
13

Matching Algorithmic Bounds for Finding a Brouwer

Fixed Point

XI CHEN

Tsinghua University, Beijing, China

AND

XIAOTIE DENG

City University of Hong Kong, Hong Kong, China

Abstract. We prove a new discrete fixed point theorem for direction-preserving functions defined on
integer points, based on a novel characterization of boundary conditions for the existence of fixed
points. The theorem allows us to derive an improved algorithm for finding such a fixed point. We
also develop a new lower bound proof technique. Together, they allow us to derive an asymptotic
matching bound for the problem of finding a fixed point in a hypercube of any constantly bounded
finite dimension.

Exploring a linkage with the approximation version of the continuous fixed point problem, we ob-
tain asymptotic matching bounds for the complexity of the approximate Brouwer fixed point problem
in the continuous case for Lipschitz functions. It settles a fifteen-years-old open problem of Hirsch,
Papadimitriou, and Vavasis by improving both the upper and lower bounds.

Our characterization for the existence of a fixed point is also applicable to functions defined on
nonconvex domains, which makes it a potentially useful tool for the design and analysis of algorithms
for fixed points in general domains.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]: Non-
numerical Algorithms and Problems—Computations on discrete structures; sorting and searching;
geometrical problems and computations

An extended abstract of this article appeared in Proceedings of the 37th Annual ACM Symposium on
Theory of Computing (STOC), 323–330.
X. Chen’s work was supported by the Chinese National Key Foundation Plan (2003CB317807,
2004CB318108), the National Natural Science Foundation of China Grant 60553001 and the National
Basic Research Program of China Grant (2007CB807900, 2007CB807901).
Part of the work of X. Chen was done while visiting City University of Hong Kong.
X. Deng’s work was partially supported by a CERG grant of Research Grants Council of Hong Kong
SAR (Project No. CityU 112707).
Authors’ present addresses: X. Chen, School of Mathematics, Institute for Advanced Study, Princeton,
NJ 08540; e-mail: csxichen@gmail.com; X. Deng, Department of Computer Science, City University
of Hong Kong, Hong Kong, China, e-mail: csdeng@cityu.edu.hk.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along with the
full citation. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute
to lists, or to use any component of this work in other works requires prior specific permission and/or
a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701,
New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2008 ACM 0004-5411/2008/07-ART13 $5.00 DOI 10.1145/1379759.1379761 http://doi.acm.org/
10.1145/1379759.1379761

Journal of the ACM, Vol. 55, No. 3, Article 13, Publication date: July 2008.



13:2 X. CHEN AND X. DENG

General Terms: Algorithms, Economics, Theory

Additional Key Words and Phrases: Approximate fixed point, fixed point theorem, Lipschitz function,
Sperner’s lemma

ACM Reference Format:

Chen, X. and Deng, X. 2008. Matching algorithmic bounds for finding a Brouwer fixed point. J.
ACM 55, 3, Article 13 (July 2008), 26 pages. DOI = 10.1145/1379759.1379761 http://doi.acm.org/
10.1145/1379759.1379761

1. Introduction

Brouwer’s fixed point theorem and its variations have had a profound influ-
ence in mathematical sciences and applications, including approximation theory
[Meinardus 1963], dynamical systems [Robinson 1999], game theory [Nash 1950],
and the most popularly known of all, the theory of general equilibrium in Eco-
nomics [Arrow and Debreu 1954]. While fixed point theorems are applied to es-
tablish fundamental theories, fixed point algorithms are used to solve important ap-
plication problems, especially in many recent works for network communication:
TCP network calculus, by Altman et al. [2002]; network edge pricing, by Cole
et al. [2003]; multicast pricing, by Mehta et al. [2003]; and TCP queue manage-
ment, by Low [2003]. Fixed point theorems also have other important applications
in computer science, for example, the spectral analysis for numerical computation,
by Spielman and Teng [1996].

Brouwer’s [1910] fixed point theorem can be stated succinctly as follows: any
continuous function F mapping D = [0, 1]d to itself has a fixed point x ∈ D such
that F(x) = x . In various levels of generalities, it can be extended to different
relaxed requirements on the functionF and domain D. A discrete and combinatorial
characterization of Brouwer’s theorem is Sperner’s lemma. It ensures that a certain
labeling rule on vertices of a simplicial decomposition of a simplex Sd guarantees
the existence of a subsimplex with all vertices differently labeled. Naturally, it
has been influential on the design of combinatorial algorithms for the fixed point
problem, started in the 60’s with Scarf’s seminal work [Scarf 1967], which finds an
approximate fixed point by finding a completely labeled primitive set based on a
structure lemma similar to, but not the same as, Sperner’s Lemma. Kuhn replaced
the primitive sets by simplices and simplicial partitions [Kuhn 1968]. The simplicial
approach has since been adopted by most general purpose fixed point algorithms
developed later, such as the restart algorithm of Merrill [1972] and the homotopy
algorithm of Eaves [1972].

Although many combinatorial algorithms based on simplicial structures are in the
worst case exponential in computation time, it was conjectured that the performance
of some such algorithms might be better. Hirsch et al. [1989] played down such
a hope by proving a general exponential lower bound. On the other hand, for
contractive Lipschitz functions, that is, F such that |F(x)−F(y)| ≤ c · |x − y| with
c < 1, the problem can be solved efficiently, for example, by the iteration algorithm
of Banach [1922], Newton’s method (see the works of Ortega and Rheinbolt [1970],
Kellogg et al. [1976], and Smale [1976]), and the interior ellipsoid algorithm of
Huang et al. [1999].

In this article, we study fixed point algorithms for general Lipschitz functions.
Therefore, the iterative approach for contractive functions does not apply here. Our

Journal of the ACM, Vol. 55, No. 3, Article 13, Publication date: July 2008.



Matching Algorithmic Bounds for Finding a Brouwer Fixed Point 13:3

study is motivated by a particularly interesting recent discrete version of the fixed
point problem, introduced by Iimura [2003] and Iimura et al. [2005], stating that any
direction-preserving function F (a discrete analogue to the continuous function)
that maps D = N d = {0, 1, 2, . . . , n − 1}d to itself, has a fixed point.

Iimura’s proof [2003] is nonconstructive by extending the discrete function F
to a continuous function such that the latter has a fixed point if and only if F has
one. It is, therefore, not suitable for developing algorithms for finding a solution.
The algorithmic results for approximating fixed points by Hirsch et al. [1989] on
the other hand, have a natural extension for the discrete version, leading to a lower
bound of �(nd−2) and an upper bound of O(nd) for the discrete fixed point problem
on the grid N d . Noticeably, for d = 2, Hirsch et al. have a matching bound of �(n)
for N 2. Closer examination of their upper bound for the 2-dimensional case would
reveal a boundary condition for a fixed point to exist: the winding number of the
boundary is nonzero. Our upper bound relies on the establishment of a similar
boundary condition for higher dimensions. We exploit the grid structure and the
direction-preserving condition of the discrete fixed point problem to develop a
succinct combinatorial theorem that leads to the design of our algorithm.

In addition, our result gives an independent and constructive proof for Iimura’s
discrete fixed point theorem. In fact, we derive a general characterization for a
pair of function and domain (F, D) to have a fixed point, which is also applicable
to nonconvex domains, and thus improve the results of Iimura [2003] and Iimura
et al. [2005].

The theorem is based on a characterization, via a parity argument, of F(x) − x
on vertices of a unit cube, which is then applied onto a collection of unit cubes to
establish a global boundary condition, if no fixed point exists. It is as elementary
as Sperner’s Lemma [Sperner 1928]. In fact, Brouwer’s fixed point theorem for the
continuous case can also be derived from our combinatorial theorem.

The tight lower bound proof for the two-dimensional case by Hirsch et al. is
also very elegantly done. However, it is not suitable to extend to higher dimensions
directly. Our lower bound proof fully utilizes the simplification brought in by the
discrete version, and introduces a game on lattice graphs to focus on the essence of
the problem. Then we extend the result derived from the game to obtain a matching
lower bound for the discrete fixed point problem. Even though the final proof is
deep and rather complicated, the approach is quite clear and accessible.

Finally, it is not hard to establish a linkage between direction-preserving functions
for the discrete fixed point problem and Lipschitz functions for the approximate
fixed point problem. That linkage makes our results for the discrete version extend-
able to the approximate fixed point problem for Lipschitz functions. In particular,
our results solve an open problem proposed by Hirsch et al. [1989].

For succinctness of the presentation here, we sometimes, especially in Section 3
and 4, consider the function f (x) = F(x)− x . The problem of finding a fixed point
of F is equivalent to the problem of finding a root of f : F(x) = x ⇔ f (x) = 0.
We call such a point a zero point of f . As pointed out by Hirsch et al. [1989], the
general zero point problem is algorithmically harder than the fixed point problem.
However, our discussion here only considers a special version of the zero point
problem which is equivalent to the discrete fixed point problem.

The article is organized as follows. In Section 2, we give the necessary definitions,
together with a proof that the above two problems are computationally equivalent.
The crucial combinatorial lemma is then discussed in Section 3, followed by the

Journal of the ACM, Vol. 55, No. 3, Article 13, Publication date: July 2008.



13:4 X. CHEN AND X. DENG

algorithm and the upper bound proof. The lower bound construction and proof are
presented in Section 4. In Section 5, we discuss applications to the continuous case.
We conclude in Section 6 with discussions and remarks on our approach and other
related results as well as potential research directions.

2. Definitions

We start with some notation. For any nonzero x ∈ R, we let sgn(x) = 1 if x > 0,
and sgn(x) = −1 if x < 0. For any 1 ≤ k ≤ d, we use ek to denote the kth unit
vector of Z

d , where ek
k = 1 and ek

i = 0 for all 1 ≤ i �= k ≤ d. For any vector
v ∈ Z

d , 1 ≤ k ≤ d, and l ∈ Z, we define vector v[k ← l] = v + (l − vk)ek . For
simplicity, we use v− to denote v[d ← (vd −1)] and v+ to denote v[d ← (vd +1)].

Definition 2.1. For any p < q ∈ Z
d (i.e., pi < qi for all 1 ≤ i ≤ d), we define

a rectangular set Ap,q = {r ∈ Z
d | p ≤ r ≤ q}. Its boundary is then defined as

Bp,q = {r ∈ Ap,q | ∃ 1 ≤ i ≤ d such that ri = pi or qi }.

Definition 2.2. Map F : Ap,q → R
d is said to be direction-preserving if for

any r1, r2 ∈ Ap,q such that |r1 −r2|∞ ≤ 1, we have (Fi (r1)−r1
i )(Fi (r2)−r2

i ) ≥ 0,
for all 1 ≤ i ≤ d.

Definition 2.3. Function f : S → {0, ±e1, ±e2, . . . , ±ed}, where S ⊂ Z
d , is

said to be direction-preserving if for any r1, r2 ∈ S such that |r1 − r2|∞ ≤ 1, we
have | f (r1) − f (r2)|∞ ≤ 1. We let F[S] denote the set of all such functions on S.

