g−3+n−k

bγ(2d1, . . . , 2dk)

a2d1+2
1 . . . a2dk+2

k

.

The expression bg,n given by the integral (1.30) can be represented as the sum

(3.21) bg,n =
∑

γ∈Sg,n

Bγ ,
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where for γ =
⊔k

i=1 γi one has

(3.22) Bγ =
2−M(γ)

| Sym(γ)| ·
∑

|d|=3g−3+n−k

bγ(2d1, . . . , 2dk)

k∏

i=1

ζ(2si + 2) .

Proof of Theorem 1.21. Let γ = γ1+· · ·+γk be a primitive simple closed multicurve
in Sg,n. Let Γ be the associated decorated graph. The sets Sg,n and Gg,n are in the
canonical one-to-one correspondence.

Defining M(γ) as in (3.12) we see that M(γ) is the number of factors V1,1
in the product (3.18), i.e. the number of indices j in the range {1, . . . , s} such
that (gj , nj) = (1, 1). Thus, the factor 2−M(γ) in Equations (3.20) and (3.22)
compensates the difference in normalizations (3.13) and (3.14), see Remark 3.3.
Hence, applying (3.17) to the right-hand side of (3.18) we get

2−M(γ)
s∏

j=1

Vgj ,nj
(x) =




s∏

j=1

Ngj ,nj
(x)


 ·




s∏

j=1

22gj−3+nj


 .

For a decorated graph Γ one has

g = 1− χ(Γ) +
∑

vj∈V (Γ)

g(vj) = 1− |V (Γ)|+ |E(Γ)|+
s∑

j=1

gj =

= 1 +
s∑

j=1

(
gj − 1 +

nj

2

)
− (total number of half-edges (legs))

2
.

(By convention E(Γ) denotes the set of “true” edges of Γ versus n half-edges (legs)
corresponding to n marked points on Sg,n.) Hence,

s∑

j=1

(2gj − 3 + nj) = 2g − 2 + n− |V (Γ)| = 2g − 3 + n− (|V (Γ)| − 1) .

Note also that by definition

|Aut(Γ)| = | Sym(γ)| ·N(γ) .

We have proved that

(3.23)
2−M(γ)

| Sym(γ)| ·N(γ)

s∏

j=1

Vgj ,nj
(x) =

= 22g+n−3 ·


 1

2|V (Γ)|−1
· 1

|Aut(Γ)| ·
∏

v∈V (Γ)

Ngv,nv
(x)


 .

Let us prove now Relation (1.33). Expressions (3.19) and (3.20) represent c(γH)
as the sum of terms constructed using the polynomial in the left-hand side of (3.23).
Expression (1.14) represents Vol

(
Γ,H

)
as the sum of the corresponding terms con-

structed using the proportional polynomial in the brackets on the right-hand side
of (3.23). The only difference between the two sums comes from the global normal-
ization factors shared by all terms of the sums. Namely, Expression (3.19) has an
extra factor (6g−6+2n)! in the denominator, while the first line of Expression (1.12)
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has the extra global factor
26g−5+2n · (4g − 4 + n)!

(6g − 7 + 2n)!
. Taking into consideration the

coefficient of proportionality 22g+n−3 relating the two polynomials in (3.23) we get

(6g − 6 + 2n)! · c(γa) = 22g+n−3 ·
(
26g−5+2n · (4g − 4 + n)!

(6g − 7 + 2n)!

)−1

· Vol
(
Γ,H

)
,

and (1.33) follows.
It remains to notice that by Definitions (3.22) and (3.20) of Bγ and c(γa) re-

spectively one has

Bγ =
∑

H∈Nk

c(γH) .

Similarly, by (1.5) one has

Vol(Γ) =
∑

H∈Nk

Vol (Γ,H)) .

Since the coefficient of proportionality constg,n between Vol (Γ,H) and c(γH)
in (1.33) is common for all H ∈ Nk, Relation (1.33) for the individual terms implies
the analogous relation Vol(Γ) = constg,n · Bγ for the above sums of all terms over
all H ∈ Nk and for the corresponding sums VolQg,n = constg,n · bg,n (see (1.13)
and (3.21)) over all stable graphs Γ ∈ Gg,n. Theorem 1.21 and Corollary 1.23 are
proved. �

4. Large genus asymptotics for frequencies of simple closed curves

and of one-cylinder square-tiled surfaces

4.1. Universal bounds for 2-correlators. Following Witten [Wi] define

(4.1) 〈τd1 . . . τdn
〉 =

∫

Mg,n

ψd1 . . . ψdn ,

where d1 + · · ·+ dn = 3g − 3 + n.
Consider the following normalization of the 2-correlators 〈τkτ3g−1−k〉g introduced

in [Zog]:

(4.2) ag,k =
(2k + 1)!! · (6g − 1− 2k)!!

(6g − 1)!!
· 24g · g! · 〈τkτ3g−1−k〉g .

By (7) in [Zog] under such normalization the differences of 2-correlators admit the
following explicit expression:

(4.3) ag,k+1 − ag,k =

=
(6g − 3− 2k)!!

(6g − 1)!!
·





(6j − 1)!!

j!
· (g − 1)!

(g − j)!
· (g − 2j) , for k = 3j − 1 ,

−2 · (6j + 1)!!

j!
· (g − 1)!

(g − 1− j)!
, for k = 3j ,

2 · (6j + 3)!!

j!
· (g − 1)!

(g − 1− j)!
, for k = 3j + 1 ,
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where k = 0, 1, . . . ,

[
3g − 1

2

]
− 1, and ag,0 = 1.

It follows from Definition (4.2) that ag,k = ag,3g−1−k, so Relations (4.3) deter-
mine ag,k for all g ≥ 1 and for all k satisfying 0 ≤ k ≤ 3g − 1.

Proposition 4.1. For all g ∈ N and for all integer k in the range {2, 3, . . . , 3g−3}
the following bounds are valid:

(4.4) 1− 2

6g − 1
= ag,1 = ag,3g−2 < ag,k < ag,0 = ag,3g−1 = 1 .

Proposition 4.1 is proved in Appendix A.

4.2. Asymptotic volume contribution of one-cylinder square-tiled sur-
faces. In this section we compute the large genus asymptotics for the contributions
of the stable graphs having a single edge to the Masur–Veech volume VolQg. In
other words, we compute the asymptotic contributions of one-cylinder square-tiled
surfaces to the Masur–Veech volume of the principal stratum Q(14g−4). These
contributions obviously provide lower bounds for VolQg.

Denote by Γ1(g) the stable graph having a single vertex and having a single
edge and such that the vertex is decorated with integer g − 1 (see Figure 4). The
single edge forms a loop, so this stable graph represents a surface of genus g with-
out marked points. The stable graph Γ1(g) encodes the orbit of a simple closed
nonseparating curve on a surface of genus g.

g − 1

Figure 4. The graph Γ1(g) on the left represents a non-
separating simple closed curve on a surface of genus g.

Theorem 4.2. Consider the stable graph Γ1(g) having a single vertex decorated
with label g− 1 and single edge (see Figure 4). The contribution Vol Γ1(g) of Γ1(g)
to the Masur–Veech volume VolQg of the moduli space Qg of holomorphic quadratic
differentials on complex curves of genus g has the following asymptotics:

(4.5) Vol Γ1(g) =

√
2

3πg
·
(
8

3

)4g−4

·
(
1 +O

(
1

g

))
as g → +∞ .

Proof. It would be slightly more convenient to shift g by 1. Assign variable b1 to
the only edge of the graph. Formula (1.14) from Theorem 1.5 applied to the graph
Γ1(g + 1) gives

(4.6)

(
(4g)!

(6g)!
· 26g · 12g

)
· 1
2
· 1 · b1 ·Ng,2(b1, b1)

Z7−−→ Vol Γ1(g + 1) = (4g)! · 2g+2 · ζ(6g) ·
∑

d1+d2=3g−1

〈ψd1
1 ψ

d2
2 〉

d1! · d2!
=

= (4g)! · 2g+2 · ζ(6g) ·
3g−1∑

k=0

〈τkτ3g−1−k〉g
k! · (3g − 1− k)!

.
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Now pass to the normalization (4.2) of the correlators 〈τkτ3g−1−k〉g:

ag,k =
(2k + 1)!! · (6g − 1− 2k)!!

(6g − 1)!!
· 24g · g! · 〈τkτ3g−1−k〉g .

By Proposition 4.1, the 2-correlators admit the following uniform bounds under
such normalization:

1− 2

6g − 1
≤ ag,k ≤ 1 , for k = 0, 1, . . . , 3g − 1 .

