
Matching Algorithms to Problems:
An Experimental Test of the Particle Swarm and Some Genetic Algorithms

on the Multimodal Problem Generator

James Kennedy
Bureau of Labor Statistics
2 Massachusetts Ave., NE
Washington, DC 20212
kennedy_jim@bls.gov

Willi am M. Spears
Code 5510 - AI Center

Naval Research Laboratory
Washington, DC 20375-5337

spears@aic.nrl.navy.mil

Abstract

A multimodal problem generator was used to test
three versions of genetic algorithm and the binary
particle swarm algorithm in a factorial time-series
experiment. Specific strengths and weaknesses of
the various algorithms were identified.

1. Introduction

This paper will compare the performance of the bi-
nary particle swarm and several varieties of genetic algo-
rithm on sets of problems produced by a multimodality
problem generator. The study will be constructed in the
form of a repeated-measures factorial experiment, re-
porting results from multivariate analysis of variance.
Research questions involve effects of various aspects of
problems on performance of the particle swarm and ge-
netic algorithms with mutation or crossover, or both.

One diff iculty with empirical comparisons of search
algorithms is that results may not generalize beyond the
test problems used. For instance, a new algorithm may
be carefully tuned so that it outperforms some existing
algorithms on a few problems. Unfortunately, the results
of such studies typically have only weak predictive value
regarding performance on new problems. We would like
to be able to characterize problems in a way that allows
us to predict the performance of an algorithm on new,
previously unseen problems.

There are several ways to strengthen the results
obtained from empirical studies. The first is to remove
the opportunity to hand-tune algorithms to a particular
problem or sets of problems. Problem generators allow
us to report results over a randomly generated set of
problems from particular classes of problems rather than
a few hand-chosen examples. Thus we increase the
predictive power of the results by describing
performance on the problem class as a whole.

An advantage of problem generators is that they can
be parameterized, allowing researchers to design
controlled experiments in which one or more properties

of a class of problems can be varied systematically to
study the effects on particular search algorithms. This
provides a second method for improving empirical
results, by allowing us to conduct well -designed
experiments which look at main effects as well as
interactions of independent variables. While it is
understood that all possible combinations of all
conceivable variables cannot be manipulated in a single
study, a small number of representative levels of
variables which are considered important can be studied
systematically; when the effects of these variables are
understood, then other variables can be introduced, until
all relevant effects have been charted.

One of the most important variables to consider is
time. Many empirical studies report the performance of
algorithms at the end of a run, say at 20,000 evaluations
or after 10 minutes. However, as we will show,
conclusions can often turn out to be surprisingly
dependent on the time cutoff , often reversing if a smaller
(or larger) cutoff is used. Investigation of the processes
over time is important for a scientific understanding of
the behaviors of these algorithms, as well as giving
important information to engineers who may wish to
develop applications using them. Thus a third method
for improving empirical results is to sample the
performance of algorithms many times during a run.

2. Particle Swarm

The particle swarm algorithm is an adaptive
algorithm based on a social-psychological metaphor; a
population of individuals adapt by returning
stochastically toward previously successful regions in the
search space, and are influenced by the successes of their
topological neighbors. In particle swarm, individuals
(particles) are represented as vectors ix t

�

() (i.e., the
vector for particle i at time t). Particle swarm adaptation,
originally presented as a method for searching continuous
spaces [3, 4], has recently been adapted to binary spaces
through a simple modification [5]. Instead of moving
particles as ix t

�

() = i ix t x t
� �

() ()− +1 ∆ , particles exist as

vectors of probabiliti es, defined as a logistic function
s x ti(())∆ �

. For each vector ix t
�

() , a random vector

i t
�

ρ () is chosen from a uniform distribution in [0.0, 1.0];

if id idt s x tρ () (())< ∆ then idx t() = 1, else idx t() = 0.

Preliminary tests have found this algorithm to perform
satisfactorily on standard test functions [5]; the present
experiment was designed in part as a rigorous
investigation of the properties of the discrete particle
swarm algorithm.

3. The Multimodal Problem Generator

The multimodality of (i.e., number of peaks in) a
search space is an important characteristic of that search
space. This section outlines a simple problem generator
that produces random problems with a controllable
degree of multimodality. The motivation for this
generator stemmed from an interest in the differences
between mutation and crossover in genetic algorithms,
and its implementation below will allow insights into
characteristics of the performance of the particle swarm
as well . Consider a simple two peak problem, with
optima at 000...000 and 111...111. Individuals (strings)
with roughly 50% 1's and 0's are the lowest fitness
strings, while individuals with mostly 1's or mostly 0's
have high fitness. Mutation of any high fitness individual
on either peak will t end to keep the individual on that
peak, driving it up or down the peak to a small degree.
Crossover, however, produces quite different results,
depending on the location of the parents. If the two
parents are on the same peak, the offspring are also
highly likely to be on that peak. However, if the two
parents are on the two different peaks, the offspring are
highly likely to be in the valley between the two peaks,
where the fitness is low.

