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Matched Asymptotic Expansion for the
Low-Frequency Scattering by a Semi-Circular Trough

in a Ground Plane
Robert W. Scharstein and Anthony M. J. Davis

Abstract—Plane wave scattering by an electrically small circular
trough cut in an infinite ground plane is solved analytically for both
the TM and TE polarizations. A quasi-static solution for the inner
field based upon a transformation to bipolar coordinates exploits
the failure of the narrow trough to react to the detailed wave nature
of the incident field and forms the starting point for the method of
matched asymptotic expansions. The distant behavior of the inner
field must agree with the near behavior of the outer field, which
is a radiative solution of the Helmholtz equation. In addition to
yielding several analytic terms of the solution in low-order powers
and the logarithm of the trough wave size the matching process
provides an account of the interplay between all of the physical
parameters.

Index Terms—Asymptotic analysis, electromagnetic scattering,
electromagnetic scattering from a gap, ground plane, quasi-static.

I. INTRODUCTION

T
HE SCATTERING of a plane electromagnetic wave by the

concave trough and several variants is treated by [1]–[4].

This geometry is pervasive throughout applied electromagnetics

and is simple enough to be considered a canonical scatterer. For

example, it is a basic version of the cavity-backed aperture that

is a central topic in aircraft radar signature studies.

Integral equation techniques based upon the application

of the equivalence principle to a curved boundary between

the partial cylindrical cavity and a half-space are developed

in [1], [2], and [4] and allow for the presence of different

dielectrics in the interior and exterior regions. In such cases,

the picture is that of a “partially embedded dielectric cylinder”

[2]. Some simplification in the mathematical details occurs

when the cylinder is half buried, producing the special case of

the semicircular trough [3], [4]. Although the initial approach

in [2] is a moment-method expansion of the aperture field, the

computations there quickly become equivalent to the “dual

series” approaches in [1], [3], and [4] and whereby Fourier

series of cylindrical harmonics are truncated and forced to

agree in the mean-square sense over the semi-circular boundary

surface. As is common in such mixed boundary value problems,

any advantages of using ordinary eigenfunctions of the wave

operator are shadowed by the forfeit of orthogonality over
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the split boundary. Such methods are practically restricted to

the low-frequency regime, because of the nonuniform conver-

gence of the modal expansions. However, the persistence and

patience of these authors [2]–[4] with computers has resulted

in some impressive numerical results within the accuracy

limits implied by “numerical” or “self” convergence tests,

presumably for troughs as large as . The wavenumber

is and is the trough diameter.

The physical source of the convergence difficulty in the

Fourier series is the well-known singular behavior of the fields

in the vicinity of the two corners where the curved channel

joins the flat ground plane. The tenable objective of the present

paper is the derivation of several dominant terms in ascending

powers of that comprise a perturbation expansion for the

trough-scattered field based on the intuitive idea that the far field

sees the trough as a point singularity while the near field sees

very long waves. Both TM (soft) and TE (hard) polarizations

of the incident electromagnetic wave are considered. Each case

begins with a static solution which is successively modified

and linked to the proper radiation field under the framework of

the method of matched asymptotic expansions [5]. The starting

point for the method is the exact solution to the static Laplace’s

equation, which is forced by several terms in the low-frequency

expansion of the boundary behavior of the incident geometrical

optics field. This exact solution is derived as a Fourier integral

in bipolar coordinates, in terms of which the physical domain

is an infinite strip. The far behavior of this inner expansion

is matched to the near behavior of the appropriate radiative

outer field, in a careful succession of steps that group terms of

common, low-order powers of . In addition to supplying the

usual Hankel functions for the outer expansion, the Helmholtz

equation provides the mechanism to generate higher order

terms in the inner expansion via a perturbative sequence of

Poisson equations. In the development, contributions of order

appear and the expansions are adjusted to include

such intermediate terms of magnitude between and

. The resultant low-frequency expressions are in agree-

ment with the applicable results of [3], for example. An entirely

different, and more difficult, high-frequency approximation is

required to characterize the interaction of the scatterer of Fig. 1

with short radio waves.