Rewriting the Expression (4.6) for Vol Γ1(g + 1) in terms of ag,k we get

(4.7) Vol Γ1(g + 1)/ζ(6g) =

= (4g)! · 2g+2 · (6g − 1)!!

24g · g! ·
3g−1∑

k=0

ag,k
k! · (2k + 1)!! · (3g − 1− k)! · (6g − 1− 2k)!!

.

Passing from double factorials to factorials,

(6g − 1)!! =
(6g)!

(3g)! · 23g

(2k + 1)!! =
(2k + 1)!

k! · 2k

(6g − 1− 2k)!! =
(6g − 1− 2k)!

(3g − 1− k)! · 23g−k−1
,

we rewrite and simplify Expression (4.7) as follows:

(4.8) Vol Γ1(g + 1)/ζ(6g) =

= (4g)! · 2g+2 · 1

3g · 23g · 1

g! · (3g)! ·
1

2

3g−1∑

k=0

(
6g

2k + 1

)
· ag,k =

=
(4g)!

g! · (3g)! ·
1

3g · 22g · 2
3g−1∑

k=0

(
6g

2k + 1

)
· ag,k .

Taking the difference of binomial expansions of the left-hand sides of the identities
(1− 1)2n = 0 and (1 + 1)2n = 22n we derive the classical identity

n−1∑

k=0

(
2n

2k + 1

)
= 22n−1 .

Combining the latter identity evaluated for n = 3g with bounds (4.4) we get the
following bounds for Vol Γ1(g + 1):

(4.9)

(
4g

g

)
·
(
24

3

)g

·
(
1− 2

6g − 1

)
≤ Vol Γ1(g + 1)/ζ(6g) ≤

(
4g

g

)
·
(
24

3

)g

.

Note that
ζ(6g) → 1 as g → +∞

and the convergence is exponentially fast.
Applying Stirling’s formula to the factorials in the binomial coefficient

(
4g
g

)
in

the latter expression we get

(4.10)

(
4g

g

)
=

√
2

3πg
·
(
28

33

)g

·
(
1 +O

(
1

g

))
as g → +∞ .
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Combining the latter equality with bounds (4.9) we get the desired Formula (4.5)
in genus g + 1:

Vol Γ1(g + 1) =

√
2

3πg
·
(
8

3

)4g

·
(
1 +O

(
1

g

))
as g → +∞ .

�

Remark 4.3. Actually, we have a very good control on the asymptotic expansions
of correlators ag,k in powers of 1

g , so it would not be difficult to specify several

terms of the asymptotic expansion of O
(

1
g

)
in Formula (4.5). We do not do it only

because we do not currently see any specific need for a more precise expression.

Proof of Theorem 1.8. Inequality (1.16) now follows from (4.9), where we use the
following estimates for the factorials involved in the binomial coefficient. By The-
orem 1.6 in [Ba] for all positive real numbers x ≥ 1 one has

xxe−x
√
2π(x+ a) < Γ(x+ 1) < xxe−x

√
2π(x+ b) ,

where a = 1/6 = 0.1666666 . . . and b = e2

2π − 1 = 0.176005 . . . . �

We proceed with the remaining graphs having a single edge. This time it has
two vertices joined by the edge as in Figure 5. The two vertices are decorated with
strictly positive integers g1, g2 ∈ N such that g1 + g2 = g (see Figure 4). Without
loss of generality we may assume that g1 ≤ g2. This stable graph encodes the
orbit of a simple closed curve separating the compact surface of genus g without
punctures into subsurfaces of genera g1 and g2.

g1 g2

Figure 5. The graph ∆(g1, g2) on the left represents a simple
closed curve on a surface of genus g separating the surface into
surfaces of genera g1 and g2, where g1 + g2 = g (on the right).

Proposition 4.4. Consider the stable graph ∆(g1, g − g1) having a single edge
joining two vertices decorated with labels g1 and g − g1 respectively (see Figure 5).
The contribution Vol(∆(g1, g − g1)) of ∆(g1, g − g1) to the Masur–Veech volume
VolQg is
(4.11)

Vol(∆(g1, g − g1)) =
4 · ζ(6g − 6)

|Aut(∆(g1, g − g1))|
·
(
4g − 4

g

)
· 1

12g
·
(
g

g1

)
·
(
3g − 4

3g1 − 2

)
.

Proof. Let g2 = g − g1. The contribution of the graph ∆(g1, g2) is given by For-
mula (1.13) from Theorem 1.5:
(4.12)

Vol(∆(g1, g2)) =
26g−5 · (4g − 4)!

(6g − 7)!
· 1
2
· 1

|Aut(Γ(g1, g2))|
· Z
(
b ·Ng1,1(b) ·Ng2,1(b)

)
,
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where

(4.13) |Aut(Γ(g1, g2))| =
{
2, when g1 = g2 ,

1, otherwise .

By the result of E. Witten [Wi] one has the following closed expression for 1-
correlators:

〈ψ3g−2
1 〉 =

∫

Mg,1

ψ3g−2
1 =

1

24g · g! .

Applying Definitions (1.6) and (1.7) to Ng,1(b) and using the above expression

for 〈ψ3g−2
1 〉 we get the following closed form expression for the polynomial Ng,1(b):

(4.14) Ng,1(b) = c3g−2b
2(3g−2) =

1

25g−6+2 · (3g − 2)!
· 〈ψ3g−2

1 〉 · b6g−4 =

=
1

28g−4 · 3g · g! · (3g − 2)!
· b6g−4 .

Using the Definition (1.11) of Z and the assumption g1 + g2 = g we can now
develop the rightmost factor in (1.11) as follows

Z
(
b ·Ng1,1(b) ·Ng2,1(b)

)
=

= Z
(

1

28g1−4 ·28g2−4
· 1

3g1 ·3g2 ·
1

g1! g2!
· 1

(3g1 − 2)!(3g2 − 2)!
·b · b6g1−4 · b6g2−4

)
=

=
1

28g−8
· 1

3g
· 1

g1! (g − g1)!
· 1

(3g1 − 2)!(3g − 3g1 − 2)!
· (6g − 7)! · ζ(6g − 6) .

Plugging this expression into (4.12); multiplying and dividing by g! and by (3g−4)!
to pass to binomial coefficients and simplifying we get the desired Formula (4.11).

�

We complete this section with the computation of the cumulative contribution
of the graphs ∆(g1, g − g1) to VolQg coming from all g1 = 1, . . . ,

[
g
2

]
.

Proposition 4.5. As g → ∞, we have the following asymptotic relation

(4.15)

[ g2 ]∑

g1=1

Vol(∆(g1, g − g1)) ∼
2

3πg
· 1

4g
·
(
8

3

)4g−4

,

Proof. Applying Formula (4.12), making the summation index range from 1 to g−1
(instead of up to

[
g
2

]
) and taking into consideration that when g = 2g1, the term

Vol∆(g1, g1) has |Aut(∆(g1, g1))| = 2 (see Equation (4.13)) we get

[ g2 ]∑

g1=1

Vol(∆(g1, g − g1)) = 2 · ζ(6g − 6) ·
(
4g − 4

g

)
· 1

12g
·
g−1∑

g1=1

(
g

g1

)
·
(
3g − 4

3g1 − 2

)
.

The zeta value ζ(6g − 6) tends to 1 exponentially fast when g → +∞. Stirling’s
formula provides the following asymptotic value of the binomial coefficient

(
4g − 4

g

)
∼ 2√

6πg
· 3g ·

(
4

3

)4g−4

.

Thus, to complete the proof of Formula (1.32) and, thus, of Theorem 1.17, it remains
to prove the Lemma below. �
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Lemma 4.6. The following asymptotic formula holds

(4.16) S(g) =

g−1∑

g1=1

(
g

g1

)(
3g − 4

3g1 − 2

)
∼ 1√

6πg
· 24g−4

as g → +∞.

Proof. The probability density of the normal distribution N (µ, σ2) is given by the
function

f(x |µ, σ2) =
1√
2πσ2

· e−
(x−µ)2

2σ2 .

Let g be a large positive integer. By the de Moivre–Laplace theorem, after
normalization by 2g the distribution of the binomial coefficients

(
g
k

)
, where k =

0, 1, . . . , g, tends to the normal distribution N
(
g
2 ,

g
4

)
as g → +∞.

Letm be any positive integer which we use as a fixed parameter. The normalized
distribution of the binomial coefficients

(
m·g
k

)
, where k = 0, 1, . . . ,m ·g, tends to the

normal distribution N
(
m·g
2 , m·g

4

)
as g → ∞. Hence, the normalized distribution of

binomial coefficients
(
m·g
m·k

)
, where k = 0, 1, . . . , g, tends to the normal distribution

N
(
g
2 ,

g
4m

)
as g → +∞. In particular, letting m = 3 we see that the normalized

distribution of binomial coefficients
(
3g−4
3k−2

)
, where k = 1, . . . , g − 1, tends to the

normal distribution N
(
g
2 ,

g
12 − 1

9

)
.