Function f : Ap,q → {0, ±e1, . . . , ±ed} is said to be bounded ifF(r ) = f (r ) + r
is a map from Ap,q to itself. Using the results of Iimura [2003] and Iimura et al.
[2005], we have the following theorem. Later, we will derive for it a new constructive
proof in Section 3.

THEOREM 2.4. For any direction-preserving map F from Ap,q to itself, there
exists r∗ ∈ Ap,q such that F(r∗) = r∗. Such a point r∗ is called a fixed point of F .

We are interested in the algorithmic complexity of the following discrete fixed
point problem DFPd : given a direction-preserving map F from Ap,q to itself with
Ap,q ⊂ Z

d , find a fixed point r∗ of F . Algorithms discussed in this paper will be
restricted to those that are based on map evaluations. That is, map F is provided
as an oracle to algorithm designers. It can only be accessed by calling the oracle
to evaluate F(r ) when a point r ∈ Ap,q is given. We use n = |p − q|∞ + 1 as the
measure of input size, then two kinds of complexities are considered here: query
complexity Q(n, d) and time complexity T (n, d).

We will focus on the study of the following discrete zero point problem DZPd :
given a bounded function f ∈ F[Ap,q], where Ap,q ⊂ Z

d , compute a zero point r∗
such that f (r∗) = 0. The existence of such an r∗ is guaranteed by Theorem 2.4, as
(A) F(r ) = f (r ) + r is a direction-preserving map from Ap,q to itself. Similarly,
we use Q′(n, d) and T ′(n, d) to denote the query and time complexity of DZPd ,
respectively. Our main results in Section 3 and 4 are

Journal of the ACM, Vol. 55, No. 3, Article 13, Publication date: July 2008.



Matching Algorithmic Bounds for Finding a Brouwer Fixed Point 13:5

THEOREM 2.5. For any d ≥ 2 and n > 48d, we have

0.5(�(n − 1)/210�)d−1 ≤ Q′(n, d) ≤ 7nd−1 and
Q′(n, d) ≤ T ′(n, d) ≤ O(d2(2n)d−1).

There is a strong relationship between these two problems. Statement (A) shows
that any algorithm for DFPd can be used to solve DZPd : We simply execute it on
F to find a fixed point r∗ of F and it must also be a zero point of f . Whenever the
algorithm wants to evaluate F(r ), we query f (r ) and compute F(r ) = f (r ) + r in
O(d ) time. This reduction shows that

Q′(n, d) ≤ Q(n, d) and T ′(n, d) ≤ O(d ) · Q(n, d) + T (n, d).

On the other hand, given any direction-preserving map F from Ap,q to itself, a
bounded function f ∈ F[Ap,q ] can be constructed as follows: For every r ∈ Ap,q ,
if F(r ) = r , then set f (r ) = 0; otherwise, set f (r ) = sgn(Fi (r ) − ri )ei , where i is
the largest index such that Fi (r ) �= ri . Similarly, we have

Q(n, d) ≤ Q′(n, d) and T (n, d) ≤ O(d ) · Q′(n, d) + T ′(n, d).

In conclusion, DFPd and DZPd are equivalent in computational complexity and
Theorem 2.5 also holds for Q(n, d) and T (n, d). For any constant d ≥ 2, it gives a
matching algorithmic bound of �(nd−1) for both complexities.

3. An Algorithm for the Discrete Zero Point Problem

In this section, we first prove a discrete zero point theorem. For any f ∈ F[Ap,q],
it gives us a condition on f (Bp,q), which guarantees the existence of a zero point
in Ap,q . Then, a divide-and-conquer algorithm for DZPd is presented: Recursively,
we divide the function domain of f into two parts (of almost the same size); the
discrete zero point theorem is then applied to decide which side to follow.

3.1. THE DISCRETE ZERO POINT THEOREM. First, we define subsets of Z
d

called t-cubes where 0 ≤ t ≤ d. Lemma 3.2 and 3.3 about t-cubes are both
easy to prove.

Definition 3.1. For any r ∈ Z
d and S ⊂ {1, 2, . . . , d} with |S| = d − t , the

t-cube Ct ⊂ Z
d which is centered at r and perpendicular to S is defined as

Ct = {p ∈ Z
d | ∀ 1 ≤ i ≤ d, if i ∈ S, then pi = ri ; otherwise, pi = ri or ri +1}.

For any rectangular set Ap,q ⊂ Z
d , we use V [p, q] to denote the set of all (d −1)-

cubes C ⊂ Bp,q (every such C is perpendicular to S = {k} for some k : 1 ≤ k ≤ d
and centered at r with rk = pk or qk).

LEMMA 3.2. Let Ct be a t-cube in Z
d , where t ≥ 2. Then for every (t −2)-cube

Ct−2 ⊂ Ct , there are exactly two (t − 1)-cubes in Ct that contain Ct−2.

LEMMA 3.3. Let Cd−1 be a (d − 1)-cube in Ap,q ⊂ Z
d . If Cd−1 ∈ V [p, q],

then it is contained by exactly one d-cube in Ap,q; otherwise, it is contained by two
d-cubes.

Inductively, we define bad t-cubes Ct ⊂ Z
d with respect to a function f from

Ct to {0, ±e1, . . . , ±ed}, where 0 ≤ t ≤ d − 1, as follows.

Journal of the ACM, Vol. 55, No. 3, Article 13, Publication date: July 2008.



13:6 X. CHEN AND X. DENG

Definition 3.4. A 0-cube {r} = C0 ⊂ Z
d is bad relative to f if f (r ) = e1.

For 1 ≤ t ≤ d − 1, a t-cube Ct ⊂ Z
d is bad relative to f if

(B1). f (Ct ) = {e1, e2, . . . , et+1} (where f (Ct ) = { f (r ), r ∈ Ct}); and
(B2). the number of bad (t − 1)-cubes in Ct is odd.

For any f ∈ F[Ap,q], we let V f [p, q] denote the set of all bad (d − 1)-cubes in
V [p, q].

LEMMA 3.5. For any d-cube Cd ⊂ Z
d and f ∈ F[Cd], such that f has no

zero point in Cd, the number of bad (d − 1)-cubes in Cd must be even.

Actually, Lemma 3.5 is a direct corollary of Lemma 3.7. Before presenting the
proof, we note that Lemma 3.5 together with Lemma 3.3 imply the following zero
point theorem.

THEOREM 3.6. If |V f [p, q]| is odd, then f ∈ F[Ap,q] must have a zero point.

LEMMA 3.7. For any t-cube Ct ⊂ Z
d , where 1 ≤ t ≤ d, and any f ∈ F[Ct ]

such that f (Ct ) ⊂ {±e1, ±e2, . . . , ±et}, the number of bad (t − 1)-cubes in Ct

must be even.

PROOF. We use mathematical induction on t . The base case for t = 1 is trivial.
For the case when t ≥ 2, we assume that the claim is true for t − 1. First, if there
is no bad (t − 1)-cube in Ct , then we are done. Otherwise, there exists at least one
bad (t −1)-cube Ct−1 ⊂ Ct . Condition (B1) shows that f (Ct−1) = {e1, e2, . . . , et},
and the direction-preserving property of f requires that f (Ct ) = {e1, e2, . . . , et}.

Now for any (t − 1)-cube Ct−1 ⊂ Ct , we prove that if it satisfies condition (B2),
then it must also satisfy (B1). This shows that Ct−1 is bad iff the number of bad
(t − 2)-cubes in it is odd. As a result, the parity of the number of bad (t − 1)-
cubes in Ct is the same as the parity of

∑
Ct−1 ⊂ Ct |{bad (t − 2)-cubes in Ct−1}|.

Lemma 3.7 then follows directly from the fact that the latter summation is even
(due to Lemma 3.2).

Therefore, to finish the proof, we only need to prove that (B2) implies (B1) for any
Ct−1 ⊂ Ct . Suppose Ct−1 ⊂ Ct satisfies (B2). Since there is at least one bad (t −2)-
cube in Ct−1, we have {e1, . . . , et−1} ⊂ f (Ct−1). If f (Ct−1) = {e1, . . . , et−1}, then
by the inductive hypothesis, the number of bad (t − 2)-cubes in Ct−1 must be even,
which contradicts property (B2). Therefore, f (Ct−1) ⊂ f (Ct ) = {e1, . . . , et} must
equal to {e1, . . . , et} and property (B1) is satisfied.

3.2. THE RECURSIVE ALGORITHM. We are now ready to present the recursive
algorithm called FindZerod(g, Vg[p, q]). Its input satisfies g ∈ F[Ap,q], where
Ap,q ⊂ Z

d , and |Vg[p, q]| is odd. Its output is a zero point of g.
If |p − q|∞ = 1, then the algorithm simply queries all the vertices and returns a

zero point (whose existence is guaranteed by Theorem 3.6). Otherwise, it divides
Ap,q into two parts and proceeds recursively on the bad part. Let n = |p −q|∞ +1.
The algorithm uses at most 6nd−1 queries and O(d2(2n)d−1) time to find a zero
point of g, for all d ≥ 2 and n > 48d.

But how can we use FindZerod to solve DZPd? Given a bounded f ∈ F[Ap,q],
we first extend f to be f ′ on Ap′,q ′ , where p′ = p − 1 and q ′ = q + 1, as follows.
First, f ′ = f on Ap,q . Then for every r ∈ Bp′,q ′ , let i be the largest integer such

Journal of the ACM, Vol. 55, No. 3, Article 13, Publication date: July 2008.



Matching Algorithmic Bounds for Finding a Brouwer Fixed Point 13:7

Algorithm Cutd (g, Vg[p, q], k)

Ensure: 1 ≤ k ≤ d, qk − pk > 1 and |Vg[p, q]| is odd
1 : set l = �(pk + qk)/ 2�, p′ = p[k ← l], q ′ = q[k ← l] and Vg[p, q ′] = Vg[p′, q] = ∅
2 : for any r ∈ S = {r ∈ Z

d | ∀ 1 ≤ i ≤ d, p′
i ≤ ri ≤ q ′

i }, query g(r )
3 : for any (d − 1)-cube C ∈ Vg[p, q] do

4 : if C ∈ V [p, q ′], then Vg[p, q ′] = Vg[p, q ′] ∪ {C}, else Vg[p′, q] = Vg[p′, q] ∪ {C}
5 : compute V = {bad (d − 1)-cubes in S}
6 : for any (d − 1)-cube C ∈ V , add C into both Vg[p, q ′] and Vg[p′, q]
7 : if |Vg[p, q ′]| is odd, then output (g, Vg[p, q ′]), else output (g, Vg[p′, q])

Algorithm FindZerod (g, Vg[p, q])

Ensure: p < q and |Vg[p, q]| is odd
1 : if |p − q|∞ = 1, then query every point r ∈ Ap,q and output a zero point of g
2 : for i = 1 to d do

3 : if qi − pi > 1, then set (g, Vg[p, q]) = Cutd (g, Vg[p, q], i )

4 : output FindZerod (g, Vg[p, q])

FIG. 1. Details of algorithm FindZerod .

that ri = p′
i or q ′

i . If ri = p′
i , then f ′(r ) = +ei ; otherwise, f ′(r ) = −ei . It is easy

to check that f ′ ∈ F[Ap′,q ′]. Lemma 3.8 below is proved in Appendix A.

