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This paper develops the method of matching as an econometric evaluation estimator. A
rigorous distribution theory for kernel-based matching is presented. The method of matching is
extended to more general conditions than the ones assumed in the statistical literature on the topic.
We focus on the method of propensity score matching and show that it is not necessarily better,
in the sense of reducing the variance of the resulting estimator, to use the propensity score method
even if propensity score is known. We extend the statistical literature on the propensity score by
considering the case when it is estimated both parametrically and nonparametrically. We examine
the benefits of separability and exclusion restrictions in improving the efficiency of the estimator.
Our methods also apply to the econometric selection bias estimator.

1. INTRODUCTION

Matching is a widely-used method of evaluation. It is based on the intuitively attractive idea
of contrasting the outcomes of programme participants (denoted Yi) with the outcomes of
"comparable" nonparticipants (denoted yo). Differences in the outcomes between the two
groups are attributed to the programme.

Let /o and /i denote the set of indices for nonparticipants and participants, respec-
tively. The following framework describes conventional matching methods as well as the
smoothed versions of these methods analysed in this paper. To estimate a treatment effect
for each treated person ie/i, outcome F,, is compared to an average of the outcomes Yoj
for matched persons jelo in the untreated sample. Matches are constructed on the basis
of observed characteristics X in R"". Typically, when the observed characteristics of an
untreated person are closer to those of the treated person ieli, using a specific distance
measure, the untreated person gets a higher weight in constructing the match. The estima-
ted gain for each person i in the treated sample is

(1)

where lVNo,N,(i,j) is usually a positive valued weight function, defined so that for each
' ^ ^ 1 ' Z/e/ ^No.NXiJ) = ̂ ' and No and Â i are the number of individuals in /o and / i ,
respectively. The choice of a weighting function reflects the choice of a particular distance
measure used in the matching method, and the weights are based on distances in the X
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space. For example, for each ieli the nearest-neighhour method selects one individual
jelo as the match whose Xj is the "closest" value to Z,, in some metric. The kernel methods
developed in this paper construct matches using all individuals in the comparison sample
and downweighting "distant" observations.

The widely-used evaluation parameter on which we focus in this paper is the mean
effect of treatment on the treated for persons with characteristics X.

where Z)= 1 denotes programme participation. Heckman (1997) and Heckman and Smith
(1998) discuss conditions under which this parameter answers economically interesting
questions. For a particular domain ^ for X, this parameter is estimated by

Lei, ^^o-NMiYu-Y^j^,^ W^o.NXi,J)Yoj], (2)

where different values of Wffo.NXi) may be used to select different domains ^ or to account
for heteroskedasticity in the treated sample. Different matching methods are based on
different weighting functions {w^„,,^Xi)} and {fVi^.^NXiJ}}•

The method of matching is intuitively appealing and is often used hy applied statistici-
ans, but not by economists. This is so for four reasons. First, it is difficult to determine
if a particular comparison group is truly comparable to participants (i.e. would have
experienced the same outcomes as participants had they participated in the programme).
An ideal social experiment creates a valid comparison group. But matching on the
measured characteristics available in a typical nonexperimental study is not guaranteed
to produce such a comparison group. The published literature presents conditional inde-
pendence assumptions under which the matched group is comparable, but these are far
stronger than the mean-independence conditions typically invoked by economists. More-
over, the assumptions are inconsistent with many economic models of programme partici-
pation in which agents select into the programme on the basis of unmeasured components
of outcomes unobserved by the econometrician. Even if conditional independence is
achieved for one set of X variables, it is not guaranteed to be achieved for other sets of
X variables including those that include the original variables as subsets. Second, if a valid
comparison group can be found, the distribution theory for the matching estimator remains
to be established for continuously distributed match variables Z.'

Third, most of the current econometric literature is based on separability between
observables and unobservables and on exclusion restrictions that isolate different variables
that determine outcomes and programme participation. Separability permits the definition
of parameters that do not depend on unobservables. Exclusion restrictions arise naturally
in economic models, especially in dynamic models where the date of enrollment into the
programme differs from the dates when consequences of the programme are measured.
The available literature on matching in statistics does not present a framework that
incorporates either type of a priori restriction.