One can hypothesize, then, that crossover may hurt
GA performance on the two peak problem. What if there
are more than two peaks? It appears reasonable to
hypothesize that crossover could be even more
deleterious, since the crossover of individuals on
different peaks is even more likely to produce poor
offspring, until the population has converged to one peak.
To explore these hypotheses a multimodality problem
generator was created, in which the number of peaks (the
degree of multimodality) can be controlled easily and
methodically by the experimenter. The description of the
generator is as follows.

The idea is to generate a set of P random L-bit
strings, which represent the location of the P peaks in the
space. To evaluate an arbitrary bit string, first locate the
nearest peak (in Hamming space). Then the fitness of the
bit string c is the number of bits the string has in common

with that nearest peak, divided by L. The optimum fitness
for an individual is 1.0.

f c
L i

P
() max=

=

1

1
{ L - Hamming(c, Peaki)}

This particular problem generator is a generalization of
the P-peak problems introduced in [1]. De Jong et al. [2]
compared the performance of various GAs on problems
with 1 peak and problems with 500 peaks. What was
most noticeable in that study was the severe drop in
performance of GA's including crossover for the 500-
peak problems, while the performance curves for the GA
with mutation only (i.e., no crossover) are almost
identical for the two classes of problems. This provides
strong confirmation of the increasing initial advantage of
mutation as multimodality increases.

4. Design of the experiment

The experiment reported here used the multimodality
generator to investigate the effects of number of peaks
(P) and length of bit vector (L) on the performance of
four algorithms, measured as a vector of best-so-far per-
formance values sampled over time:

• A GA using crossover and selection only (GA_c)
• A GA using mutation and selection only (GA_m)
• A “ traditional” GA with both crossover and muta-

tion, plus selection (GA), and
• The binary particle swarm (PS).

Thus the study is conceived as a 4×2×2 factorial ex-
periment, with three between-groups factors:

• Type of algorithm
• Number of peaks (20 vs. 100 peaks), and
• Longer and shorter bit vectors (20 vs. 100 bits)

and one within-trial factor, which is called simply “ time.”
It was hypothesized that characteristics of the algo-

rithms would interact with problem dimensions, and that
the conditions under which an algorithm might excel or
fail could eventually be identified. With this knowledge,
researchers can choose an algorithm which is appropriate
for their particular case.

Dependent variables in this experiment were the best-
so-far performance evaluations of each trial at the 20th
(first generation) evaluation, the 1,000th, 2,000th, and so
on to the 20,000 evaluation -- a total of 21 measurements
per trial. Multivariate analysis of variance (MANOVA)
comprised tests of the effects of the three independent
variables, including main effects and interactions, on the
vector of values, that is, the series of changes in per-
formance over time.

5. Method

Programs written in C were compiled on a Sun So-
laris machine running Unix. For each setting of L and P
twenty random problems were generated. Each algo-
rithm was run once on each of those problems, with each
trial extending for 20,000 evaluations. Random seeds
specified for each trial determined that all algorithms
operated on the same problems. An “evaluation” com-
prised actual evaluation of the objective function; this
was not done when a bit vector had not changed from the
previous evaluation due to algorithmic operations. The
mutation rate for GA and GA_m was 0.001, the cross-
over rate was 0.60 for GA and GA_c; for the particle
swarm, Vmax was 2.0 and ϕ (the “acceleration constant”)
was set at 2.0. Two levels of L and P were administered:
levels for both variables were 20, in the low condition,
and 100 in the high. Populations for all algorithms com-
prised 100 individuals.

6. Results

All multivariate effects reported below were signifi-
cant with α=0.0001. There is reason to be concerned
that heteroscedasticity of data, especially small or zero
variance in cells that rapidly and unanimously converged
on the global optimum, may have resulted in underesti-
mation of error variance and subsequent inflation of F
ratios. Thus, this report will not dwell on p-values, but
only suggest that F is a good indication of the relative
amount of variance explained by each factor. In the in-
terest of saving space, descriptions of analyses will refer
to the graphs that follow, rather than reporting the mul-
titude of means.

6.1. Time main effect

All algorithms improved over time, with most trials
ascending from a mediocre random start to the global
optimum or near it, resulting in a very large statistical
effect of time, F(20, 285)=2143.40. The following sec-
tions report how the experimental factors interacted with
time.