The TM excitation of the semicircular trough is formulated

as a scalar boundary value problem in Section II, the applicable

static solution is obtained in Section II-A, and the perturba-

tive correction to account for dynamic effects via the Helmholtz

equation is obtained in Section II-B. The quasi-static field reacts

0018–926X/00$10.00 © 2000 IEEE
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Fig. 1. Semicircular trough in ground plane.

directly with the corners and curvature of the trough and, there-

fore, the lengthy inner field calculations are performed first.

This permits a clean account of the motivating ideas and detailed

evolution of the matching procedure in Section II-C, resulting in

the desired far-field expansion for the trough-scattered TM field.

Section III is a concise summary of the changes required by

the TE-polarized wave. Modifications to accommodate dielec-

tric loading of the trough region are the subject of continuing

research by the authors. Likewise, circular indentations other

than the semi-circle are amenable to the present method, but

the mathematics is more clearly presented as a sequel. If the in-

dented boundary lies at the planar interface between penetrable

media, i.e., two dielectric half-spaces, then the mathematical

procedure of this paper can be suitably adapted, in principle, to

extract the dominant low-frequency terms in that scattered field.

In such a geometry, the excitation could also be a surface wave.

The vector problem of a plane electromagnetic wave incident

upon a partial spherical depression is a candidate for the general

technique of this paper. Toroidal coordinates are appropriate for

such a three-dimensional geometry, which is further simplified

through the orthogonality of the azimuthal Fourier modes of a

“body of revolution.”

Analytic methods such as matched asymptotic expansions de-

rive their power from the exploitation of specific coordinate sys-

tems and symmetries. Therefore, compared with general numer-

ical approaches, the realizable scope of the present method is

restricted. Furthermore, attempts to obtain the next term of the

asymptotic expansion beyond the three terms identified herein

are beset with complicated algebra whereupon the reasonably

clear physical interactions between the small scatterer and the

radiation field become obscured and the method loses its funda-

mental appeal. Not only are the resultant closed-form answers

invaluable characterizations of the scattering problem, but the

back-and-forth interplay between the near (inner) and far (outer)

fields of the mathematical procedure give the reader a new view

of the important physics. Unlike numerical approaches that in-

volve a matrix inversion, for example, each important physical

parameter can be traced through to the final result.

II. TM EXCITATION OF THE SEMICIRCULAR TROUGH

The TM electromagnetic field in this two-dimensional geom-

etry is completely specified in terms of the -directed compo-

nent of the complex phasor electric field, denoted here by the

scalar . With time-harmonic behavior, the

sum of the unit-amplitude plane wave incident from the direc-

tion of (Fig. 1) and the geometrical-optics reflection from the

ground plane is

(1)

in terms of both Cartesian and polar coordinates. The total field

is defined as the sum of this “incident” (geometrical optics) field

that would suffice in the absence of the trough, plus the scat-

tered field, denoted simply as , which is the direct contribu-

tion of the trough. The sought-after scattered field satisfies the

Dirichlet boundary value problem

on

(2)

where the boundary surface includes both the flat sections

and the semicircular arc , . Naturally,

consists of outgoing waves at infinity, in compliance with the

usual Sommerfeld radiation condition.

A. Quasi-Static Solution

The dominant interaction between the electrically small

trough and the incident wave (1) is adequately captured by the

action of Laplace’s equation

(3)

as the static limit of the Helmholtz operator of (2). To leading

order, the narrow trough does not “see” the detailed wave nature

of the incident field. However, even this zeroth-order static solu-

tion contains critical information about the full dynamic field, as

it is forced by the boundary data of the true incident wave-field

of (1). A Taylor series expansion of the incident field (1) for

small gives

(4)

in ascending powers of the Helmholtz parameter , and

with the inner coordinates

(5)

At , , and the incident wave is

(6)
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The tangential derivative on the curved surface

(7)

is useful to connect this TM solution via conjugate functions to

the TE field in Section III.

