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Abstract

Matching of corresponding branchpoints between two human airway trees, as well as assigning
anatomical names to the segments and branchpoints of the human airway tree, are of significant
interest for clinical applications and physiological studies. In the past these tasks were often
performed manually due to the lack of automated algorithms that can tolerate false branches and
anatomical variability typical for in vivo trees. In this paper we present algorithms that perform both
matching of branchpoints and anatomical labeling of in vivo trees without any human intervention
and within a short computing time. No hand-pruning of false branches is required. The results from
the automated methods show a high degree of accuracy when validated against reference data
provided by human experts. 92.9% of the verifiable branchpoint matches found by the computer
agree with experts’ results. For anatomical labeling, 97.1% of the automatically assigned segment
labels were found to be correct.

Index Terms

Airway tree; branchpoint matching; anatomical labeling

I. INTRODUCTION

The quantitative assessment of intrathoracic airway trees is critically important for the objective
evaluation of the bronchial tree structure and function. Functional understanding of pulmonary
anatomy, as well as the natural course of respiratory diseases like asthma, emphysema, cystic
fibrosis, and many others, is limited by our inability to repeatedly evaluate the same region of
the lungs time after time and perform accurate and reliable positionally corresponding
measurements. Several approaches to three-dimensional reconstruction of the airway tree have
been developed in the past. None of them, however, allows the direct comparison of airway
trees across and within subjects.

The first six generations, roughly, of the human airway tree exhibit a relatively similar topology
across subjects, and anatomical names exist for 31 segments and 42 sub-segments [1]. Beyond
that, the branching structure gets variable and differs very much from subject to subject.

NIH Public Access
Author Manuscript
IEEE Trans Med Imaging. Author manuscript; available in PMC 2007 November 14.

Published in final edited form as:
IEEE Trans Med Imaging. 2005 December ; 24(12): 1540–1547.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



The term branchpoint matching is used for the process of finding corresponding branchpoints
between two different scans of the same subject (intra-subject case; e.g., imaged in a
longitudinal study or imaged at different lung volumes). This process is based on the similarities
of the two input trees and finds matching branchpoints not only for the named segments but
also beyond them.

The anatomical labeling algorithm presented here aims to assign 32 anatomical names to their
respective segments (the left inferior bronchus was divided into two parts, which accounts for
the one additional segmental name compared to the standard nomenclature). Labeling an
airway tree does not only simplify the navigation of the tree in applications like virtual
bronchoscopy, but also allows matching of branchpoints across subjects (inter-subject case).
Another application of anatomical labeling is the identification of lobar and sub-lobar
structures, which can, for example, be used for surgical planning.

Both branchpoint matching and anatomical labeling are tedious and error-prone to perform
manually; consequently the goal is to automate these tasks. Working with human in-vivo data
poses challenges. In-vivo trees deviate from ideal trees because of anatomical variations and
because of false-branches introduced by imperfections of the preceding segmentation and
skeletonization processes.

Branchpoint matching was mostly done manually in the past [2]. A few attempts of automating
the process were undertaken. Pisupati et al. [3], [4] presented a matching algorithm based on
dynamic programming that, however, was only applied to very similar pairs of canine trees,
and the authors state that they expect the method to fail on human in-vivo scans. Park [5]
presented a tree-matching method based on an association graph [6], but his method was
applied only to phantom data and it does not tolerate false branches.

Publications about automated anatomical labeling are similarly sparse. Mori et al. [7] presented
a knowledge-based labeling algorithm. The proposed algorithm was only applied to incomplete
trees (about 30 branches per tree), and the builtin knowledge base did not incorporate
anatomical variations. Additionally, the algorithm is sensitive to missing and spurious (false)
branches. Kitaoka et al. [8] developed a branchpoint labeling algorithm that uses a
mathematical phantom as reference. Labels are assigned by matching the target tree against
this phantom. The method can not automatically handle false branches – they have to be pruned
manually in a preprocessing step.

A. Input data

In a first step the airway tree is segmented from volumetric computed tomography (CT) images
[9], [10] and then skeletonized [11], [12]. Branchpoints are detected in the skeletonization
result, and the tree is represented as a directed acyclic graph (DAG) (Figure 1). This DAG is
used as input for both the branchpoint matching and the anatomical labeling processes.

