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Abstract

Local descriptor methods are widely used in computer vision to compare local re-

gions of images. These descriptors are often extracted relative to an estimated scale

and rotation to provide invariance up to similarity transformations. The estimation of

rotation and scale in local neighborhoods (also known as steering) is an imperfect pro-

cess, however, and can produce errors downstream. In this paper, we propose an alter-

native to steering that we refer to as match-time covariance (MTC). MTC is a general

strategy for descriptor design that simultaneously provides invariance in local neighbor-

hood matches together with the associated aligning transformations. We also provide a

general framework for endowing existing descriptors with similarity invariance through

MTC. The framework, Similarity-MTC, is simple and dramatically improves accuracy.

Finally, we propose NCC-S, a highly effective descriptor based on classic normalized

cross-correlation, designed for fast execution in the Similarity-MTC framework. The

surprising effectiveness of this very simple descriptor suggests that MTC offers fruitful

research directions for image matching previously not accessible in the steering based

paradigm.

1 Introduction

Local descriptor methods are a fundamental technology in computer vision. They enable

local regions to be compared, despite changes in viewpoint and appearance, and are used

in applications such as structure-from-motion, object detection and recognition, and image

retrieval. In the last decade, the accepted solution to the viewpoint invariance problem has

been extract-time covariance (ETC), also known as canonization or steering [17, 18]. SIFT

[8], SURF [2], ORB [15], BRISK [6], and FREAK [1] all use ETC. In this paradigm, the

algorithm tries to estimate a canonical rotation and scale for the descriptor at the time of

extraction.

ETC has several problems. First, viewpoint estimation is unreliable. This has been previ-

ously noted [5], and is demonstrated in Figure 2. This is empirically true even for SIFT scale
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Figure 1: The Similarity-MTC extraction and matching framework, which provides any de-

scriptor X with invariance and offset. This description is conceptual; actual implementations

may be considerably more efficient. In extraction, descriptors are computed for a range of

image scalings and rotations. To do this, a log-polar grid with NS rings (scales) and NR rays

(rotations) is centered at each keypoint. For each grid intersection (s,r), the image is scaled

and rotated about the keypoint to bring (s,r) to a canonical point, marked in yellow. Here

(s,r) are integer grid coordinates, where 0 ≤ s < NS and 0 ≤ r < NR. An X descriptor is then

extracted at the keypoint location of the transformed image, and associated with the index

(s,r), which is in turn associated with a point on a finite descriptor cylinder. In matching,

two descriptor cylinders are aligned for all (2NS − 1)NR possible ways. Optionally, a min-

imum overlap size NO may be specified. For each alignment, a total distance is computed.

The total distance is a function Ω of the descriptors in the overlapping regions; typically Ω is

a normalized mean of the distances between corresponding descriptors. The final distance is

the minimum total distance, and the similarity transformation is the relative cylinder motion

that produced that distance. Note the brute-force cost of a full matching may be avoided, as

in NCC-S. Best viewed in color.

estimation, despite theoretical work which suggests otherwise [10]. Second, because view-

point estimation is unreliable, the relative pose induced by a corresponding keypoint pair

cannot be trusted and is rarely used. Third, ETC requires a viewpoint estimation method,

which adds runtime and code complexity. Fourth, a region’s viewpoint cannot always be

uniquely defined, as when there is circular symmetry about a detected point. These weak-

nesses of ETC have been overcome by increasing the number of analyzed descriptors (e.g.

bag of features [16]), approximating the nearest neighbor search, or making the descriptors

cheaper to compute (e.g. ORB, BRISK, and FREAK). Still, there are many cases that re-

quire few descriptors and/or accurate matching: structure from motion, tracking, or rigid

object recognition with geometric constraints to name a few.

In this paper, we propose match-time covariance (MTC), an alternative to ETC. MTC

is a general strategy for descriptor design, which simultaneously provides invariance and

offset, the relative transformation to bring local regions into correspondence. The concept

of MTC is not new; our contribution is to provide a novel synthesis of approaches related to

MTC and to provide a general framework for endowing existing descriptors with similarity

invariance through MTC. The framework, Similarity-MTC, is simple, dramatically improves

accuracy, and additionally returns similarity transformations. Finally, we propose NCC-S,

a remarkably simple descriptor that is designed for fast execution in the Similarity-MTC

framework. The success of the descriptor also demonstrates the surprising effectiveness of

plain normalized cross-correlation as a distance measure for wide-baseline matching.
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The paper organization is as follows. Section 2 covers related works. Section 3 explains

MTC, Similarity-MTC, and NCC-S. Section 4 demonstrates MTC’s performance boost and

provides timings. We conclude with Section 5.