We have

f(x |µ, σ2
1) · f(x |µ, σ2

1) =

√
2πσ2

√
2πσ2

1 ·
√
2πσ2

2

· f(x |µ, σ2) , where σ2 =
σ2
1σ

2
2

σ2
1 + σ2

2

.

In other words, the normalized distribution of the product of two independent
normal distributions N (µ, σ2

1) and N (µ, σ2
2) sharing the same mean µ is the nor-

mal distribution N
(
µ,

σ2
1σ

2
2

σ2
1+σ2

2

)
. Hence, after normalization by S(g), the product

(
g
g1

)(
3g−4
3g1−2

)
of the two binomial distributions, where g1 = 1, . . . , g − 1, tends to the

normal distribution N (g/2, σ2) with

σ2 =
g
4

(
g
12 − 1

9

)
g
4 +

(
g
12 − 1

9

) ∼ g

16
, as g → +∞ .

Thus, the asymptotic value of the sum S(g) can be computed as the value of the

product distribution
(
g
g1

)(
3g−4
3g1−2

)
at µ = g/2 multiplied by

√
2πσ2, that is

(4.17) S(g) ∼
(
g[
g
2

]
)
·
(

3g − 4

3
[
g
2

]
− 2

)
·
√
2π g

16 .

From Stirling’s formula we get
(
2m

m

)
∼ 22m√

πm
and

(
2m+ 1

m

)
∼ 22m+1

√
πm

.

Applying these asymptotic formulae to each of the binomial coefficients in (4.17)
we get

S(g) ∼ 2g√
π g

2

· 23g−4

√
π 3g−4

2

·
√
πg√
8

∼ 1√
6πg

· 24g−4 .

�
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Remark 4.7. The hypergeometric sum S(g) on the left hand side of (4.16) satisfies
the following recursive relation obtained applying Zeilberger’s algorithm:

S(g + 2) = 2 · (324g
4 + 432g3 + 123g2 − 49g − 8)

(6g − 1)(3g + 4)(3g − 1)(g + 1)
· S(g + 1)+

+ 36 · (6g + 5)(4g − 1)(4g − 3)

(6g − 1)(3g + 4)(3g − 1)
· S(g) .

4.3. Frequencies of simple closed geodesics. In this section we use the setting
and the notation as in Theorem 6.1 of M. Mirzakhani [Mi3] reproduced at the end
of Section 1.2.

Recall that equivalence classes of smooth simple closed curves on a compact
oriented surface of genus g without boundary are classified as follows. The curve
can be separating or non-separating. All non-separating curves as in Figure 4 belong
to the same class; we denote the corresponding frequency by cg,nonsep.

Separating simple closed curves are classified by the genera g1, g2 of components
in which the curve separates the surface; see Figure 5. Here g1+ g2 = g; g1, g2 ≥ 1,
and pairs g1, g2 and g2, g1 correspond to the same equivalence class. Denote a
simple closed curve of this type by γg1,g2 . The stable graph corresponding to γg1,g2
is ∆(g1, g2), see Figure 5.

Recall that the volume contribution Vol(∆(g1, g2)) comes from all one-cylinder
square-tiled surfaces of genus g = g1 + g2 such that the waist curve of the sin-
gle cylinder separates the surface into two surfaces of genera g1 and g2 respec-
tively. This single horizontal cylinder can be composed of a = 1, 2, . . . horizon-
tal bands of squares. The contribution Vol(∆(g1, g2)) is the sum of contributions
Vol(∆(g1, g2), H) of square-tiled surfaces having a fixed value H ∈ N,

Vol(∆(g1, g2)) =

+∞∑

H=1

Vol(∆(g1, g2), H) .

Recall also, that

Vol(∆(g1, g2), H) =
1

Hd
Vol(∆g1,g2) ,

where d = 6g − 6 = dimQg, which implies that

Vol(∆(g1, g2)) = ζ(6g − 6) · Vol(∆g1,g2 , 1) .

Combining the latter relation with Formula (1.33) from Theorem 1.21 we get

Vol(∆(g1, g2))

ζ(6g − 6)
= 2 · (6g − 6) · (4g − 4)! · 24g−3 · c(γg1,g2) .

Applying the Expression (4.11) for Vol Γ(g1, g2) we get the following formula:

(4.18) c(γg1,g−g1) =
1

|Aut∆(g1, g − g1)|
·

· 1

23g−4 · 24g · g1! · (g − g1)! · (3g1 − 2)! · (3(g − g1)− 2)! · (6g − 6)
.

In this way we reproduce the formula for the frequency of simple closed separating
geodesics first proved by M. Mirzakhani (see page 124 in [Mi3]).
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Remark 4.8. The formula on page 124 in [Mi3] contains two misprints: the power
in the first factor in the denominator is indicated as 23g−2 while it should be read
as 23g−4 and the fifth factor is indicated as (3g − 2)! while it should be read as
(3i − 2)!. Indeed, following Mirzakhani’s calculation we have to use formula (5.5)
from [Mi3] for c(γ). Using notation of this formula applied to our particular γ
we have n = 0, k = 1, a1 = 1, s1 = 3g − 4. Mirzakhani assumes for simplicity
that g > 2i > 2, which implies that M(γ) = 0 and | Sym(γ)| = 1 (and implies
that |Aut∆(g1, g − g1)| = 1 in notation of Formula (4.18) above). Thus, applying
formula (5.5) from [Mi3] Mirzakhani gets

c(γ) = bΓ(2 · (3g − 4)) = (2 · (3g − 4))Γ · (2 · (3g − 4) + 1)!

(6g − 6)!
,

where bΓ(2s1) and (2s1)Γ are introduced in [Mi3] in formula (5.3) and in the line
above it respectively.

In order to evaluate (2 · (3g−4))Γ we compute following Mirzakhani the product
of the coefficients of the leading terms of the polynomials Vi,1(x) and Vg−i,1(x) (see
the bottom of page 123 in [Mi3]). In this way we get

(2 · (3g − 4))Γ =

=
1

(3i− 2)! · i! · 24i · 23i−2
· 1

(3(g − i)− 2)! · (g − i)! · 24g−i · 23(g−i)−2
=

=
1

23g−4 · 24g · i! · (g − i)! · (3i− 2)! · (3(g − i)− 2)!
,

compare to (4.18) replacing g1 with i. The remaining last factor (6g − 6) in the

denominator of the formula of Mirzakhani comes from (2·(3g−4)+1)!
(6g−6)! = 1

6g−6 .

Remark 4.9. The computation of c(α2) on page 123 in [Mi3], where α2 denotes a
separating simple closed curve on a surface of genus 2, contains some misprints.
It is correctly written that N(α2) = 2. However, the factor 1

N(α2)
involved in the

definition (4.1) of VolWP(Mg,n(Γ,x)) on page 113 of [Mi3] is missing in the formula
for Vol(M(S(α2), ℓα2 = x)) on page 123. We assume that this formula should be
read as

Vol
(
M(S(α2), ℓα2 = x)

)
=

1

N(α2)
· V1,1(x)× V1,1(x) =

1

2
·
(
x2

24
+
π2

6

)2

.

Also, the factor 2−M(α2) present in the general formula (5.5) on page 118 in [Mi3]
is missing in the computation of c(α2). Finally, in this particular case (and only
in this case) either M(α2) should be readjusted as M(α2) = 2, as we suggest in
Remark 3.2, or one has to redefine the symmetry group taking into consideration
the hyperelliptic involutions, as suggested in footnote 2 on pages 12–13 in [Wr]. We
get the following value for c(α2):

c(α2) = c(γ1,1) =
1

8× 24× 24× 6
.

In the above computation we followed the normalization conventions chosen
by M. Mirzakhani in [Mi3]. As it was pointed out in Remark 1.25, the case
(g, n) = (2, 0) admits an alternative normalization. Nevertheless, such an alterna-
tive normalization changes c(α1) and c(α2) by common scaling factor and, hence,
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does not affects the ratio:

c(α1)

c(α2)
=
c(γnonsep,2)

c(γ1,1)
= 48 .

This value is independently confirmed in [Be] experimentally and in [AH1] and
in [ErSo] theoretically.

Denote by c(γsep,g) the sum of the frequencies c(γg1,g2) over all equivalence
classes of separating curves, i.e. over all unordered pairs (g1, g2) satisfying g1+g2 =
g; g1, g2 ≥ 1. We are now ready to prove Theorem 1.17.

Proof of Theorem 1.17. By Theorem 1.21 we have

cg,sep
cg,nonsep

=

∑[ g2 ]
g1=1 Vol(∆(g1, g − g1))

Vol(Γ1(g))
.

