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Abstract—Intelligent Transportation Systems (ITS) have be-
come an important pillar in modern “smart city” framework
which demands intelligent involvement of machines. Traffic load
recognition can be categorized as an important and challenging
issue for such systems. Recently, Convolutional Neural Network
(CNN) models have drawn considerable amount of interest
in many areas such as weather classification, human rights
violation detection through images, due to its accurate prediction
capabilities. This work tackles real-life traffic load recognition
problem on System-On-a-Programmable-Chip (SOPC) platform
and coin it as MAT-CNN-SOPC, which uses an intelligent re-
training mechanism of the CNN with known environments. The
proposed methodology is capable of enhancing the efficacy of
the approach by 2.44x in comparison to the state-of-art and
proven through experimental analysis. We have also introduced
a mathematical equation, which is capable of quantifying the
suitability of using different CNN models over the other for a
particular application based implementation.

Index Terms—Convolutional neural network (CNN), traf-
fic analysis, traffic density, transfer learning, system-on-a-
programmable-chip (SOPC).

I. INTRODUCTION

Some of the popular ways of traffic monitoring and analysis

for categorization of traffic load is either using vehicle based

assess method [1]–[8] or a holistic approach [9]–[12]. But

analysis of traffic using these popular methods require high

frame rate videos with a stable environmental condition, which

could be the biggest limiting factor in many places. Without

these conditions being met [8], [13]–[15], reliable motion

features cannot be extracted, which might result in corrupted

output.

Because of large-scale camera network not being able to

stream and store high-frame rate videos gathered by a network

of interconnected cameras due to bandwidth limitation and

limited on-board storage capacity, streaming low-frame videos

on these camera is very common. In many cases when these

cameras stream over a WIFI network, it is often difficult to

stream more than 2 frames per second due to the limited
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bandwidth of the network [8], [14]. Moreover due to cost

constraint of such interconnected camera networks and associ-

ated servers, many developing countries might not be able to

adopt and implement such sophisticated state-of-the-art traffic

analysis and categorization methodologies. On the other hand

image processing [16]–[23] and computer vision applications

[16], [24], [25] are very well known for their thread, task and

data level parallelism. Recently we could also notice a huge

increase in integrating Convolutional Neural Networks [26]–

[30] in computer vision to solve several real-life challenges

such as human rights violation detection through images [31],

[32], weather forecasting [33], [34], etc. Due to high level

of data parallelism in computer vision applications using

Convolutional Neural Networks and reducing cost factor of

field-programmable gate array (FPGA) based system-on-a-

programmable-chip (SOPC) [35], [36], such SOPC serves as

a cost-effective option to analyze and categorize traffic.

In this paper, we propose a novel methodology to analyze

and categorize traffic using Convolutional Neural Networks on

SOPC without the need of streaming the video-frames to the

server for further categorization as is usually done in state-

of-the-art traffic categorization methodologies. The proposed

methodology is coined as Motionless Analysis of Traffic Using

Convolutional Neural Networks on SOPC: MAT-CNN-SOPC

and we have also introduced a Quality of Experience variable,

which would enhance the predicting mechanism of the chosen

CNN model. The remainder of this paper is organized as

follows. Section II mentions the related work in the field and

Section III provides a breakdown of the software and hardware

infrastructure used for the implementation and validation pur-

poses of the proposed methodology along with the dataset used

and problem definition solved using this solution. Section IV

provides a comprehensive view of the proposed methodology

and in Section V we could analyze the experimental results.

Section VI briefly mentions some related discussion on the

proposed methodology. Finally, Section VII concludes the

paper.
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II. RELATED WORK

Before 2015, majority of traffic analysis and categorization

was mostly performed using the following methodologies:

• Vehicle based methodologies where either vehicles are

first localized on the road with a background subtraction

method [3]–[5] or the vehicles are localized with moving

feature keypoints [6], [7]. In these methodologies the

resulting tracks are concatenated together to identify key

features of traffic such as traffic lanes, average traffic

speed, average traffic density, etc.

• A holistic approach, where a macroscopic analysis of

traffic flow is understood through global representation

of a scene, which is obtained by accounting for spatio-

temporal features except tracking using background sub-

traction and moving feature keypoints [9]–[11].