II. MATCHING WITH ASSOCIATION GRAPH METHOD

Branchpoint matching and anatomical labeling are both based on matching hierarchical
structures (mathematical graphs) using association graphs [6]. Using association graphs for
finding graph isomorphisms is a well known technique that has been introduced more than 20
years ago [13].

An association graph is an auxiliary graph structure derived from the two graph structures to
be matched. A graph G = (V, E) consists of a set of vertices V and a set of edges E. For two
graphs G1 and G2, an association graph Gag = (Vag, Eag) consists of the vertices Vag = V1 ×
V2. I.e., it contains a vertex for every possible pair of vertices in G1 and G2. Two vertices in
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Gag are connected with an edge if and only if the corresponding vertices in G1 and G2 stand in
the same relationship to each other (e.g., inheritance relationship, topological distance, etc.).
The maximum clique in the association graph, i.e., the biggest sub-set of vertices where every
pair of vertices is connected by an edge, corresponds to the maximal subtree isomorphism.
Each vertex contained in the maximum clique represents a pair of matching vertices in the
original graphs. It has been shown [14] that the problem of finding the maximum clique is an
NP-complete problem. This paper introduces methods that help keeping the required
computing time within very reasonable limits.

III. BRANCHPOINT MATCHING

One big association graph could be constructed from the two input-trees – creating one
association graph vertex for every possible pair of matching vertices in the input trees – and
the matching could then be performed in a single step. However, this approach is not practical
because of the exponential computational complexity of the matching task. Steps have to be
taken to reduce the computing time. Two possibilities exist to do this: reduce the overall
problem size, or split the problem into a number of sub-problems. Both of these tactics are
applied in the method presented here. The matching is performed in four main steps:

1. Delete (prune) spurious branches from input trees.

2. Align the two input trees by performing a rigid registration.

3. Find and match major branchpoints.

4. Match sub-trees underneath major branchpoints, one pair of sub-trees at a time.

A. Pruning

The input trees contain some false branches, i.e., branches that do not represent real anatomical
segments. False branches exist because of the often uneven surface of the segmentation result,
which is caused by minor segmentation problems or by anatomical irregularities. Deleting false
branches eliminates potential false matches and also reduces the problem size.

Pruning is performed in two steps: 1) delete terminal edges that are shorter than a predefined
threshold length ℓth, 2) delete vertices that are left in the graph after a terminal edge was deleted
in step 1, i.e., vertices that have only one remaining out-edge and connect parent- and child-
vertices directly. An out-edge is defined as an edge emanating from a vertex.

B. Rigid registration

The two input trees undergo a rigid registration with the goal of bringing potentially matching
branchpoints as close to each other as possible. This restricts the search for matches to a
relatively close perimeter, which reduces the problem size and consequently speeds up
computing time. Registration is performed such that the carinas are superimposed (the carina
is the first main branchpoint of the airway tree, where the trachea splits into the two main
bronchi) and the angles between the corresponding main bronchi of the two trees are
minimized.

Performing this registration first requires the identification of the carina and the left and right
bronchus of each tree, which is done as follows. For every tree a depth-first search is performed,
which labels every edge e with the minimum and maximum values of the x, y, and z positions
of all vertices that are situated topologically underneath of e (all child-branches of e),
designated as xmin(e), xmax(e), …, zmax(e). The number of vertices found topologically
underneath of e is recorded as well, designated as N (e).
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The spatial extents Δx(e) = xmax(e) − xmin(e), Δy(e) = ymax(e) − ymin(e), and Δz(e) = zmax(e) −
zmin(e) can now be computed for every edge e. After that a breadth-first search is performed
starting from the root of the tree. The carina is identified as the first vertex that is encountered

with Δxyz = max{Δx(e), Δy(e), Δz(e)} ≥ 50 mm and 
N (e)
∣ V ∣ ≥ 0.1 for both of its out-edges, with

|V| being the total number of vertices in the tree. Similarly the branchpoints at the end of the
two main bronchi are found by finding the next two vertices after the carina that satisfy the
same conditions.

Once the carina and the main bronchi have been identified, the registration itself is performed
using a simple affine transformation.

C. Matching

To reduce computing time, the matching of the remaining branchpoints is performed in two
main steps. First, only major branchpoints – branchpoints that are a parent of subtrees with
substantial size – are matched. Second, starting from pairs of matched major branchpoints,
sub-trees are matched, only one pair of sub-trees at a time.