Fourth, matching is a data-hungry method. With a large number of conditioning
variables, it is easy to have many cells without matches. This makes the method impractical
or dependent on the use of arbitrary sorting schemes to select hierarchies of matching
variables. (See, e.g. Westat (1980,1982,1984).) In an important paper, Rosenbaum and
Rubin (1983) partially solve this problem. They establish that if matching on X is valid,
so is matching solely on the probability of selection into the prograrrune PT(D=\\X)-

1. When the match variables are discrete, the matching estimator for each cell is a mean and consistency
and asymptotic normality of the matching estimator are easily established.
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P{X). Thus a multidimensional matching problem can be recast as a one-dimensional
problem and a practical solution to the curse of dimensionality for matching is possible.^

Several limitations hamper the practical application of their theoretical result. Their
theorem assumes that the probability of selection is known and is not estimated. It is also
based on strong conditional independence assumptions that are difficult to verify in any
application and are unconventional in econometrics. They produce no distribution theory
for their estimator.

In this paper we first develop an econometric framework for matching that allows us
to incorporate additive separability and exclusion restrictions. We then provide a sampling
theory for matching from a nonparametric vantage point. Our distribution theory is
derived under weaker conditions than the ones currently maintained in the statistical
literature on matching. We show that the fundamental identification condition of the
matching method for estimating (P-1) is

whenever both sides of this expression are well defined. In order for both sides to be well
defined simultaneously for all X it is usually assumed that O<P(X)<1 so that
Supp iX\D= 1) = Supp {X\D = G). As Heckman, Ichimura, Smith, Todd (1998), Heckman,
Ichimura, Smith and Todd (19966) and Heckman, Ichimura and Todd (1997) point out,
this condition is not appropriate for important applications of the method. In order to
meaningfully implement matching it is necessary to condition on the support common to
both participant and comparison groups S, where

S=Supp {X\D= 1) n Supp

and to estimate the region of common support. Equality of the supports need not hold
a priori although most formal discussions of matching assumes that it does. Heckman,
Ichimura, Smith and Todd (1998) and Heckman, Ichimura and Todd (1997) report the
empirical relevance of this point for evaluating job training programmes. Invoking
assumptions that justify the application of nonparametric kernel regression methods to
estimate programme outcome equations, maintaining weaker mean independence
assumptions compared to the conditional independence assumptions used in the literature,
and conditioning on S, we produce an asymptotic distribution theory for matching estima-
tors when regressors are either continuous, discrete or both. This theory is general enough
to make the Rosenbaum-Rubin theorem operational in the commonly-encountered case
where P^X) is estimated either parametrically or nonparametrically.

With a rigorous distribution theory in hand, we address a variety of important ques-
tions that arise in applying the method of matching: (1) We ask, if one knew the propensity
score, P{X), would one want to use it instead of matching on XI (2) What are the effects
on asymptotic bias and variance if we use an estimated value of P? We address this
question both for the case of parametric and nonparametric PiX). Finally, we ask (3)
what are the benefits, if any, of econometric separability and exclusion restrictions on the
bias and variance of matching estimators?

The structure of this paper is as follows. Section 2 states the evaluation problem and
the parameters identified by the analysis of this paper. Section 3 discusses how matching
solves the evaluation problem. We discuss the propensity score methodology of Rosen-
baum and Rubin (1983). We emphasize the importance ofthe common support condition

2. They term P(X) the propensity score. For the relationship between propensity score methods and
selection models, see Heckman and Robb (1986) or Heckman, Ichimura, Smith and Todd (1998).
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assumed in the literature and develop an approach that does not require it. Section 4
contrasts the assumptions used in matching with the separability assumptions and exclu-
sion restrictions conventionally used in econometrics. A major goal of this paper is to
unify the matching literature with the econometrics literature. Section 5 investigates a
central issue in the use of propensity scores. Even if the propensity score is known, is it
better, in terms of reducing the variance of the resulting matching estimator, to condition
on X or P(X)? There is no unambiguous answer to this question. Section 6 presents a
basic theorem that provides the distribution theory for kernel matching estimators based
on estimated propensity scores. In Section 7, these results are then applied to investigate
the three stated questions. Section 8 summarizes the paper.