LEMMA 3.8. For any bounded function f ∈ F[Ap,q], V f ′[p′, q ′] contains ex-
actly one (d − 1)-cube, that is, the one that is centered at p′ and perpendicular to
set {1}.

As a result, we can call FindZerod( f ′, V f ′[p′, q ′]) to find a zero point of f . This
gives us the following upper bounds:

Q′(n, d) ≤ 6(n + 2)d−1 ≤ 7nd−1 and T ′(n, d) = O(d2(2n)d−1),

for any d ≥ 2 and n > 48d.
The algorithm is described in Figure 1 above. Here Cutd uses S, which is per-

pendicular to the kth dimension, to divide Ap,q into two smaller sets of almost the
same size. After querying all the points in S, it chooses one set that still satisfies
the condition of our zero point theorem to return.

Finally, we analyze the complexity of FindZerod . Let n = |p − q|∞ + 1. Then
the number of queries used by the d calls to Cutd in FindZerod is at most

nd−1 + nd−2(�n/2� + 1) + · · · + (�n/2� + 1)d−1 < 3nd−1,

under the condition that n > 48d, and recurrence can be solved to derive a 6nd−1

upper bound for the query complexity of FindZerod . An implementation of line
5 in Cutd , based on dynamic programming, can be found in Appendix B. It
uses O(d22d |S|) time, so the d calls to Cutd in FindZerod use O(d22d nd−1)
time. This gives a O(d2(2n)d−1) upper bound for the time complexity of
FindZerod .

3.3. A NEW DISCRETE FIXED POINT THEOREM. Now we see that Theorem 2.4
follows directly from Theorem 3.6 and Lemma 3.8. Actually, Theorem 3.6 implies

Journal of the ACM, Vol. 55, No. 3, Article 13, Publication date: July 2008.



13:8 X. CHEN AND X. DENG

a stronger fixed point theorem. Given any direction-preserving map F from Ap,q

to R
d , one can construct a function f ∈ F[Ap,q] using the method in Section 2,

then

COROLLARY 3.9. If |V f [p, q]| is odd, then F must have a fixed point.

Furthermore, the way we prove Theorem 3.6 suggests that both Theorem 3.6 and
Corollary 3.9 can be easily generalized to nonconvex domain D ⊂ Z

d which is a
union of d-cubes.

4. A Lower Bound for the Discrete Zero Point Problem

In this section, we first define a class of undirected graphs Gm,d = (Nm,d, Em,d).
Then a game on Gm,d , of a hidden-seek type, between two players, Alex and Bob, is
introduced. We analyze the minimum number of queries needed by Bob and finally,
use the lower bound for Bob to derive a lower bound for the query complexity of
problem DZPd .

4.1. DEFINITIONS OF PIPE PATHS AND SPARSE SETS IN GRAPH Gm,d . We start
with the definition of graph Gm,d . For any m ≥ 2, we define

Nm,d = {r ∈ Z
d | ∀ 1 ≤ i ≤ d, 1 ≤ ri ≤ m}.

For S ⊂ Z
d and t ∈ Z, the layer t of set S is defined as St = {r ∈ S, rd = t}.

Definition 4.1. For any d ≥ 1 and m ∈ Z
+ that is a multiple of 256, we define

graph Gm,d = (Nm,d, Em,d) as follows. For all vertices u, v ∈ Nm,d , uv ∈ Em,d iff
there exists 1 ≤ i ≤ d such that |ui − vi | = 1 and u j = v j for all other 1 ≤ j ≤ d.

For each t : 1 ≤ t ≤ m, the layer t of graph Gm,d is the subgraph spanned by
N t

m,d . Obviously, it is isomorphic to Gm,d−1 under the mapping D where D(u) =
(u1, u2, . . . , ud−1). Given a path P = u . . . w in Gm,d , u is called the start vertex
and w is called the end vertex of P . If the end vertex of path P1 is same as the start
vertex of path P2, then we use P1 ∪ P2 to denote the concatenation of P1 and P2.

Definition 4.2. Path P = v1v2 . . . vk in Gm,d is said to be monotone if k = 1
or

v1
d + 1 = v2

d ≤ · · · ≤ vk−1
d = vk

d − 1 or v1
d − 1 = v2

d ≥ · · · ≥ vk−1
d = vk

d + 1.

For any v1
d ≤ t ≤ vk

d , we use Pt to denote the part of P on layer t of Gm,d . It is
clear that for any monotone path P , Pt is a sub-path of P on layer t of Gm,d .

Next we define pipe paths and sparse sets in graph Gm,d . Proofs of Lemma 4.5
and 4.6 are presented in Appendix C and D, respectively.

Definition 4.3. For d = 1, every path P in Gm,1 is a pipe path.
For d ≥ 2, P is a pipe path in Gm,d if it is monotone and for any 1 ≤ t ≤ m, Pt

is either empty or a pipe path in the layer t of Gm,d (in another word, D(Pt ) is a
pipe path in graph Gm,d−1).

Definition 4.4. Let S be a subset of Nm,d and u be a vertex of Gm,d . For d = 1,
S is said to be sparse relative to u (in Gm,1) if S = ∅. For d ≥ 2, S is said to be

Journal of the ACM, Vol. 55, No. 3, Article 13, Publication date: July 2008.



Matching Algorithmic Bounds for Finding a Brouwer Fixed Point 13:9

sparse relative to u if it satisfies the following three conditions:

(1) u /∈ S and |S| < lm,d = (m/256)d−1;
(2) If ud < m, then Sud+1 is sparse relative to u+ in layer ud + 1 of Gm,d ;
(3) If ud > 1, then Sud−1 is sparse relative to u− in layer ud − 1 of Gm,d .

We let Km,d denote the set of all pairs (S, u) such that S is sparse relative to u.

Clearly, S = ∅ is sparse with respect to u at any dimension. Condition (2) (and
(3) similarly) in the definition means that, set D(Sud+1) (or D(Sud−1)) is sparse
relative to D(u+) (or D(u−)) in graph Gm,d−1.

LEMMA 4.5. For any S ⊂ Gm,d ,

|{u ∈ Gm,d such that (S, u) /∈ Km,d}| ≤ 256d−1m |S|.
LEMMA 4.6. For any pair (S, u) ∈ Km,d , where m ≥ 12d, there exists a set of

md/2 pipe paths {P1, P2, . . . , Pmd/2} such that

(1) path Pi starts at u and Pi ∩ S = ∅, for all i : 1 ≤ i ≤ md/2; and
(2) the md/2 end vertices of the md/2 paths are distinct.

4.2. PIPE PATH FINDING ON GRAPH Gm,d . We define a pipe path finding
problem on Gm,d . We present it as a game between two players: Alex and Bob.
At the beginning of the game, Bob picks a pair (S, u) from Km,d and shows it to
Alex. Alex then picks a pipe path P in graph Gm,d , starting at u and satisfying
P ∩ S = ∅. Bob’s goal is to find it out by a sequence of queries. We will prove a
lower bound on the number of queries needed by Bob.

At each round, Bob sends a vertex v ∈ Gm,d to Alex. Alex is an oblivious player
and answers the query of Bob according to his pipe path P:

Case 1. If v is not on P , Alex returns “false”;
Case 2. If v is on P , but it is not the ending vertex of P , then Alex returns the

sub-path R of P which starts at u, passes v , and ends at the successor of v;
Case 3. If v is the ending vertex of P , Alex returns “true” and the whole path P;

The pipe path is found and Bob wins.

We allow Bob to make a total of lm,d = (m/256)d−1 rounds of queries. After each
query, Bob knows more information about the pipe path P held by Alex. When
Bob uses up all the lm,d queries, Alex must reveal the pipe path P to convince Bob
that he has followed the rules honestly.

A (deterministic) strategy of Bob includes: (1) an initial pair (S, u) ∈ Km,d
that starts the game; and (2) how to choose a query vertex v ∈ Gm,d , given the
query-answer history so far.

We will prove the following theorem:

THEOREM 4.7. If m ≥ 12d, then for every strategy of Bob, there is at least one
pipe path P in Gm,d , which requires more than lm,d rounds of queries.

To prove this lower bound, we introduce a malicious player: Alice, in the place
of Alex. Different from Alex, Alice does not choose a pipe path at the beginning
of the game. Instead, she will use a constructive way to derive a pipe path in Gm,d
(see Theorem 4.8 for details) that beats Bob’s effort to win the game.

Journal of the ACM, Vol. 55, No. 3, Article 13, Publication date: July 2008.



13:10 X. CHEN AND X. DENG

For every graph Gm,d such that m ≥ 12d, we construct a strategy T [m, d] for
Alice so that she can always win the game. The strategy T [m, d] is composed of
three modules: Init(S, u), Query(v) and GetPath(). Alice can use it to play the
game against (any strategy of) Bob in the following way:

(1) At the initiation stage of receiving the pair (S, u) ∈ Km,d , Alice initiates the
strategy T [m, d] by calling Init(S, u);

(2) At each round, when vertex v ∈ Gm,d is queried by Bob, Alice calls Query(v)
and answers Bob with its output; (The output of Query(v) is either “false” or
a path that starts at u, passes u, and ends at the successor of u.)

(3) Finally, after answering all the lm,d queries, Alice calls GetPaths() (with no
input), which outputs a collection of pipe paths in Gm,d . Every path in it is
consistent with the query-answer history (for details, see the notations below).
As a result, Alice can reveal any of them to Bob, and wins the game.

We need the following notations: After the first s ≤ lm,d queries, we let Us denote
the set of all paths answered by Alice so far, and

Hs = S ∪ {v, v is queried by Bob in the first s rounds
and Alice’s answer is “false”}.

Set Hs is also called the forbidden set before the (s + 1)st round.
After the first s ≤ lm,d queries, a pipe path P in Gm,d (starting with u) is said

to be consistent with the query-answer history (Us, Hs), if all the paths in Us are
prefixes of P , and P ∩ Hs = ∅. Both the construction of T [m, d] and the proof of
the following theorem are presented in Appendix E.

THEOREM 4.8. If m ≥ 12d, then for any strategy of Bob, T [m, d] satisfies:

C1 After being initiated by a pair (S, u) ∈ Km,d , the output of Query(v) is either
“false”, or a path starts at u, passes v, and ends at the successor of v;

C2 After all the lm,d queries, GetPaths() outputs a collection of at least (md/8)
pipe paths in Gm,d . They all start at u and their ending vertices are distinct.
Each of them is consistent with the query-answer history.

Theorem 4.8 shows that, no matter what strategy Bob employs, there exists a
pipe path P (and many, as stated in the theorem) such that, if Alex picks P at
the beginning of the game, then he is able to answer all the lm,d queries correctly
without revealing P to Bob. Theorem 4.7 then follows from Theorem 4.8.

