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Abstract

This paper presents a new method for determining the
minimal non-rigid deformation between two 3-D sur-
faces, such as those which describe anatomical struc-
tures in 3-D medical images. Although we match sur-
faces, we represent the deformation as a volumetric
transformation. Our method performs a least squares
minimization of the distance between the two surfaces
of interest. To quickly and accurately compute dis-
lances between points on the two surfaces, we use a
precomputed distance map represented using an octree
spline whose resolution increases near the surface. To
quickly and robustly compute the deformation, we use
a volumetric spline to model the deformation function.
We present experimental results on both synthetic and
real 3-D surfaces.

Introduction

The matching of 3-D anatomical surfaces between anatomi-
cal atlases and patient data, or between different patient data
sets, is an important element of 3-D medical image analy-
sis and quantification. Matching between atlases and patient
data enables more accurate and reliable segmentation and the
functional labeling of medical images, as well as multimodal-
ity data registration and integration. In computer vision, this
problem corresponds to finding the non-rigid deformation
between two surfaces, with applications to model-based ob-
ject recognition and deformable object tracking.

In previous work [1 ], we developed a fast and accurate
technique for determining the rigid transformation between
two surfaces, and also between a 3-D surface and its 2-D pro-
jections. In this paper, we extend our technique to recover
smooth non-rigid deformations between 3-D surfaces. Our
approach is based on describing the deformation as a warp-
ing of the space containing one of the surfaces. In particular,
we use a multiresolution warp or displacement field based
on concepts from free-form deformations [2]. Our approach
enables us to locally adapt the resolution of the deforma-
tion field to bring the two surfaces into registration, while
maintaining smoothness and avoiding unnecessary computa-
tion. The result is a rapid and efficient registration algorithm
which does not require the extraction of features from the

two surfaces (see [3] for more details on our algorithm and
results).

The main application of our technique is model-based
segmentation of 3-D medical images. Segmenting medi-
cal structures is important both in medical diagnosis and
as a component of computer assisted medical interventions
[4]. While unsupervised segmentation based on purely lo-
cal operators can be very difficult, the a priori knowledge
contained in anatomical models can make the segmentation
process easier and more robust.

A second application of our technique is in quantification
of normal anatomical structures and deviations from normal
(morphoraetrics [5]), e.g., studies of brain asymmetry, and in
deviation from self over time, e.g., changes in liver tumors.
In some cases, a volume registration between a patient data
set (e.g., a 3D MRI data set) and a model (e.g., a brain
atlas) is made possible by the existence of some common
reference surfaces in both data sets (e.g., the surface of brain
ventricles). This registration can be used to infer the location
of specific features (e.g., thalamus brain nuclei) in the patient
d~t~ set. Such an inference would not bepossibleifthe elastic
registration was a surface deformation instead of a volume
deformation.

Previous work

The registration of 3-D and 2-I) images has been widely
studied in both medical image processing and computer vi-
sion. In medical imaging, the problem of image registration
is usually solved using external fiducial markers placed on
the body of the patient [6] or by interactively selecting pairs
of matching points [7]. Our previous algorithm solved this
problem by minimizing the sum of squared distances be-
tween the transformed points on one surface and a stationary
description of the other surface [ 1]. It also solved the more
difficult problem of registering a 3-D surface with its 2-D
projections [I].

The registration of 3-D medical images under non-rigid
deformations has been studied by Bajcsy and Kovacic [8]
using volumetric deformations based on physical properties.
Another approach from Evans et al. [9] is based on ap-
proximating a 3D warping function by 3D thin-plate splines
fitted to manually matched reference points. Jacq and Roux
[I0] estimate a global warping function by minimizing an

22

From: AAAI Technical Report SS-94-05. Compilation copyright © 1994, AAAI (www.aaai.org). All rights reserved. 



distance in 3D images using genetic algorithms. In com-
er graphics, non-rigid deformations are widely used for
deling and animation purposes [11]. In computer vision,
t-rigid deformations have been used for fitting flexible
clels to both image [12] and volumetric data [13]. The
.roach we use in this paper is based on free-form deforma-
is [2], which use volumetric, 3-D tensor-product splines
lescribe the warping or displacement of points embedded
he space.

