Matched-Filter Detection of Mode-Locked Laser Signals

R. J. D’Orazio and Nicholas George

The passive Fabry-Perot cavity is shown to be a good practical approach to the match-filter optimization
for the sensitive detection of mode-locked laser signals. Doppler measurements of relative motion over a
wide range of velocities are possible simply by measuring the cavity length for a peak output.

I. Introduction

Multitone lasers of the mode-locked! and cavity-
dumped? types emit their energy in short pulses.
Sensitive detection of these emissions for point-to-
point communications or echo-ranging systems can
be accomplished by using appropriate filtering at the
optical frequencies for detection and radio-frequency
amplification. In the present work we describe our
approach to'matched-filtering for these signals.

In the literature related prior studies of laser de-
tection include scanning Fabry-Perot cavities using a

single pass-band of the passive cavity to analyze

laser radiation?, spatial filtering techniques?, and
various laser heterodyne techniques.5-7

Our optical receiver for mode-locked gas laser sig-
nals consists of a passive laser cavity controlled in
length and a photodetector with its associated elec-
tronics. The length of the passive Fabry-Perot cavi-
ty is chosen approximately equal to the cavity length
of the transmitting laser but with provision for fine
fractional wavelength control of its length. In addi-
tion to the selective filtering characteristics of the
passive cavity (passbands of unity transmission
matching the frequencies of the multimode laser), a
readout of the vernier length control, peaking the
output, provides for an extremely wide range of ve-
locity measurements with either an active or passive
vehicle moving relative to the receiver.

Il. Passive Cavity: Matched-Filter for Mode-
Locked Laser Radiation.

Consider the passive cavity as shown in Fig. 1
where h, is the cavity length, M; is the fixed cavity
mirror, and M, is the movable cavity mirror. The
amplsitude transmission function T (w) may be shown
to be
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_where N1(t) is the additive input signal and ®

Tw) = L éxp(i\//(w))/l:l + P, sinﬁ(w@]m (1)
where
P, = [4ryry exp(—2ahy)]/[1 — riry exp(—2ahy)? (2)

and

Uo) = ~Gwfehy — tan{ LR L @

and

L = [tt, exp(—ahy)]/[1 — riry exp(—2ahy)] (4)

t; and t2 are the transmission functions for mirror 1
and mirror 2 respectively, r1 (mirror 1 right-side inci-
dence) and re (mirror 2 left-side incidence) are the
reflection coefficients, « is the cavity loss per unit
length, and c is the speed of light.

To study the passive cavity as a multitone filter
we use the matched-filter criterion resulting from the
optimization of the SNR. So for a linear system
with impulse response function Hi(t) the total time
varying output is Gi1(t) = Hy(t) ® [Fi(t) + N'l(ctl)‘]
indi-
cates convolution. The matched-filter criterion
specifies that the amplitude transmission function
H(w)m = AF*(w)/Sn(w) where H(w), and F(w) are
the Fourier transform of H1(t) and F1(t) respectively,
S.(w) is the power spectral density of the additive
input noise, the asterisk denotes the complex conju-
gate, and A is any nonzero complex constant.® The
subscript 1 will be used to denote time varying sig-
nals. Hence we see that the signal for which the
passive cavity is a matched-filter is given by F(w) =
Sn(w) T*(w)/A*. Since the signals we shall be con-
sidering have a finite number of frequency peaks, we
shall approximate 7(w) expanding around the
zeroes, wp, of sin? (whe/c) for a finite number of
peaks around w, so that from Eq. (1) dropping ¥(w)

we have
R

where Aw = w ~ wp = w — (wo + Pweo), weo = 7C/ho
and Awp = 2¢/[ho(P2)1/2]. We note that Awp is the
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Fig. 1. Passive cavity receiver: T laser transmitter; M3z My
laser mirrors; b laser cavity length; E signal; V velocity of
laser relative to receiver; N, noise; F coarse bandpass filter;
M1,M2 passive cavity ‘mirrors; h, passive cavity length; D de-
tector; A detector electronics; C mirror control.

full width at half power of each Lorentzian lineshape
function generated by Eq. (5). Generally we shall
assume white noise so that S,(w) = N, is uniform
over the frequencies of interest. Similarly we shall
assume ty, ts, r1, re are constant over the frequencies
of interest. Thus from Eq. (5) we see that the signal
for which the passive cavity is a matched-filter is