2. THE EVALUATION PROBLEM AND THE PARAMETERS OF INTEREST

Each person can be in one of two possible states, 0 and 1, with associated outcomes
(Jo, Yt), corresponding to receiving no treatment or treatment respectively. For example,
"treatment" may represent participation in the social programme, such as the job training
programme evaluated in our companion paper where we apply the methods developed in
this paper. (Heckman, Ichimura and Todd (1997).) Let D= 1 if a person is treated; £> =
0 otherwise. The gain from treatment is A= 7 , - yo. We do not know A for anyone
because we observe only Y=DYi + {l-D)Yo, i.e. either yo or y,.

This fundamental missing data problem cannot be solved at the level of any individual.
Therefore, the evaluation problem is typically reformulated at the population level. Focus-
ing on mean impacts for persons with characteristics X, a commonly-used parameter of
interest for evaluating the mean impact of participation in social programmes is (P-1).
It is the average gross gain from participation in the programme for participants with
characteristics X. If the full social cost per participant is subtracted from (P-1) and the
no treatment outcome for all persons closely approximates the no programme outcome,
then the net gain informs us of whether the programme raises total social output compared
to the no programme state for the participants with characteristics X.^

The mean E(Yt\D=l,X) can be identified from data on programme participants.
Assumptions must be invoked to identify the counterfactual mean E(Yo\D=l,X), the
no-treatment outcome of programme participants. In the absence of data from an ideal
social experiment, the outcome of self-selected nonparticipants E(Yo\D = O,X) is often
used to approximate E(Yo\D=l,X). The selection bias that arises from making this
approximation is

Matching on X, or regression adjustment of yo using X, is based on the assumption that
B(X) = O so conditioning on X eliminates the bias.

Economists have exploited the idea of conditioning on observables using parametric or
nonparametric regression analysis (Barnow, Cain and Goldberger (1980), Barros (1986),
Heckman and Robb (1985, 1986)). Statisticians more often use matching methods, pairing
treated persons with untreated persons of the same X characteristics (Cochrane and Rubin
(1973)).

The literature on programme evaluation gives two distinct responses to the problem
of estimating (P-1) with continuous conditioning variables. The first borrows from the

3. See Heckman (1997) or Heckman and Smith (1998) for a precise statement of when this parameter
answers an mteresting economic evaluation question.
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kernel regression literature. It uses a smoothing procedure that borrows strength from
adjacent values of a particular value of A'=x and produces uniformly consistent estimators
of (P-1) at all points of the support for the distributions oi X given D=\ or D = 0. (See
Heckman, Ichimura, Smith and Todd (1996a) or Heckman, Ichimura and Todd (1997).)
Parametric assumptions about E(Yo\D=l,X) play the same role as smoothing
assumptions, and in addition allow analysts to extrapolate out of the sample for X. Unless
the class of functions to which (P-1) may belong is restricted to be smaller than the finite-
order continuously-diiferentiable class of functions, the convergence rate of an estimator
of (P-1) is governed by the number of continuous variables included in X (Stone (1982)).

The second response to the problem of constructing counterfactuals abandons estima-
tion of (P-1) at any point of A' and instead estimates an average of (P-1) over an interval
of X values. Commonly-used intervals include Supp (X| i )=l) , or subintervals of the
support corresponding to different groups of interest. The advantage of this approach is
that the averaged parameter can be estimated with rate A'̂ "'''̂ , where N is sample size,
regardless of the number of continuous variables in X when the underlying functions are
smooth enough. Averaging the estimators over intervals ofX produces a consistent estima-
tor of

M(5) = E(y,-yo | i )=l ,A'e5 ' ) , (P-2)

with a well-defined iV~'̂ ^ distribution theory where S is a subset of Supp {X\D=l). There
is considerable interest in estimating impacts for groups so (P-2) is the parameter of
interest in conducting an evaluation. In practice both pointwise and setwise parameters
may be of interest. Historically, economists have focused on estimating (P-1) and statistici-
ans have focused on estimating (P-2), usually defined over broad intervals of X values,
including Supp (Jir|jD= 1). In this paper, we invoke conditions sufficiently strong to consist-
ently estimate both (P-1) and (P-2).