Although the aforementioned methodologies are highly ef-

fective to analyze traffic, the biggest limiting factor is the cost

of sophisticated camera-network involved and the requirement

for high-frame-rate videos to compute reliable motion fea-

tures. To break away from this trend of traffic analysis, in

2015 Luo et al. [8] proposed a methodology to use various

image processing and CNN based approaches to analyze

traffic without moving features. In this paper the authors used

four different visual descriptors such as bag of visual words

(BOVW), Vector of Locally Aggregated Descriptors (VLAD),

improved Fisher Vector (IFV) and Locality-constrained Linear

Coding (LLC), and have also used pre-trained deep CNN

models such as Caffe and VGG to analyze traffic and predict

categorization of the same. The approach taken by Luo et

al. to use popular image processing and CNN methods to

classify traffic is novel and solves the low-frame-rate video

streaming issue. However, the experimental setups and results

provided in the paper is susceptible to some biasness as

the cross-dataset validation was not performed. In Section

VI we have compared our experimental setup and achieved

results with the ones mentioned in [8]. In another extended

paper published by Luo et al. [14], the researchers have used

SegCNN and RegCNN to analyze and classify traffic. In

both the aforementioned papers the authors are training and

classifying traffic images after the video frames are transferred

to the server from the interconnected camera network. But

installing and implementing such hardware infrastructure to

analyze traffic in developing countries is a challenging issue

[37].

Other state-of-the-art methodologies include detecting &

counting the numbers of cars and computing traffic density

based on that using CNN-based vehicle detectors with high

accuracy at near real time [38]–[40]. Although this way of

detecting traffic density could still be classified as a vehicle

based approach and has become popular in recent times but

there are associated challenges with these methods as follows:

• Training and test data should belong to the same dataset

taken from the same camera with same configuration and

hence require consistency in training.

• Cars detected need to be within a particular range or

scope of the image and these methodologies fail to detect

cars, which are far away in the images captured.

• These methodologies performed poorly if the captured

images were occluded, especially in case of heavy traffic

& jam.

From the aforementioned list of issues with the state-of-

the-art methods, although Deep Learning [41] could solve

the problem of detecting occluded objects properly but such

method usually requires large dataset to be trained with. But

for the application of traffic categorization there is no such

publicly available dataset and hence using Deep Learning

would be inefficient.

Compared to all the aforementioned works, we propose an

easy to train CNN model, which do not require a lot of images

in the training dataset, with combination of transfer learning
1 and continuous learning 2 capabilities on SOPC without the

need of communicating the traffic images to the connected

server for further analysis.

III. SYSTEM AND PROBLEM FORMULATION

A. Hardware Infrastructure & Software Infrastructure

It is worth mentioning that the CNN based traffic analysis

will demand a huge amount of computing resources. Rather

than high performance general purpose processing unit, the

application specific computing could also be a lucrative way

out. From the recent literature studies [41], [42], it has been

observed that software based execution could provide the

required flexibility but not the performance efficiency in terms

of execution. On the other hand, a dedicated hardware based

execution will provide performance efficacy but will under

perform when the flexibility becomes the major concern.

Thus, hardware software co-execution ecosystem is emerg-

ing as a bright prospect and modern FPGA (ZYNQ) platform

is a good solution to implement such functionality 3. In order

to carry out the functionality in FPGA, we have chosen the

vivado HLS [43] framework. This framework also extracts the

parallelism inside the code. The entire CNN model is created

in high level language (C/C++, Matlab, Python). Then it has

been converted in to RTL 4 format through vivado high level

synthesis. Once the code has been converted, the VIVADO

framework will synthesize to the bitstream to make the design

executable. Our code (in Matlab, Python & C/C++) is provided

on our GitHub repository [44].

1Learning achieved by taking the convolutional base of a pre-trained
network, running the new data of 4 traffic categories through it and training
a new randomly initialized classifier

2Learning achieved by re-training the classifier with wrong predictions till
operating period of the system

3Even though GPUs could be an efficient accelerators for CNNs. However,
such devices are expensive & very power hungry and thus, make them not
suitable in the aforementioned power-constrained scenarios

4 RTL: Register-transfer level is a design abstraction, which models a
synchronous digital circuit in terms of the flow of digital data between
hardware registers and the logical operations performed on those signals.