Fe = siya 3+ (527 ©

Now for convenience we shall assume the idealized
electric field amplitude at the output of an unmodu-
lated mode-locked laser with 2N + 1 modes is given
by

N
E(t) = ) explilw, + pw)t]

=.:xp(iw0t){sin|:(2;/ + 1)w—20t']/sin(w—g)} M

where w, = nwc/h is the center frequency of the
laser, n is some large integer, w, = wc/h is the free
spectral range, and h is the effective cavity length.
Then the Fourier transform of Eq. (7) is

N .
Ew = 21 3 8w = (0 + pw)] ®)
p==-N
where 6(w) is the Dirac delta function. Thus we see
that T(w)4 is a comb-filter for E(w) for h = h,, i.e.,
T(w)4 has passbands of unity transmission matching
the frequencies of the multimode laser.

For an actual laser signal, writing E(w) for a mul-
titone laser with finite linewidth will yield an expres-
sion as an alternative to the monochromatic ideali-
zation of Eq. (8). We note that the spacing between
the tones of a mode-locked laser are determined by
free spectral range, w. = wc/h, of the laser cavity. It
is our contention that the passive cavity transmis-
sion function will control the lineshape of the laser
output if the gain « and the dispersion in the cavity
are independent of frequency around a resonant
peak. One may further consider this observation by
noting that for He-Ne the width of the Lorentzian
shaped hole that is burned into the Doppler broad-
ened gain profile at saturation is much broader than
the mode-width of the laser cavity. Thus for o < 0
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the frequency variation of P, Eq. (2), and L, Eq. (4),
are negligible around the resonance.

In the literature related prior studies of the laser
lineshape include lumped element LGC circuit mod-
els. 10,11 Freed and Haus!2? used the solution of the
nonlinear Van der Pol oscillator equation to describe
the spectrum of the laser output. The basic result of
using a lumped circuit model is that the lineshape
function is Lorentzian.!® The interesting point is
that if one started with the transmission function for
a cavity or a transmission line, the lineshape would
be controlled by equations similar to Eq. (1).

Note that both the lumped circuit and passive
cavity approaches to the laser spectrum assume that
the random cavity mirror vibrations and effective
cavity length fluctuations are negligible. If one
dropped these assumptions the lineshape could be
considered Gaussian or some other lineshape func-
tion.

So as the gain curve saturates, the right-half-plane
poles of Eq. (1), for s = iw, will migrate to the iw
axis. We select the value of @ which is an amount ¢
from the saturated pole so that Eq. (2) becomes

= [4 exp(—2ehy)]/{l — [exp(—2¢h)]3.  (9)

Then we may write the spectrum of the laser signal
with finite linewidths as

E(w) = t1t2/[2("1’.‘.’)1/2]VP1{1/[1 + ,P1 sin2w(h,/ ¢)]12
(10)

We note that a very good approximation to Eq.
(10) may be obtained by expanding around the
zeroes wp of sin? w(h,/c) for 2N + 1 tones analogous
to the approximation of Eq. (5) so that the alterna-
tive to Eq. (8) becomes

@) = () /[2rir) 1V P, 21/[1 +(5) ]
11)

where Aw = w — wp = w —(wo + pwe), Awr = 2¢/
(hv/P1). Thus comparing Eq. (6) with Eq. (11) in-
dicates that for Awp, = Aw) and h = h, the passive
cavity of Eq. (1) is a matched-filter for the multi-
toned signal of Eq. (10).

I1l. Signal-to-Noise Ratio

We compute the predetection time varying SNR at
the output of the passive cavity as

SNR(t) = |T, & E\*/R,,(0) (12)

where E; is the inverse Fourier transform of Eq. (10)
and 74 is the inverse Fourier transform of Eq. (1)
and R,,(0) is the auto correlation function evaluated
at zero, which is equivalent to the mean-squared
value of the additive noise at the output of the pas-
sive cavity given by

Ru0) = 5= | S(@iT@)de. (13)

The numerator of Eq. (12) may be expressed by the
inverse Fourier transform as



T, &) E,

and substituting Eq. (1) and Eq. (10) we may write
the modulus-squared value of the signal portion of
the output of a passive cavity as