3. HOW MATCHING SOLVES THE EVALUATION PROBLEM

Using the notation of Dawid (1979) let

denote the statistical independence of (yo, Yi) and D conditional on X. An equivalent
formulation of this condition is

This is a non-causality condition that excludes the dependence between potential
outcomes and participation that is central to econometric models of self selection. (See
Heckman and Honore (1990).) Rosenbaum and Rubin (1983), henceforth denoted RR,
establish that, when (A-1) and

0<P{X)<\, (A-2)

are satisfied, (yo, Yi)]LD\P{X), where P(X) = PT (£>= 1 IA'). Conditioning on PiX) bal-
ances the distribution of yo and Yi with respect to D. The requirement (A-2) guarantees
that matches can be made for all values of AT. RR called condition (A-1) an "ignorability"
condition for D, and they call (A-1) and (A-2) together a "strong ignorability" condition.

When the strong ignorability condition holds, one can generate marginal distributions
of the counterfactuals

Foiyo\D=l,X) and F,(y,|£> = O,Ar),
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but one cannot estimate the joint distribution of (yo, Yi), Fiyo,yi \D, X), without making
further assumptions about the structure of outcome and programme participation
equations.'*

If PiX) = 0 or i'(A') = 1 for some values of Af, then one cannot use matching condi-
tional on those X values to estimate a treatment effect. Persons with such X characteristics
either always receive treatment or never receive treatment, so matches from both D = 1
and D = 0 distributions cannot be performed. Ironically, missing data give rise to the
problem of causal inference, but missing data, i.e. the unobservables producing variation
in D conditional on X, are also required to solve the problem of causal inference. The
model predicting programme participation should not be too good so that PiX) = 1 or 0
for any X. Randomness, as embodied in condition (A-2), guarantees that persons with
the same characteristics can be observed in both states. This condition says that for any
measurable set A, Pr iXeA |£) = 1) > 0 if and only if Pr iXeA |£) = 0) >0, so the comparison
of conditional means is well defined.' A major finding in Heckman, Ichimura, Smith, Todd
(1996a, b, 1998) is that in their sample these conditions are not satisfied, so matching is
only justified over the subset Supp (Af |Z)= 1) n Supp iX\D = O).

Note that under assumption (A-1)

so E(yo|Z>=l,Are5) can be recovered from E(yo|Z) = 0,Ar) by integrating over AT using
the distribution ofX given D=l, restricted to S. Note that, in principle, both E(yo|Af, D =
0) and the distribution of A' given D= 1 can be recovered from random samples of partici-
pants and nonparticipants.

It is important to recognize that unless the expectations are taken on the common
support of 5, the second equality does not necessarily follow. While EiYo\D = O,X) is
always measurable with respect to the distribution of AT given D = 0, (/i(Ar|Z) = O)), it may
not be measurable with respect to the distribution of AT given Z)= 1, (//(Af |£) = 1)). Invoking
assumption (A-2) or conditioning on the common support S solves the problem because
niX\D = O) and //(Af|£)=l), restricted to S, are mutually absolutely continuous with
respect to each other. In general, assumption (A-2) may not be appropriate in many
empirical applications. (See Heckman, Ichimura, and Todd (1997) or Heckman, Ichimura,
Smith and Todd (1996a, b, 1998).)