2 Related Works

Match-time covariance (MTC) and the proposed NCC-S descriptor are simple ideas with a

number of antecedents.

ASIFT is a wrapper around SIFT that endows SIFT with full affine invariance [11] by

generating many synthetic warps of the local region, extracting a SIFT descriptor each time.

The distance between two ASIFT descriptor bags B1 and B2 is minb1∈B1,b2∈B2
||b1 − b2||2.

ASIFT is an instantiation of MTC.

[20] and [13] estimate relative scale and rotation between images using log-polar coor-

dinates. In this coordinate system, scalings and rotations correspond to translations. [20]

cross-correlates log-polar transformed images, and recovers the relative scale and rotation

from the coordinates of the maximum correlation. [13] cross-correlates log-polar sampled

phase-only bispectrum slices, which additionally gives them blur invariance. However, they

do not normalize by the descriptor overlap and so are not scale invariant. MTC also uses

log-polar coordinates to obtain similarity invariance, and the NCC-S descriptor is simply a

normalized version of [20].

The Scale Invariant Descriptor (SID) is a scale-robust descriptor that uses a log-polar

sampling pattern and the Fourier transform modulus [5]. The log-polar pattern is used to

sample feature responses obtained via band-pass filtering with the monogenic signal. These

samples are then transformed into the Fourier domain, where phase information is discarded.

This results in descriptors that can be directly compared using the l2 distance. SID is very

similar to NCC-S, but SID has partial invariance rather than match-time covariance, which

reduces its sensitivity.

3 Match-time covariance with examples

We now define match-time covariance (MTC) and provide two examples: Similarity-MTC

and NCC-S. Match-time covariance (MTC) is a simple strategy for descriptor design: when

comparing two local regions (at matching time), we estimate the transformation that brings

them into alignment (offset) and return a measure of dissimilarity between the aligned re-

gions. In this paper, the transformation is assumed to be a geometric warp, but it could

incorporate other transformations, such as blur. We call this covariance following the lan-

guage of [17]. MTC differs from extract-time covariance (ETC) in that ETC tries to guess

the alignment at extraction time. MTC addresses the unreliability of ETC ([5], Figure 2),

but has wider implications, discussed in Section 5. To make MTC concrete, we provide

two examples: Similarity-MTC, an instantiation of MTC for similarity transformations, and

NCC-S, a descriptor designed for Similarity-MTC.

3.1 Similarity-MTC

Similarity-MTC is a general MTC framework for endowing existing descriptors with simi-

larity invariance, and is described in Figure 1. Extraction is similar to ASIFT, warping the
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Figure 2: Recognition rates as a function of synthetic scale and rotation of the Oxford boat

base image for various methods. The rates were obtained following the protocol of [22] and

using the 100 strongest keypoints per image. The Similarity-MTC methods’ high sensitivity

and full similarity invariance give them the best performance. SID is not actually scale

invariant; true scale invariance is elusive outside of MTC because of the need to normalize

overlapping scale levels. SIFT and BRISK, as ETC methods, always pay a penalty for ETC

unreliability. That penalty is most clearly captured in the difference between SIFT-S and

SIFT. They differ only in covariance style; SIFT-S uses MTC and SIFT uses ETC. Thus, the

performance gap is exactly the loss caused by ETC. All methods fail as image size goes to

zero on the left side of the scale plot. For Similarity-MTC methods, the upper range of scale

invariance is set by the parameter Rmax; see Section 3.2.1. Best viewed in color.

image for each transformation on a grid of transformations. In matching, Similarity-MTC

compares all corresponding descriptors in the cylinder overlap region. This is in contrast to

ASIFT, which considers only the minimum distance between any descriptor pair. By com-

paring all corresponding descriptors, Similarity-MTC avoids information loss that might

result from suboptimal choice of descriptor scale and rotation. When the base descriptor

distance is l2, as for SIFT, SURF, and NCC-S, this comparison can be expressed as a cross-

correlation. This enables a Fourier-space representation, and a corresponding complexity of

O(NSNR logNSNR), where NS and NR are the number of scale levels and rotation gradations

in the log-polar pattern. This is faster than the naive O((NSNR)
2) ASIFT approach, which

considers less information.

3.2 NCC-S

NCC-S is a straighforward mapping of NCC to Similarity-MTC. Its radical simplicity is

inspired by BRIEF [3] and LUCID [22], contrasting with complex methods like SIFT.