Problem formulation
formulate our deformable matching problem as follows.
en a model object and sensed data, estimate the trans-
nation T parameterized by a parameter vector p which
tes the two coordinate systems. More specifically, we
~me that both data sets are surfaces, with the sensed data
"esented as a collection of points {q~, i - 1...N}, and
model surface S represented in some arbitrary way. The
marion task is then to find a geometric transformation T

that the transformed coordinates ri = T(qi; p) all lie
he surface ,5.

practice, due to noise and the inability to perfectly
ster two surfaces, this condition will never be satisfied.
ead, we pose the problem as a minimization of the cost
:tion

,re d(r,, S) = mina,s lit, - ,11 is the minimum Eu-
ean distance from the point rl to S and o~2 is the variance
~ciated with point i [1].
b solve the minimization problem, we require three com-
ents: a suitable representation for the geometric transfor-
ion T(q~; p), an iterative minimization algorithm, and 
:lent method for computing d(r, S) along with its gradi-

tbal polynomial deformations
simplest representation for ’r(qi; p) is a rigid body

sformation which can be parameterized by 6 degrees
reedom (3 for the translation, and 3 for rotation.) In our
,ious work [I], we used the Euler angle representation
the rotation matrix R. The rigid body representation is
ropriate when working with rigid anatomical structures
,re only the pose of the patient is unknown.
¯ more general class of transformations are the affine
sforms, which can be parameterized with 12 degrees of
dom. The trilinear class of transformations adds another
tegrees of freedom for a total of 24. Finally, the q~dratic
ily of transformations has 30 free parameters (see [3] for
Jls). For all of these transformations, the position of the
sformed point r~ = T(q~; p) is li near function ofthe
~neters in p, i.e., the transformation can be written as
: Mip [11].

~1 spline deformations
)brain a wider range of more flexible deformations, we
id continue increasing the order of the polynomial. How-

ever, this suffers from the same problems as high degree
polynomial fitting, e.g., instability and the presence of ring-
ing. Instead, we model the deformation using a family of
volumetric tensor product splines,

T(q,; p) = dj k,Bj(z,)Bk(~,)B,(zi), (2
j,k,t

where the djki are the spline coefficients which comprise
the parameter vector p, and B~, Bh, and Bt are B-spline
basis functions [2]. With splines, the deformations required
to bring a local area of two surfaces into registration will not
affect the registration at far-away portions of the surface.

For our initial experiments, we first find a set of global
transformations, starting with a rigid transformation and then
fitting an affine transformation. We then estimate a local
trilinear spline deformation. To better decouple local elastic
deformations from global effects such as scale change, we
use both transformations in series.

Least squares minimization
To perform the nonlinear least squares minimization, we use
the Levenberg-Marquardt algorithm because of its good con-
vergence properties [ 14]. Least squares techniques work well
when we have many uncorrelated noisy measurements with
a normal (Ganssian) distribution. In order to update the cur-
rent estimate of the parameters p(k) Levenberg-Marquardt
requires the evaluation of the distance function d(ri, S) along
with its derivative with respect to all of the unknown parame-
ters. Efficient techniques for computing the distance function
d, as well as its spatial gradient g = Vrd, are presented in
the next section. The evaluation of the derivative involves a
straightforward application of the chain rule.

Once the distance samples d~ and their derivatives 0dr0p
have been computed, the Levenberg-Marquardt algorithm
forms the approximate Hessian matrix A and the weighted
error gradient vector b [14], and then computes an increment
6p towards the local minimum by solving

(A + ),l)Sp(k) = b, (3)
where ~ is a stabilizing factor which varies over time [14].
After setting p(k+l) = p(k) + Ap(S,), this process is repeated
until C(p) is below a fixed threshold, the difference between
parameters Ip(k) - p(k-l)[ at two successive iterations 
below a fixed threshold, or a maximum number of iterations
is reached.

When the number of parameters being estimated is rea-
sonably small (as in global deformations), we use the Gauss-
Jordan elimination algorithm [14] to solve (3). For systems
with more parameters, such as local deformations, we use
conjugate gradient descent [ 14].

Fast distances using octree splines
The method described in the previous section relies on the
fast computation of the distance d(r, S) and its gradient. 
speed up this computation, we precompute a 3-D distance
map, which is a function that gives the minimum distance to
$ from any point r inside a bounding volume V that encloses
S[151.

23



a

~: ..... ~:"~p~5:’£.:

.~...’:. ~.. .~.~

- .:.~-~ , ~:~.;-.:.