B. Dataset

For our research we are using the same dataset used by

Luo et al. [8], [14] to validate performance of our proposed

methodology and theories. Mainly two dataset are used. The

first one is the dataset released by UCSD traffic control

department [45]. This dataset contains 254 highway video

sequences, all filmed by the same camera containing light,

heavy and traffic jams filmed at different periods of the day

and under different weather conditions. Each UCSD video has

a resolution of 320 X 240 with a frame rate of 10 fps.

The second dataset consist of the 400 images5 captured

from highway cameras deployed in all over the UK and also

consist of several examples of different weather and lighting

conditions in order to provide a better training performance.

These 400 images are segregated into 4 categories: Jam,

Heavy, Fluid, Empty (as shown in Fig. 1), and each category

having 100 images.

Fig. 1. Random images from 4 Categories of Traffic Classification: Jam,
Heavy, Fluid, Empty [8]

C. Problem Definition

The main focus of this research is to be able to implement

a hardware-software ecosystem, which is able to analyze and

predict traffic effectively on the System-on-programmable-

chip without streaming the video-frames to the server over

a communication channel even in severe hardware impaired

conditions such as poor video recording capabilities of the

camera. Since a practical application such as categorization

of traffic using CNNs methodologies requires a desirable

“Quality of Experience” (QoE) in order to be a successful

implementation, we also need to define the governing equation

to quantify QoE so that we could understand the overall

desirability of the CovNet methodology being used for the

problem in hand. Let us consider the (QoE) that will decide

whether the accuracy of the CovNet methodology is desirable

as Q and the predicted label (categorization) of the CovNet as

Pi for any image (i) from a dataset of images (I) at an instance.

5Only 400 images were available in the existing dataset provided by Luo
et al. [8]

Fig. 2. MAT-CNN-SOPC Model Work flow

Then the governing equation which could be used to predict

the label (category) of the traffic as desirable at an instance is

as follows:

∀{i ∈ I : i > 1}, Pi ≥ Q (1)

In the aforementioned equation (1), we are not taking the

training time of the CovNet model into consideration as part

of QoE since it is assumed that training is mandatory and

completed while the hardware-software ecosystem is setup

on the section of the road or highway for the purpose of

categorizing traffic. Later in Section VI we would also provide

a minimum threshold value for QoE for the given problem in

hand based on the experimental results (Section V) performed.

IV. PROPOSED METHODOLOGY: MAT-CNN-SOPC

In this section we propose the hardware-software ecosystem,

MAT-CNN-SOPC, which would be utilizing the categorization

power of a pre-trained CNN model to be trained to effectively

categorize traffic based on the desired categories. We propose a

two fold module of MAT-CNN-SOPC: Training & Prediction

(as shown in Fig. 2). Both the Training and Prediction mod-

ules are implemented in application layer of the SOPC. For

this hardware-software ecosystem we assume that a camera

is connected to the system-on-a-programmable-chip and the

primary training of the classifier of the pre-trained CNN model

is performed 6 while the SOPC is setup on the section of the

road in the first place.

6Using transfer learning of pre-trained CNN model



For our proposed model we could select any available pre-

trained CNN model such as AlexNet [29], VGG [28], ResNet

[30], etc. for the Training module. In this module we train

the system with various known images of traffic. Since FPGA

on the SOPC are excellent candidates for SIMD programming

exploration, we use FPGA on board as accelerators for the

Convolutional layers during the training. The training module

consists of both offline training as well as online training.

During the offline training, the model is trained on the dataset,

which is either pre-stored on the SOPC or stored on an external

storage connected to the system. After the initial (offline)

training is complete with the pre-stored dataset, the camera

connected on the SOPC is activated to send in images of

the current traffic/section of the road with determined labels

(categories) and the training of the model is validated. If

the model predicts a wrong category of the streamed image

then that image along with it’s correct category is stored

in a reFeed Image Stack, a special stack implementation to

hold images with labels, on the system for later (online)

training. If during this validation stage of the model, the

total prediction accuracy falls below the desired accuracy (Q

as mentioned in Eq. 1) of the model then the model is re-

trained with the images stored in the reFeed Image Stack.