The sample counterpart to the population requirement that estimation should be over
a common support arises when the set S is not known. In this case, we need to estimate
S. Since the estimated set, S, and S inevitably differ, we need to make sure that asymptoti-
cally the points at which we evaluate the conditional mean estimator ofEiYo\D = 0,X)
are in S. We use the "trimming" method developed in a companion paper (Heckman,
Ichimura, Smith, Todd (1996a)) to deal with the problem of determining the points in S.
Instead of imposing (A-2), we investigate regions S, where we can reasonably expect to
learn about E ( y i - Yo\D=l, S).

Conditions (A-1) and (A-2) which are commonly invoked to justify matching, are
stronger than what is required to recover E(yi - yo|£)= 1, Af) which is the parameter of

4. Heckman, Smith and Clements (1997) and Heckman and Smith (1998) analyse a variety of such
assumptions.

5. Thus, the implications of 0<Pr (D= l\X)<\ is that conditional measures of A" given Z) = O and that
given D=\ are absolutely continuous with respect to each other. These dominating measure conditions are
standard in the matching literature.
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interest in this paper. We can get by with a weaker condition since our objective is

construction of the counterfactual E(yo|Af, D = 1)

(A-3)

which implies that Pr(yo</|X>=l,A') = Pr(yo</ |D = 0,Af) for Af65.
In this case, the distribution of yo given X for participants can be identified using

data only on nonparticipants provided that AfeS. From these distributions, one can recover
the required counterfactual mean E(yo|D= 1,A') for AfeS. Note that condition (A-3)
does not rule out the dependence of D and Y] or on A = yi - yo given X. *

For identification of the mean treatment impact parameter (P-1), an even weaker

mean independence condition sufiices

E(yo|iD=l,Af) = E(yo|£> = 0,Af) for AfeS. (A-1')

Under this assumption, we can identify EiYo\D= 1, X) for XeS, the region of common

support.' Mean independence conditions are routinely invoked in the econometrics

literature.*
Under conditions (A-1) and (A-2), conceptually different parameters such as the

mean effect of treatment on the treated, the mean effect of treatment on the untreated, or
the mean effect of randomly assigning persons to treatment, all conditional on X, are the
same. Under assumptions (A-3) or (A-1'), they are distinct.'

Under these weaker conditions, we demonstrate below that it is not necessary to make
assumptions about specific functional forms of outcome equations or distributions of
unobservables that have made the empirical selection bias literature so controversial. What
is controversial about these conditions is the assumption that the conditioning variables
available to the analyst are sufficiently rich to justify application of matching. To justify
the assumption, analysts implicitly make conjectures about what information goes into
the decision sets of agents, and how unobserved (by the econometrician) relevant informa-
tion is related to observables. (A-1) rules out dependence of D on yo and Yx and so is
inconsistent with the Roy model of self selection. See Heckman (1997) or Heckman and
Smith (1998) for further discussion.

4. SEPARABILITY AND EXCLUSION RESTRICTIONS

In many applications in economics, it is instructive to partition X into two not-necessarily
mutually exclusive sets of variables, (T, Z), where the T variables determine outcomes

o, (3a)

g i ) u (3b)

and the Z variables determine programme participation

Pr(Z)=l|Af) = Pr (£)= l |Z) = / '(Z). (4)

6. By symmetric reasoning, if we postulate the condition YxlD\X and (A-2), then Vr(D=\\Y\,X) =
Pr {D= 1 \X), so selection could occur on Jo or A, and we can recover VT(Yi<t\D=Q,X). Since ?r{Ya<t\D =
0,X) can be consistently estimated, we can recover E{Y\- Ya\D=Q,X).

7. We can further identify E ( y , - yol^=0) if we assume E(r , |^=l .^)=E(Ki | / )=O,;f ) for A" in S.
8. See, for example, Barnow, Cain and Goldberger (1980) or Heckman and Robb (1985, 1986).
9. See Heckman (1990, 1997) for a discussion of the three parameters. See also Heckman and Smith

(1998).
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Thus in a panel data setting y, and yo may be outcomes measured in periods after
programme participation decisions are made, so that Z and T may contain distinct vari-
ables, although they may have some variables in common. Different variables may deter-
mine participation and outcomes, as in the labour supply and wage model of Heckman
(1974).