Plugging the asymptotic values (4.5) and (4.15) respectively in the denominator
and numerator of the ratio on the right hand side we obtain the desired asymptotic
value for the ratio on the left hand side. �

In the table below we present the exact (first line) and approximate (second line)
values of the ratio

cg,sep
cg,nonsep)

of the two frequencies in small genera and the value

given by the asymptotic Formula (1.32) (third line).

g 2 3 4 5 11

Exact 1
48

5
1776

605
790992

4697
27201408

166833285883
5360555755385245488

Approximate 2.08·10−2 2.82·10−3 7.65·10−4 1.73·10−4 3.11·10−8

Asymp. formula 2.03·10−2 4.16·10−3 9.00·10−4 2.01·10−4 3.31·10−8

Appendix A. Proof of the asymptotic formula for 2-correlators.

In this Appendix we prove Proposition 4.1.

Structure of the proof. The equality ag,1 = 1− 2
6g−1 immediately follows from

the fact that ag,0 = 1 and the recursive relations (4.3). For g = 1 bounds (4.4)
are trivial. The symmetry ag,3g−1−k = ag,k allows us to confine k to the range

{2, 3, . . . ,
[
3g−1

2

]
}.

Using recursive relations (4.3) we evaluate ag,k explicitly for k = 2, . . . , 5 and
prove in Lemma A.1 bounds (4.4) for these small values of k. In genera g = 2, 3, 4,
the expression

[
3g−1

2

]
is bounded by 5 which implies bounds (4.4) for any k when

g = 2, 3, 4. From this point we always assume that g ≥ 5 and k is in the range
{6, . . . ,

[
3g−1

2

]
}.

We start the main part of the proof by rewriting the recurrence Relations (4.3)
in a form convenient for estimates. Namely, we introduce the function

(A.1) R(g, j) =

(
3g
3j

)(
g
j

)
(
6g
6j

)

and express the right-hand side of each of the recurrence Relations (4.3) as a product
R· Pi

Q , where Pi, i = 1, 2, 3, andQ are explicit polynomials in g and j. In Lemma A.3
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we show that for any g the absolute value of each of the rational functions Pi/Q on

the range of j corresponding to k ∈ {6, . . . ,
[
3g−1

2

]
} is bounded from above by 1. In

Lemma A.4 we show that for any fixed g and 0 ≤ j ≤
[
g−1
2

]
, the expression R(g, j)

is monotonically decreasing as a function of j. Combining these two lemmas we
obtain in Lemma A.5 the estimate −R(g, 2) · g−3

2 ≤ ag,k − ag,5 ≤ R(g, 2) · 3g−11
3

valid for all g and k under consideration.
We use explicit expressions for rational functions εbelow(g) and εabove(g) in ag,5 =

1− 2
6g−1 +εbelow (g) = 1−εabove(g) obtained in Lemma A.1 to prove in Lemma A.6

that for g ≥ 5 the inequalities R(g, 2)· g−3
3 < εbelow(g) and R(g, 2)· 3g−11

3 < εabove(g)
hold.

A.1. Small values of k and g. Recall that ag,0 = 1. Recursive relations (4.3)
provide the following first several terms ag,k for k = 1, 2, 3, 4, 5, where for each k in
this range we indicate the smallest value of g starting from which the corresponding
equality holds:

ag,0 = 1 for g ≥ 1 ,(A.2)

ag,1 = 1− 2

6g − 1
for g ≥ 1 ,(A.3)

ag,2 = 1− 12(g − 1)

(6g − 1)(6g − 3)
for g ≥ 2 ,

ag,3 = 1− 3(24g2 − 49g + 30)

(6g − 1)(6g − 3)(6g − 5)
for g ≥ 3 ,

ag,4 = 1− 2

6g − 1
+

9(g − 2)(34g − 35)

(6g − 1)(6g − 3)(6g − 5)(6g − 7)
for g ≥ 3 ,

ag,5 = 1− 2

6g − 1
+

27(68g3 − 308g2 + 519g − 280)

(6g−1)(6g−3)(6g−5)(6g−7)(6g−9)
=(A.4)

= 1− 9(g − 2)(288g3 − 780g2 + 1012g − 525)

(6g − 1)(6g − 3)(6g − 5)(6g − 7)(6g − 9)
for g ≥ 4 .(A.5)

Lemma A.1. For all g ∈ N and for all k ∈ N satisfying 2 ≤ k ≤ min
(
5,
[
3g−1

2

])

the Relations (4.4) are valid:

1− 2

6g − 1
= ag,1 < ag,k < ag,0 = 1 .

Proof. By (A.2) and (A.3) the terms ag,0 and ag,1 indeed have values as claimed in
the statement of Lemma A.1.

It follows from recurrence relations (4.3) that for k satisfying 0 ≤ k ≤
[
3g−1

2

]
−1

we have ag,k+1 < ag,k if and only if k ≡ 0 (mod 3) and we have ag,k+1 > ag,k for the
remaining k in this range. In particular, for g ≥ 2 the difference ag,2−ag,1 is strictly
positive, which implies the desired lower bound (4.4) for ag,2 when g ≥ 2. The
explicit expression for ag,2 when g ≥ 2 implies the desired strict upper bound (4.4).

Recursive relations (4.3) imply that for g ≥ 3 the difference ag,3 − ag,2 is strictly
positive. Since ag,2 satisfies the desired lower bound (4.4), the term ag,3 also does.
The quadratic polynomial (24g2−49g+30) in the numerator of the explicit expres-
sion for ag,3 admits only strictly positive values, which implies the upper bound (4.4)
for ag,3 when g ≥ 3.
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Recursive relations (4.3) imply that for g ≥ 3 the difference ag,4 − ag,3 is strictly
negative. Since ag,3 satisfies the desired upper bound (4.4), the term ag,4 also does.
The explicit expression for ag,4 implies the lower bound (4.4) for ag,4 when g ≥ 3.

Finally, recursive relations (4.3) imply that for g ≥ 4 the difference ag,5 − ag,4 is
strictly positive, which implies the desired lower bound (4.4) for ag,5 when g ≥ 4. It
remains to verify that the polynomial (288g3− 780g2+1012g− 525) in the explicit
Expression (A.5) for ag,5 attains only strictly positive values for g ≥ 4 to prove the
desired upper bound (4.4) for ag,5. For g ≥ 4 we have:

288g3 − 780g2 + 1012g − 525 >

> 288g3 − 864g2 + 864g − 576 = 288((g − 1)3 − 1) > 0 .

�

Corollary A.2. For any g in {1, 2, 3, 4} and for all k ∈ N satisfying 2 ≤ k ≤ 3g−3,
the desired bounds (4.4) are valid:

1− 2

6g − 1
= ag,1 < ag,k < ag,0 = 1 .

Proof. Recall that the symmetry ag,k = ag,3g−1−k allows to limit k to the range

2 ≤ k ≤
[
3g−1

2

]
. Thus, for g ≤ 4 the largest possible value of k satisfying k ≤

[
3g−1

2

]

equals to
[
3·4−1

2

]
= 5. The proof of bounds (4.4) for k ≤ 5 and any g is already

completed in Lemma A.1. �

A.2. Alternative form of recurrence relations. We start by extracting the
common factor in Relations (4.3) and by simplifying it.

Define the following polynomial in g and j:

(A.6) Q(g, j) = g(6g − 6j − 1)(6g − 6j − 3) ,

Rewriting double factorials in terms of factorials and rearranging we get

(6g − 6j − 5)!!

(6g − 1)!!
· (6j − 1)!! · (g − 1)!

j! (g − j)!
=

=

(
(6g − 6j − 5)!

(3g − 3j − 3)! 23g−3j−3

)(
(3g − 1)! 23g−1

(6g − 1)!

)(
(6j − 1)!

(3j − 1)! 23j−1

)
(g − 1)!

j! (g − j)!
=

= 8 ·
(
(6j − 1)! (6g − 6j − 5)!

(6g − 1)!

)(
(3g − 1)!

(3j − 1)! (3g − 3j − 3)!

)(
(g − 1)!

j! (g − j)!

)
=

= 8 ·
(
(6j)! (6g − 6j)!

(6g)!

)(
(3g)!

(3j)! (3g − 3j)!

)(
g!

j! (g − j)!