6.2. Algorithm ×× Time

The interaction of algorithm with time was moder-
ately strong, F(60, 851.11)=16.67. Across the four

Figures 1-4. Mean best-so-far performance of
the four algorithms compared within each of
the four conditions: high/low L ×× high/low P.

conditions, it is seen that GA_m generally tended to per-
form well i n early evaluations and fade later in the time
series, while GA and GA_c tended to start with a rush
followed by slowed improvement, then picked up until
they outperformed GA_m. PS on most trials started
somewhat slower than GA_m but faster than the other

P=20, L=20

0.6

0.7

0.8

0.9

1

Evals (20-20,000)

GA

GA_c

GA_m

PS

P=100, L=20

0.6

0.7

0.8

0.9

1

Evals (20-20,000)

P=20, L=100

0.6

0.7

0.8

0.9

1

Evals (20-20,000)

two GA’s, and was in all cells the first algorithm to
overtake GA_m; in three of the cells it was the first, and
sometimes the only, algorithm to attain a mean perform-
ance of 1.0. In the cell where it did not attain the global
optimum first, it was second, following GA_m in the
L=20, P=20 condition.

6.3. P (Number of peaks) ×× Time

Varying the number of peaks affected the dynamics
of the algorithms rather strongly, F(20, 285)=22.70. The
effect is seen in the pronounced dip in the curves of GA
and GA_c when P=100, much less when P=20. The two
GA’s with crossover showed fast improvement in the
very earliest evaluations, then leveled out, with gradual
but persistent improvement for the last half of the trials.
Thus, the effect of P is seen in overall diminished mean
performance, though much of this effect will be ex-
plained below by interactions.

6.4. L (Bit string length) ×× Time

The variable which interacted the most, by far, with
time, was L, the length of the bit string being optimized,
F(20, 285) = 985.78. In the graphs, this can be seen as
an overall depression of performance in the two L=100
cells, compared to the ease with which all algorithms
found the global optimum when L=20. In fact, when
L=20, all trials settled on the global optimum before
5,000 evaluations; when L=100, a great many trials
failed to find the optimal bit string after 20,000 evalua-
tions. Thus this variable made the difference between an
easy and a hard situation.

6.5. Interaction of Algorithm ×× P ×× Time

Number of peaks interacted weakly with algorithm,
F(60, 851.12) = 3.34, suggesting that the effect of P was
not importantly different between the algorithms. In
comparing the graphs, it can be seen that the two graphs
with P=20 differ from the two with P=100 mainly in an
increase in diff iculty for GA and GA_c with the higher
number of peaks, contrasted with almost identical per-
formance by GA_m and PS under both levels of P.

6.6. Interaction of Algorithm ×× L ×× Time

The interaction of algorithm with L over time was
moderate, F(60, 851.12) = 15.04. When L=20, GA_m
improved rapidly from the start of the trial directly to the
global optimum, followed by PS, with GA and GA_c
lagging behind, and all algorithms converging quickly on
the optimum. On the other hand, when L=100, the initial
rush by GA_m faltered short of the optimum, to be
overtaken by GA and GA_c; these algorithms with
crossover started slowly but outperformed GA_m in the
long run. PS found the global optimum on all trials,
somewhat more slowly than GA_m but faster than GA
and GA_c when L=20, and faster than all other algo-
rithms when L=100. Hence, GA_m was most affected,
and PS least affected, by changes in the length of the bit
string.

6.7. Interaction of L ×× P ×× Time

Number of peaks interacted moderately with length
of the bit string, F(20, 285)=14.69. Looking at the
graphs, we see that the effect of L was greater when P
was high. For each level of L, performance was lower
when P was high than when P was low, but the effect
was greater, and occurred later in the sequence, when L
was high.

6.8. Interaction of Algorithm ×× L ×× P ×× Time

The interaction of the three independent variables
with time was slight, F(60, 851.12) = 3.68. The “dip” in
performance by GA and GA_c was most pronounced
when both L and P were high, while GA_m and PS per-
formed approximately the same in both conditions where
L was high, and the same in the conditions where L was
low. Most of this variance however is explained by sim-
pler interactions.

6.9. Univariate effects

The patterns of univariate effects over time, shown in
the Appendix, can help explain the pattern of multivari-
ate effects reported above. The main effect of algorithm,
that is, the difference in performance between the vari-
ous algorithms, is nonsignificant when the trials begin, as
it should be with random initialization, but then increases
steadily until about the 4,000th evaluation. This
spreading of algorithms in the statistics is seen in the
graphs as the “dip” in the crossover algorithms, versus
the steep improvement of GA_m and PS. Differences
decrease for approximately the next 10,000 evaluations,

P=100, L=100

0.6

0.7

0.8

0.9

1

Evals (20-20,000)

until the point that GA and GA_c catch up with GA_m,
then increase again as crossover overtakes mutation.

