
Factorial experimental designs typically involve contrast-
ing two or more sets of experimental items or participants
that differ on some critical dimension and yet are matched
on all other dimensions that could conceivably affect the
dependent measure(s) that are obtained. For example, in
experiments on language processing, researchers might
want to contrast response times (RTs) to two sets of words
that differ on a property of interest (e.g., imageability) and
yet are matched on all other properties that affect RT (e.g.,
frequency of occurrence, bigram frequency, number of syl-
lables, number of letters, etc.). Similarly, in studies compar-
ing a group of abnormal participants with a control popu-
lation, researchers typically might want to select control
participants that are matched to the experimental group on
a number of factors that could affect performance, such as
age, sex, IQ, educational level, handedness, and so on.

In both of these scenarios, scientific progress will inevi-
tably increase the difficulty of producing matched sets of
items or participants. Every study that discovers a factor
that affects an experimental measure introduces another
potential confound that must be controlled in future experi-
mentation. In a psycholinguistic context, Anne Cutler noted
25 years ago that “making up materials is a confounded nui-
sance” (Cutler, 1981) and expressed a doubt as to whether
it would even be possible to perform experimental com-
parisons of different language materials in the future. None-
theless, factorial experiments remain the standard tool of
experimental psychology and many other fields.

Help is at hand for the frustrated researcher. For many
properties that could influence the response to specific items,
databases that will allow stimulus matching already exist

(e.g., the CELEX database for language research; Baayen,
Piepenbrock, & Gulikers, 1995). Furthermore, whenever
new properties of stimuli are discovered that affect RT in a
number of tasks, the research communities will often circu-
late databases of measured norms of all the relevant proper-
ties. Similarly, for researchers interested in comparing two
groups of participants, new methods of quantifying differ-
ences between individuals are continually being developed,
with the goal of measuring precisely those characteristics
that are relevant for behavioral investigations (e.g., ques-
tionnaire measures of personality, tests of IQ or handedness,
genotyping, etc.). The raw materials are therefore readily
available for researchers to acquire the data that they need in
order to match their groups of items or participants.

However, although the increased availability of tests
and norms is crucial if confounding factors are to be con-
trolled, they also introduce a substantial additional prob-
lem. How should researchers, faced with several hundred
potential items or participants that must be matched on
perhaps a dozen different dimensions, select a correctly
matched subset for their experiment? As one might imag-
ine, the number of possible solutions to this type of prob-
lem can be enormous. For instance, there are more than
1015 (i.e., a million billion) ways of selecting 12 control
participants from a pool of 100 individuals. For psycho-
linguistic experiments in which the candidate set of items
may only be limited by the number of words known by a
typical participant (approximately 50,000) this combina-
torial explosion becomes even more severe. Trying to get
a good match between two sets of items or participants can
be a time-consuming and tedious task, even if the relevant

 973 Copyright 2007 Psychonomic Society, Inc.

Match: A program to assist in matching the
conditions of factorial experiments

MAARTEN VAN CASTEREN AND MATTHEW H. DAVIS
MRC Cognition and Brain Sciences Unit, Cambridge, England

In most experiments that involve between-subjects or between-items factorial designs, the items and/or the
participants in the various experimental groups differ on one or more variables, but need to be matched on all
other factors that can affect the outcome measure. Matching large groups of items or participants on multiple
dimensions is a difficult and time-consuming task, yet failure to match conditions will lead to suboptimal experi-
ments. We describe a computer program, “Match,” that automates this process by selecting the best-matching
items from larger sets of candidate items. In most cases, the program produces near-optimal solutions in a matter
of minutes and selects matches that are typically superior to those obtained using hand matching or other semi-
automated processes. We report the results of a case study in which Match was used to generate matched sets
of experimental items (words varying in length and frequency) for a published study on language processing.
The program was able to come up with better-matching item sets than those hand-selected by the authors of the
original study, and in a fraction of the time originally taken up with stimulus matching.

Behavior Research Methods
2007, 39 (4), 973-978

M. van Casteren, maarten.van-casteren@mrc-cbu.cam.ac.uk

974 VAN CASTEREN AND DAVIS

of the program, and finally, we describe a case study in
which we use Match to generate stimuli for an already
published EEG (electroencephalography) experiment.
We show that this automated approach produces better-
matched stimulus sets than those previously generated by
hand, and in much less time.