Laplace’s equation is invariant under a mapping to bipolar

coordinates [6]

(8)

with metric coefficients

(9)

from the Jacobian of the transformation. Several surfaces of con-

stant and are drawn as dashed curves on the – plane of

Fig. 1. Note that

when

(10)

and the semicircular trough boundary in the original coordinate

system is mapped to the line , while the flat sections

are projected onto the line . Therefore, the entire

domain of the original trough problem of Fig. 1, consisting of

the trough channel plus the complete upper half of the – plane

is mapped via (8) to the strip , in

the – plane. Hence, the static boundary value problem is

(11)

subject to

(12)

on the flat portion of the boundary and from (6)

sech sech

(13)

on the curved surface. Even and odd symmetry components of

the solution are written as Fourier integrals

(14)

Successive differentiation of the spectral representation [7]

(15)

supplies the additional forms

sech

sech
(16)

Insertion of (15) and (16) into the boundary function (13) per-

mits identification of the Fourier transforms and in

(14) when evaluated at . The static solution can now

be written as

(17)

in terms of the integral function

(18)

The integrand has two classes of poles on the imaginary axis

of the complex plane given by and

and is analytic at the origin of the plane. When

is positive, the symmetric integral (18) is computed as the sum

of residues in the upper-half plane

(19)

with . This is an appropriate expansion for the far

behavior of the inner field because and both approach zero

as . The first several terms of are

(20)

even in as required by (18) and with constants

(21)

In terms of the polar representation , , and its re-

quired -derivatives are

(22)

In terms of Re , where

(23)
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the three forms above are

(24)

(25)

(26)

The “static” solution (17) in the inner field is therefore

terms of higher order in (27)

B. Perturbative Correction

A perturbative correction to this inner field proceeds by ex-

pressing the scaled Helmholtz operator in inner coordinates

(28)

and writing the (partial) solution as the series

(29)

in which there exists the possibility of inserting terms with

scale factors involving . Insertion of the series (29) into the

Helmholtz equation (28) yields upon equating like powers of ,

an iterative sequence of Poisson equations

(30)

The first two terms of and are the first two terms in

the static solution of (27). That is, both and

satisfy Laplace’s equation while

(31)

A particular solution that vanishes at is required

of

(32)

Direct use of the Green’s function is precluded by the singular

behavior at , which, therefore, must be removed

by means of a function that mimics the singularity but fails to

satisfy (32) exactly. With the far behavior of given by

(22) and with

(33)

the forcing term of (32) is

(34)

in terms of the cylindrical bipolar coordinates. Particular solu-

tions corresponding to these three forcing terms are defined by

(35)

The desired asymptotic solution of (32) is now assembled and

written as

(36)

Inclusion of the two homogeneous terms, with constants and

derived in Appendix A, sustains the order consistency of this

expansion. These constants are needed to justify the matching in

Section II-C, but their determination requires more information

than an asymptotic solution can provide since there is a Dirichlet

condition at to be satisfied.

The pertinent combinations of the far-field bipolar coordi-

nates are now expressed in terms of the inner polar coordinates

via

Re

(37)
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These expressions enable the particular solution (36) to be

written

(38)

as .

C. Outer Field Expansion and Matching Results

The outer field consists of outwardly propagating solutions to

the Helmholtz equation that vanish on the ground plane where

. Evidently, an appropriate expansion for the outer field

in terms of the outer coordinate is

(39)

The region of overlap between the inner and outer expansions

is characterized by with such that small

corresponds to large . The following development

is facilitated by the explicit near-in behavior of the first three

Hankel functions

(40)

A careful matching of the outer behavior of the

inner field with the inner behavior of the outer

field is accomplished by grouping terms of common

-dependence and permits the asymptotic construction of the

trough-scattered field. The back-and-forth interplay between the

inner and outer fields can now proceed directly, unencumbered

by the above detailed derivations of the various inner fields. The

static inner field is forced by the boundary data of the incident

wave (6), whereupon the largest component of , in powers of

, is

(41)

where (27) supplies

(42)

In terms of outer coordinates, this first term of the inner field is

(43)

The corresponding first term in the outer field is, therefore,

with near behavior

as (44)