The main effect of P, number of peaks, starts out
high, apparently because with more peaks it is more
likely that a random start will be near one: high-P condi-
tions started with somewhat better performance evalua-
tions. The effect then rapidly decreases to nonsignifi-
cance, with a nadir at 2,000 evaluations, then slowly
increases until about 8,000 evaluations, where the effect
of P on the crossover algorithms begins to diminish si-
multaneously with the tapering off of improvement by
GA_m and the effect decreases, once again, nearly to
nonsignificance.

The effect of L also begins high, as random functions
are affected by the higher dimensionality of the high-L
condition. The central limit theorem suggests that
evaluations of higher dimension will have smaller vari-
ance, which means that the best value found after 20
evaluations will be less extreme, i.e., nearer to 0.5. The
effect of L increases rapidly until about 2,000 evalua-
tions, then begins to decrease again; this pattern results
from the fact that all algorithms had reached the global
optimum in all trials of the L=20 conditions by the
5,000th evaluation, while the L=100 trials continued to
improve, closing the gap. Note also that after the
5,000th evaluation, interactions of other factors with L
are equal to the main effect of that factor, as the low
level of L contributes no variance to the total.

The interaction of algorithm × L increases from non-
significance to a rather high F by the 4,000th evaluation,
as the GA’s with crossover (GA and GA_c) flatten out,
diverging from the rapid-starting algorithms, before fi-
nally beginning to ascend. The effect of algorithm × P
increases to about 6-12,000 evaluations, reflecting the
relatively flatter early improvement of GA and GA_c
when P is higher. The increase of the P × L interaction
at about 7,000 evaluations again reflects the relatively
greater difference between the crossover algorithms and
the others when both P and L were high.

Finally, the three-way interaction simply follows the
trend of the algorithm × P interaction after about 5,000
evaluations; as was mentioned earlier, the low-L condi-
tions contribute nothing to the variance after this point,
as all trials have converged unanimously.

7. Conclusions

Our method of using a multivariate analysis of vari-
ance to analyze the performance of different algorithms
on random problems created by a parameterized problem
generator has yielded some interesting insights. The
multivariate effects represent differences in the dynamic
processes of several algorithms over time and thus per-

mit no small number of simple descriptive statistics, such
as means, to report. In general, the largest effect by far,
next to the main effect of time itself, was the effect of
increasing the length of the bit string. This should not be
surprising, as the size of the combinatorial problem ex-
pands exponentially with L. What might be surprising is
the fact that increasing the problem from 220 to 2100 did
not prevent these robust algorithms from succeeding, but
only slowed them down slightly. The exception there of
course is GA_m, the genetic algorithm with mutation
only, which never succeeded in finding the global opti-
mum in 20,000 evaluations when both L and P were
high, and found it only once when L was high and P low.
The poor performance of GA_m when L is high appar-
ently arises from our use of a constant mutation rate of
0.001. As L increases the proportion of individuals that
are mutated also increases, creating too much disruption.

De Jong et al. [2] had noted that crossover might not
perform especially well on functions featuring high mo-
dality. In their study it was seen that GA and GA_c
started out slowly, and performed relatively poorly, for a
great number of evaluations, until finally a “critical
mass” was attained as a majority of chromosomes con-
verged on a single peak; after that happened, perform-
ance improved rapidly, usually until a global optimum
was found. This was contrasted with the performance of
GA_m, which began with a rush but quickly ceased im-
proving. These effects were clearly evident in the cur-
rent data; in fact, we can elaborate somewhat beyond the
previous findings. GA and GA_c, the two algorithms
with crossover, started out, in all conditions, almost as
fast as GA_m, then flattened out. The flattening of per-
formance is least evident in the L=20, P=20 cell , a con-
dition which all algorithms found easy, but even here the
two algorithms with crossover are seen to slow after a
strong start.

The flattening of progress is seen in the current data,
to some degree, in all the crossover algorithms in all
conditions. High dimensionality and especially high
multimodality exaggerate the tendency for crossover to
flounder before progressing. The opposite effect was
seen with GA_m; the mutation algorithm always started
faster than any of the others, but leveled out usually at
about the same point the crossover algorithms began to
improve.