Example
To clarify the use of the program, we have constructed a

simple problem to serve as an example. The complete ex-
ample is also available to download from the Match Web
site. In this case, we have two experimental conditions:
one containing words with no neighbors, and one with
words that have two or more neighbors. A neighbor of a
word is another word of equal length that is different by
only a single letter. We would like these two conditions to
be matched on word length, frequency of occurrence, and
bigram frequency. Note that both word length and bigram
frequency are correlated with frequency of occurrence,
and both frequency measures are correlated as well, mak-
ing this a nontrivial matching problem.

First, we need two input files with item candidates for
each condition. These files should also contain the three
dimensions that we want our conditions to be matched
on. Table 1 gives an overview of the input to the Match
program, listing the first 10 entries for each input file and
a summary of the mean values for all dimensions for these
two files. As can be seen, the input files contained 1,054
and 962 items. Frequency of occurrence and bigram fre-
quency mean values are already quite closely matched,
but the mean word lengths are not. Just selecting words
with matching lengths will not work, because this will af-
fect the match on the other dimensions as well, because of
the confounds mentioned earlier.

Match was configured to select the best-matching 50
items from each file. The script used to get these results is
included as the Appendix. The results are given in Table 2.
The summary for these selected files clearly shows that
Match has successfully matched all relevant dimensions.
The first 10 items from each output file are also included,
and these show the way the program has matched items in
a pairwise fashion. Each item has a clear match in the other
file. This is a result of the algorithm used, which matches
items in pairs, or more generally, in tuples, because any
number of files can be matched in this way. Items from the
same tuple will always be written to the same line number in
each output file so that the user can check which items the
program grouped together. In this way, a tuple of matched
items can also be removed as a whole, if need be.

Algorithm
Match will operate on any number of sets of items or

participants and on any number of dimensions. In this
description, we will focus on the problem of generating
matched sets of experimental items—though the same
algorithm operates equivalently when matching sets of
experimental participants. Each set of potential items is
provided in a separate input file, along with all the nec-
essary dimensions. The goal of the matching process is
to select a subset of items from each set, such that these

data have already been collected. On the other hand, tak-
ing shortcuts and failing to correctly match your experi-
mental conditions will introduce noise into experimental
data, reduce the significance of measured effects, or even
invalidate experimental results where confounding factors
remain uncontrolled.

In this article, we describe a computerized solution
to the problem of matching experimental items or par-
ticipants on multiple, potentially confounding factors.
“Match” is a computer program that can automatically
select two or more matched groups of stimuli/participants
on multiple numerical measures. The program tries to find
a solution that will match groups of items or participants
as closely as possible in mean, median, and standard devi-
ation values for all the measures involved. Since a precise
solution may not be possible in all cases, each measure
can be assigned a weight to indicate its relative impor-
tance in the matching process. We believe that the use of
the Match program will substantially benefit experimen-
tal research in a number of different areas of psychology
and other disciplines. The factorial designs that can be
constructed using this program will ordinarily be more
closely matched than those that could be obtained by hand
or by using semiautomated approaches (e.g., sorting and
resorting the materials, or computing the most similar
pairs of items from a larger set; see Lahl & Pietrowsky,
2006). Using Match requires minimal intervention on the
part of the experimenter beyond generating a database of
candidate items or participants, and writing a script that
sets some simple parameters for the matching process.

In addition to the greater convenience and performance
of using a computer program for matching sets of items
or participants, there is also a more principled reason why
a computerized matching process is beneficial, which
is that it removes possible sources of experimenter bias.
Forster demonstrated the possibility for this in word rec-
ognition experiments (Forster, 2000). He tested visual
lexical decision (VLD) responses for a list of word pairs
that were matched on word frequency. He then asked two
groups of 25 volunteers, all of whom conducted research
into language processing, to decide which of the pairs of
frequency-matched words would produce the faster RT
in a VLD experiment. All of the researchers were able to
make this decision with better than chance accuracy, irre-
spective of their degree of research experience (graduate
students fared as well as senior researchers). On the basis
of this finding, it is therefore possible for a researcher to
introduce an experimental effect in a comparison of appar-
ently matched experimental items by judicious stimulus
selection. Although it is perhaps unlikely that researchers
would deliberately choose items so as to produce a biased
experiment, it is clear that subconscious, or unintended se-
lection biases could alter the outcome of psycholinguistic
experiments. By using an automated procedure to select
the best-matching stimuli, we believe that Match will pre-
vent any such bias and produce better and more reliable
results in psycholinguistic experiments.