)
·

· 6g

(6j) · (6g − 6j)(6g − 6j − 1)(6g − 6j − 2)(6g − 6j − 3)(6g − 6j − 4)
·

· (3j) · (3g − 3j)(3g − 3j − 1)(3g − 3j − 2)

3g
· 1
g
=

=

(
3g
3j

)(
g
j

)
(
6g
6j

) · 1

g · (6g − 6j − 1)(6g − 6j − 3)
= R(g, j) · 1

Q(g, j)
.
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Defining the following polynomials in g and j:

P1(g, j) = (6g − 6j − 1)(6g − 6j − 3)(g − 2j) ,(A.7)

P2(g, j) = −2(6g − 6j − 3)(6j + 1)(g − j) ,(A.8)

P3(g, j) = 2(6j + 1)(6j + 3)(g − j) ,(A.9)

we can express the recurrence relations (4.3) as

ag,3j − ag,3j−1 = R(g, j) · P1(g, j)

Q(g, j)
, where 3 ≤ 3j ≤

[
3g − 1

2

]
,(A.10)

ag,3j+1 − ag,3j = R(g, j) · P2(g, j)

Q(g, j)
, where 1 ≤ 3j + 1 ≤

[
3g − 1

2

]
,(A.11)

ag,3j+2 − ag,3j+1 = R(g, j) · P3(g, j)

Q(g, j)
, where 2 ≤ 3j + 2 ≤

[
3g − 1

2

]
.(A.12)

Lemma A.3. For any g ∈ N the following bounds are valid

0 <
P1(g, j)

Q(g, j)
< 1 , where 3 ≤ 3j ≤

[
3g − 1

2

]
,(A.13)

−1 <
P2(g, j)

Q(g, j)
< 0 , where 1 ≤ 3j + 1 ≤

[
3g − 1

2

]
,(A.14)

0 <
P3(g, j)

Q(g, j)
< 1 , where 2 ≤ 3j + 2 ≤

[
3g − 1

2

]
.(A.15)

Proof. The bounds 3 ≤ 3j ≤
[
3g−1

2

]
in (A.13) imply that 0 < j < g

2 . Dividing
Expression (A.7) for P1(g, j) by Expression (A.6) for Q(g, j) we get

P1(g, j)

Q(g, j)
=
g − 2j

g
.

Clearly,

0 <
g − 2j

g
< 1

for any g ∈ N and for all j satisfying 0 < j < g
2 .

The bounds 1 ≤ 3j + 1 ≤
[
3g−1

2

]
in (A.14) imply that 0 ≤ j < g

2 . Dividing
Expression (A.8) for P2(g, j) by Expression (A.6) for Q(g, j) we get

P2(g, j)

Q(g, j)
= −2 · 6j + 1

6g − 6j − 1
· g − j

g
= − 6g − 6j

6g − 6j − 1
· 2j +

1
3

g
=

= −
(
1 +

1

6g − 6j − 1

)
·
(
2j + 1

3

g

)
.

Since 0 ≤ 2j ≤ g − 1, the latter expression is always strictly negative for this
range of j. Both factors in the brackets in the latter expression are monotonically
increasing on this range of j, so the maximum of the absolute value of the product
is attained at 2j = g − 1. We get

(A.16) 0 <

∣∣∣∣
P2(g, j)

Q(g, j)

∣∣∣∣ ≤
(
1 +

1

6g − (3g − 3)− 1

)
·
(
g − 2

3

g

)
=

=

(
1 +

1

3g + 2

)
·
(
1− 1

3
2g

)
< 1 for g ∈ N and 0 ≤ j <

g

2
.
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The bounds 2 ≤ 3j + 2 ≤
[
3g−1

2

]
in (A.15) imply that 0 ≤ j < g

2 and that
6j ≤ 3g− 5. Dividing Expression (A.9) for P3(g, j) by Expression (A.6) for Q(g, j)
we get

P3(g, j)

Q(g, j)
= 2 · (6j + 1)(6j + 3)(g − j)

g(6g − 6j − 1)(6g − 6j − 3)
=

∣∣∣∣
P2(g, j)

Q(g, j)

∣∣∣∣ ·
6j + 3

6g − 6j − 3
.

The expression 6j+3
6g−6j−3 is strictly positive and is monotonically increasing on the

range of j under consideration, so it attains its maximum on the largest possible
value of j. Since 6j ≤ 3g − 5 we get

0 <
6j + 3

6g − 6j − 3
≤ 3g − 2

3g + 2
< 1 for 2 ≤ 3j + 2 ≤

[
3g − 1

2

]
and g ∈ N .

Combined with (A.16) this proves the desired bounds (A.15) which completes the
proof of Lemma A.3. �

Lemma A.4. For any fixed value of g ∈ N, the expression R(g, j) considered as a

function of j is strictly monotonically decreasing on the range
{
0, 1, . . . ,

[
g−1
2

]}
of

the argument j.

Proof. It is immediate to verify that

(A.17) R(g, j + 1)/R(g, j) =
(6j + 5)(6j + 3)(6j + 1)

(6g − 6j − 1)(6g − 6j − 3)(6g − 6j − 5)
· g − j

j + 1
=

=
j + 5/6

j + 1
· 6j + 1

6g − 6j − 5
· 6j + 3

6g − 6j − 3
· 6g − 6j

6g − 6j − 1
=

=

(
1− 1

6j + 6

)
· 6j + 1

6g − 6j − 5
· 6j + 3

6g − 6j − 3
·
(
1 +

1

6g − 6j − 1

)

For any fixed g ∈ N each of the four terms in the last line of the above expression is
strictly monotonically increasing as a function of j on the range {0, 1, ...

[
g−1
2

]
}. It

is immediate to verify that when 2j = g − 1, the product of four terms in the last
line of the above expression is identically equal to 1 for all g ∈ N, and the Lemma
follows. �

Lemma A.5. For any g ∈ N and for any integer k in the range 6 ≤ k ≤
[
3g−1

2

]

the following bounds hold:

(A.18) −R(g, 2) · g − 3

2
≤ ag,k − ag,5 ≤ R(g, 2) · 3g − 11

3
.

Proof. We can assume that g ≥ 5; otherwise the range of k is empty and the
statement is vacuous.

Consider the sequence {ag,5, ag,6, . . . , ag,k}, and denote by n+(k) the number
of entries m in the set {5, 6, . . . , k − 1}, for which the inequality ag,m+1 > ag,m
holds. Similarly, denote by n−(k) the number of entries in the same set for which
inequality ag,m+1 < ag,m holds.

Combining the recurrence relations in the form (A.10)–(A.12), bounds (A.13)–
(A.15) and Lemma A.4 we conclude that

−R(g, 2) · n−(k) ≤ ag,k − ag,5 ≤ R(g, 2) · n+(k) .

It remains to translate the restriction k ≤
[
3g−1

2

]
into upper bounds for n+(k) and

n−(k) as functions of g.
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Recall that it follows from recurrence relations (4.3) that for m satisfying 0 ≤
m ≤

[
3g−1

2

]
− 1 we have ag,m+1 < ag,m if and only if m ≡ 0 (mod3) and we have

ag,m+1 > ag,m for the remaining m in this range. This implies that

n+ = 2(j − 2) n− = j − 2 , when k = 3j − 1 ,

n+ = 2(j − 2) + 1 n− = j − 2 , when k = 3j ,

n+ = 2(j − 2) + 1 n− = j − 1 , when k = 3j + 1 .

In all these cases we have

n+(k) ≤
2k − 10

3
,

n−(k) ≤
k − 4

3
.

By assumption k ≤
[
3g−1

2

]
, so the latter bounds imply that

n+(k) ≤
3g − 11

3

n−(k) ≤
g − 3

2
.

and (A.18) follows. �

We assume that g ≥ 5 and k ∈ {6, . . . ,
[
3g−1

2

]
}. Define

εbelow(g) =
27(68g3 − 308g2 + 519g − 280)

(6g − 1)(6g − 3)(6g − 5)(6g − 7)(6g − 9)
,(A.19)

εabove(g) =
9(g − 2)(288g3 − 780g2 + 1012g − 525)

(6g − 1)(6g − 3)(6g − 5)(6g − 7)(6g − 9)
.(A.20)

In these notation Expressions (A.4) and (A.5) for ag,5 can be written as

(A.21) ag,5 = 1− 2

6g − 1
+ εbelow (g) = 1− εabove(g) .

Lemma A.6. For any integer g satisfying g ≥ 5 the following strict inequalities
are valid:

R(g, 2) · g − 3

2
< εbelow(g)

R(g, 2) · 3g − 11

3
< εabove(g) .