4.3. A LOWER BOUND FOR THE DISCRETE ZERO POINT PROBLEM. We now
apply Theorem 4.7 to derive a lower bound for the query complexity of DZPd . The
idea is to convert any algorithm for problem DZPd to a strategy for Bob in the path
finding game.

To this end, we build, for every pipe path P in Gm,d , a bounded and direction-
preserving function fP ∈ F[Nn,d], where n = 4m + 1. The construction of fP
is described in Appendix F, which is straight forward but tedious. Together with
the construction, we also have a map g which is independent of P and maps every
point r ∈ Nn,d to a pair of vertices g(r ) = (v1, v2) in Gm,d . The construction has
the following two nice properties:

D1 For every pipe path P in Gm,d , function fP has exactly one zero point r∗. Let
(v1, v2) = g(r∗), then v1 = v2 is the ending vertex of P;

Journal of the ACM, Vol. 55, No. 3, Article 13, Publication date: July 2008.



Matching Algorithmic Bounds for Finding a Brouwer Fixed Point 13:11

D2 For any point r ∈ Nn,d , to decide fP (r ), one only need to know the relationship
between the pipe path P and v1, v2, where (v1, v2) = g(r ). In particular, if P
is the secret path held by Alex, Bob can decide fP (r ) by querying v1 and v2.

Now given an algorithm for DZPd , we can transform it into a strategy of Bob in
the path finding game on Gm,d as follows (let P denote the path held by Alex):

(1) At the beginning of the game, Bob sends ((1, 1, . . . , 1), ∅) to Alex. Then Bob
starts to run the algorithm for DZPd , and asks it to find a zero point of a bounded
function in F[Nn,d], where n = 4m + 1;

(2) Whenever the algorithm for DZPd needs to evaluate the function at point r ∈
Nn,d . Bob queries Alex v1 and v2, where g(r ) = (v1, v2). If one of the answers
is (“true”, P), then Bob wins and the game is over (the strategy terminates).
Otherwise, by Property D2, Bob decides fP (r ), and sends it to the algorithm
for DZPd . By Property D1, fP (r ) �= 0.

Finally, we start a query-answer game on Gm,d , where m ≥ 12d, in which Bob
plays the strategy described above. By Theorem 4.7, there is a pipe path P∗ which
Bob cannot find with lm,d queries. It is easy to check that, as the game proceeds, the
algorithm for DZPd evaluated fP∗ for �lm,d/2� times, but has not found any zero
point yet. As a result of this reduction, we have

Q′(n, d) > �lm,d/2� and Q ′(n, d) ≥ 0.5(�(n − 1)/210�)d−1,

for all d ≥ 2 and n > 48d, which is exactly the lower bound for problem DZPd in
Theorem 2.5.

5. Application to the Approximate Fixed Point Problem

In this section, we first define the approximate fixed point problem AFPM,d,m with
respect to Lipschitz functions [Hirsch et al. 1989]. Then, we apply Theorem 2.5 to
derive three bounds for its complexity.

Definition 5.1. Map F : Ed = [0, 1]d → R
d satisfies a Lipschitz condition

with constant L if for any x, y ∈ Ed , |F(x) − F(y)|∞ ≤ L|x − y|∞.
We use L M,d to denote the set of all maps F : Ed → Ed such that F(x) − x

satisfies a Lipschitz condition with constant M .

By Brouwer’s fixed point theorem, every F ∈ L M,d has at least one fixed point
x∗ ∈ Ed such that F(x∗) = x∗. The approximate fixed point problem AFPM,d,m is
defined as follows: given a map F ∈ L M,d , find an approximate fixed point with
error 2−m , that is, a point x∗ ∈ Ed such that |F(x∗) − x∗|∞ ≤ 2−m . Similarly, F
is provided as an oracle to algorithm designers. It can only be accessed by calling
the oracle to evaluate F(x), when a point x ∈ En is given. We let Q(M, d, m)
and T (M, d, m) denote the query complexity and time complexity of AFPM,d,m ,
respectively.

For the case when d = 2, Hirsch et al. [1989] shows that Q(M, 2, m) = �(2m M).
However, when d > 2, there is still a gap between their lower bound and upper
bound. The main results of this section are

Journal of the ACM, Vol. 55, No. 3, Article 13, Publication date: July 2008.



13:12 X. CHEN AND X. DENG

THEOREM 5.2. For any d and m such that d ≥ 2, 2m M > 192d3 and 2m > 4d,

0.25 (�n2/211�)d−1 − 1 ≤ Q(M, d, m) ≤ 8nd−1
1 and

T (M, d, m) = O(d2(2m+1 M)d−1),

where n1 = �2m M� and n2 = �2m−2 M/d2�.
For any specific constant d, it gives a matching bound of �((2m M)d−1) for both

complexities, thus settles an open problem in Hirsch et al. [1989].

5.1. TWO UPPER BOUNDS FOR THE APPROXIMATE FIXED POINT PROBLEM.
Let F ∈ L M,d be the input map. We first build a function f ∈ F[Ap,q], where
pi = 0 and qi = n1 for all 1 ≤ i ≤ d, as follows. For any r ∈ Ap,q , f (r ) ∈
{0, ±e1, . . . , ±ed} is completely determined by F(x), where x = r/n1. If |F(x) −
x |∞ ≤ 2−m , then f (r ) = 0. Otherwise, let i be the largest index that satisfies
|Fi (x) − xi | > 2−m and set f (r ) = sgn(Fi (x) − xi )ei . It is not hard to check
that the Lipschitz property of F guarantees that f is both bounded and direction-
preserving.

Since f is both bounded and direction-preserving, we can use any algorithm for
problem DZPd to find a zero point r∗ of f , and the construction of f ensures that
x∗ = r∗/n1 is an approximate fixed point of F . Each time the algorithm queries
f (r ), for some r ∈ Ap,q , we evaluate F at x = r/n1 and use O(d) time to compute
f (r ). Therefore, we have

Q(M, d, m) ≤ Q′(n1 + 1, d) and
T (M, d, m) ≤ Q′(n1 + 1, d) · O(d) + T ′(n1 + 1, d) + O(d).

The two upper bounds in Theorem 5.2 then follows from Theorem 2.5.

5.2. A LOWER BOUND FOR THE APPROXIMATE FIXED POINT PROBLEM. Let
c = M/(2d) and l = �c�. Let p and q be two vectors in Z

d such that pi = 0
and qi = n2 + 2l for all 1 ≤ i ≤ d. For every bounded function f ∈ F[Nn2+1,d],
we build a map F∗ ∈ L M,d in four steps. Here for any d-cube C ⊂ Z

d which is
centered at r , we define VC = [r1, r1 + 1] × · · · × [rd, rd + 1] ⊂ R

d .

E1 Construct a bounded f ′ ∈ F[Ap,q]: For any r ∈ Ap,q such that l ≤ ri ≤ l + n2
for all 1 ≤ i ≤ d, we set f ′(r ) = f (r ′), where r ′

i = ri − l + 1 for all 1 ≤ i ≤ d;
otherwise, letting 1 ≤ i ≤ d be the largest index such that ri < l or ri > l +n2,
set f ′(r ) = sgn(l − ri )ei .

E2 Construct a map F from Ap,q to R
d : F(r ) = r + c f ′(r ) for all r ∈ Ap,q .

E3 Use Cartesian Interpolation (for details, see Appendix G) on every d-cube in
Ap,q . In this way, we extend F to be a map F ′ from [0, n2 + 2l]d to R

d (more
precisely, F ′ is a map from [0, n2 + 2l]d to itself).

E4 Construct a map F∗ from Ed to itself:
F∗(x) = F ′((n2 + 2l)x)/(n2 + 2l), for all x ∈ Ed .

Proof of Lemma 5.3 below can be found in Appendix H.

LEMMA 5.3. Map F∗ constructed above belongs to L M,d . Let x∗ be any ap-
proximate fixed point of F∗ with error 2−m, and C be any d-cube in Ap,q such that
(n2 + 2l)x∗ ∈ VC , then there must exist a zero point r∗ ∈ C such that f ′(r∗) = 0,
and thus, f (r∗ − l + 1) = 0.

Journal of the ACM, Vol. 55, No. 3, Article 13, Publication date: July 2008.



Matching Algorithmic Bounds for Finding a Brouwer Fixed Point 13:13

Given a bounded f ∈ F[Nn2+1,d], Lemma 5.3 above implies that any algorithm
for AFPM,d,m can be used to find a zero point of f as follows. First, we run the
algorithm to find an approximate fixed point x∗ of F∗ which is constructed above.
Whenever the algorithm queries F∗(x) for some x ∈ Ed , we only need to evaluate
f at 2d points and then, F∗(x) can be determined (see the definition of Cartesian
Interpolation in Appendix G). Once the algorithm outputs an approximate fixed
point x∗ of F∗, 2d more queries on f are enough to find a zero point of f according
to Lemma 5.3. As 2m M > 192d3 and n2 + 1 > 48d, our result in Section 4 shows
that 0.5 (�n2/210�)d−1 ≤ 2d Q(M, d, m) + 2d, which gives us the lower bound in
Theorem 5.2.

6. Conclusion and Remarks

In establishing the algorithmic complexity for the discrete fixed point problem, we
develop a deep lower bound proof, and a succinct algorithm for an asymptotically
matching upper bound. These results allow us to close the gap between the upper
and lower bounds of Hirsch et al. [1989] for the approximate fixed point problem.
The novelty of our upper bound proof may shed new light on algorithm design for
other related problems.

Recently, Chen and Teng [2007] studied the randomized query complexity of
the discrete fixed point problem, and proved a tight lower bound of �(nd−1). Their
result demonstrates that, in the query model, randomization does not help much in
fixed point computation. For the quantum model, Chen et al. [2008] proved a lower
bound of �(n(d−1)/2), while the upper bound is O(nd/2).

The celebrated fixed point theorem of Brouwer followed from a concept of
degree, which was also the main idea in many of his other contributions in topology.
The idea can be traced back to the Kronecker Integral [Kronecker 1869]. Brouwer
derived it from a discretization of the metric space under consideration, as in our
definition of badness. Informally, it is the number of “positively” oriented simplices
minus the number of “negatively” oriented simplices, whose images cover a given
point in the range, in the limit as the simplices go to infinitely small uniformly.
Brouwer proved that the value is a constant independent of the choices of the
“triangulation” of the domain space. In addition, he showed that the value is invariant
under homotopy, if certain conditions are satisfied. The concept of degree with
these properties can be applied to derive a series of fixed point theorems. Each of
them describes an interesting class of function-domain pairs which guarantees the
existence of fixed points.

In particular, degree in the two-dimensional case can be simplified to the wind-
ing number. If the winding number of a function f around the boundary of its
domain is nonzero, it must have a fixed point. Moreover, this function-domain
property defined by winding number is dividable. That is, after dividing the domain
into two parts, this property still holds in one of them. Therefore, the existence
of fixed point is ensured by its existence in the limit. Employing this idea, Hirsch
et al. [1989] got their matching algorithmic bound for the two-dimensional case.
To generalize the concept of winding number to higher dimensions, however, is
not easy and has been relied on the discretization process of Brouwer’s defini-
tion of degree, which is not suitable for a divide-and-conquer approach to narrow
down the existence of fixed points. On the other hand, our discrete fixed point

Journal of the ACM, Vol. 55, No. 3, Article 13, Publication date: July 2008.