NCC-S can be defined in terms of a dummy descriptor INTENSITY, which just ex-

tracts the intensity of a single pixel value at some fixed offset (εx,εy) from the keypoint

center. NCC-S is INTENSITY, wrapped in the Similarity-MTC framework, with Ω de-

fined as the normalized correlation of the overlapping pixels. The previous two sentences

completely define NCC-S, with complexity O((NSNR)
2). We can reduce the complexity to

O(NSNR logNSNR) by expressing the cylinder alignment step as cross-correlation (CC), al-

lowing us to work in Fourier space. The CC is then normalized using an approach akin to

[7]. The optimized extraction and matching steps are described in Figure 3, with additional

details below.

In optimized extraction, three summary statistics are computed for each block X of the

2NS − 1 possible blocks that could overlap in the cylinder aligment step. The statistics are:

the average value 〈Xi j〉, the centered Frobenius norm ||X −〈Xi j〉J||F , and ∑ X̃i j. Here J is
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Figure 3: Fast NCC-S extraction and matching. NCC-S can be trivially implemented in

the Similarity-MTC framework, but here we illustrate an optimized version. Extraction:

The image (A) is first blurred with an isotropic Gaussian to remove noise. At each keypoint,

pixel values are sampled on a log-polar grid (B), using a scaled image pyramid for efficiency,

and stored in an NS ×NR array (C). The array is zero padded, producing a 2NS ×NR array

(D). The padded array is then mapped to Fourier space (AF). Additionally, an array of

2NS − 1× 3 summary statistics is recorded (AS), which will allow fast normalized cross-

correlation at matching time. The final descriptor is the complex-valued Fourier array with

the real-valued statistics array. Matching: The complex conjugate of the Fourier part of A is

multiplied using the Hadamard product with the Fourier part of B, and the result is mapped

to Euclidean space. This produces a 2NS −1×NR array of real cross-correlation values (E).

The 2NS − 1× 3 summary statistics arrays are then used to normalize the cross-correlation

array on a row by row basis. The final similarity score S is the maximum value in the NCC

array (F), and the offset (similarity transformation) is given by its coordinates. The final

distance is defined to be D := 1−S.

the matrix of ones with the same size as X and X̃ is X normalized to zero mean and unit

Frobenius norm.

A compressed-descriptor version is also possible, where only raw pixels are stored, and

the FFT and summary statistic computations are deferred to match-time.

In optimized matching, the method for obtaining the CC follows from the cross-correlation

theorem. We then transform the CC into a NCC to account for changes in cylinder overlap

and to gain illumination invariance. To do this, we express each element of the NCC in terms

of an element of the CC. Suppose we observe some value u in the CC, where u := Tr(X⊤Y )
is the correlation (inner product) of the blocks X ,Y ∈ R

n1×n2 . Let J ∈ R
n1×n2 be the matrix

of ones. Write X = aX X̃ +bX J, where bX := 〈Xi j〉 and aX := ||X −bX J||F , and do the same

for Y . Note

u = axay Tr(X̃⊤Ỹ )+aybx Tr(J⊤Ỹ )+axby Tr(J⊤X̃)+bxby Tr(J⊤J) (1)

= axay Tr(X̃⊤Ỹ )+aybx ∑Ỹi j +axby ∑ X̃i j +bxbyn1n2. (2)

Note also X̃ and Ỹ have norm one and average value zero. So, solving for the normalized

correlation, we get

Tr(X̃⊤Ỹ ) =
u−aybx ∑Ỹi j −axby ∑ X̃i j −bxbyn1n2

axay

, (3)

thus expressing the NCC in terms of the CC and the summary statistics we collected. The
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Figure 4: A visualization of the search used to select the optimal NCC-S detector and

parameters. Each horizontal line represents NCC-S matching performance for a particular

choice. Performance is the relative recognition rate of NCC-S versus the average of FAST-

BRIEF, SIFT, and BRISK on the 1:2, 1:4, and 1:6 pairs of the Oxford dataset. Typically,

NCC-S accuracy increases as the number of scale levels and angle gradations increases.

Here, the search identified a sweet spot, using the SIFT detector, 8 scale levels, and 16 angle

gradations, corresponding to a compressed descriptor size of 128 floats. In this spot, NCC-S

descriptor size is reasonable but NCC-S remains accurate.

final distance between descriptors A and B with overlapping block pairs O is

Ω(A,B) := min
(X ,Y )∈O

1−Tr(X̃⊤Ỹ ). (4)

This distance implicitly normalizes by overlap size by normalizing each block to have mean

zero and norm one.