": ~;; ..- ~ ~::.j..!~

b c d
Figure 1: Registration of two face ~ta sets:

(a) model da~. set (george1) Co) sensor da~ set (heidi) (c) final deformed sensor d~t~ (d) final registered 

In looking for an improved trade-off between memory ¯ see that the two dat~ sets are registered well, except for the
space, accuracy, speed of computation, and speed of con-
slniction, we developed a new kind of distance map which
we call the octree spline [1]. The intuitive idea behind this
geometrical representation is to have more detailed informa-
tion (i.e., more accuracy) near the surface than far away from
it. We sta/’t with the classical octree representation associ-
ated with the surface 5 [16] and then extend it to represent
a continuous 3-D function that approximates the Euclidean
distance to the surface. This representation combines ad-
vantages of ~,ptive spline functions and hierarchical data
structures (see [ 1, 3] for details).

Experimental results
To determine the reliability of our global and local defor-
mation estimates, we first performed a series of experiments
on both real and synthetic surfaces under simulated (known)
motion. For a given surface, we first compute the octree
distance map. Next, we select a subset of the surface points
(typically 5%) and transform these through the inverse 
the deformation we are simulating. We then initialize the
Levenberg-Marquardt algorithm with some initial rigid pose
estimate and set the non-rigid parameter estimates to O. Fi-
nally, we run the Levenberg-Marquardt algorithm in stages,
first computing the best rigid match, then the best global non-
rigid match, and finally the best local displacement warp.

To demonstrate the local non-rigid matching, we use two
sets of range data acquired with a Cyberware laser range
scanner (Figures la and lb). The octree spline distance map
is computed on the larger of the two data sets (Figure la),
and the smaller of the two data sets is deformed (Figure lb).
In their initial positions, the data sets overlap by about 50%
and differ in orientation by about 10°. We first perform
8 iterations of rigid matching and 8 iterations of non-rigid
affine matching. We then perform 8 iterations at each of
4 levels of the local displacement spline. The finest ocl~ee
spline level has (24 + 1)3 ~ 5000 nodes for a total of about
15000 degrees of freedom. Even with this large number of
parameters, the algorithm converges very quickly, because it
is always in the vicinity of a good solution (a typical iteration
at the finest level takes about 2 seconds). From Figure ld, we

eyebrows, which would require a more detailed deformation.
We also note that the deformed face of Figure lc resembles
that of Figure la more than its former (undeformed) self
(Figure lb).

As a second example of our algorithm, we matched the
surface of a real patient vertebra to the surface of a plas-
tic "phantom" vertebra (both 3-D images sets were acquired
with a CT scanner). Figure 2 shows the result of our match-
ing. After affine registration, a fair amount of discrepancy
remains. After the local spline registration, most of the pa-
tient vertebra (contour lines) matches the phantom model
(cloud of dots), except for the tips of the vertebra which have
not been pulled into registration.

Discussion and Conclusions
We have developed a technique for registering 3-D surfaces
with non-rigid deformations. Our approach represents the
deformation using a combination of global polynomial de-
formations and local displacement splines (free-form defor-
mations). We use an algorithm which directly minimizes
the squared distances between the two surfaces, rather than
identifying sparse features (e.g., ridge lines or feature points
[17]) and then trying to match them.

We believe that the direct matching of surfaces has bet-
ter accuracy and removes the need for a feature detection
stage, which may not always operate reliably. Two argu-
ments which favored feature-based approaches in the past
were computational complexity and global correspondence
search. Using the octree spline distance map, the complexity
of each iterative adjustment step in our algorithm is linear in
the number of sensed surface points. In our approach, we
use a modified gradient descent which avoids combinatorial
search but only finds locally optimal matches. In practice,
we have found that false local minima are usually far away
from the true solution. In medical applications, a priori
knowledge about position and shape is usually available, so
that only small displacements and local deformations have
to be estimated.

Our approach embeds one of the surfaces being matched
into a deformable space, rather than equipping it directly
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Figure 2: Registration of patient vertebra with plastic "phantom":
fter affine registration Co) after final local spline registration (c) selected lines in deformation spline

elastic properties. While the latter approach may be
physically realistic if an anatomically and biomechan-

y correct model is constructed, our approach enables us
with arbitrary surfaces which may not even have a

~th connected representation. Volumetric deformations
yield auxilliary information about the motion of nearby
:tures which did not participate in the matching, e.g.,
;trations performed on certain easily identifiable brain
:tures can be used to estimate the registration for the
le brain.
ur experiments to date have been performed on pre-
~ented 3-D surfaces. We are planning to extend our
rithm to work directly with unsegmented 3-D medical
~es. Other areas of future investigation include an adap-
~lgorithm for deciding how to refine the local octree de-
ration spline, the choice of the order of the octree spline,
Lhe choice of various smoothness constraints (regulariz-
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