Lt ®
Tl ® E12 = 2(r1;2§1/2VPlj:w .
% exp(iwt)dw ‘
[1 + P, sinw(he/c)]V[1 + P, sinw(ho/c)

Since the signal has only ¢ = 2N + 1 modes we may
write Eq. (15), with the substitutions w = w, —(c/
ho)x, t = ho/c, wo = (nwc)/h,, where n is some larg-
er interger, exp(—ix) = cosx — i sinx and noting that
the sine integral over symmetric limits vanishes, as

lTl X E,

where for 1/P; > 1/P1 > 0, K(m) is the complete el-
liptic integral of the second kind given by

3123 2
s = @/ 2L s | e/ hoPm) (16)

K(m) = f A0/ - m? sintey)
0
and
m = [(1/P;) — (1/P)I?/(1] Py,

The denominator of Eq. (12) may be expressed from
Eq. (1) and Eq. (13) as

2 L S, (w)dw
wn(0) = 21 J yreyrgl + Ps sin?[w(hy/c)]
L:Ny, wc 1

or Tho G + Py (1D

where, as in the integration above, q is the number
of free spectral ranges over which the integration is
taken. Thus the peak SNR for the passive cavity
taking the ratio of Eq. (16) to Eq. (17) is given by

SNR, = 4(q/2m)[tits/2Ariro))212(c/ hoX1 + P3y)Y2K*(m)
/(wNo). (18)

In a similar fashion, expressing E () E*, and Rj,(0)
for the matched-filter to Eq. (10) and using the same
assumptions as above, the peak SNR for the
matched-filter is

SNR, = 4(q/2m)[(t,t,)/[ 20r,r2)V21 P/ o) tan (Y )Y
X (1 + P)V2/(wN,). (19

Thus the departure of the passive cavity from the
matched-filter is from Egs. (18) and (19)

SNR,/SNR, = (1 + P)V?/(1 + P)V*{K%(m)
/[tan(VP)E. (20)

Since P; > 1, Awp = 2¢/hoV/Ps), and Awy = 2¢/
(hoV/P1) then
SNR,/SNR, = (2/m)Aw/Aw,)K*(m). (21)

Hence the SNR of the passive cavity approaches
that of the matched-filter when Aw; =~ Awp as may
be seen in the plot of Eq. (21) in Fig. 2.

]1/25' (15)

The Fabry-Perot cavity is probably as close a
physical realization to a matched-filter for the multi-
toned laser as can be attained in a passive system.
Even so, gain narrowing invariably results in Aw; <
Awp, thereby limiting the observed improvement in
SNR from its optimal value.!* For high gain lasers
with cavities of low finesse, the receiver can be made
closer to ideal, while greater departures are to be ex-
pected in the case of low gain. We note, too, that
larger bandwidths, Awp, are called for with informa-
tion modulated lasers and cavity-dumped lasers
where mode-locking may not have been employed.

To obtain the predetection SNR improvement
with use of the passive cavity we note the SNR with-
out the cavity is given by the ratio of the modulus-
squared value of Eq. (7) to Eq. (17) with P2 = 0.
Thus the SNR improvement with use of the passive
cavity with respect to no cavity is given by Egs. (1),
(7), (12), (14), and (17) as

SNRyitn/ SNRyithour = (1 + P2 (22)

Since the signal portion of the time varying output
of the passive cavity for a mode-locked laser input is

given by the real part of Ty &® E;, from Eq. (1) and v

Eq. (8) dropping ¢(w) we have

N
G(t) = D [cos(a — b)]/(1 + P, sin2)? (23)
p=—N

where @ = {w, + [wc/hljt and b = (ho/c) {wo +
[(pwc)/h]}, then we see the peak SNR occurring for h
= h,. The SNR as a function of time and a function
of relative cavity length ho/h is illustrated in Fig. 3.
The number of modes oscillating is 9 with a peak
SNR of 49 and a period of 8 nsec. The increment of
relative cavity length is Ah,/h = 0.0001.

IV. Rise-Time of the Passive Cavity

In consideration of the rise-time, 7, of the Fabry-
Perot resonant cavity we start with the Laplace
transform representation of the amplitude transmis-
sion function given by setting s = iw in Eq. (1) we

obtain
T uun'/r”'i;

! T T TTTT

L1 Lt

T 1171

S,

T T TTTHT
L1l

SNR, /SNR,,
3

L Lyl

'0‘3 [ S 1 11131 L L1211y
1073 1072 10! 1
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Fig. 2. Departure from matched-filter vs relative line widths.
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Fig. 3. Signal-to-noise as a function of time and relative cavity
length.