In this article, we start by giving an example of a match-
ing problem and the results that can be obtained with
Match, we then explain the algorithm that is at the heart

MATCHING CONDITIONS IN FACTORIAL EXPERIMENTS 975

In operation, Match will first of all read in all the sets of
items or participants, along with the values on all of their
associated dimensions. These values are then normalized
and weighted, if weights were specified. Normalization
will ensure that a dimension that happens to have large
values will not dominate the matching process at the cost
of dimensions with smaller average values. Values for all
dimensions that are specified to be matched are normal-
ized to the average mean of each dimension for both input
sets in each matching relationship.

Items will be matched in tuples or sets, each contain-
ing one item from every input data set. A solution to the
matching process is reached when each tuple contains
precisely one item from each data set, with each item ap-
pearing in only one tuple, because it is not possible for an
experimental item or participant to appear more than once
in a factorial experiment. In order to generate a solution,
we start by creating a set of possible items on each posi-

subsets are optimally matched on all relevant dimensions.
Matching relationships are specified pairwise between two
input sets. More complicated matching is possible by using
multiple matching relationships, and there is no limit to the
number of matching links. For instance, we will present a
case study in which six sets of items needed to be matched,
with a total of 12 matching relationships between them.

Match uses a distance measure that reflects the degree
of similarity between individual items as the variable to
optimize. This distance measure is computed using the
normalized standard Euclidean distance between item
pairs, calculated over the vector of values on all the di-
mensions involved in the matching process. These values
may be measures such as word frequency or length, in
the case of matching items, or age and IQ, in the case of
matching participants. Match tries to minimize the sum
of the squares of all these Euclidian distances between all
sets of matched items.

Table 1
Example of a Matching Problem: Data Sets Before Matching

List 1: No Neighbors List 2: 2 Neighbors

Word

 CELEX
Frequency

 Bigram
Frequency

n

Word

 CELEX
Frequency

 Bigram
Frequency

n

abbess 52 36,778 0 abide 84 69,732 2
abortive 59 58,565 0 ably 65 46,160 2
abstain 65 42,429 0 ace 81 103,413 9
abstract 51 36,717 0 ache 86 106,028 3
absurdly 58 28,450 0 adept 59 45,288 2
abyss 72 32,671 0 adorn 75 46,413 2
accrue 72 58,409 0 airy 59 45,558 4
acquit 60 42,741 0 akin 63 56,530 2
activate 96 57,777 0 ale 63 109,706 10
acutely 82 37,210 0 alight 53 44,194 5

.

.

. .
Summary 1,054 items Summary 962 items
 Mean length 6.9 letters Mean length 4.8 letters
 Mean frequency 69.7 / 17.7 million Mean frequency 70.0 / 17.7 million
 Mean bigram 31,405 / million Mean bigram 33,462 / million

Table 2
Example of a Matching Problem: Data Sets After Matching

Selection 1: No Neighbors Selection 2: 2 Neighbors

Word

 CELEX
Frequency

 Bigram
Frequency

n

Word

 CELEX
Frequency

 Bigram
Frequency

n

abyss 72 32,671 0 shady 72 33,119 2
anoint 69 60,020 0 crease 69 59,951 2
apex 59 30,993 0 wild 59 30,904 9
asthma 70 53,613 0 babble 70 53,340 5
baboon 80 33,501 0 motion 80 33,492 3
basics 52 24,500 0 snatch 52 24,490 2
beggar 66 31,720 0 wicker 66 31,979 8
conifer 78 31,864 0 commend 78 32,288 2
consul 55 24,202 0 wooded 55 23,806 2
effigy 64 16,571 0 rugged 64 16,537 2

.

.

. .
Summary 50 items Summary 50 items
 Mean length 6.2 letters Mean length 6.2 letters
 Mean frequency 68.0 / 17.7 million Mean frequency 68.0 / 17.7 million
 Mean bigram 30,983 / million Mean bigram 30,908 / million

976 VAN CASTEREN AND DAVIS

much “matching quality” we would lose if we did not select
the best item. The item with the biggest difference for these
values is the one that should be selected first.