This must be the close-in limit of the cylindrical wave function

(45)

and thus

(46)

Expressed in inner coordinates, this first term of the outer field

is

(47)

which introduces terms of order and into the inner

field. Note that does not affect the term in . The

inner field expansion, modified from (29), is now of the form

(48)

The dominant far-field behavior of is known from the pre-

vious quasi-static result of (27),

(49)

This inner field triggers a corresponding term of in the

outer field such that

(50)

where

as (51)

must be the near behavior of

(52)

The two terms of the cumulative outer field (50) are of

and when expressed in inner coordinates. According to

(47), the distant behavior of the next two inner field

components is

(53)

The harmonic satisfies homogeneous boundary conditions

at . Since the asymptotic form of

is both harmonic and proportional to the boundary behavior

of on , the desired function is the combination

(54)
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The perturbation series (29) reveals that is a solution to a

Poisson equation (32), which must cancel the nonzero incident

field of (4) on the trough . The static field of

(17) furnishes the needed nonhomogeneous boundary behavior,

and of (38) displays the correct far-field

variation in (53). Hence, in addition to the sum , a

harmonic function is required that vanishes on and

has the far-field form of the remaining terms in

(53). As in (54), this additional function is ,

where (53) supplies the scale factor, resulting in

(55)

The four components of the inner field (48) now permit its

expression in outer coordinates up to . Proper arrangement

of these terms and matching to the near behavior of the three

Hankel functions yields the final form for the scattered field

(56)

III. TE POLARIZATION

The scalar field of interest is now the single component of

the magnetic field, which is polarized in the axial direction.

Some of the ensuing analysis mimics that for the TM polariza-

tion and is consequently abbreviated. The Neumann boundary

condition, vanishing of the normal derivative on the boundary

, applies and the incident or geometrical optics field is

(57)

On the curved boundary of the electrically small trough, the

normal derivative is

(58)

The scattered field arises to cancel this nonzero normal deriva-

tive. The static component of the scattered inner field is a

solution of Laplace’s equation subject to these Neumann con-

ditions for which the compatibility condition will necessitate a

flux at infinity.

Parallel to the static field development from the TM boundary

data of (4), the component of the TE field is now written

(59)

where, since

(60)

is an analytic function of Re . In view

of (8), it is also analytic in the bipolar coordinates

, where the pertinent Cauchy–Riemann equations

(61)

determine the harmonic conjugate

(62)

anticipated in (19)

(63)

Similarly, the portion of the static TE field is

(64)

where the additional -independent term arises from

(65)

in (58). This flux out of the trough generates a monopole field

and must be balanced by an equal flux from infinity. The two

requirements

for

and

(66)

on the image of the flat portion of indicate the presence of a

Dirac–delta function

(67)

This singularity exists at the origin of the transform coordinates

corresponding to infinity in the original – plane. A

suitable Fourier transform representation for the monopole term

is thus evaluated by residue calculus

(68)
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According to (58), the static field is

(69)

By exploiting the conjugate functions and , algebra similar

to that in Section II can be avoided, and the static TE inner field

deduced in the form

terms of higher order in (70)

analogous to (27). Next, a particular solution is required of

(71)

subject to at , but now the advan-

tages of conjugate functions are reduced by the presence of the

metric which is not analytic in . Thus, for

example, there is a sign change in the formula analogous to (34),

namely

(72)

Note that since is an odd function of , the compatibility con-

dition is satisfied. Hence, the use of a formula conjugate to (35)

gives the particular solution

(73)

from which (37) reveals to exhibit the distant behavior

(74)

analogous to (38). The constant is evaluated in Appendix B.

Matching the near-field behavior of the Hankel function of

order zero

(75)

with the -independent component of in the inner field,

demonstrates that the outer scattered field has the term

(76)

and so the inner field must have terms

(77)

which includes . Comparison with the monopole

term in the incident field of (57) shows that the

monopole term in the outer scattered field is modified to

(78)

This is in agreement with [3], since Hinders and Yaghjian work

with conjugate expressions.