3.2.1 Parameters

NCC-S has six extraction parameters, including the choice of keypoint detector. σblur is the

standard deviation of the Gaussian kernel used to pre-blur the grayscale images. Rmin and

Rmax are the minimum and maximum radii of the log-polar pattern. NS and NR are the number

of scale levels and rotation gradations. It has one matching parameter: NO, the minimum

number of scale levels considered for an overlapping region in the cylinder alignment step.

We had slightly better results using the l1 distance on either rank vectors [22] or z-normed

patches, but proceeded with l2 to enable fast matching in Fourier space.

Parameter values were selected via grid search, with results visualized in Figure 4.

The grid search entailed tens of thousands of experiments, run using a descriptor evalu-

ation framework we developed using Spark [21]. The framework seamlessly scales from

single-machine to cluster computations.1 The final parameters used the SIFT detector with

σblur := 1.2, Rmin := 4, Rmax := 32, NS := 8, NR := 16, and NO := 4.

4 Experiments in correspondence matching

In this section, we demonstrate the efficacy of match-time covariance (MTC) for invariant

descriptor construction. To do this, we test NCC-S on the Oxford [9] and Brown [19] image

1The framework is open-source and is not named here to preserve anonymity.
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Figure 5: Precision-recall curves for various methods on the Oxford image dataset, obtained

following the protocol of [9]. Each graph represents an image class. The five curves for each

method represent the five image pairs 1:2 to 1:6 in each image class. Best viewed on a

high-resolution color display.

datasets. We also test Similarity-MTC versions of SIFT and LUCID on the Oxford dataset.

We report timings in Table 3.

4.1 NCC-S

The Oxford image dataset contains eight scenes: boat and bark have scale and rotation

change. graffiti and wall have affine viewpoint change. bikes and trees have blur

change. jpeg has change in jpeg compression. light has illumination change. Each scene

consists of six images: a base image and 5 other images related to the base by a provided

homography. The descriptor evaluation task is to match local regions in the base image to

local regions in the other images [9].

We compared against five other methods. LUCID [22], a refinement of BRIEF [3], is a

non-variant baseline. We implemented this simple method ourselves, using patches of size

24× 24. BRISK [6] is a fast, similarity extract-time covariant (Similarity-ETC), version

of BRIEF. We include it to demonstrate the gap that still exists between modern BRIEF

descendants and SIFT. SIFT [8] is accurate, complicated, and uses Similarity-ETC. ASIFT

[11] is slow and endows SIFT with full skew and aspect-ratio invariance through MTC, but

retains SIFT’s Similarity-ETC. We used OpenCV for the previous three methods. SID [5]

is a rotation and scale robust descriptor, and is a non-MTC analog of NCC-S. We used the

author’s code, which produced compressed descriptors of size 1008 floats.

We report performance in Figures 5 and 6. Here, NCC-S used the parameters discussed

in Section 3.2.1.

ASIFT significantly outperforms SIFT, and ASIFT is simply SIFT with skew and aspect-

ratio MTC.

On the whole, NCC-S significantly outperforms all methods other than ASIFT. This in-

cludes BRISK and SIFT, most notably on the scenes with little viewpoint variation: bikes,
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Figure 6: Recognition rates for various methods on the Oxford image dataset, obtained

following the protocol of [22] and using the 100 strongest keypoints per image. Each pen-

tagon represents an image class. Each vertex represents an image pair, ranging from 1:2 to

1:6. Recognition rates are given by radial distance; the best methods are those which fill

the pentagons. Best viewed on a high-resolution color display.

jpeg, light, and trees. In such cases, ETC can only add noise. Indeed, the non-

variant LUCID does just as well as NCC-S. NCC-S outperforms SID for scenes with large

scale change: boat and bark. This is natural, because SID lacks the true scale invariance

enabled by Similarity-MTC. No winner is apparent between NCC-S and ASIFT. ASIFT’s

affine MTC improves its performance on scenes with pronounced affine warps: graffiti

and wall. NCC-S’s Similarity-MTC helps on scenes with significant rotation and scaling:

boat and bark.