1) Building association graph—A prerequisite for building the association graph is that,
for each of the two input trees, the inheritance relationship and the topological distance

between any two vertices is known. The topological distance is an integer that quantifies the
number of edges between two vertices. To allow an easy and efficient lookup of these
properties, the two-dimensional vertex relationship array  Rvof dimension N × N is computed,

where N stands for the number of vertices in the respective tree. The cell Rv(s, t) of Rv contains

the inheritance relationship rs,t ∈ {PARENT, CHILD, SIBLING, N/A} and the topological
distance ds,t ∈ ℕ between the source vertex s and the target vertex t, with (rs,t = N/A, ds,t = 0)
⇔ s = t. For s ≠ t only one of the three inheritance relationships PARENT, CHILD, and
SIBLING is possible and ds,t ≥ 1. If vertex n is not a direct descendant of vertex m and m is
not a direct descendant of n then rn,m = rm,n = SIBLING. In other words, two vertices in
neighboring branches or sub-trees are always labeled as SIBLINGS, no matter how many edges
lie between them. No inheritance relationship like COUSIN, NEPHEW or similar is assigned.
Using this simplified inheritance model has two advantages. First, it simplifies the handling
of trifurcations that may occur in form of two bifurcations that follow each other within a short
distance, and that may occur in different order in the second tree. Whatever the order of the
two bifurcations, the vertices that are topologically below the trifurcation stay siblings and thus
can still be matched. Second, the presence of false branches does not disturb the inheritance
relationship either. Consequently it becomes possible to tolerate false branches — a necessity
when in-vivo trees shall be matched without the need of a manual pruning step.

Vertices are only added to the association graph if the two corresponding vertices in the trees
to be matched are not farther than dEuclidean max apart. The value of dEuclidean max is set to 40
mm for matching the main branchpoints, and to 15 mm for matching the sub-trees.

Restrictions also apply to the placement of edges in the association graph. Let vassoca
 and

vassocb
 be the vertices in the association graph. Vertex vassoca

 represents a match between vertex
v1a in tree 1 and v2a in tree 2, and analogously vassocb

 represents a match between vertex v1b

in tree 1 and v2b in tree 2. vassoca
 and vassocb

 are only connected with an edge if all of the
following prerequisites are met:

• The inheritance relationship from v1a to v1b is identical to the inheritance relationship
from v2a to v2b.
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• The topological distance between v1a to v1b and the topological distance between
v2a to v2b differ by at most ±2.

• The Euclidean distance between v1a and v1b and the Euclidean distance between

v2a and v2b differ by at most 20%.

• The angle between the two vectors v1a− v1b and v2a−v2b is at most 1 radian.

The restrictions described above minimize the size of the association graph and consequently

speed up the matching process considerably. The tolerance for topological distances makes it

possible to tolerate false branches that were not eliminated by the pruning step.

2) Finding maximum clique—The maximum un-weighted clique in the association graph

is found with the algorithm published by Carraghan and Pardalos [15]. Many published

algorithms for finding the maximum clique are based on this method. More efficient algorithms

are known for certain special cases, but for this application it performs very well since the

individual problem size is kept relatively small. The runtime for the complete matching process

amounts to 1 to 3 seconds for two trees containing 200 to 300 branchpoints each (measured on

a 1.2 GHz AMD Athlon™ single CPU system).

IV. ANATOMICAL LABELING

The goal of anatomical labeling is to assign the 32 unique labels to the appropriate segments

of a target tree (Figure 2).

A. Concept

Anatomical labels are assigned by matching the target tree against a pre-labeled tree that

represents a population average and contains information about the geometrical and topological

properties of the human airway tree. This information includes not only the mean values of

various measures, but also the typical variability observed across the population.

Because of false branches, an anatomical segment may consist of more than one edge in the

graph representation of the airway tree. For that reason labels are assigned to the respective

endpoint (branchpoint) of their respective segment. The start- and end-branchpoint of a given

segment are known by definition. For example, referring to Figure 2, the segment “RMB” (right

main bronchus) starts in the branchpoint labeled “EndTrachea” and ends in the branchpoint

labeled “EndRMB”. This statement holds true independently of the number of false branches

that may branch off between these two points. Therefore assigning labels to end-of-segment

branchpoints makes the labeling independent of false branches.