After completion of every training process the validation phase

is re-executed till the prediction accuracy of the model is

equal or more than Q (Quality of Experience). Methodology

of the training module is algorithmically provided in Algo. 1.

The main motivation to re-train the CNN model with failed

prediction dataset of a known environment is to artificially

enhance the accuracy of the model and we call this enrichment

in performance as reFeed Gain factor (r). In Section V-B,

we have provided the value of reFeed Gain factor: r noted

from the performed experiments and we have also provided

a generic mathematical notation of this terminology for better

representation as follows:

r = |P f
i − P 0

i |,where P 0

i ≤ Q ≤ P f
i (2)

In the aforementioned equation (Eq. 2) Q is the Quality

of Experience (see Eq. 1), which is desired for the system

to perform well (related to predicting traffic categories), P f
i

is the prediction accuracy of the CNN model after re-trained

with reFeed Image Stack and P 0

i is the prediction accuracy in

the initial training.

Based on Eq. 2, if we consider S as the boost function in

prediction accuracy of the CNN model after re-training with

reFeed Image Stack feature, which we denote as reFeed Gain

(R), we could represent the reFeed Gain as follows:

R← S(P 0

i ) = (P f
i /P

0

i ) (3)

Therefore, using Eq. 2 & 3 we could generalize the rela-

tionship between P 0

i , R, r, Q 7 as follows:

7 P 0

i denotes initial prediction accuracy, R denotes reFeed Gain, r denotes
reFeed Gain Factor and Q corresponds to the Quality of Experience

R× P 0

i = r + P 0

i , where P 0

i ≤ Q (4)

Now, in the prediction module our CNN model keeps

predicting the traffic category (label) and it either broadcasts

the label over the network or it stores the labels along with the

video frames on a memory storage, which could be either on-

board or external. Later we could use the concept of “assistive

learning”, where a human being manually goes through the

stored video frames along with their predicted labels and

rectifies any label if there was a wrong prediction. Whenever

an image is classified as wrong by the assistive human being

then that image goes into the reFeed Image Stack of the

Prediction module and later the images from this stack is

transfered to the reFeed Image Stack in the Training module so

that the CNN model could be further trained with the images

from the reFeed Image Stack to enhance reFeed Gain (R). We

call this method to improving the prediction accuracy of the

existing CNN model as “Continuous Learning” of the CNN

Model for a specific category (as shown in Fig. 2). In this

particular work we are only focused on the implementation of

reFeed Image Stack and reFeed Gain in the Training module.

Algorithm 1: Training Module Execution

Input:
1. I: set of n Images from Training & Validation Dataset
2. T : set of m Images from Testing Dataset (for
cross-validation)
Output: P : prediction accuracy after training
Initialize: Q = 0.7; ⊲ Quality of Experience is set to 70% by

default
S.Count = 0; ⊲ S: reFeed Image Stack

Offline Training:
Train (pre-trained CNN model , I); ⊲ Train model with I

dataset
for each image i ∈ T do

Prediction = Test ( CNN model ); ⊲ Test outputs whether
prediction is correct or wrong
⊲ Prediction.IsWrong() is a function to return True when

Prediction.Label ! = Original.Label of Test image i
if Prediction.IsWrong() then

S.Push(i);

Calculate mean Prediction Accuracy (P 0

i );

P = P 0

i ;

Online Training:

{re-Train with reFeed Image Stack if P 0

i < Q}
if P 0

i < Q then
⊲ Need to satisfy condition of Eq. 1

if S.Empty() == False then
{Traing CNN with reFeed Image Stack}
Train (CNN model , S );
Calculate mean Prediction Accuracy (P

f
i );

P = P
f
i ;

S.Count = 0; ⊲ reset reFeed Image Stack

else
return P ;

The proposed methodology (MAT-CNN-SOPC) is bio-

inspired due to the fact that human beings constantly keep



learning even when they are introduced to a completely new

environment so that they could adjust to that environment

quickly and adapt to it. By using this same concept we could

enhance the learning mechanism of the CNN model for a

particular scene-based application.