13:14 X. CHEN AND X. DENG

theorem describes a new class of function-domain pairs which is dividable for all
dimensions. It allows us to obtain the matching algorithmic bound for arbitrary
dimensions.

The oracle model used in this article is quite strong. In a more general approach,
one may assume that the function is presented as a Turing machine. It becomes
undecidable if the domain contains all the integer points as one can easily reduce
the halting problem to it. Papadimitriou [1990] and Ko [1995] studied interesting
properties of the fixed point problem for some classes of function-domain pairs,
with function evaluations done by Turing machines.

Though our matching bound concludes the study of the deterministic black-box
model, it still leaves room for better algorithms to be designed for specific classes of
functions. There have been extensive literatures in algorithms for computing fixed
points of various classes of functions [Sikorski 1989; Shellman and Sikorski 2002,
2003a,2003b; Sikorski et al. 1993; Sikorski and Wozniakowski 1987; Yang 1999].
The fixed point problem also has a strong connection with the market equilibrium
problem which has been recently studied intensively on its algorithmic complexity
issues [Chen et al. 2004; Codenotti and Varadarajan 2004; Deng et al. 2002, 2003;
Devanur 2004; Devanur et al. 2002; Jain 2004; Jain et al. 2003, 2005]. Our results
may contribute new ideas to such studies.

Appendix

A. Proof of Lemma 3.8

Let Cd−1
0 ⊂ Z

d be the (d − 1)-cube that is centered at 0 and perpendicular to {1}.
We define a function g on Cd−1

0 as follows: for every r ∈ Cd−1
0 , let i be the largest

integer such that ri = 0, then g(r ) = +ei .

LEMMA A.1. (d − 1)-cube Cd−1
0 ⊂ Z

d is bad relative to the g defined above.

PROOF. For any 0 ≤ t ≤ d − 1, we use r t to denote the point in Cd−1
0 such that

r t
i = 0 for all 1 ≤ i ≤ t + 1, and r t

i = 1 for all t + 2 ≤ i ≤ d.

For example, rd−1 = 0 and r0 = (0, 1, . . . , 1). Let Ct
∗ ⊂ Cd−1

0 be the t-cube
centered at r t and perpendicular to {1, t +2, t +3, . . . , d}. Now we apply induction
on t to prove that, for any 0 ≤ t ≤ d − 1, Ct

∗ is bad relative to g. Lemma A.1 then
follows since Cd−1

∗ is exactly Cd−1
0 .

The base case for t = 0 is trivial. For t ≥ 1, it is easy to check that g(Ct
∗) =

{e1, e2, . . . , et+1} and (B1) is satisfied. Note that Ct−1
∗ ⊂ Ct

∗, and by the inductive
hypothesis, Ct−1

∗ is bad relative to g. For any other (t − 1)-cube Ct−1 ⊂ Ct
∗, there

must exist some point r ∈ Ct−1 such that g(r ) = et+1. Condition (B1) is violated
and Ct−1 cannot be bad. In conclusion, Ct−1

∗ is the only bad (t −1)-cube in Ct
∗, and

(B2) is satisfied by Ct
∗. As a result, Ct

∗ is bad.

PROOF OF LEMMA 3.8. For any (d −1)-cube Cd−1 ∈ V [p′, q ′] centered at r and
perpendicular to set {t}, we prove that it is bad relative to f ′ iff r = p′ and t = 1.
Condition (B1) requires that f ′(Cd−1) = {e1, e2, . . . , ed}. But if there exists i such
that ri > p′

i , then ei /∈ f ′(Cd−1). Thus, r must equal to p′ if Cd−1 is bad.

Journal of the ACM, Vol. 55, No. 3, Article 13, Publication date: July 2008.



Matching Algorithmic Bounds for Finding a Brouwer Fixed Point 13:15

Algorithm Implementation of Line 5 in Cutd

1 : for any 0-cube C0 ⊂ S, set its three properties according to the definition
2 : for t = 1 to d − 1 do

3 : for any t-cube Ct ⊂ S do

4 : set Ct .zero = max Ct−1⊂Ct {Ct−1.zero} and Ct .max = max Ct−1⊂Ct {Ct−1.max}
5 : if Ct .zero = 0, Ct .max = t + 1 and

∑
Ct−1⊂Ct Ct−1.bad is odd, then

6 : set Ct .bad = 1
7 : else

8 : set Ct .bad = 0
9 : set V = ∅

10 : for any (d − 1)-cube Cd−1 ⊂ S if Cd−1.bad = 1 then V = V ∪ {Cd−1 }

FIG. 2. Implementation of Line 5 in Cutd .

Under this condition, if t > 1, then we have e1 /∈ f ′(Cd−1) which violates (B1).
In conclusion, only the (d − 1)-cube centered at p′ and perpendicular to {1} can
satisfy (B1). As translation does not affect the badness of cubes, this (d − 1)-cube
is bad relative to f ′ according to Lemma A.1, and Lemma 3.8 is proven.

B. Implementation of Line 5 in Cutd

The implementation of line 5 is presented in Figure 2. Here, three properties are
attached to each t-cube Ct ⊂ S:

(1) Ct .bad = 1 if it is bad relative to g, and Ct .bad = 0 otherwise;

(2) Ct .zero = 0 if g has no zero point in Ct , and Ct .zero = 1 otherwise;

(3) Ct .max is equal to the largest i such that +ei ∈ g(Ct ), or 0 if no such i exists.

From the definition of bad cubes, it is easy to see that Ct ⊂ S, where 1 ≤ t ≤ d −1,
is bad iff Ct .zero = 0, Ct .max = t + 1, and

∑
Ct−1∈Ct Ct−1.bad is odd.

By the definition, for any r ∈ Z
d , there are exactly

(d
t

)
t-cubes centered at r . Thus,

the number of t-cubes in set S is at most
(d

t

) · |S|. On the other hand, every t cube
Ct contains exactly 2t (t − 1)-cubes, and O(td) steps are enough to enumerate
all of them. As a result, the time complexity of the implementation is bounded by
O(d22d |S|).

C. Proof of Lemma 4.5

PROOF. We use induction on d. The base case for d = 1 is trivial. For d ≥ 2, we
let VS = {u ∈ Gm,d | (S, u) /∈ Km,d}. If |S| ≥ lm,d , then 256d−1m|S| ≥ md = |VS|.
If |S| = 0, then |VS| = 0, and the statement is also true. Otherwise, we assume
0 < |S| < lm,d . In accordance with the definition, we have VS = S ∪ V − ∪ V +,
where

V − = {u ∈ Gm,d | (D(Sud−1), D(u−)) /∈ Km,d−1} and

V + = {u ∈ Gm,d | (D(Sud+1), D(u+)) /∈ Km,d−1}.

Journal of the ACM, Vol. 55, No. 3, Article 13, Publication date: July 2008.



13:16 X. CHEN AND X. DENG

Let V = {u ∈ Gm,d | (D(Sud ), D(u)) /∈ Km,d−1}, then |V −| ≤ |V | and |V +| ≤ |V |.
On the other hand, V can be decomposed into layers: V = V 1 ∪ V 2 ∪ · · · ∪ V m .
By the inductive hypothesis, we have |V t | ≤ 256d−2m|St | for all 1 ≤ t ≤ m, and

|V −| ≤ |V | = |V 1| + · · · + |V m | ≤ 256d−2m|S|.
One can bound |V +| similarly, and the lemma is proven.

D. Proof of Lemma 4.6

LEMMA D.1. For each graph Gm,d , we define an integer Mm,d as

min
(S,u)∈Km,d

|{w ∈ Gm,d | ∃ pipe path P starts at u, ends at w, and P ∩ S = ∅}∣∣.
Then, we have Mm,1 = m, and Mm,d ≥ (m − 3)(Mm,d−1 − lm,d), for any d ≥ 2.

PROOF. The case when d = 1 is trivial. For d ≥ 2, we only focus our discussion
here on the case when 2 ≤ ud ≤ m − 1. The other two cases (ud = 1 and ud = m)
are easier and can be handled similarly.

We now count the number of w ∈ Gm,d that satisfies:

F1 wd > ud + 1, and for any v ∈ S, D(w) �= D(v).
F2 there exists a pipe path P ′ in layer ud + 1 of Gm,d which starts at u+, ends at

w[d ← (ud + 1)], and P ′ ∩ S = ∅.

For every such vertex w , path P where

P = uu+ ∪ P ′ ∪ (w[d ← (ud + 1)]w[d ← (ud + 2)] . . . w)

is a pipe path in Gm,d . It starts at u, ends at w , and P ∩ S = ∅. The number of such
w is at least (m − ud − 1)(Mm,d−1 − lm,d) since |S| < lm,d .

Similarly, the number of w below layer ud is at least (ud − 2)(Mm,d−1 − lm,d).
The lemma then follows by summing them up.

PROOF OF LEMMA 4.6. After expanding the inequality in Lemma D.1, we get

Mm,d ≥ cd−1md
(

1 −
(

1

256

) d−2∑
i=0

bi
)

where c = (m − 3)/m and b = 1/(256 c). As m ≥ 12d ≥ 12, we have c ≥ 3/4
and b ≤ (1/192). Therefore,

Mm,d ≥ cd−1md
(

1 −
(

1

256

) (
1

1 − b

))
≥

(
761

764

)
cd−1md .

As m ≥ 12d, we have c ≥ 1 − 1/(4d), cd−1 ≥ 1 − (d − 1)/(4d) > 3/4, and the
lemma is proven.

E. Construction of Strategies for Alice

Strategy T [m, d] for Alice will be constructed inductively. When d = 1, it is trivial
to find an T [m, 1] that satisfies Theorem 4.8, since lm,1 = 1 and S = ∅.

Journal of the ACM, Vol. 55, No. 3, Article 13, Publication date: July 2008.