Proof. The proof is a straightforward calculation.
First note that all the quantities R(g, 2), (g−3), (3g−11), εbelow(g), εabove(g) are

strictly positive for g ≥ 5, where strict positivity of εbelow (g) and of εabove(g) was
proved in Lemma A.1. Thus, it is sufficient to prove that

2 εbelow(g)

R(g, 2) · (g − 3)
> 1 for g ≥ 5 ,(A.22)

3 εabove(g)

R(g, 2) · (3g − 11)
> 1 for g ≥ 5 .(A.23)

Applying Definition (A.1) to evaluate R(g, 2) and cancelling out common factors
in the numerator and in the denominator of the resulting expression we get

(A.24) R(g, 2) =
10395

2
· g(g − 1)

(6g − 1)(6g − 3)(6g − 5)(6g − 7)(6g − 9)(6g − 11)
.
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Plug Expression (A.19) for εbelow(g) and the above Expression (A.24) for R(g, 2)
into the left-hand side of (A.22) and cancel out the common factors in the numerator
and in the denominator of the resulting expression. Applying polynomial division
with remainder to the resulting numerator and denominator we get

2 εbelow(g)

R(g, 2) · (g − 3)
= 2 · 27 · 2

10395
· (68g

3 − 308g2 + 519g − 280)(6g − 11)

g(g − 1)(g − 3)
=

=
4

385
·
(
408g − 964 +

1422g2 − 4497g + 3080

g(g − 1)(g − 3)

)
.

It is immediate to check that (1422g2−4497g+3080) is positive for g ≥ 5. It remains
to note that for g ≥ 5 we have (408g− 964) ≥ (408 · 5− 964) = 1076 > 385/4 which
completes the proof of (A.22).

Performing analogous manipulations we get

3 εabove(g)

R(g, 2) · (3g − 11)
=

= 3 · 9 · 2

10395
· (g − 2)(288g3 − 780g2 + 1012g − 525)(6g − 11)

g(g − 1)(3g − 11)
=

=
2

385
·
(
576g2 − 1080g + 2964 +

9790g2 + 1735g − 11550

g(g − 1)(3g − 11)

)
.

It is immediate to check that (9790g2 + 1735g − 11550) is positive for g ≥ 5 as
well as the denominator of the corresponding fraction. It remains to note that the
function (576g2−1080g+2964) is monotonically increasing on the interval [5; +∞[,
so for g ≥ 5 we get:

576g2 − 1080g + 2964 ≥ 576 · 52 − 1080 · 5 + 2964 = 11964 > 385/2 ,

which completes the proof of (A.23). �

Proof of Proposition 4.1. For small genera, g = 1, 2, 3, 4, Proposition 4.1 was proved
in Corollary A.2.

For genera g ≥ 5 and k = 2, 3, 4, 5, Proposition 4.1 was proved in Lemma A.1.
The symmetry ag,k = ag,3g−1−k implies Proposition 4.1 for symmetric values of k.

For g ≥ 5 and k in the range 6 ≤ k ≤
[
3g−1

2

]
Proposition 4.1 immediately follows

from combination of Lemma A.5, Expression (A.21) for ag,5 and Lemma A.6. The
symmetry ag,k = ag,3g−1−k implies Proposition 4.1 for symmetric values of k. �

A.3. Asymptotic behavior of normalized 2-correlators in large genera.
In this section we briefly describe the behavior of ag,k for g ≫ 1. More detailed
discussion would be given in a separate (and more general) paper.

When g → +∞ and j remains bounded, Expressions (A.7)–(A.9) and (A.6) for
polynomials Pi(g, j), i = 1, . . . , 4, and Q(g, j) respectively imply that

P1(g, j)

Q(g, j)
= 1− (2j) · 1

g
,

P2(g, j)

Q(g, j)
= −

(
2j +

1

3

)
· 1
g
+ o

(
1

g

)
,

P3(g, j)

Q(g, j)
=

(
2j +

1

3

)(
j +

1

2

)
· 1

g2
+ o

(
1

g2

)
,
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as g → +∞. In particular, for g ≫ 1 we see that for small values of j the ra-

tio P1(g,j)
Q(g,j) is close to 1, while the ratio P2(g,j)

Q(g,j) is of the order 1
g and the ratio

P3(g,j)
Q(g,j) is of the order 1

g2 . Thus, assuming that g ≫ 1, and taking consecutive

terms {ag,3j−1, ag,3j , ag,3j+1, ag,3j+1} with j ≪ g we observe certain increment
from ag,3j−1 to ag,3j , much smaller decrement from ag,3j to ag,3j+1 and very small
increment from ag,3j+1 to ag,3j+2.

For any fixed g ≫ 1 and j ≪ g the quantity R(g, j) defined by (A.1) is
very rapidly decreasing as j grows. We conclude from Expression (A.17) that
for bounded j and g → +∞ one has

R(g, j + 1) = R(g, j) · (j +
5
6 )(j +

3
6 )(j +

1
6 )

(j + 1)
· 1

g2
· (1 + o(1)) .

Since R(g, 0) = 1 we get the following expressions for j = 0, 1, 2, 3:

R(g, 0) = 1 ,

R(g, 1) =
(0 + 5

6 )(0 +
3
6 )(0 +

1
6 )

(0 + 1)
· 1

g2
·
(
1 + o(1)

)
=

5

72
· 1

g2
·
(
1 + o(1)

)
,

R(g, 2) =
(1 + 5

6 )(1 +
3
6 )(1 +

1
6 )

(1 + 1)
· 5

72
· 1

g4
·
(
1 + o(1)

)
=

385

3456
· 1

g4
·
(
1 + o(1)

)
,

R(g, 3) =
(2 + 5

6 )(2 +
3
6 )(2 +

1
6 )

(2 + 1)
· 385

3456
· 1

g6
·
(
1 + o(1)

)
=

425425

746496
· 1

g6
·
(
1 + o(1)

)
.

Lemma A.5 admits the following immediate generalization:

Lemma A.7. For any g ∈ N and for any integer k in the range 3j ≤ k ≤
[
3g−1

2

]

the following bounds hold:

(A.25) −R(g, j) · g − j − 1

2
≤ ag,k − ag,3j−1 ≤ R(g, j) · 3g − 2j − 7

3
.

Thus, having found the asymptotic expansion (when g → +∞) in 1
g up to the

term 1
g2j−2 for some ag,3j−1, we get the same asymptotic expansion up to the term

1
g2j−2 for all ag,k with k satisfying 3j − 1 ≤ k ≤ 3g − 3j.

Finally, no matter whether g = 2j or g = 2j+1 one easily derives from Stirling’s
formula that

R(g, j) ≈ 1

22g−1
· 1√

πg
.

Morally, when g ≫ 1 and the index k is located sufficiently far from the extremities
of the range {0, 1, . . . , 3g−1}, the values of ag,k become, basically, indistinguishable.

0.1 0.2 0.3 0.4 0.5

0.2

0.4

0.6

0.8

1.0

Figure 6. Graph of f(x)
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It is curious to note that the sequence {ag,2, ag,5, . . . , ag,3jmax−1}, where jmax is

the maximum integer satisfying 3jmax−1 ≤
[
3g−1

2

]
, is not monotonically increasing

for g ≥ 17. Let x = j
g . Our bounds on j imply that 0 < x < 1

2 . For any fixed

g ≫ 1 define

f(x) = f

(
j

g

)
=

(P1(g, j) + P2(g, j) + P3(g, j))

Q(g, j)
.

For large values of g the graph of f(x) has the form as in Figure 6, so up to some
point the function f remains positive and the sequence ag,2, ag,5, . . . monotonically
increases, but then it attains its maximum and very slowly monotonically decreases
down to ag,3jmax−1.

Appendix B. Stable graphs: formal definition

Following M. Kontsevich [Kon] we now introduce the definition of a stable graph.
Let S be a closed oriented surface of genus g without boundary endowed with n la-
belled marked points. Let γ be a simple closed primitive multicurve on S. Consider
the decomposition of S \ γ into a union of surfaces with boundaries endowed with
marked points. The dual graph Γ to this decomposition is constructed as follows.

• Each connected component Sj of S\γ gives rise to a vertex vj of Γ decorated
by the genus g(Sj). The marked points on Sj are encoded by the legs
attached to vj , the boundary components of Sj correspond to half-edges
incident to vj .

• Each component γi of γ gives rise to an edge of Γ. When γi is the common
boundary of two distinct connected components of S \γ, the corresponding
edge of Γ joins the two distinct vertices of Γ representing these two con-
nected components. When both sides of γi are at the boundary of the same
connected component of S \ γ, the edge of Γ dual to γi is a loop joining the
vertex associated to the corresponding connected component to itself.

Figures in the tables of Appendix C.2 illustrate the correspondence between mul-
ticurves and stable graphs in genus 2.

We now present the following formal definition

Definition B.1. Consider a 6-tuple Γ = (V,H, ι, α,g, L), where

• V is a finite set of vertices.
• H is a finite set of half-edges.
• ι : H → H is an involution. The fixed points of ι are called the legs and
the 2-cycles of ι are called the edges of Γ.