A. Employed CNN Models

In order to prove the effectiveness of our proposed method-

ology we chose two popular object-centric CNN architectures,

VGG 16 convolutional-layer (VGG16) [28] and ResNet50 [30]

CNN. The selected CNN architectures contain 138 million pa-

rameters for VGG16 and 26 million parameters for ResNet50.
A typical approach to enable training of very deep networks

on small datasets is to use a model pre-trained on a very large

dataset, and then use the CNN as as an initialization for the

task of interest. This method, referred to as ‘transfer learning’
8 [42], [46] injects knowledge from other tasks by deploying

weights and parameters from a pre-trained network to the new

one. The rationale behind this is that the internal layers of the

CNN can act as a generic extractor of image representations

which have been pre-trained on one large dataset (source task)

and then re-used on other target tasks. Considering the size of

the dataset we have used (see Sec. III-B), the only way to apply

a deep CNN such as VGG16 and ResNet50, is to reduce the

number of trainable parameters. In order to achieve this the

first filter stages are held fixed during training (weights are

not updated) and overfitting 9 can be avoided. We initialize

the feature extraction modules using pre-trained models from

a large scale dataset, ImageNet [29], [47]. For the target task

(traffic analysis), we design a network that will output scores

for the 4 target categories of the dataset used.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

For this research we have taken the 400 highway images

(mentioned in Section III-B) and have used that for our

training and validation purposes. The dataset is partitioned

into two dataset consisting of training and validation sets and

during every test randomization algorithm was used on the

whole dataset to create the training and validation subsets.

We have selected 3 random videos from each category (light,

heavy and traffic) of the UCSD dataset and then converted

the video stream to image by processing 1 frame out of every

8 frames (˜1.3 fps). Since the videos from the UCSD dataset

is categorized based on light, heavy and traffic jams, we had

to manually categorized into our generic 4 categories: Jam,

Heavy, Fluid, Empty and generated 192 images (48 images

for each category) for testing purposes. We have performed the

following tests, which are separated into groups, as follows:
In Group 1 of tests (G1), in test G1.i we have broken the

400 training images into two dataset: 360 images for training

8 Transfer is achieved by taking the convolutional base of a pre-trained
network, running the new data of 4 traffic categories through it and training
a new, randomly initialized classifier on top of the semantic image output
vector Yout.

9 Overfitting happens when the CNN model recognizes specific images in
your training set instead of general patterns.

TABLE I
TESTS PERFORMED

Test Groups

G1: VGG16

performance on

Dataset

G2: VGG16

performance on

UCSD Dataset

G3: ResNet50
performance on
UCSD Dataset

(i) 90% Training
/ 10% Validation

(i) 90% Training
/ 10% Validation

(i) 90% Training
/ 10% Validation

(ii) 80% Training
/ 20% Validation

(ii) 75% Training
/ 25% Validation

(ii) 75% Training
/ 25% Validation

(iii) 70% Train-
ing / 30% Valida-
tion

(iii) 50% Train-
ing / 50% Valida-
tion

(iii) 50% Train-
ing / 50% Valida-
tion

(iv) 60% Train-
ing / 40% Valida-
tion

(iv) 75%Training
/ 25% Validation
with reFeed Im-
age Stack Feature

(iv) 75%Training
/ 25% Validation
with reFeed Im-
age Stack Feature

and 40 images for validation (in 9:4 ratio) of VGG16 pre-

trained model. In test G1.ii we have broken the dataset into

320 for training and 80 for validation sets, whereas in G1.iii

it is broken in the ratio of 7:3 and in G1.iv it is broken in

3:2. No separate tests were performed to check the accuracy

of the categorization after training in Group 1 of tests, but the

main motivation was to check the performance of training the

VGG16 model on the 400 traffic images.