By using the exponential form of in (57) it can be readily

shown that

(79)

The monopole must cancel this flux, i.e., its strength up to

is described by modifying (78) to the form

(80)

The higher order multipole fields in the inner field expression

(70) indicate that the outer field also contains the terms

(81)

As in the TM case, the inner field is henceforth of the form (48),

with

(82)

and

(83)
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such that the scattered field expansion follows:

(84)

IV. CONCLUSION

The method of matched asymptotic expansions yields several

terms in a perturbation series for the scattered field due to the

TM and TE excitation of the semicircular trough in a ground

plane. These low-frequency analytic solutions are expressed in

ascending powers of the electrical size of the trough and

also involve the logarithm of . The simple form of the results

explicitly shows the dependence of the trough-scattered field

upon the source and observation angles as well as the frequency

via . The unmistakably dominant feature of the TM-polar-

ized far field is the dipole term of , with amplitude in

agreement with the dual-series results of Hinders and Yaghjian

[3], where the constant is accurately computed as

0.185. Clearly, the next terms of in the multipole ex-

pansion have insignificant effect upon the radiation field. In the

case of the TE-polarized wave, the scattered field also contains

a monopole component of that is independent of the in-

cidence angle. No conclusions applicable to electrically larger

troughs follow from this low-frequency solution, which quickly

becomes invalid as increases beyond unity.

APPENDIX A

EVALUATION OF THE CONSTANT

Use of the exact form of from (19) shows that the error

term in (34) is . The Green’s function for the problem is

(A.1)

but the right-hand side of (32) is too singular at for direct

use of . Note that can be written as an

integral of the second term in , i.e.,

(A.2)

Hence, the pertinent far-field form

as (A.3)

Thus, if the terms in (34) are removed from the right-hand side

of (32), the remaining particular solution behaves as a multiple

of as . This removal is achieved by suitably

combining three independent functions which vanish at

and whose Laplacians have leading terms of the type

, as in (34).

Consider the product of the two harmonic func-

tions

(A.4)

The Laplacian

(A.5)

exhibits the required singularity. Its details are more easily ob-

tained by first expanding and then evaluating .

The asymptotic form of is

(A.6)

Define

(A.7)

with asymptotic form

(A.8)

Hence

(A.9)

and the required Laplacian is

(A.10)
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The limiting form of the Laplacian of a second function

is similarly

(A.11)

A third function

(A.12)

has the singular behavior of the first term on the right-hand side

of (36), but also vanishes at because if is an odd

function, then the image system is such that

at (A.13)

Its Laplacian follows from (35)

(A.14)

The desired linear combination of the above three functions

follows from writing

bounded terms (A.15)

whereupon

(A.16)

The scale factor 81 trims the ensuing arithmetic. By comparison

with (34), set

(A.17)

Now check the behavior of

(A.18)

Thus

(A.19)

agrees with (36). Evidently ; in fact, it was precluded

by the factor in . Adding to corresponds to

adding a homogeneous solution to . The required solution

is therefore

(A.20)

whereupon its far-field limit yields, from (A.3)

and (A.19), the remaining constant in (36)

(A.21)

APPENDIX B

EVALUATION OF THE CONSTANT

The Green’s function for the Poisson equation (71) with Neu-

mann boundary conditions at must be defined by

(B.1)

whereupon

(B.2)
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with the forcing term restricted to . This formulation of

is, of course, consistent with the right hand side of (71) being

an odd function of . For , (B.2) can be rewritten as

(B.3)

and so the far-field form is such that

as (B.4)

In this case, the remaining particular solution behaves as a mul-

tiple of as .

Introduction of the function

(B.5)

together with , and the same functional forms of and

of Appendix A, gives the asymptotic variations

(B-6)

(B.7)

The image system

(B.8)

satisfies the specified Neumann conditions and exhibits the re-

quired behavior in its Laplacian

(B.9)

Then

bounded terms

(B.10)

with the same constants as in (A.15). The asymptotic behavior

of the is

(B.11)

i.e.,

(B.12)

and therefore in (73). The desired solution is thus

(B.13)

which yields in the limit as

(B.14)
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