• α : H → V is a map that attaches a half-edge to a vertex. The number of
half-edges at a given vertex v is denoted by nv := |α−1(v)|.

• The graph is connected: for each pair of vertices (u, v) there exists a se-
quence of half-edges (h1, h

′
1, h2, h

′
2, . . . , hk, h

′
k) such that ι(hi) = h′i, u =

α(h1), v = α(h′k) and α(h
′
i) = α(hi+1).

• g = {gv}v∈V is a set of non-negative integers, one at each vertex, called the
genus decoration.

• L is a bijection from the set of legs to {1, . . . , n}.
Such a 6-tuple Γ is called a stable graph for Mg,n if the genus decoration g satisfies
the following conditions:

• g(Γ) = h1(Γ)+
∑

v∈V gv, where h1(Γ) is the first Betti number of the graph,
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• stability condition 2gv − 2 + nv > 0 at each vertex v of Γ.

To a stable graph Γ we associate an underlying graph whose vertex set is V and
each 2-cycle (h, h′) of ι gives an edge attached to α(h) and α(h′). We denote the
set of these edges by E = E(Γ). Such a graph can have multiple edges and loops.
The additional information carried by a stable graph is the genus decoration g and
the n legs.

Two stable graphs Γ = (V,H, ι, α, g, L) and Γ′ = (V ′, H ′, ι′, α′, g′, L′) are iso-
morphic if there exists two bijections φ : V → V ′ and ψ : H → H ′ that preserve
edges, legs and genus decoration, that is

ψ ◦ ι = ι′ ◦ ψ , L′(ψ(h)) = L(h) , g′φ(v) = gv .

Note that automorphisms of stable graphs are allowed to interchange edges and
vertices respecting the decoration but not the legs which are numbered by L.

We denote by Gg,n the set of isomorphism classes of stable graphs with given
genus g and number of legs n.

As we already mentioned, each stable graph in Gg,n corresponds to a cycle of

the Deligne–Mumford compactification Mg,n. More precisely, each vertex v of the
graph corresponds to the component of a nodal curve of genus gv and contains the
marked points corresponding to the legs attached to this vertex. Each edge of E(Γ)
represents a node. (See the survey [Va] for an excellent introduction to this subject
and for beautiful illustrations.) Hence, the unique stable graph with no edge and
n legs in Gg,n corresponds to the component Mg,n (the smooth curves).

Appendix C. Examples of explicit calculations

C.1. The cases of Q0,3 and Q1,1. We now consider the moduli spaces M0,3 and
M1,1 and the associated cotangent bundles Q0,3 and Q1,1.

There is a unique complex curve C in M0,3 which is CP1 \ {0, 1,∞}. This curve
does not admit any non-zero quadratic differentials with at most simple poles at
the marked points 0, 1 and ∞ and with no other poles (which is coherent with the
fact that the tangent space to a point is 0). There is a unique stable graph for
M0,3:

G(0, 3) =
{

0

}
.

Let us denote this graph by Φ0,3. If we try to apply Theorem 1.5 to define the value
of VolQ0,3, the polynomial PΦ0,3 defined by (1.12) is ill-defined since 4g − 4 + n =
6g − 7 + 2n = −1 and (−1)! makes no sense. However, taking limits as in (1.28),
we obtain the value

PΦ0,3 = 2 · (−4 + n)!

(−7 + 2n)!

∣∣∣∣
n=3

= 4 ,

leading to VolQ0,3 = 4 by means of (1.13) which is coherent with the value in (1.15)
evaluated for n = 3 and also coherent with (1.24).

For (g, n) = (1, 1) there are two stable graphs as given below.

G(1, 1) =
{

1
,

0

}
.

Only the second graph contributes to Expression (1.13) from Theorem 1.5 for
VolQ1,1 and to Expression (1.23) from Theorem 1.15 for carea(Q1,1). Let us denote
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this graph by Φ1,1. Applying (1.12), one finds PΦ1,1 = 4b1 from which we deduce

VolQ1,1 = Z
(
PΦ1,1

)
= 4ζ(2) =

2π2

3
and carea(Q1,1) =

3

π2
Z(∂ΦPΦ) = 2π2 ,

which coincides with our convention 1.25.
Note that any element of Q1,1 is the square of a holomorphic one form (regular

at the marked point). In other words, the principal stratum Q(1,−1) is empty and
Definition 1.2 of VolQg,n does not apply. One can make geometric sense of the
values VolQ1,1 and carea(Q1,1) by considering square-tiled surfaces for the stratum
H(0) of holomorphic Abelian differentials.

C.2. Holomorphic quadratic differentials in genus two. We start by eval-
uation of the Siegel–Veech constant carea(Q2). Note that certain graphs do not
contribute to carea at all.

b1 b2
128
5 · 1 · 1

8 · b1b2 ·N0,4(b1, b1, b2, b2) = (1 + 1)·

b1 b2
0

= 16
5 · b1b2 ·

(
1
4 (2b

2
1 + 2b22)

)
·85 ·3!ζ(4)·1!ζ(2)

∂Γ7−→ 8
5 (1 · b1b32 + 1 · b31b2)

Z7−→ = 1 · 8
225 · π6

b1

b2

128
5 · 12 · 12 ·b1b2 ·N0,3(b1, b1, b2)·N1,1(b2) 1· 2

15 ·1!ζ(2)·3!ζ(4)

b1 b2
0 1

= 32
5 ·b1b2 ·1·

(
1
48b

2
2

) ∂Γ7−→ 2
15 ·1·b1b32

Z7−→ = 1 · 1
675 · π6

b1

b2

b3
128
5 · 12 · 18 ·b1b2b3 ·N0,3(b1, b1, b2)· (1 + 1

2 + 1)·

b1 b2
b30 0

·N0,3(b2, b3, b3) =
8
5 ·b1b2b3 ·(1)·(1) · 85 · (1! ζ(2))3

∂Γ7−→ 8
5

(
1·b1b2b3+ 1

2b1b2b3+1·b1b2b3
) Z7−→ = 5

2 · 1
135 · π6

b1

b2
b3

128
5 · 12 · 1

12 ·b1b2b3 ·N0,3(b1, b1, b2)· (1 + 1 + 1)·

b1 b2 b3

0

0

·N0,3(b2, b3, b3) =
16
15 ·b1b2b3 ·(1)·(1) 16

15 ·(1! ζ(2))
3

∂Γ7−→ 8
5

(
1·b1b2b3+ 1

2b1b2b3+1·b1b2b3
) Z7−→ = 3 · 2

405 · π6

Taking the sum of the four contributions we obtain:
((

1 · 8

225
+ 1 · 1

675

)
+

(
5

2
· 1

135
+ 3 · 2

405

))
· π6 =

(
1

27
+

1

30

)
· π6 =

19

270
· π6 .

Dividing by VolQ2 =
1

15
· π6 we get the answer which matches the value found

in [G1]:
π2

3
· carea(Q2) =

(
19

270
π6

)
:

(
1

15
π6

)
=

19

18
.

The computation of the Masur–Veech volume VolQ2 was presented in Table 1
in Section 1.4. The first two graphs in Table 1 represent the contribution to the
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volume VolQ2 of square-tiled surfaces having single maximal cylinder. The re-
sulting contribution

(
16
945 + 1

2835

)
π6 = 7

405π
6 = 49

3 ζ(6) was found in Appendix C
in [DGZZ1] by completely different technique.

The third and the fourth graph together represent the volume contribution(
8

225 + 1
675

)
π6 = 1

27π
6 of square-tiled surfaces having two maximal cylinders. The

last two graphs — the contribution
(

1
135 + 2

405

)
π6 = 1

81π
6 of square-tiled surfaces

having three maximal cylinders.
Normalizing the contribution of 1, 2, 3-cylinder square-tiled surfaces by the entire

volume VolQ2 of the stratum we get the quantity pk(Q2) which can be interpreted
as the “probability” for a “random” square-tiled surface in the stratum Q2 to have
exactly k horizontal cylinders. These same quantities pk provide “probabilities” of
getting a k-band generalized interval exchange transformation (linear involution)
taking a “random” generalized interval exchange transformation in the Rauzy class
representing the stratum Q2 (see section 3.2 in [DGZZ1] for details). The lat-
ter quantities are particularly simple to evaluate in numerical experiments. The
resulting proportions

(
p1(Q2), p2(Q2), p3(Q2)

)
=

(
7

405
,
1

27
,
1

81

)
:
1

15
=

(
7

27
,
15

27
,
5

27

)

match the numerical experiments obtained earlier in Appendix C of [DGZZ1].

C.3. Holomorphic quadratic differentials in genus three. In genus three
there are already 41 different decorated ribbon graphs. We do not provide the
graph-by-graph calculation as we did in genus two but only the contributions of
k-cylinder square-tiled surfaces for all possible values k = 1, . . . , 6 of cylinders.