In Group 2 of tests we have taken the pre-trained VGG16

model and have trained the model with training and validation

dataset in the ratio as mentioned in Table V-A. But in this

group of tests we have checked the categorization accuracy of

the model after training is complete with the 192 images of

UCSD dataset as mentioned earlier in this section. The UCSD

dataset was completely kept hidden during the training process

so that we could evaluate the desirability of using VGG16 in

scenarios of traffic analysis, which it has not been exposed to

in advance (cross validation using unseen UCSD dataset). In

Group 3 of tests we ran the similar set of tests as in Group 2

but we replaced the pre-trained CovNet model with ResNet50

and check the categorization accuracy with the UCSD dataset.

For each test in every group, we have completely re-trained

the CovNet model on our dataset to avoid bias of the model.

To prove our proposed MAT-CNN-SOPC model (Fig. 2)

and effective use of reFeed Image Stack for further training

(transfer learning), we have also performed a series of tests

where the model is further trained with images from reFeed

Image Stack, which is segregated into training and validation

set in the ratio of 75:25. Tests G2.iv and G3.iv represents those

tests for VGG16 and ResNet50 respectively. To check the

testing accuracy after this training method we used a different

set of 192 images of the UCSD dataset for the purpose. We

trained the CNN models for 10 epochs with a batch size of

10 images. Since we have worked with a small dataset for the

problem in hand, we have used several image augmentation



techniques such as Reflection 10, Translation 11, etc. to fit the

training of the CNN model. We also implemented the training

module on ZYNQ FPGA using Vivado HLS (see Section

III-A). This is an alternate attempt to accelerate some of the

functionalities of CNN.

B. Classification Results

For every single instance of the tests in each group (G1,

G2, G3) mentioned in the previous subsection (V-A), we have

performed the same tests to check consistency and only the

maximum result of those tests are reported in this section.

In Table V-B we could see the performance of each test,

where validation accuracy along with categorization accuracy

(testing) are reported.

TABLE II
TESTS PERFORMED

Results of Test Groups

G1: VGG16

performance on

Dataset

G2: VGG16

performance on

UCSD Dataset

G3: ResNet50
performance on
UCSD Dataset

(i) Validation Ac-
curacy: 92.50%

(i) Validation
Accuracy:
90.00%; Testing

Accuracy:

65.60%

(i) Validation
Accuracy:
92.50%; Testing
Accuracy:
40.00%

(ii) Validation
Accuracy:
87.50%

(ii) Validation
Accuracy:
89.50%; Testing
Accuracy:
60.00%

(ii) Validation

Accuracy:

88.00%; Testing

Accuracy:

33.33%

(iii) Validation
Accuracy:
89.17%

(iii) Validation
Accuracy:
90.00%; Testing
Accuracy:
62.30%

(iii) Validation
Accuracy:
84.50%; Testing

Accuracy:

61.67%

(iv) Validation
Accuracy:
89.38.50%

(iv) Validation

Accuracy:

94.59%; Testing

Accuracy:

87.50%

(iv) Validation

Accuracy:

95.50%; Testing

Accuracy:

81.25%

As we could see from Table V-B, initially after using the

stock traffic image dataset for training the testing prediction

accuracy in G2.i was 65.60%, which was the highest in that

group. But when we have used re-training mechanism (refer

to Algo. 1) on the CNN model with re-Feed Image Stack,

the testing prediction accuracy got boosted to 87.50% for

the same group (G2) and boosted to 81.25% in G3 group

compared to 33.33% (without re-training). Although, it is

a common knowledge that with more images for training

accuracy of the CNN model improves but the images used for

re-training did not exceed more than 10% of the initial training

(offline) dataset in size and given the size of the dataset we

are working on, the gain (reFeed Gain) in prediction accuracy

is solely because of the methodology (training with reFeed

10 Where each image is reflected horizontally.
11 Where each image is translated by a distance, measured in pixels.

Image Stack) used rather than the possibility of using more

images during training.

Now, using the Eq. 2 and the resulting values from Table V,

the calculated reFeed Gain Factor (r) is 47.92 and the reFeed

Gain (R) (using Eq. 3) is 2.44x for G3.iv. Example 1 sheds

some light on the phenomenon of enrichment of accuracy as

described through reFeed Gain.