B. Population average

The population average is built based on a set of airway trees in which each tree individually

has been hand-labeled by a human expert. Prior to recording the spatial properties, the trees

undergo a rigid registration such that the carina lies in the origin of the coordinate system and

the main right bronchus is aligned with the z-axis of the coordinate system. This allows for the

measurement of the absolute position and orientation of segments. The following properties

are recorded in the population average, using the notation shown in Figure 3. Items 1 and 2

represent single-segment measures, 3–6 represent inter-segment relationships.

1. Segment length, mean μℓ and standard deviation σℓ of the length of each named

segment.
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2.

Spatial orientation, recorded as mean vector μ→SO =
∑i=0
T−1 s→ n

T  (representing average

spatial orientation), and standard deviation of angular deviation

σSO = 1
T − 1 ∑i=0

T−1 (cos−1 s→ n ·μ→SO
∣ s→ n ∣ · ∣ μ→SO ∣ )2. Computed separately for every named

segment s ⃗n in the T input trees.

3. Inheritance relationship, consisting of a label from the set {PARENT, CHILD,
SIBLING} assigned to every pair of named segments.

4. Topological distance. For every pair of named segments, the topological distance is
measured in every tree contributing to the population average and the minimum and
maximum values are recorded. 5) Angle between segments. For every pair s ⃗n and s ⃗m
of anatomically named segments the average angle and its standard deviation are

computed with μϕ = 1
T ∑i=0

T−1 cos−1 s→ m · s→ n
∣ s→ m ∣ · ∣ s→ n ∣  and

σϕ = 1
T − 1 ∑i=0

T−1 (cos−1 s→ m · s→ n
∣ s→ m ∣ · ∣ s→ n ∣ − μϕ)2 respectively.

5. Spatial relationship. For every pair s ⃗n and s ⃗m of anatomically named segments the

average spatial relationship is computed with μ→SR =
∑i=0
T−1 s→ mc

− s→ nc
T  where s ⃗mc

 and

s ⃗nc
 are the center-points of segment s ⃗n and s ⃗m, respectively (Figure 3). The unit vector

of μ ⃗SR is recorded in the population average, as well as the average variation of the
spatial relationship, computed as

σSR = 1
T − 1 ∑i=0

T−1 (cos−1
(s→ mc

− s→ nc
) ·μ→SR

∣ s→ mc
− s→ nc

∣ · ∣ μ→SR ∣ )2
C. Introducing parallel edges

It is not unusual to find relatively long “false” branches in human airway trees. These branches
are not really false but represent anatomical segments that are not typical and are likely not
represented in the population average. Figure 4a shows such an example. Pruning with a fixed
threshold can not remove such branches without removing desired branches as well. Instead,
parallel edges are introduced into the target tree prior to building the association graph.
Referring to the example in Figure 4b, a parallel edge ep is added to the tree if vertex v2 has
two out-edges, among which one is a terminal edge (e3). Additionally, the angle between e1

and e2 has to be close to 180°. This second criterion is judged by taking the ratio of distances,
and a parallel edge is added if |v3 − v1|/(|e1| + |e2|) ≥ 0.9 and |e1| + |e2| > 5 voxels or |v3 − v1|/(|
e1|+ |e2|) ≥ 0.7 and |e1| + |e2| ≤ 5 voxels. In a fist step parallel edges are introduced to bridge
individual suspected false branches. After that additional parallel edges are added in the case
if there is a sequence of potential false branches found. With that multiple false branches that
follow each other can be overcome.

Introducing parallel edges allows the matching algorithm to choose from two possibilities —
either use the original edges and ignore the parallel edge, or use the parallel edge and ignore
the original edges. Two parallel edges can not be used simultaneously in the labeled end result.
Again referring to Figure 4b, e1 and ep have a SIBLING relationship. At the same time e1 is a
parent of e4 and ep is a parent of e4 as well. To make a simultaneous labeling of e1, ep, and

e4 possible, all of the relationships e1 →
SIBLING

ep, e1 →
PARENT

e4, and ep →
SIBLING

e4 would

have to be contained in the population average. But this constellation can only occur in the
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presence of parallel edges, and parallel edges are not allowed in the population average. Hence
a simultaneous labeling of parallel edges is not possible.