Number of Number of Contribution Relative
cylinders k graphs Γ to the volume contribution pk

1 2 94667
126299250 · π12 757336

3493125

2 5 150749
108256500 · π12 4220972

10479375

3 9 84481
86605200 · π12 591367

2095875

4 12 5989
21651300 · π12 167692

2095875

5 8 1
17820 · π12 28

1725

6 5 1
144342 · π12 56

27945

The resulting contribution of 1-cylinder surfaces was confirmed by the alterna-
tive combinatorial study of the Rauzy class of the stratum Q(18) (see section 3.2
in [DGZZ1]. The approximate values pk(Q(18)) were confirmed by numerical ex-
periments with statistics of k-band generalized interval exchange transformations.

Taking the sum of all contributions we get the volume of the moduli space Q3

of holomorphic quadratic differentials in genus 3: VolQ3 =
115

33264
· π12 .
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C.4. Meromorphic quadratic differentials in genus one. In this section we
apply Formula (1.13) to compute the Masur–Veech volume VolQ(12,−12) of the
moduli space Q1,2 of meromorphic quadratic differentials in genus g = 1 with two
simple poles p = 2.

We use the same convention on the order of numerical factors in every first
line of the middle column as in section C.2. Namely, for (g, p) = (1, 2) we have

ℓ! · 2d · 2d

d! =
32
5 , which is the first factor. The second factor is 1/2|V (Γ)|−1.

The third factor is |Aut(Γ)|−1. We remind that the vertices and edges of Γ are
not labeled while the two legs are labeled. An automorphism of Γ preserves the
decoration of vertices and the labeling of the legs. For example, the graph Γ in the
second line does not have any nontrivial automorphisms.

b1
32
3 · 1 · 1

2 · b1 ·N0,4(b1, b1, 0, 0) =

b1
0

= 16
3 · b1 ·

(
1
4 (2b

2
1)
)

= 8
3 · b31

Z7−−→ 8
3 · 3! · ζ(4) = 8

45π
4

b1
32
3 · 1

2 · 1 · b1 ·N1,1(b1) ·N0,3(0, 0, b1) =

b1

1 0
= 16

3 · b1 ·
(

1
48b

2
1

)
· (1) = 1

9 · b31
Z7−−→ 1

9 · 3! · ζ(4) = 1
135 · π4

b1

b2
32
3 · 1

2 · 1
2 · b1b2 ·N0,3(b1, b1, b2) ·N0,3(b1, 0, 0)

b1
b2

0 0
= 8

3 · b1b2 · (1) · (1) = 8
3 · b1b2 Z7−−→ 8

3 ·
(
ζ(2)

)2
= 2

27π
4

b1

b2
32
3 · 1

2 · 1
2 · b1b2 ·N0,3(0, b1, b2) ·N0,3(b1, b2, 0)

b1 b20

0

= 8
3 · b1b2 · (1) · (1) = 8

3 · b1b2 Z7−−→ 8
3 ·
(
ζ(2)

)2
= 2

27π
4

Table 2. Computation of VolQ1,2. The left column represents
stable graphs Γ ∈ G1,2 and associated multicurves; the middle
column gives associated polynomials PΓ; the right column provides
volume contributionsVol(Γ).

The resulting value

VolQ1,2 =

((
8

45
+

1

135

)
+

(
2

27
+

2

27

))
· π4 =

(
5

27
+

4

27

)
· π4 =

π4

3

matches the one found in [G2]. The contribution of 1-cylinder square-tiled surfaces
and the proportion 5 : 4 between 1-cylinder and 2-cylinder contributions match the
corresponding quantities found in Appendix C in [DGZZ1].
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Now we evaluate the Siegel–Veech constant carea(Q(14)).

b1

b2
32
3 · 1

2 · 1
2 · b1b2 ·N0,3(b1, b1, b2) ·N0,3(b1, 0, 0)

b1
b2

0 0
= 8

3 · b1b2 · 1 · 1 = 8
3 · b1b2 Z◦∂Γ7−−−→

(
1 + 1

2

)
· 8
3 ·
(
ζ(2)

)2
= 3

2 · 2
27π

4

b1

b2
32
3 · 1

2 · 1
2 · b1b2 ·N0,3(0, b1, b2) ·N0,3(b1, b2, 0)

b1 b20

0

= 8
3 · b1b2 · 1 · 1 = 8

3 · b1b2 Z◦∂Γ7−−−→ (1 + 1) · 8
3 ·
(
ζ(2)

)2
= 2 · 2

27π
4

Taking the sum of the two contributions we obtain the answer:

(
3

2
· 2

27
+ 2 · 2

27

)
· π4 =

7

27
· π4 .

Dividing by VolQ(12,−12) = π4

3 we get the answer which matches the value found
in [G1].

π2

3
· carea(Q(12,−12)) =

(
7

27
· π4

)
:

(
1

3
· π4

)
=

7

9
.

Appendix D. Tables of volumes and of Siegel–Veech constants

In this appendix we present numerical data for Vol(Qg,n) and carea(Qg,n) corre-
sponding to small values of g and n. Table 3 gathers the numerical values of the
volumes, of the Siegel–Veech constants and of the sums Λ+ (respectively Λ−) of the
top g (respectively geff ) Lyapunov exponents of the Kontsevich–Zorich cocycle over
the principal stratum Q(14g−4+n,−1n). By Formulae (2.3) and (2.4) in the paper
of A. Eskin, M. Kontsevich and A. Zorich [EKoZo], these quantities are related as
follows:

Λ+ =
(5g − 5− n)

18
+
π2

3
carea(Qg,n) .

Λ− = Λ+ +
(g − 1 + n)

3
.

It is possible to approximate Λ+ and Λ− numerically by computer simulations of
the accelerated Rauzy induction. The values of Λ+ and of Λ− based on the values
of carea(Qg,n) computed in this paper match the approximate values obtained in
these numerical experiments.

One has Λ+ = 0 in genus zero, so in genus zero the Siegel–Veech constant admits
a simple closed formula. By Formula (1.1) in the paper of J. Athreya, A. Eskin and
A. Zorich [AEZ2] one has

VolQ(1n−4,−1n) = 2π2

(
π2

2

)n−4

.

We get the same expressions in the cells of Table 3 corresponding to genus 0 com-
puted by Formulae (1.13) and (1.23) of the current paper.
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g n Stratum Volume π2/3 · carea Λ+ Λ−

0 5 Q(1,−15) π4 5/9 0 4/3

0 6 Q(12,−16) 1/2 · π6 11/18 0 5/3

0 7 Q(13,−17) 1/4 · π8 2/3 0 2

1 2 Q(12,−12) 1/3 · π4 7/9 2/3 4/3

1 3 Q(13,−13) 11/60 · π6 47/66 6/11 17/11

1 4 Q(14,−14) 1/10 · π8 44/63 10/21 38/21

1 5 Q(15,−15) 163/3024 · π10 2075/2934 70/163 1025/489

2 0 Q(14) 1/15 · π6 19/18 4/3 5/3

2 1 Q(15,−1) 29/840 · π8 230/261 32/29 154/87

2 2 Q(16,−12) 337/18144 · π10 8131/10110 1636/1685 3321/1685

3 0 Q(18) 115/33264 · π12 24199/25875 4286/2875 18608/8625

4 0 Q(112) π18 · 2106241/ 283794163/ 91179048/ 143835073/

11548293120 315936150 52656025 52656025

Table 3. Numerical values of volumes, of Siegel–Veech constants
and of sums of Lyapunov exponents for low-dimensional strata

The recent paper of D. Chen, M. Möller and A. Sauvaget [CMöS] suggested
alternative formulae for the Masur–Veech volumes and for the area Siegel–Veech
constants of the principal strata Q(14g−4+n,−1n) as weighted sums of certain very
special linear Hodge integrals. The subsequent paper of M. Kazarian [Kaz] pro-
vided very efficient recursive formula for these Hodge integrals, which allows one
to compute VolQg,n and carea(Qg,n) for all sufficiently small values of g and n fast
enough. In particular, following this alternative approach one obtains the same
data as in Table 3

Further numerical data can be found in [DGZZ4] where we apply Formulae (1.13)
and (1.23) to express respectively the Masur–Veech volumes Vol(Qg,n) and the
Siegel–Veech constants carea(Qg,n) as polynomials in the intersection numbers of
ψ-classes. Recall that applying Formula (1.26) one can express the Siegel–Veech
constant carea in terms of the volumes of the principal boundary strata. One
more table in [DGZZ4] provides the corresponding explicit expressions for low-
dimensional strata.
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