Observation:

Example 1. In G3.iv, the testing accuracy is 81.25% (P f
i ),

whereas in G3.iv the testing accuracy is 33.33% (P 0

i ), thus

from Eq. 3:

R = (81.25/33.33) = 2.4377 ≈ 2.44

Therefore, the boost in prediction accuracy for ResNet50 for

this example using reFeed Image Stack is 2.44x.

The hardware implementation is carried out on Zynq ZC-

Z7045. It is observed that near about 95% of DSP (858 out

of 900), 55% of BRAM (301 out of 545) and 41% of LUTs

(89626 out of 218600) have been utilized.

VI. DISCUSSION

In the work [8], [14], the authors have used the same 400

images dataset and have split it into two: Training and Testing,

which means that the authors have used the same dataset for

training, validation and testing, which is highly undesirable in

this field to evaluate accuracy of the implemented CNN 12.

For example, in [8] they have used the same UCSD dataset to

both train and test the VGG model (after splitting the dataset

into 75% for training and 25% for testing) and have achieved

an accuracy of 96.10%. This way of predicting accuracy of

an application based CNN model is highly biased. When we

trained our VGG 16 model with separate image dataset and

tested the accuracy on the UCSD one, we got an accuracy

of just 60.00% (refer G2.ii in Tab. V-B) in comparison.

Additionally given the small size of the dataset used, there

are two possible challenges, which could be faced. One of

those issues being overfitting 13 The other issue is that the

model might not be able to train properly and result into less

accurate predictions. In [8], the reported accuracy results of the

implemented models were on validation instead of reporting

the testing accuracy of the same. When the UCSD dataset was

used for testing and the curated 400 traffic images for training

in our model, we found out that the testing accuracy was very

less compared to the validation one, contradicting their results.

In order to improve the testing accuracy of CNN models for

traffic analysis we came up with MAT-CNN-SOPC Model.

In Table V, we could also see an anomaly in using

ResNet50, where with less training images it performed better.

One of the possible reasons being overfitting of images when

trained with less number of images but from the training

graphs (see Fig. V-B) we could understand that is not the case.

12 It is undesirable to use the same dataset for training, validation and
testing since it introduces high level of bias.

13 Overfitting happens when the CNN model recognizes specific images in
your training set instead of general patterns.



(a) Result: Validation Accuracy & Loss of VGG16 in G1.i Test (b) Result: Validation Accuracy & Loss of ResNet50 in G3.i Test

Fig. 3. Graph Showing Validation Accuracy & Loss

The other possible reason being mislabeling of the images

while testing. For our example we have noticed that sometimes

it was difficult even for a human to differentiate between

‘Heavy’ and ‘Fluid’ traffic and since the testing images were

labeled manually.

From the graphs in Fig. 3 we could also see that the model is

somehow underfitting rather than overfitting, but incorporating

the MAT-CNN-SOPC Model for the training and prediction

has actually made the gap between the training, validation and

testing accuracy narrower. Although it could be argued upon

that since we have used images from the same camera and

on the same road junction to improve the training quality of

the CNN model but given the practical application of traffic

analysis it is highly likely that the same camera system would

operate in the same junction/street region for its lifetime. Thus

training the camera system with known environment seems to

solve the problem of analyzing and categorizing traffic in a

cost effective way. Another noteworthy thing to mention is

that for this application and for our tests we have chosen the

value of Quality of Experience (QoE) as 70% 14 by default

but, this value could be modified based on the desired accuracy

for the problem in hand and we could also utilize Eq. 4 to fine

tune MAT-CNN-SOPC for the same purpose.

VII. CONCLUSION

In this paper, we have proposed a novel CNN based cat-

egorization model, which could categorize traffic effectively

on the programmable system board even with less number of

training images in the dataset. To effectively train the CNN to

improve prediction accuracy, we have used a combination of

transfer learning as well as a novel re-training mechanism on

pre-trained CNN models, where the model is re-trained with

14 For our traffic categorization issue we found out through testing that
chosing QoE value of 70% produced better result in re-training the model for
accuracy.

images from a known environment. We have also introduced

Quality of Experience, which researchers in this field could

use to choose the right CNN model for their problem and

achieve the desired results (in terms of accuracy).
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