D. Building the association graph

Vertices are added to the association graph by pairing segments from the population average
with potentially corresponding edges from the target tree. Edges are added to the association
graph if the corresponding edges in the target tree have the same inheritance relationship as
the corresponding segments in the population average, and if the topological distance is within
the limits given by the population average.

Every vertex and every edge in the association graph has a weight ωvertex = [0, 1] and ωedge =
[0, 1], respectively, associated with it.

Every association graph vertex weight ωvertex is based on the single-segment measures and is
computed by

ωvertex = exp ( − ℓ − μℓ

2σℓ
2 ) · exp ( − ϕSO

2σSO
2 ) (1)

with

ϕSO = cos−1 s→n ·μ→SO
∣ s→n ∣ · ∣ μ→SO ∣ (2)

Every association graph edge weight ωedge is based on the inter-segment measures and is
computed by

ωedge = exp ( − (ϕφ − μϕ)
2

2σϕ
2 ) · exp ( − ϕSR

2

2σSR
2 ) (3)

with

ϕφ = cos−1 s→n · s→m
∣ s→n ∣ · ∣ s→m ∣ (4)

and

ϕSR = cos−1 s→n ·μ→SR
∣ s→n ∣ · ∣ μ→SR ∣ (5)

Only vertices with ωvertex > 0.1 and edges with ωedge > 0.1 are added to the association graph.
This eliminates label assignments with low probability of being correct and reduces the size
of the association graph, which consequently reduces the computing time when searching for
the maximum clique.

E. Finding max-weighted clique

The maximum clique in the association graph is found with an algorithm based on the one used
for finding the maximum clique in the matching problem (described above). A simple extension
modifies the algorithm such that it incorporates the weights ω that were assigned to the vertices
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and edges of the association graph. The clique that maximizes the sum Ω = Σi ωvertexi
 + Σj

ωedgej
 is sought.

F. Assigning labels

The first step consists of pruning the target-tree from short branches. A fixed threshold value
of 5 mm is used to make sure that no essential branches are pruned away, yet branches that are
likely to be false are removed. This reduces the problem size and shortens the overall
computation time. Next, parallel edges are added to the target tree.

Some of the measurements contained in the population average depend on the absolute position
and orientation of the target tree. To make use of these measurements, the target tree first has
to undergo the same affine transformation that was applied to the trees used for building the
population average. For that reason the method initially labels only the trachea, left main
bronchus, and right main bronchus – using position and orientation-independent measures only.
After these three labels are assigned the tree is registered as described above, and the algorithm
proceeds with assigning labels to the remaining segments.

To reduce the required computing time, only a sub-tree is labeled during one labeling step. A
sequence of labeling steps is illustrated in Figure 5. Every labeling step starts from a segment
that already has its final label assigned to it (marked with an ‘s’ in Figure 5). Terminal segments
(marked with a ‘t’ in Figure 5) are used as guides only and do not receive their final label at
this point. The segments in between the start segment and the terminal segments receive their
final labels.

Applying this stepwise labeling results in a significant speedup of the labeling process. A
complete tree is labeled in a few seconds, whereas an attempt of labeling an entire tree in a
single step can take several hours. At the same time, the accuracy of the assigned labels is
preserved.

G. Discussion

Branching patterns vary between different subjects. For example trifurcations may appear as
real trifurcations in some subjects, but in other subjects they may appear as two bifurcations
that follow each other within a short distance. These variations are tolerated well by the
algorithm because the population average does not only represent the mean of the population,
but it also includes information about its variability. For example the population average lists
the topological distance between RB1 and RB2 as being between 1 and 2, which covers the
occurrence of a trifurcation as well as the various possible permutations of two bifurcations.

The presented algorithm also tolerates missing branches well. What happens in such a case is
that the total weight of the max-weighted clique of the association graph gets smaller. But the
one clique with the greatest weight does still represent the sought matching between population
average and target tree.

Figure 6 shows typical labeling results for three different subjects.

V. VALIDATION — BRANCHPOINT MATCHING

Scans from a total of 17 subjects, 10 healthy and 7 diseased, were available for validation. Each
subject was scanned twice, one scan at functional residual capacity (FRC, 55% lung volume),
and one scan at total lung capacity (TLC, 85% lung volume). Scanning was performed at regular
dose (120 kVp, 100 mAs), at a voxel size of 0.68 × 0.68 × 0.6mm3 and a volume size of 512
× 512 × 500–600 slices.
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A. Independent standard

In each volume the airway-tree was segmented and skeletonized by automated methods [10],
and the graph representation of the airway trees was then available to the matching process.