T(s). = exp(—as)T"(s) = [T, exp(—as)]/{1
— R, exp(—2as)] (24)
where T, = tits exp(—aho), Re = rire exp(—2ah,),

a = (ho/c). If we expand T”(s) in partial fractions
and group the complex conjugate poles we obtain

I(8) = 23 = )/s = oF + ant] ()

m=0

where « = 1/(2¢) In Ry and wym = mwe/ho,. Now the
Laplace transform of the real part of Eq. (7) becomes

E(s) = L[Real Ex(t)] = 5\_,:1\1[3/(32 + w,2)] (26)
e

So the signal output of the passive cavity for the ide-
alized mode-locked laser input is given by

G(s) = exp(—as)G'(s) = exp(—as)E(s)T'(s) (27)

where we note that exp(—as) for a non-negative real
constant corresponds to a time shift in the time do-
main. The inverse Laplace transform of a general
term of G'(s) is given by

L_l[ s R ) ]
82+ w? (s — o) + W’
1+ o 172
- [(02 + w.? — w2)? + 402wp2:|
X [w, sinfw,t + ¢) + w, sinw,t + ¥,)](28)

Thus for wp, = wp >0, ¢ > 1 the fraction of the
maximum steady state output which is obtained in
seconds is given by Eq. (27) and Eq. (28) as

f=1— explo(r — a)ju(r — a)
= (1 — R"™™u(r — a) (29)
where

u(x)={1x>0
0x <0
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The wp # wp, terms are neglected in that the coeffi-
cients of the sine terms of Eq. (28) are on the order
of In R, which are negligible for R, ~ 1. Equation
(29) is plotted in Fig. 4 as a function of time and
number of pulse train bounces parameterized by R,
= ryro exp(—2ah).

Thus the rise-time of the passive cavity is given by

T = —1/U = _&Z[l/(hRa)] =~ 2(h0/c)Ra/(1 - Ra)
(30)

and from Eq. (2)

7 = (hy/c)VPVR, = (2VR)/(Awy) = VRo/(wAv,)
(3
and thus the rise-time-bandwidth product is
TAv, = VR, /. (32)
Where R, = 0.991, 7Av, = 0.3175.

V. Doppler Measurements with the Passive Cavity

Suppose the mode-locked laser is moving toward
our receiver with a velocity v as indicated in Fig. 1.
For TEM waves,15 an emitted frequency «’ will be
observed up-shifted to w given by « = (1 + v/c)w’
in which v = [1 —(v/c)?]*/2. Assuming normal inci-
dence, by Eq. (7) the input signal, i.e., the Doppler
shifted electric field, is readily expressed as:

E(t) = (sin[@N + Dwyq + v/c)t/2}/ {sinfwsy
X (1 + v/e)t)/2) - expliwgy@ + v/ot] (33)

Thus, in the case where there is relative motion, op-
timal detection of the mode-locked laser signal re-
quires a receiver with a cavity length, h,, given by

ho = we/fwy1 + (/) = R/M1 + /)] (34)

Similarly if the mode-locked laser and the passive
cavity were on a common platform, the echo from a
vehicle moving toward this platform with velocity v
would be shifted to w = (1 + 2v/c)w’, where we have
set v = 1. So by vernier adjustments (PZT driven
mirror) of the passive cavity we can read a large
range of approach velocities, with a resolution inde-
pendent of the velocity v, i.e. 6h/h ~ év/c forv/c <«
1. Thus with éh/h = 3.3 X 10-8 we find a resolu-
tion of 6v = 10 m/c.