Matching Algorithmic Bounds for Finding a Brouwer Fixed Point 13:17

Algorithm T [m, d].Init(S, u )

1: set Q = uu+ and V = S
2: create a new strategy T [m, d − 1] on layer ud + 1 of Gm,d and use T [ud + 1] to denote it

3: call T [ud + 1].Init (V ud +1, u+)

Algorithm T [m, d].Query(v)

1 : Assume Q = uv1 . . . vk and t = vk
d

2 : if v ∈ S then output false
3 : else if v ∈ V then { v must be queried at some time before } output the same answer
4 : else if vd > t then output false
5 : else if vd < t then

6 : if v /∈ Q then output false
7 : else output the sub-path of Q that starts at u and ends at the successor of v
8 : else if |V t | < (cm,d − 1) then

9 : call T [t].Query(v)
10 : if the output is false then output false
11 : else the output must be a path Q∗, output Q ∪ Q∗

12 : else { |V t | ≥ (cm,d − 1) }
13 : find the smallest l that satisfies l > t and |V l | < cm,d

14 : call T [t].GetPaths() to get a set R of pipe paths in the layer t of graph Gm,d

15 : find a pipe path Q∗ ∈ R, whose end w∗ satisfies

(G1). ∀ v ∈ V , D(w∗) �= D(v) (G2). V l is sparse relative to w∗[d ← l] in layer l
16 : delete the strategy T [t] on layer t of Gm,d

17 : create a new strategy T [m, d − 1] on layer l of Gm,d and use T [l] to denote it

18 : set Q = Q ∪ Q∗ ∪ (w∗w∗[d ← t + 1] . . . w∗[d ← l]) and call T [l].Init(V l , w∗[d ← l])
19 : if v /∈ Q then output false
20 : else output the sub-path of Q which starts at u and ends at the successor of v
21 : set V = V ∪ {v }

FIG. 3. Functions T [m, d].Init(S, u) and T [m, d].Query(v).

When d ≥ 2, to build T [m, d], we can assume that T [m, d −1] has already been
constructed (as m ≥ 12d > 12(d −1)). Furthermore, T [m, d −1] can be employed
to work on any layer of Gm,d using the isomorphic mapping D.

During the game of queries and answers, strategy T [m, d] maintains a pipe path
Q in Gm,d . It starts at vertex u and grows away from layer ud very slowly. There
are two cases: if ud ≤ m/2, then Q will grow from the bottom up; otherwise, Q
will grow from the top down. For the sake of simplicity, here we only discuss the
case when ud ≤ m/2.

Details of T [m, d] are presented in Figures 3 and 4, with cm,d ∈ R
+ defined as

cm,d = lm,d−1

16
= 1

16

( m
256

)d−2
.

During the execution, T [m, d] always keeps track of set

V = S ∪ {v ∈ Gm,d | T [m, d].Query(v) is called before}.

Journal of the ACM, Vol. 55, No. 3, Article 13, Publication date: July 2008.



13:18 X. CHEN AND X. DENG

Algorithm T [m, d].GetPaths()

1 : Assume Q = uv1 . . . vk and t = vk
d

2 : find the smallest l such that l > t and |V l | < cm,d

3 : call T [t].GetPaths() to get a set R of pipe paths in the layer t of graph Gm,d

4 : find a pipe path Q∗ ∈ R, whose end vertex w∗ satisfies

(G’1). ∀ v ∈ V , D(w∗) �= D(v) (G’2). V l is sparse relative to w∗[d ← l] in layer l
5 : set Q = Q ∪ Q∗ ∪ (w∗w∗[d ← t + 1] . . . w∗[d ← l])
6 : find a set R′ of pipe paths in the layer l of Gm,d with distinct end vertices such that

(G). every pipe path in R′ starts at w∗[d ← l] and has no vertex in V l

7 : for any pipe path Q ′ ∈ R′ whose end vertex w ′ satisfies ∀ v ∈ V , D(w ′) �= D(v) do

8 : for any l < i ≤ m, output Q ∪ Q ′ ∪ (w ′w ′[d ← l + 1] . . . w ′[d ← i])

FIG. 4. Function T [m, d].GetPaths().

I1 Q = uv1 . . . vk is a pipe path starting at u and Q ∩ Hs = ∅. (let t = vk
d > ud )

I2 for any i such that ud < i < t , we have |V i | ≥ cm,d .

I3 for any i such that t < i ≤ m, we have H i
s = V i .

I4 a strategy T [m, d − 1] denoted by T [t] is currently working on layer t of graph Gm,d and

I1
4 it is initiated by some pair in Km,d−1 and the vertex in this pair is vk ;

I2
4 T [t].Query(v) has been called no more than |V t | and less than cm,d times;

I3
4 the forbidden set of strategy T [t] at this moment is exactly the same as H t

s .

I5 every path in set Us is either a sub-path of Q or equals to Q ∪ Q∗. Here Q∗ is a path output by
T [t].Query(v) at some time before.

FIG. 5. Invariants maintained.

It is important to note that |V | ≤ |S|+ lm,d < 2lm,d . After the first s queries, where
0 ≤ s ≤ lm,d , let (Us, Hs) be the query-answer history defined in Section 4.2. We
should prove, by induction on s, that all the invariants in Figure 5 are maintained.
We then use these invariants to derive both properties (C1) and (C2).

Obviously, all the invariants in Figure 5 hold when strategy T [m, d] is initiated.
Now we assume that after 0 ≤ s < lm,d queries, all the claims are true, and then
T [m, d].Query(v) is invoked again. If the branch in line 2, 3, 4, 5 or 8 is true, then
it is not hard to check that all the invariants are still maintained.

We consider the case when line 12 is true. Since there are at most |V |/cm,d <
(m/8) layers of V that satisfy |V i | ≥ cm,d , I2 implies t − ud − 1 < (m/8) and
t ≤ (5m/8), which ensures the existence of l in line 13. Using the inductive
hypothesis on strategy T [m, d−1] and I4, we know that R contains at least (md−1/8)
pipe paths in layer t of graph Gm,d , which all start at vk and end at distinct vertices.
Using Lemma 4.5, there are at most 256d−2m|V l | < (md−1/16) paths in R which
do not satisfy (G2). In addition, there are at most |V | < 2lm,d paths in R which do
not satisfy (G1). Since 2lm,d + (md−1/16) < (md−1/8), the pipe path Q∗ in line
15 always exists. It is then easy to check that the way we construct Q and T [l]
maintains all the invariants in Figure 5.

Now it is clear that T [m, d] satisfies (C1), and the only thing left is to prove that
GetPaths() satisfies (C2). Since all the invariants in Figure 5 are maintained, we

Journal of the ACM, Vol. 55, No. 3, Article 13, Publication date: July 2008.



Matching Algorithmic Bounds for Finding a Brouwer Fixed Point 13:19

can prove the existence of l in line 2 and Q∗ in line 4 similarly. The way we pick l
guarantees that for any i : ud < i �= t < l, |V i | ≥ cm,d , hence l − ud − 2 < (m/8),
and l ≤ (5m/8) + 1. By (G’2), set V l is sparse relative to w∗[d ← l] in the layer l
of Gm,d . So by using Lemma 4.6, we have |R′| ≥ md−1/2. Therefore, the number
of pipe paths output by GetPaths() is at least

(m − l)(|R′| − |V |) > md/8.

Properties in (C2) are all satisfied and Theorem 4.8 is proven.

F. Construction of Functions from Pipe Paths

In this section, we describe a method that, given any pipe path P in graph Gm,d ,
constructs a bounded function fP ∈ F[Nn,d], where n = 4m + 1.

First, we define a set IP ⊂ Nn,d , which looks like a pipe. It consists of two parts,
kernel K P and boundary BP . After defining fP on IP , we extend it onto Nn,d and
prove that it is both bounded and direction-preserving. Finally, we prove properties
(D1) and (D2). To clarify the presentation here, we always use u, v, w to denote
vertices in Gm,d , and p, q, r to denote points in Nn,d .

We start with some notation. We use T to denote the following map from the
vertex set of Gm,d to Nn,d : T (v) = r , where ri = 4vi − 1 for all 1 ≤ i ≤ d. For any
edge uv ∈ Gm,d , we use E(uv) ⊂ Nn,d to denote the set of five points on segment
T (u)T (v).

Definition F.1. For any path P = v1 . . . vk in Gm,d , we define set IP = K P ∪
BP , where K P = ∪k−1

i=1 E(vi vi+1), and

BP = {r ∈ Nn,d and r /∈ K P | ∃ r ′ ∈ K P , |r − r ′|∞ = 1}.
When k = 1, we use f{v1}, K{v1}, B{v1} and I{v1} to denote fP , K P , BP and IP .

We first describe an inductive method that, given a pipe path P = u . . . w in
Gm,d , constructs a function fP ∈ F[IP ]. Let P denote the reversion of path P , then
the method satisfies:

H1 For any point r ∈ BP , fP (r ) = fP (r ); and
H2 fP (T (w)) = 0; for every other point r ∈ K P , fP (r ) = sgn(wd − ud)ed .

As a result, we only need to describe the method for pipe paths such that ud ≤ wd
(when ud > wd , we can use fP , together with properties (H1) (H2), to build fP ).

Suppose P = u . . . w and a = ud ≤ wd = b. Let p = T (u) and q = T (w), then
pd = 4a − 1, qd = 4b − 1 and a ≤ b. The method for the case when d = 1 is easy.
As BP = { p−, q+}, we simply set fP (p−) = +e1 and fP (q+) = −e1.

For the case when d ≥ 2, we may assume for any pipe path Q in Gm,d−1, fQ on
IQ ⊂ Nn,d−1 has already been constructed. According to the definition of pipe paths,
for any a ≤ t ≤ b, Qt = D(Pt ) is a pipe path in Gm,d−1. Let vt ∈ Gm,d−1 be the
start vertex of path Qt , then we have Qa = D(u) = va = va+1, Qb = D(w) = vb

and for every a < t < b, Qt starts at vt and ends at vt+1. Using the inductive
hypothesis, we may assume that fQt , fQt

and f{vt } have already been constructed,
and they will be used to build our function fP .

For any point r ∈ BP , we will use D to map it to Nn,d−1, and give it value there
using one of fQt , fQt

or f{vt }. Before that, we analyze set D(Bt
P ) = D(I t

P )− D(K t
P )

Journal of the ACM, Vol. 55, No. 3, Article 13, Publication date: July 2008.



13:20 X. CHEN AND X. DENG

Value of fP (r ) for any r ∈ IP

1 : if r = q , then output 0

2 : else if r ∈ K P , then output +ed

3 : else if r = p− , then output +ed

4 : else if r = q+ , then output −ed

5 : else if rd = 4a − 2, 4a − 1 or 4a , then output f{va }(D(r ))
6 : else if rd = 4b − 2, 4b − 1 or 4b , then output f{vb}(D(r ))
7 : else if rd = 4i + 1 where a ≤ i < b, then output f{vi+1}(D(r ))
8 : else if rd = 4i − 1 where a < i < b, then output fQi (D(r )) = fQi

(D(r ))
9 : else if rd = 4i − 2 where a < i < b, then output fQi

(D(r ))
10 : else if rd = 4i where a < i < b, then output fQi (D(r ))

FIG. 6. Construction of function fP on IP ⊂ Nn,d .

for each t :

(1) t = 4a − 2, then K t
P = ∅ and D(I t

P ) = I{va}
(2) t = 4b, then K t

P = ∅ and D(I t
P ) = I{vb}

(3) t = 4i − 1, where a ≤ i ≤ b, then D(K t
P ) = K Qi and D(I t

P ) = IQi

(4) t = 4i − 2, where a < i ≤ b, then D(K t
P ) = K{vi } and D(I t

P ) = IQi

(5) t = 4i , where a ≤ i < b, then D(K t
P ) = K{vi+1} and D(I t

P ) = IQi

(6) t = 4i + 1, where a ≤ i < b, then D(K t
P ) = K{vi+1} and D(I t

P ) = I{vi+1}
The method is described in Figure 6. It is easy to prove the following properties:

(H3) For any r ∈ BP except p− and q+, fP (r ) /∈ {±ed};
(H4) For any r ∈ IP except q = T (w), fP (r ) �= 0;
(H5) For any r ∈ I{w}, f{w}(r ) = fP (r ).