An interactive computer program was developed that allows human experts to perform tree
matching by hand. Each pair of FRC/TLC trees was matched independently by three different
human experts. Since for each tree pair the FRC and the TLC tree originated from the same
subject, it was possible to match branchpoints beyond the anatomically named points. A match
between two branchpoints was only taken as a reference if a majority of human observers (i.e.,
at least two out of three) agreed on it.

B. Methods

The automated matching program was run on all 17 tree pairs. The input trees were taken from
the segmentation and skeletonization program “as is”; no pre-processing (e.g., pruning) took
place. All 17 tree pairs were matched with the automated program using the same standard
parameters. No hand-adjusting of parameters was performed. For every tree pair the result of
the automated matching program was validated against the independent reference described
in the previous sub-section.

C. Results & discussion

Table I lists the validation results for the matching algorithm. A total of 92.9% of the verifiable
matches agreed with the independent standard. The numbers for correct and incorrect matches
are based on “verifiable” matches only because we can not make a validity statement about
the “computer matches not in reference”, i.e., matches in this group are not verifiable because
none of the involved branchpoints appears in the experts’ matches. The relatively high values
for “Reference matches not in computer matches” are caused by the type of optimization that
was chosen — a high specificity/low sensitivity is favored over a high sensitivity/low
specificity. Future work will aim at increasing sensitivity without sacrificing specificity. The
“Computer matches not in reference” are mainly peripheral matches that are difficult to match
by hand.

It is interesting to compare the 7.1% incorrect matches with the intra-observer disagreement.
The human experts disagreed with each other on an average of 7.5% of the branchpoint
correspondences. For some tree pairs the human expert disagreement was as high as 28.6%.
We are aware that the inter-observer disagreement and the error rate of the automated algorithm
are not directly comparable. But the inter-observer disagreement gives some indication what
the human error might be, which in turn is comparable to the error rate of the automated
methods.

VI. VALIDATION — ANATOMICAL LABELING

Validation of the branchpoint labeling algorithm was performed with in vivo data sets. The
accuracy of the algorithm was evaluated by comparing the automated results against an
independent standard provided by a human expert. Validation of the anatomical labeling was
performed based on the same data sets that were used for the validation of the branchpoint
matching algorithm.

A. Independent standard

An application was written that allowed human experts to perform the tree labeling by hand.
Using this tool, all 17 TLC (total lung capacity) trees were hand-labeled by a human expert.
These hand-labeled trees were then used as the gold standard for the validation of the automated
method.
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B. Methods

The leave-one-out (jackknife) method was used for testing the automated labeling. All trees
but one were used for building the population average, and the automated algorithm was then
run on the one tree left out. This procedure was repeated for all 17 TLC trees.

C. Results & discussion

Table II lists the validation results for the labeling algorithm. 97.1% of the assigned segment
labels are correct, while 2.9% of the assigned labels could definitively be identified as wrong.
The wrongly labeled segments are almost always among the highest generation segments that
receive anatomical labels (e.g., LB8, LB9, etc.). The reason for that is that these segments are
the most difficult ones to label because there are no further named segments below them that
help guiding the labeling process. The “Computer label not found in the reference set” are
difficult to classify since some of them may be correct (but they were not labeled by the human
expert), while others may be wrong. The “Reference label not found among computer labels”
reflects branches that were labeled by the human expert but not by the computer. There are
two possible reasons why this may happen. On one hand our automated labeling algorithm
only assigned a label if the probability of it being correct is relatively high. We chose this
strategy because we feel that a high specificity/low sensitivity is preferable over a low
specificity/high sensitivity. Another reason for segments appearing in the last column of Table
II is that the human expert assigned some labels that do not occur in the majority of subjects
across the population. For example “Sub-RB6” is a segment that only about 15% of the
population have. Our algorithm does not currently label these “rare” segments.

It is notable that the automated labeling identified several human errors. After reviewing the
cases of disagreement between the independent standard and the automated result, five cases
could be identified where a label was misplaced by the human expert.

VII. CONCLUSION

Two methods have been presented, one for the matching of corresponding branchpoints and
one for the anatomical labeling of human airway trees.