VI. Experiment

In this experiment the SNR improvement by pre-
detection filtering of the optical input by a passive
Fabry-Perot resonant cavity was measured as a func-
tion of several parameters: relative cavity lengths
and passive cavity finesse (Fig. 1). Since the
passive cavity is a good approximation to
the matched-filter for mode-locked lasers only when
the cavity lengths are matched, the detector output
was monitored for various relative cavity lengths.
The mode-locked laser signals were obtained from a
self-mode-locking He-Ne laser operating at 0.633 um
of length 1.2 m with an average power output of 2
mW. The change in length of the laser h was pro-
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vided by the motion of mirror M3 on Teflon runners
while the fine fractional wavelength control (1 um
full scale) of the passive cavity length h, was provid-
ed by a PZT driven mirror M. The passive cavity
was fabricated with the mirrors on Invar rods to re-
duce thermal variations while the entire experiment
was performed in a controlled acoustical environ-
ment that provided isolation (~70 dB) from external
turbulence and mechanical fluctuations. The pas-
sive cavity was scanned at a 1-Hz rate to eliminate
the remaining fluctuations. Thus continuous moni-’
toring of the cavity output, while the length of the
laser cavity was changed, allowed us to match exict-
ly the cavity lengths by peaking the output. Note
that all the modes of the laser are transmitted simul-
taneously in the matched condition. The power out-
put was observed to go as approximately (2N. + 1)2;
i.e., as the square of the number of modes oscillat-
ing. .

To measure the SNR improvement, white noise N,
from an ac driven tungsten lamp at 3200 K was in-
troduced axially into the system. The power from
the noise source, passed through a coarse band pass
filter, ¥, at the input of the passive cavity, was 1.5
W in a 100-A band around 0.633 um. The thermal
noise of the TIXL55 avalanche diode detector in a
500-MHz range twas far above the shot noise value
(2el,Af)1/2 for operating currents of 0.1 pA; so,
throughout this discussion, we shall be considering
the signal-to-unwanted signal ratio. Mirror M is a
standard Spectra-Physics flat laser reflector with
reflectivity 0.991. Mirror Ms is a standard Spectra-
Physics Laser reflector with radius of curvature 2 m
and reflectivity 0.991. Both reflectivities were cho-
sen to maximize the ideal finesse F = =x+/P/2
by minimizing loss. In all cases the measured finesse
(245 max) was lower than the ideal (346) due to mir-
ror surface roughness and scattering from occlusions

|
2.000

!
2.200 2.u00 2.6c0 2.80C 3.000

in the mirror multilayer. This factor as well as the
finesse was measured by means of a Spectra-Physics
Model 119 single mode laser which provided the
delta in frequency required to study the spectral re-
sponse of the cavity.

With the cavity set for the largest Fresnel number
(50), i.e., end apertures were limited by the mirror
dimensions, the signal and noise were measured with
M and M, aligned to maximize the passive cavity
finesse. The finesse was also measured and found to
be 245. The mirrors of the passive cavity were then

.removed and the Signal and noise were measured

again. The ratio of SNRwitn t0 SNRwithout was 156,
and fromi Eq. (22) we see that the theoretical im-
provement using the experimentally determined fi-
nesse is 2(245)/x = 156. The experiment was re-
peated for various values of finesse and the results
are summarized in Fig. 5 along with a plot of Eq.
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Fig.5. Signal-to-noise improvement with passive cavity. 4
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(22). All measurements were made using density fil-
ters calibrated at 0.633 pm to avoid nonlinearities in
the detector electronics.

VII. Summary

In this work we have shown that the passive
Fabry-Perot resonant cavity which is equal in length
to the laser cavity is probably as close a physical re-
alization to a matched-filter for multitoned mode-
locked gas laser signals as can be attained in a pas-
sive system. For the passive cavity in contrast to no
cavity the SNR improves by the factor(Pe + 1)1/2
which is typically 100-200 for a cavity of good fi-
nesse. Also, the peak value of the temporally vary-
ing SNR improves as (2N + 1)2, i.e., as the peak
power of the mode-locked laser.

An alternative approach to the mode-locked laser
lineshape is presented in Eq. (10) along with the de-
parture of the passive cavity from the matched-filter
for Aw; < Awp and h # h,. We obtain an expres-
sion for the rise-time which is also a function of Awp
and for cavities of high finesse independent of the
number of modes detected.

Further improvement of the SNR above that ob-
tained with the passive cavity may be accomplished
with subsequent processing of the detector output,
such as boxcar-integration of time-sampled displays.
In applications of the receiver to information modu-
lated multitone lasers, the effective bandwidth of the
passive Fabry-Perot can be controlled by appropriate
choices of r1 and r¢ in Eq. (2).
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research was supported in part by the Air Force Of-
fice of Scientific Research and to thank Bell Tele-
phone Laboratories for their doctoral support fellow-
ship during the completion of this study.
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