Using these properties, we have

LEMMA F.2. For any pipe path P in Gm,d , fP is direction-preserving on IP .

PROOF. We use induction on d. The base case for d = 1 is trivial. For d ≥ 2, we
may assume that for any pipe path Q in graph Gm,d−1, fQ is direction-preserving
on IQ . We now prove for any r1, r2 ∈ IP such that |r1 − r2|∞ = 1,

| fP (r1) − fP (r2)|∞ ≤ 1. (1)

If one of these two points belongs to set K P ∪{p−, q+}, then (1) follows directly
from properties (H2) and (H3). Otherwise, both fP (r1) and fP (r2) are determined
by lines 5–10 of Figure 6. Clearly, if r1

d = r2
d , then (1) follows from the inductive

hypothesis. As a result, we only need to consider the case in which r1, r2 /∈ K P ∪
{p−, q+} and r1

d �= r2
d .

Without loss of generality, assume r2
d = r1

d+1. Let r3 = (r1)+ and r4 = (r2)−. We
now prove that, one of following two statements must be true: (A) fP (r1) = fP (r3);
(B) fP (r2) = fP (r4). Four different cases are discussed below:

r1
d = 4i − 1, then (H1) ⇒ (A) r1

d = 4i, then (H5) ⇒ (B)
r1

d = 4i + 1, then (H5) ⇒ (A) r1
d = 4i − 2, then (H1) ⇒ (B)

Journal of the ACM, Vol. 55, No. 3, Article 13, Publication date: July 2008.



Matching Algorithmic Bounds for Finding a Brouwer Fixed Point 13:21

Value of fP (r ) for any r ∈ Nn,d and r /∈ IP

1 : if rd = pd , then output f{v}(D(r )) { Here p = T (u) and v = D(u) }
2 : else if rd < pd , then output +ed

3 : else if rd > pd , then output −ed

FIG. 7. Extension of fP from IP onto Nn,d .

FIG. 8. A pipe path P in G3,2 and fP on N13,2.

If (A) is true, then | fP (r1)− fP (r2)|∞ = | fP (r3)− fP (r2)|∞ ≤ 1. The last inequality
follows from the fact that r3

d = r2
d and |r3 − r2|∞ ≤ 1. The case when (B) is true

can be proved similarly.

The following property of our method can be proved by induction on d.

LEMMA F.3. Let P1 and P2 be two pipe paths in Gm,d that both start with
P ′ = v1 . . . vk where k > 1, then for every point r ∈ IP∗ where P∗ = v1 . . . vk−1,
we have fP1 (r ) = fP2 (r ).

We now inductively extend the function fP ∈ F[IP ] onto Nn,d . The method for
case d = 1 is easy. For any r ∈ Nn,1 and r /∈ IP , we set fP (r ) = sgn(p1 − r1)e1,
where p = T (u) and u is the start vertex of P . For d ≥ 2, we may assume that
f{v} on Nn,d−1, where v = D(u), has already been constructed. Figure 7 shows the
way to extend fP , and Figure 8 gives an example of the case when d = 2. Using
Lemma F.2, Lemma F.4 can be proved easily by induction on d.

LEMMA F.4. For any pipe path P in graph Gm,d , function fP is both bounded
and direction-preserving on Nn,d .

Finally, we prove properties (D1) and (D2) in Section 4.3. We first define map g
as follows.

Definition F.5. For any vertex v in Gm,d , we define TV (v) ⊂ Nn,d as

TV (v) = {r ∈ Nn,d and |r − T (v)|∞ ≤ 1}.

Journal of the ACM, Vol. 55, No. 3, Article 13, Publication date: July 2008.



13:22 X. CHEN AND X. DENG

Evaluation of fP (r ) using at most two queries

1 : if there exists a vertex v ∈ Gm,d such that r ∈ TV (v) then {g(r ) = (v, v) }
2 : query Alex the vertex v
3 : if the answer is false, then { r /∈ IP } output fP (r ) using Figure 7
4 : else { the answer must be a path Q } extend Q to be a pipe path R, output fR(r )
5 : else if there exists uv ∈ Gm,d such that r ∈ TE (uv) then {g(r ) = (u, v) }
6 : query Alex both u and v
7 : if one of the answers is false, then { r /∈ IP } output fP (r ) using Figure 7
8 : else { the answers must be two paths, let the longer one be Q }
9 : if edge uv /∈ Q, then { r /∈ IP } output fP (r ) using Figure 7

10 : else extend Q to be a pipe path R and output fR(r )
11 : else { g(r ) = (“null”, “null”) and r /∈ IP } output fP (r ) using Figure 7

FIG. 9. Evaluation of fP (r ).

For any edge uv in Gm,d , let r ′ = (T (u) + T (v))/2 ∈ Nn,d , and i be the index such
that |ui − vi | = 1, then we define TE (uv) ⊂ Nn,d as

TE (uv) = {r ∈ Nn,d, ri = r ′
i and |r − r ′|∞ ≤ 1}.

Obviously, all the subsets of Nn,d defined above are pairwise disjoint.
For r ∈ Nn,d , if there exists a vertex v in Gm,d such that r ∈ TV (v), then we

set g(r ) = (v, v); if there exist two vertices u, v in Gm,d such that r ∈ TE (uv),
then g(r ) = (u, v); otherwise, g(r ) = (“null”, “null”). Property (D1) is obvious, as
fP (r ) = 0 if and only if r = q = T (w), where w is the ending vertex of P .

The following two properties are both easy to check.

LEMMA F.6. For every path P = v1 . . . vk in Gm,d , we have

IP = ( ∪k
i=1 TV (vi )

) ∪ ( ∪k−1
i=1 TE (vi vi+1)

)
.

LEMMA F.7. For every pipe path P in Gm,d and r ∈ Nn,d ,

(1) if there exists a vertex v in Gm,d such that r ∈ TV (v), then r ∈ IP iff v ∈ P;
(2) if there exists an edge uv in Gm,d such that r ∈ TE (uv), then r ∈ IP iff uv ∈ P;
(3) otherwise, r /∈ IP .

Finally, we prove property (D2). Let P be the pipe path held by Alex. Nothing is
known about P except its start vertex u ∈ Gm,d . For any r ∈ Nn,d , to decide fP (r ),
Bob only need to query Alex for v1 and v2, where (v1, v2) = g(v). Clearly, if one of
the answers is (“true”, P), then Bob can decide fP (r ) easily, since the whole path
P is revealed to him. Otherwise, Bob can use Figure 9 to decide fP (r ). Lemma F.6,
Lemma F.7, and Lemma F.3 together guarantee that the output of Figure 9 is exactly
fP (r ).

G. Definition and Properties of Cartesian Interpolation

For any d-cube C ⊂ Z
d (since only d-cubes are considered here, we use C instead

of Cd) that is centered at r , we define set VC ⊂ R
d as [r1, r1 +1]×· · ·×[rd, rd +1].

Journal of the ACM, Vol. 55, No. 3, Article 13, Publication date: July 2008.



Matching Algorithmic Bounds for Finding a Brouwer Fixed Point 13:23

For any map F from C to R
d , the Cartesian Interpolation extends it to be a map F ′

from VC to R
d .

Definition G.1. For any r ∈ C , function wr from VC to [0, 1] is defined as

wr (x) = ∏d
i =1(1 − |xi − ri |).

Using wr , we extend F to be a map F ′ from VC to R
d :

F ′(x) − x =
∑
r∈C

wr (x)(F(r ) − r ), for all x ∈ VC .

One can check that for any x ∈ VC ,
∑

r∈C wr (x) = 1. Lemma G.2 below is easy
to prove.

LEMMA G.2. If for any r ∈ C, F satisfies a ≤ Fi (r ) ≤ b, then for any x ∈ VC ,
a ≤ F ′

i (x) ≤ b.

LEMMA G.3. If for any r ∈ C, F satisfies |F(r ) − r |∞ ≤ L, then F ′(x) − x
on VC satisfies a Lipschitz condition with constant 2dL.

PROOF. We only need to prove for any i : 1 ≤ i ≤ d, g(x) = F ′
i (x) − xi

satisfies

|g(x) − g(y)| ≤ 2d L|x − y|∞, for all x, y ∈ VC .

For each integer 0 ≤ j ≤ d, we define a point z j ∈ VC as z0 = y, z j = (x1, . . . , x j ,

y j+1, . . . , yd), where 1 ≤ j ≤ d − 1, and zd = x . Then

|g(x) − g(y)| = |g(zd) − g(z0)| ≤
d−1∑
j=0

|g(z j ) − g(z j+1)|.

For each 0 ≤ j < d, it is easy to check that∑
r∈C

|wr (z j ) − wr (z j+1)| = 2|x j+1 − y j+1| ≤ 2|x − y|∞.

Therefore, for every 0 ≤ j < d, we have

|g(z j ) − g(z j+1)| ≤
∑
r∈C

|wr (z j ) − wr (z j+1)| · |Fi (r ) − ri | ≤ 2L|x − y|∞.

As a result, |g(x) − g(y)| ≤ 2dL |x − y|∞, and the lemma is proved.

Let F be a map from Ap,q to R
d , then we can apply Cartesian Interpolation on

every d-cube in Ap,q . Let C1 and C2 be two d-cubes in Ap,q , and x ∈ VC1 ∩ VC2 .
Then the F ′(x) interpolated from C1 is exactly the same as the F ′(x) interpolated
from C2. In this way, we can extend F to be a map F ′ from V = [p1, q1] ×
[p2, q2] × · · · × [pd, qd] to R

d , which has the following Lipschitz property.

LEMMA G.4. If for any r ∈ Ap,q , F satisfies |F(r ) − r |∞ ≤ L, then F ′(x) − x
on V defined above satisfies a Lipschitz condition with constant 2d L.

PROOF. Let G(x) = F(x) − x . We only need to prove for any x, y ∈ V ,

|G(x) − G(y)|∞ ≤ 2d L|x − y|∞.

Journal of the ACM, Vol. 55, No. 3, Article 13, Publication date: July 2008.



13:24 X. CHEN AND X. DENG

If there exists a d-cube C ⊂ Ap,q such that x, y ∈ VC , then the lemma follows from
Lemma G.3. Otherwise, we can divide the segment xy into x0x1, x1x2, . . . , xk−1xk

such that x0 = x , xk = y, and for every 0 ≤ i < k, there exists a d-cube Ci ⊂ Ap,q

that satisfies xi , xi+1 ∈ VCi . Using Lemma G.3, we have

|G(x) − G(y)|∞ ≤
k−1∑
i=0

|G(xi ) − G(xi+1)|∞ ≤ 2dL
k−1∑
i=0

|xi −xi+1|∞ = 2dL|x−y|∞,

and the lemma is proven.