The matching of branchpoints works on in-vivo trees from two different intra-subject scans
and is performed without any human interaction. The algorithm proved to be robust against
false branches. Validation against a standard built from independent hand-matches done by
human experts (17 in-vivo tree pairs used) showed a 92.9% agreement between computer
matches and expert matches.

Anatomical labeling of human airway trees is capable of assigning all 32 anatomical segment
labels commonly used and tolerates false branches well. The method can by applied to trees
from in-vivo CT scans without the need for any manual interaction or pre-processing.
Validation showed that a total of 97.1% of the automatically assigned segment labels agreed
with the labels assigned by an independent human expert.

Introducing a workable airway nomenclature for the automatic labelling of the extracted human
airway tree is a fundamental step in the development of uniform descriptors for complex, 3D-
image datasets. This allows for the intra-and inter-study comparison of image-derived airway
measurements, important for understanding the human airway in health and disease.

The anatomical labeling is now routinely used in a number of physiologic studies at the
University of Iowa Hospitals and Clinics. In one current project the airway geometry (segment
lengths, diameters, branching angles, etc.) is studied and compared between different stages
of the breathing lung (lung volumes). In this study anatomical labels are used for matching
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corresponding lung parts. Another example is a study where the airway geometry, and in
particular the airway wall-thickness is measured and compared between normal subjects and
patients suffering from asthma. Certain airway paths throughout the lung are selected for
measurements and comparison. These paths are identified by their anatomical labels.
Branchpoint matching is currently used as input in an ongoing research project at the
Biomedical Engineering Department of the University of Iowa where the gray level images of
a breathing lung are registered against each other [16]. In this project the matched branchpoints
serve as landmark points.
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Fig. 1.

Skeletonized tree represented as a directed acyclic graph (DAG).
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Fig. 2.

Airway tree with assigned labels. Labels refer to segments, but are assigned to terminating
branchpoint of respective segment. Drawing based on [1].
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Fig. 3.

Vector notation used in population average.

Tschirren et al. Page 15

IEEE Trans Med Imaging. Author manuscript; available in PMC 2007 November 14.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Fig. 4.

Long false branches. a) “False” branches may be too long for fixed-length thresholding. b)
Introducing parallel edges to bridge potential false branches.
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Fig. 5.

Stepwise labeling. Reducing computing time by splitting the task into sub-problems. Segments
labeled during a step are marked gray. The labels ‘s’ and ‘t’ mark start- and terminal-segments,
respectively.
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Fig. 6.

Examples of the fully automated labeling result on three different subjects (partial view of
trees, showing carina and right upper lobe). Note that spurious branches do not negatively
influence the labeling result. Also note the varying branching patterns for RB1, RB2, and RB3
among the different subjects. The labeling algorithm tolerates all possible variations very well.

Tschirren et al. Page 18

IEEE Trans Med Imaging. Author manuscript; available in PMC 2007 November 14.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t

Tschirren et al. Page 19

TABLE I

ACCURACY ASSESSMENT OF BRANCHPOINT MATCHING. THE 7.1% INCORRECT MATCHES
COMPARE WELL TO THE AVERAGE OF 7.5% INTER-OBSERVER DISAGREEMENT.

10 subjects in vivo normal 7 subjects in vivo diseased Total

Verifiable computer matches: 124 130 254
 correct 113 (91.1%) 123 (94.6%) 236 (92.9%)
 incorrect 11 (8.9%) 7 (5.4%) 18 (7.1%)
Computer matches not in reference 79 40 119
Reference matches not in computer matches 80 88 168
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TABLE II

ACCURACY ASSESSMENT OF ANATOMICAL LABELING.

Segment Labels

Subject Correct label Incorrect label Computer label not
found in the reference

set

Reference label not
found among

computer labels

Normal 1 31 1 0 6
Normal 2 28 0 4 7
Normal 3 32 0 0 7
Normal 4 29 0 2 10
Normal 5 18 2 7 11
Normal 6 28 0 5 5
Normal 7 30 1 1 10
Normal 8 32 0 0 9
Normal 9 25 1 7 4
Normal 10 22 2 8 8
Diseased 1 23 2 2 6
Diseased 2 27 1 1 7
Diseased 3 27 0 0 10
Diseased 4 33 0 0 5
Diseased 5 24 2 1 10
Diseased 6 24 2 4 9
Diseased 7 28 0 2 7

Total 461 (97.1%) 14 (2.9%) 44 131
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