Table 1: Error rates for SIFT

and NCC-S on the Liberty and

Notre Dame categories of the

Brown dataset. Error is measured at

95% recall, as in [19]. SIFT error

rates are taken from [19]. NCC-S er-

ror rates are obtained using 32 scale

levels and 32 rotations. These num-

bers show NCC-S is robust to 3D

viewpoint change, despite its large

support region.

method SIFT NCC-S

Liberty 0.35 0.27

NotreDame 0.26 0.22

The Brown dataset consists of image patches of

points on 3D objects as seen from different view-

points. This fully 3D motion model is more realis-

tic than the homographies of the Oxford dataset, as it

allows for nuisances such as occlusion. NCC-S out-

performs SIFT on this dataset, as shown in Table 1.

4.2 LUCID-S and SIFT-S

Here, we test two additional descriptors: LUCID-S

and SIFT-S. They are Similarity-MTC wrappings of

LUCID and SIFT, respectively. In the case of SIFT-

S, we disabled SIFT’s scale and rotation estimation

to provide pure MTC. Recognition rates are reported

in Table 2.
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Table 2: Recognition rates for regular and Similarity-MTC versions of LUCID and SIFT on

all pairs i:j of the graffiti, wall, and bark scenes of the Oxford dataset, using the

protocol used for Figure 6. They show a significant performance boost for the Similarity-

MTC versions of both methods, demonstrating its general applicability. The gap between

SIFT and SIFT-S also illustrates the message of Figure 2: extract-time covariance extracts a

large cost.

graffiti wall bark

1:2 1:3 1:4 1:5 1:6 1:2 1:3 1:4 1:5 1:6 1:2 1:3 1:4 1:5 1:6

LUCID 0.66 0.56 0.07 0.33 0.11 1.0 1.0 0.95 0.82 0.49 0.09 0.0 0.0 0.03 0.0

LUCID-S 0.99 0.86 0.54 0.26 0.09 1.0 1.0 0.99 0.83 0.44 0.84 0.59 0.61 0.38 0.06

SIFT 0.65 0.64 0.38 0.2 0.06 0.69 0.7 0.64 0.42 0.17 0.73 0.56 0.76 0.63 0.54

SIFT-S 1.0 0.84 0.62 0.33 0.1 0.99 0.98 0.95 0.91 0.49 0.91 0.71 0.87 0.81 0.13

Table 3: Marginal extraction and matching times for leading invariant descriptors, mea-

sured on a 16-core Xeon server running Ubuntu. NCC-S timings are for the implementation

described in Figure 3. NCC-S is slower than BRISK and SIFT while offering better accu-

racy, and faster than ASIFT while offering comparable accuracy. Additionally, while SIFT

implementations are unlikely to get faster, the simplicity and low asymptotic complexity of

NCC-S suggest it should be possible to make it significantly more efficient. In particular,

the NCC-S matching time is an order of magnitude longer than we expected, suggesting our

code can be substantially optimized.

method BRISK SIFT NCC-S ASIFT

extraction µs 19 65 80 2700

matching ns 3 7.5 340 13000

5 Discussion

In this paper, we propose match-time covariance (MTC) as an alternative to extract-time

covariance (ETC). MTC is a general strategy for descriptor design that provides invari-

ance without loss of sensitivity. We also presented Similarity-MTC, a general framework

for adding MTC up to similarity transformations to an existing descriptor. The framework

is simple, dramatically improves accuracy vs. ETC, and can return similarity transforma-

tions. Finally, we proposed NCC-S, an accurate descriptor designed for fast execution in

the Similarity-MTC framework. NCC-S is extremely simple; it is just normalized cross-

correlation mapped to the Similarity-MTC framework. Its success shows it may not always

be necessary to use highly complicated descriptors like SIFT or even moderately complicated

descriptors like BRISK and FREAK.

MTC has several implications. First, it supports a notion that has gained traction in recent

years, the idea that descriptors can be simple yet effective. Simplicity has a range of benefits.

Practically, it means faster code with fewer bugs. Conceptually, it suggests an arrival at some

atomic truth, a self-contained building block for aiding future discovery. Second, MTC yields

rich information on the transformations between points (offset). Though unexplored in this

paper, this information could be of use in other computer vision algorithms, e.g. it could

provide additional constraints for geometric model fitting. Third, as with ASIFT, it is largely

incompatible with lines of work built on top of local descriptors, e.g., fast nearest neighbor

and feature histograms. This is because MTC is fundamentally a comparison between sets,

and existing literature typically assumes descriptors are points in a vector space [4, 16].
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There are concepts that lie outside linear algebra, and MTC suggests we should mind them.

Future work on NCC-S may shift it to purely integer math using an integer Fourier trans-

form [12, 14]. This will enable fast processing on mobile devices lacking floating-point

hardware. There are also many more kinds of MTC to explore, including freer motion mod-

els, blur, and illumination.
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