H. Proof of Lemma 5.3

PROOF. Let V be [0, n2 + 2l]d , then the way we build F guarantees that it is a
map from Ap,q to V . It then follows from Lemma G.2 that F ′ is a map from V to
itself, and thus F∗ is a map from Ed to itself. Since |F(r ) − r |∞ ≤ c for all point
r ∈ Ap,q , Lemma G.4 shows that F ′(x) − x satisfies a Lipschitz condition with
constant 2dc = M . After the scaling operation in step E4, it is easy to check that
F∗(x) − x satisfies the same Lipschitz property, and we have F∗ ∈ L M,d .

Now we prove the second part of Lemma 5.3. Suppose there is no zero point r∗
in C such that f ′(r∗) = 0, then for each index 1 ≤ i ≤ d, we define

Vi = {r ∈ C | f ′(r ) = +ei or −ei } and ai =
∑
r∈Vi

wr (x ′),

where x ′ = (n2 + 2l)x∗. Because
∑d

i=1 ai = 1, there exists an index k such that
ak ≥ 1/d. On the other hand, since f ′ is direction-preserving, all the points r ∈ Vk
must have the same f ′(r ). Without loss of generality, we assume f ′(r ) = +ek for
all r ∈ Vk , then

F ′
k(x ′) − x ′

k =
∑
r∈C

wr (x ′) (Fk(r ) − rk) = akc ≥ M/(2d2),

which contradicts with

|F ′
k(x ′) − x ′

k | ≤ |F ′(x ′) − x ′|∞ = (n2 + 2l) · |F∗(x∗) − x∗|∞ < M/(2d2),

as we assumed that 2m > 4d.

ACKNOWLEDGMENTS. The authors would like to give thanks to Frances Yao for
many research discussion sessions with us; to Frances and Andrew Chi-Chih Yao
for patiently spending hours going through the proofs; to Yinyu Ye, Chuangyin
Dang, and Shang-Hua Teng for their suggestions and comments; and to Stephen
Vavasis for references. We would also like to thank several anonymous referees
of STOC 2005 and JACM for valuable comments, references and suggestions that
have helped to improve the presentation of the journal version.

REFERENCES

ALTMAN, E., AVRACHENKOV, K., AND BARAKAT, C. 2002. Tcp network calculus: The case of large
delay-bandwidth product. In Proceedings of the 21st Annual Joint Conference of the IEEE Computer
and Communications Societies. IEEE, Computer Society Press, Los Alamitos, CA, 417–426.

ARROW, K., AND DEBREU, G. 1954. Existence of an equilibrium for a competitive economy. Economet-
rica 22, 265–290.

Journal of the ACM, Vol. 55, No. 3, Article 13, Publication date: July 2008.



Matching Algorithmic Bounds for Finding a Brouwer Fixed Point 13:25

BANACH, S. 1922. Sur les opérations dans les ensembles abstraits et leur application aux Équations
intégrales. Fund. Math. 3, 133–181.

BROUWER, L. 1910. Über abbildung von mannigfaltigkeiten. Math. Ann. 71, 97–115.
CHEN, N., DENG, X., SUN, X., AND YAO, A. C.-C. 2004. Fisher equilibrium price with a class of concave

utility functions. In Proceedings of the 12th Annual European Symposium on Algorithms. Springer-Verlag,
New York, 169–179.

CHEN, X., SUN, X., AND TENG, S.-H. 2008. Quantum separation of local search and fixed point com-
putation. In Proceedings of the 14th Annual International Computing and Combinatorics Conference.
Springer-Verlag, New York, 169–178.

CHEN, X., AND TENG, S.-H. 2007. Paths beyond local search: A tight bound for randomized fixed-point
computation. In Proceedings of the 48th Annual IEEE Symposium on Foundations of Computer Science.
IEEE, Computer Society Press, Los Alamitos, CA, 124–134.

CODENOTTI, B., AND VARADARAJAN, K. 2004. Efficient computation of equilibrium prices for markets
with Leontief utilities. In Proceedings of the 31st International Colloquium on Automata, Languages
and Programming. Springer-Verlag, New York, 371–382.

COLE, R., DODIS, Y., AND ROUGHGARDEN, T. 2003. Pricing network edges for heterogeneous selfish
users. In Proceedings of the 35th Annual ACM Symposium on Theory of Computing. ACM, New York,
521–530.

DENG, X., PAPADIMITRIOU, C., AND SAFRA, S. 2002. On the complexity of equilibria. In Proceedings of
the 34th Annual ACM Symposium on Theory of Computing. ACM, New York, 67–71.

DENG, X., PAPADIMITRIOU, C., AND SAFRA, S. 2003. On the complexity of price equilibria. J. Comput.
Syst. Sci. 67, 2, 311–324.

DEVANUR, N. 2004. The spending constraint model for market equilibrium: Algorithmic, existence and
uniqueness results. In Proceedings of the 36th Annual ACM Symposium on Theory of Computing. ACM,
New York, 519–528.

DEVANUR, N., PAPADIMITRIOU, C., SABERI, A., AND VAZIRANI, V. 2002. Market equilibrium via a primal-
dual-type algorithm. In Proceedings of the 43rd Annual IEEE Symposium on Foundations of Computer
Science. IEEE, Computer Society Press, Los Alamitos, CA, 389–395.

EAVES, B. 1972. Homotopies for computation of fixed points. Math. Prog. 3, 1–22.
HIRSCH, M., PAPADIMITRIOU, C., AND VAVASIS, S. 1989. Exponential lower bounds for finding Brouwer

fixed points. J. Complex. 5, 379–416.
HUANG, Z., KHACHIYAN, L., AND SIKORSKI, K. 1999. Approximating fixed points of weakly contracting

mappings. J. Complex. 15, 200–213.
IIMURA, T. 2003. A discrete fixed point theorem and its applications. J. Math. Econ. 39, 7, 725–742.
IIMURA, T., MUROTA, K., AND TAMURA, A. 2005. Discrete fixed point theorem reconsidered. J. Math.

Econ. 41, 8, 1030–1036.
JAIN, K. 2004. A polynomial time algorithm for computing an Arrow-Debreu market equilibrium for

linear utilities. In Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science.
IEEE, Computer Society Press, Los Alamitos, CA, 286–294.

JAIN, K., MAHDIAN, M., AND SABERI, A. 2003. Approximating market equilibria. In Proceedings of the
6th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems and
the 7th International Workshop on Randomization and Approximation Techniques in Computer Science.
Springer-Verlag, New York, 861–869.

JAIN, K., VAZIRANI, V., AND YE, Y. 2005. Market equilibria for homothetic, quasi-concave utilities and
economies of scale in production. In Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete
Algorithms. SIAM, Philadelphia, PA, 63–71.

KELLOGG, R., LI, T., AND YORKE, J. 1976. Constructive proof of the Brouwer fixed point theorem and
computational results. SIAM J. Numer. Anal. 13, 473–483.

KO, K.-I. 1995. Computational complexity of fixed points and intersection points. J. Complex. 11, 265–
292.

KRONECKER, L. 1869. Über systeme von funktionen mehrerer variabeln. Monatsber. Berlin Akad., 159–
193 and 688–698.

KUHN, H. 1968. Simplicial approximation of fixed points. Proc. Nat. Acad. Sci. 61, 1238–1242.
LOW, S. 2003. A duality model of tcp and queue management algorithms. IEEE/ACM Trans. Netw. 11, 4,

525–536.
MEHTA, A., SHENKER, S., AND VAZIRANI, V. 2003. Profit-maximizing multicast pricing by approximating

fixed points. In Proceedings of the 4th ACM Conference on Electronic Commerce. ACM, New York, 218–
219.

Journal of the ACM, Vol. 55, No. 3, Article 13, Publication date: July 2008.



13:26 X. CHEN AND X. DENG

MEINARDUS, G. 1963. Invarianz bei linearen approximationen. Arch. Rational. Mech. Anal. 14, 1, 301–
303.

MERRILL, O. 1972. Applications and Extensions of an Algorithm that Computes Fixed Points of Certain
Upper Semi-Continuous Point-to-Set Mappings. Ph.d. dissertation, University of Michigan, Ann Arbor,
MI.

NASH, J. F. 1950. Equilibrium points in n-person games. Proc. Nat. Acad. Sci. USA 36, 48–49.
ORTEGA, J., AND RHEINBOLT, W. 1970. Iterative Solution of Nonlinear Equations in Several Variables.

Academic Press, New York.
PAPADIMITRIOU, C. 1990. On graph-theoretic lemmata and complexity classes. In Proceedings of the

31st Annual IEEE Symposium on Foundations of Computer Science. IEEE, Computer Society Press, Los
Alamitos, CA, 794–801.

ROBINSON, C. 1999. Dynamical Systems, Stability, Symbolic Dynamics, and Chaos. CRC Press.
SCARF, H. 1967. The approximation of fixed points of a continuous mapping. SIAM J. Applied Mathe-

matics 15, 997–1007.
SHELLMAN, S., AND SIKORSKI, K. 2002. A two-dimensional bisection envelope algorithm for fixed

points. J. Complex. 18, 2, 641–659.
SHELLMAN, S., AND SIKORSKI, K. 2003a. Algorithm 825: A deep-cut bisection envelope algorithm for

fixed points. ACM Trans. Math. Softw. 29, 3, 309–325.
SHELLMAN, S., AND SIKORSKI, K. 2003b. A recursive algorithm for the infinity-norm fixed point problem.

J. Complexity 19, 6, 799–834.
SIKORSKI, K. 1989. Fast algorithms for the computation of fixed points. In Robustness in Identification

and Control, R. Milanese and A. Vicino, Eds. Plenum Press, New York, 49–59.
SIKORSKI, K., TSAY, C., AND WOZNIAKOWSKI, H. 1993. An ellipsoid algorithm for the computation of

fixed points. J. Complex. 9, 1, 181–200.
SIKORSKI, K., AND WOZNIAKOWSKI, H. 1987. Complexity of fixed points, I. J. Complex. 3, 4, 388–405.
SMALE, S. 1976. A convergent process of price adjustment and global newton methods. J. Math.

Econ. 3, 2, 107–120.
SPERNER, E. 1928. Neuer beweis fur die invarianz der dimensionszahl und des gebietes. Abhandlungen

aus dem Mathematischen Seminar Universitat Hamburg 6, 265–272.
SPIELMAN, D., AND TENG, S.-H. 1996. Spectral partitioning works: Planar graphs and finite element

meshes. In Proceedings of the 37th Annual IEEE Symposium on Foundations of Computer Science.
IEEE, Computer Society Press, Los Alamitos, CA, 96–105.

YANG, Z. 1999. Computing equilibria and fixed points: The solution of nonlinear inequalities. Kluwer
Academic Publishers, Dordrecht.

RECEIVED MARCH 2005; REVISED AUGUST 2005 AND MAY 2006; ACCEPTED MAY 2008

Journal of the ACM, Vol. 55, No. 3, Article 13, Publication date: July 2008.