Second, we can use a simple procedure to decide when
a certain search path cannot produce a better solution than
has previously been found. We do this by adding up all
the squared distances of all the best items, as found by the
heuristic described above, in all tuples after pruning. As
soon as the best currently possible solution is inferior to
the best solution that has previously been found, we can
stop searching in this direction, and backtrack. Of course,
this will only work correctly if we made the perfect choice
for our best-matching items. But since we only used a sto-
chastic “quick and dirty” heuristic, we have to be care-
ful and leave a small margin. This means discarding only
search paths that are clearly worse than the current best
solution. Currently, this margin is set to 10%.

The algorithm as described will eventually lead to an
exhaustive search, in which all possible solutions are ex-
plored. As we have suggested at the outset, this can be
very time consuming, even for relatively modest problems.
However, since a single, guaranteed optimal solution is
not ordinarily required, we leave it to the user to decide
how long to leave the program running and therefore how
good a matching solution is required. The program can be
terminated earlier, at which point the best solution found
so far will be reported. Since the program always tries to
instantiate the best possible domain first, the solution after
a limited time will be reasonably optimal. As the follow-
ing case study illustrates, even when fairly short runs are
used, sets of items generated using the Match program are
ordinarily superior to those selected by hand.

Case Study
To demonstrate the capabilities of our Match program,

we selected a published study in which a complicated
matching solution was needed, which had already been
solved by hand. The study chosen was “Effects of Word
Length and Frequency on the Human Event-Related Poten-
tial,” by Hauk and Pulvermüller (2004). They performed
a VLD experiment to investigate the influence of word
length and frequency of occurrence on the visually evoked
event-related potential to written words. Their word stim-
uli were grouped into six conditions, in a 2 3 factorial
design with length (short vs. long words) and frequency
(low-, medium-, and high-frequency words) as indepen-
dent variables. Words were matched for length in the three
frequency conditions, and for both word form and lemma
frequency in the two length conditions. Since word length
and word frequency are correlated (Zipf, 1949), we can
consider this problem of simultaneously matching items
on both variables as being rather challenging. In addition
to these two variables, Hauk and Pulvermüller also took
care to make their conditions as well matched as possible
on the standard deviation of these matching properties.
They performed an ANOVA on the matched stimulus sets,
and could not find any significant differences in length
(between the frequency groups), or word form and lemma
frequency (for the length groups). They also matched the
base 10 logarithm of both frequency measures, and equated

tion for each tuple. Initially, each of these sets will contain
all of the available items in the corresponding input sets.

To reach a solution, the program will have to select the
best-matching items in each position within each tuple.
After an item has been chosen for a single tuple, the se-
lected item has to be removed from all other tuples, a pro-
cess called “pruning.” The actual matching process consists
of an active search for solutions within this pruned search
space. The algorithm used in Match will alternate between
pruning and selecting, and will backtrack to an earlier
state when a search path fails (leaving a tuple without any
items) or generates a solution (a complete set of tuples, all
of which contain only single items). When the program
backtracks, it returns to the last selection choice, and rein-
states all the items that were removed from all tuples and
then removes the selected item, because this choice has
now been exhaustively tried. Each time the program finds
a solution, it is compared with the best solution found pre-
viously, and if it is better, it will be stored as the current
best solution. The criterion used to compare solutions is,
again, the total (i.e., summed squared) distance within all
tuples. The process of finding the best possible solution to
the matching problem is therefore a recursive, depth-first
search process through a tree that contains the entire space
of possible matches. Since an exhaustive search through
this tree is computationally extremely expensive, we can
improve efficiency further by adding extra strategies at the
selection stage. These will ensure that the algorithm spends
most of its time engaged in searches that are likely to lead
to a better solution than has currently been saved.