These results justify two modifications to mutation
that are sometimes performed. The first is to use a muta-
tion rate proportional to 1/L, in an attempt to maintain a
constant level of disruption as L increases. The second is
to reduce the mutation rate as the process continues, al-
lowing mutation-only GAs to continue making progress
in the latter stages of search. It should also be noted that
we are using low mutation rates due to the lack of eliti sm

in our versions of GA. Higher mutation rates are useful
when eliti sm is included, because the best individuals
will not be lost due to disruption. Interestingly, our re-
sults also suggest that a novel strategy for multimodal
functions might be to shift the emphasis from mutation to
crossover during the course of a run. Finally, it is inter-
esting to note that the traditional GA, with both crossover
and mutation, is the worst performer and the algorithm
most adversely affected by increasing multimodality.
This raises serious concerns about the automatic use of
both mutation and crossover in a GA, suggesting that it is
often good to remove one of those operators.

In these trials the particle swarm algorithm reached
the global optimum faster than any other except in the
P=20, L=20 condition. PS was hardly affected at all by
increasing the modality of problems, and while it did not
start progressing as rapidly as GA_m in the L=20 condi-
tions, it quickly caught up and surpassed the mutation
algorithm’s performance long before the GA’s with
crossover did. PS was also the least affected by changes
in problem dimensionality. The particle swarm found
the global optimum on every trial, in every condition,
and was the only algorithm for which that statement is
true -- the most PS ever required was 14,620 evaluations
to attain the global optimum. In sum, the particle swarm
appears to be robust, given the variations presented here.

References

[1] De Jong, K. A. and Spears, W. M. (1990). An analysis of
of the interacting roles of population size and crossover in ge-
netic algorithms. In H.-P. Schwefel and R. Männer , (Eds.),
Proceedings of the First International Conference on Parallel
Problem Solving from Nature, 38-47. Springer-Verlag.

[2] De Jong, K., Potter, M., and Spears, W. (1997). Using
problem generators to explore the effects of epistasis. In T.
Bäck, (Ed.), Proceedings of the Seventh International Confer-
ence on Genetic Algorithms, 338-345. Morgan Kaufmann.

[3] Kennedy, J. (1997). The particle swarm: Social adaptation
of knowledge. Proceedings of the 1997 International Confer-
ence on Evolutionary Computation (Indianapolis, Indiana),
IEEE Service Center, Piscataway, NJ, 303-308.

[4] Kennedy, J., and Eberhart, R. C. (1995). Particle swarm
optimization. Proceedings of the IEEE International Confer-
ence on Neural Networks (Perth, Australia), IEEE Service
Center, Piscataway, NJ, IV: 1942-1948.

[5] Kennedy and Eberhart, R. C. (1997, in press). A discrete
binary version of the particle swarm algorithm. Proceedings of
the 1997 International Conference on Systems, Man, and
Cybernetics.

Appendix. Univariate F statistics over time (degrees of freedom =3 for Alg and its interactions, 1 otherwise).

Evals Alg P L Alg×L Alg×P P×L Alg×P×L
20 0.18 165.07 3536.16 0.46 0.18 33.25 0.58

1,000 67.24 25.20 10112.36 5.00 1.04 0.22 1.40
2,000 165.02 0.18 14679.93 54.87 3.83 13.51 0.17
3,000 261.10 3.53 14515.03 210.61 3.52 0.06 1.43
4,000 282.39 23.30 10593.87 274.78 7.87 20.16 7.58
5,000 217.89 60.90 6090.26 217.89 16.77 60.90 16.77
6,000 181.59 121.67 4239.01 181.59 32.99 121.67 32.99
7,000 145.04 190.55 2905.38 145.04 49.22 190.55 49.22
8,000 101.20 173.05 1808.74 101.20 45.05 173.05 45.05
9,000 72.49 155.65 1189.71 72.49 41.57 155.65 41.57

10,000 47.11 103.29 739.47 47.11 29.18 103.29 29.18
11,000 41.81 80.21 529.33 41.81 21.10 80.21 21.10
12,000 45.00 72.92 484.22 45.00 49.73 72.92 19.73
13,000 50.44 64.51 410.93 50.44 18.64 64.51 18.64
14,000 53.14 43.03 340.84 53.14 14.30 43.03 14.30
15,000 77.61 30.55 334.90 77.61 13.64 30.55 13.64
16,000 105.81 27.97 377.71 105.81 10.80 27.97 10.80
17,000 142.12 27.94 400.91 142.12 9.11 27.94 9.11
18,000 188.60 22.25 417.82 188.60 6.88 22.25 6.88
19,000 164.57 10.20 301.36 164.57 3.80 10.20 3.80
20,000 152.23 6.50 253.34 152.23 2.07 6.50 2.07