First of all, the choice of best item for the next selection
is crucial. But, selecting the best item to be assigned to one
position within a tuple is a problem in itself. The quality of
match for any given item is completely dependent on the
other items that have already been selected within its tuple.
When no items have been selected at all, it is rather difficult
to decide which item is the best to be selected first, be-
cause we need all the other items to calculate the quality of
the match. Therefore, selecting the first item is in principle
equivalent to selecting a complete solution for the whole
tuple. And finding the best-matching tuple with certainty
will necessitate going through all possible combinations, a
number equal to the product of the sizes of all data sets. In
the case study described below, this product was more than
1013, clearly an impossible task. Our solution to this com-
binatorial explosion is to use a heuristic: a “rule of thumb”
that will point the process in approximately the right direc-
tion. We start by choosing an item at random from each set;
we then loop through all the items in each set and select
the one that matches best with all other current choices.
Several loops are performed, and the order in which to loop
through all sets is randomized too. Making a selection like
this for all the initial tuples will ensure that at least one
reasonably good solution will be created somewhere. This
leaves the problem of which item should be selected first
within a tuple. The quality of the match is calculated over
the whole tuple, so it will be the same for all items. To see
which one is best to select next, we compare the total match
for each item within the tuple to the second-best-matching
item in the same set. The difference is an indication of how

MATCHING CONDITIONS IN FACTORIAL EXPERIMENTS 977

PC running Windows 2000. Writing and testing the script
took no more than 15 minutes.

In addition to showing that the program could perform
the same task as the authors of this article, we explored
whether the remaining confound of neighborhood size
(N) could be removed from this set of items. To this end,
additional matching relationships were added to the script
and the program was run again. We were not able to com-
pletely remove the effect of N between the length condi-
tions, but there was no longer any significant main effect
of N in the comparison of the frequency conditions, nor
any interaction between length and frequency. Since both
of these effects existed in the previous item set, we would
suggest that Match has improved on the previous set of
materials. Table 5 shows the results of an ANOVA on the
final set of matched stimuli.

Because N is very strongly correlated with word length,
it is perhaps unsurprising that the program was unable to re-
move the difference in N between words of different lengths.
However, within the space of possible matches that exist in
the language, Match has produced a clear improvement, in
that the effect of N was removed from comparisons between
frequency conditions. This result proves that Match is not
only able to solve the same problems as humans, but can, in
some cases, solve problems that are beyond the capabilities
of a highly motivated human researcher.

Program
Match is a command-line program that will run on Mi-

crosoft Windows 32-bit systems. The program is written
in standard C , so it could possibly be ported to other
operating systems as well. There is no graphical user inter-

their words for trigram frequency. However, ANOVAs did
reveal some significant differences in orthographic neigh-
borhood size (N) for both length and frequency, as well
as an interaction between the two. This was attributed to
the fact that short, high-frequent words tend to have fewer
neighbors in general.

Matching the six conditions was performed by hand by
the authors and took a considerable amount of time. Since
we had access to the same initial sets of stimuli (from
which matched items were chosen) we could apply the
Match program to this problem and compare its perfor-
mance with the matching used in a published study. Table 3
shows the matches of word length for both the original
data as well as the Match program. The table also shows
the sizes of the initial sets of items, to give an indication
of the scale of the matching problem. A matched set of 69
items was to be selected from each of the data sets. As can
be seen, Match consistently produced better matches than
the human researcher, with regard to both the mean and
standard deviation of the critical variables. Indeed, for the
lengths, the program found perfect matches by ensuring
that only triplets of words with the same number of letters
were chosen for the low-, medium-, and high-frequency
conditions. Table 4 shows the matching results for the
lemma frequency and word form frequency. Match was
able to match all conditions within the second decimal,
clearly improving on the hand-matched results.

In this case, the results obtained by Match required an
overnight run to produce results that clearly outperformed
those of a highly motivated human. However, very good
matches were obtained after as little as 10 minutes of com-
puting time using a standard Pentium 4, 2.4-MHz desktop

Table 3
Means and Standard Deviations Showing Length Matching From

Hauk and Pulvermüller (2004) and As Generated by Match

Length (Letters)

Length Frequency Initial Final H and P Match

Conditions Conditions Set Size Set Size M SD M SD

Short Low 137 69 4.101 0.84 4.101 0.79
Medium 180 69 4.116 0.87 4.101 0.79
High 178 69 4.101 0.81 4.101 0.79

Long Low 113 69 6.275 0.80 6.203 0.81
Medium 157 69 6.246 0.91 6.203 0.81

 High 153 69 6.246 0.83 6.203 0.81

Table 4
Means and Standard Deviations Showing Lemma and Word Form Frequency Matching From

Hauk and Pulvermüller (2004) Compared With the Results As Generated by Match

Lemma
Frequency (log/mil)

Word Form
Frequency (log/mil)

Frequency Length H and P Match H and P Match

Conditions Conditions M SD M SD M SD M SD

Low Short 0.836 0.266 0.812 0.271 0.666 0.227 0.642 0.228
Long 0.770 0.302 0.818 0.264 0.604 0.244 0.642 0.228

Medium Short 1.594 0.238 1.541 0.245 1.422 0.226 1.416 0.232
Long 1.537 0.284 1.540 0.242 1.412 0.275 1.412 0.237

High Short 2.240 0.250 2.246 0.232 2.127 0.246 2.140 0.231
 Long 2.247 0.261 2.245 0.231 2.145 0.267 2.141 0.232

978 VAN CASTEREN AND DAVIS

possible experimenter bias, by automating the stimulus se-
lection process. The case study shows that the results are
typically better than those obtained by hand matching, and
can be obtained in a fraction of the time, with considerably
less effort. The generic nature of the program, and the fact
that using Match will increase the power of experiments,
makes it an indispensable tool for research in many areas.

AUTHOR NOTE

We thank Olaf Hauk for his help with the case study involving his ex-
periment. Correspondence concerning this article should be addressed to
M. van Casteren, MRC Cognition and Brain Sciences Unit, 15 Chaucer
Road, Cambridge CB2 7EF, England (e-mail: maarten.van-casteren@
mrc-cbu.cam.ac.uk).

REFERENCES

Baayen, R. H., Piepenbrock, R., & Gulikers, L. (1995). The CELEX
Lexical Database (Release 2) [CD-ROM]. Philadelphia: Linguistic
Data Consortium, University of Pennsylvania.

Cutler, A. (1981). Making up materials is a confounded nuisance, or:
Will we be able to run any psycholinguistic experiments at all in 1990?
Cognition, 10, 65-70.

Forster, K. I. (2000). The potential for experimenter bias effects in
word recognition experiments. Memory & Cognition, 28, 1109-1115.

Hauk, O., & Pulvermüller, F. (2004). Effects of word length and
frequency on the human ERP. Clinical Neurophysiology, 115, 1090-
1103.

Lahl, O., & Pietrowsky, R. (2006). EQUIWORD: A software applica-
tion for the automatic creation of truly equivalent word lists. Behavior
Research Methods, 38, 146-152.

Zipf, G. K. (1949). Human behaviour and the principle of least-effort.
Cambridge, MA: Addison-Wesley.

face: All necessary settings and parameters are entered in a
very simple script file, which is then passed to Match as a
command-line argument. The program can be instructed to
run in the background, at a lower priority, to enable running
scripts for a longer time without interfering with other ac-
tivities on the same computer. The program can be stopped
at any time, and the best solution at that point can then be
written to file. The program can work on the raw values pro-
vided with the items, as well as on the logarithm (base 10)
or the orthographic length of the input fields. Missing val-
ues can be replaced automatically by either a fixed value or
the mean of the existing other values. When two selections
are being made from the same input file, Match will make
sure that each item appears in only a single output file.

Availability
A Match executable for Windows, a complete manual,

and a small demo problem can be downloaded from this
Web site: www.mrc-cbu.cam.ac.uk/~maarten/match.htm.
Use is limited to academic or other nonprofit applications.
Terms of use can be found on the Web site mentioned
above. Authors who use Match for their research are ex-
pected to cite this article.

Conclusion
Match is a program that can not only make the process

of matching items for factorial experimental design much
easier, it can solve problems that are difficult or impos-
sible to do by hand or with other tools. It will also prevent

Table 5
Statistical Results of an ANOVA Performed on the

Second Case Study Matching Exercise

Property

Condition

WF Frequency

 Lemma
Frequency

No. Letters

Neighbors

Length F(2,1) 0.002 F(2,1) 0.033 F(2,1) 808 F(2,1) 335
p .97 p .86 p .00 p .00

Frequency F(3,2) 345 F(3,2) 263 F(2,1) 0.00 F(3,2) 0.001
 p .00 p .00 p 1.0 p .999

APPENDIX
Match Script Used for the Example

InputFile F1 LowN.txt Low_sel_3.txt
InputFile F2 HighN.txt HighN_sel_3.txt

MatchFields F1 1 F2 1 UseLength Length
MatchFields F1 2 F2 2 Frequency
MatchFields F1 3 F2 3 Bigram

OutputSize 50

OutputFile ScreenOutput.txt

(Manuscript received June 20, 2006;
revision accepted for publication October 9, 2006.)