Additively-separable models are widely used in econometric research. A major advan-
tage of such models is that any bias arising from observing yo or y, by conditioning on
D is confined to the "error term" provided that one also conditions on T, e.g. EiYo\D =
\,X)=goiT) + EiUo\D=\,Z) and E(y, | i)= 1,Af)=g,(r)-t-E(:/,|£>= 1, Z). Another
major advantage of such models is that they permit an operational definition ofthe effect
of a change in T holding U constant. Such effects are derived from the ̂ o and ^i functions.

The Rosenbaum-Rubin Theorem (1983) does not inform us about how to exploit
additive separability or exclusion restrictions. The evidence reported in Heckman,
Ichimura, Smith and Todd (1996a), reveals that the no-training earnings of persons who
chose to participate in a training programme, yo, can be represented in the following way

where Z and T contain some distinct regressors. This representation reduces the dimension
of the matching or nonparametric regression if the dimension of Z is two or larger.
Currently-available matching methods do not provide a way to exploit such information
about the additive separability of the model or to exploit the information that Z and T
do not share all of their elements in common.

This paper extends the insights of Rosenbaum and Rubin (1983) to the widely-used
model of programme participation and outcomes given by equations (3a), (3b) and (4).
Thus, instead of (A-1) or (A-3), we consider the case where

UoiLD\X. (A-4a)

Invoking the exclusion restrictions PiX) = PiZ) and using an argument analogous to
Rosenbaum and Rubin (1983), we obtain

E{£)| C/o,/'(Z)} =E{E(Z)| C/o, Af) I

= E{P(Z)|t/

so that

UolD\PiZ). (A-4b)

Under condition (A-4a) it is not necessarily true that (A-1) or (A-3) are valid but it is
obviously true that

In order to identify the mean treatment effect on the treated, it is enough to assume that

E(t/o|Z)=l,P(Z)) = E(C/o|i) = 0,P(Z)), (A-4b')

instead of (A-4a) or (A-4b).
Observe that (A-4a), (A-4b), and (A-4b') do not imply that E(f/o|/'(Z)) = 0 or that

E(f/i li'(Z)) = 0. They only imply that the distributions ofthe unobservables are the same
in populations of Z)=l and Z) = 0, once one conditions on PiZ). Yo and y, must be
adjusted to eliminate the effects of T on outcomes. Only the residuals can be used to
exploit the RR conditions. Thus P(Z) is not, in general, a valid instrumental variable.



HECKMAN ET AL. MATCHING AS AN ESTIMATOR 269

In order to place these results in the context of classical econometric selection models,
consider the following index model setup

£>=1

= 0 otherwise.

If Z and V are independent, then P(Z) = F^(v/(Z)), where Fv( • ) is the distribution
function of v. In this case identification condition (A-4b') implies

or when F^ is strictly increasing,
(* oo C >ii(Z)

LL
= \ I Uo

J-oo •'v(Z)

If, in addition, y/iZ) is independent of (f/o, v), and E(f/o) = 0, condition (*) implies

Uo, v)dvdUo=0,
(•oo I'V

for any v(Z), which in turn implies EiUo\v = s) = O for any 5 when v^(Z) traces out the
entire real line. Hence under these conditions our identification condition implies there is
no selection on unobservables as defined by Heckman and Robb (1985, 1986). However,
ilfiZ) may not be statistically independent of (f/o, v). Thus under the conditions assumed
in the conventional selection model, the identification condition (A-4b') may or may not
imply selection on unobservables depending on whether y/iZ) is independent of (Co, v)
or not.

5. ESTIMATING THE MEAN EFFECT OF TREATMENT: SHOULD ONE
USE THE PROPENSITY SCORE OR NOT?

Under (A-l') with S=SuppiX\D = \) and random sampling across individuals, if one
knew EiYo\D = 0,X=x), a consistent estimator of (P-2) is

where /i is the set of / indices corresponding to observations for which D, = 1. If we assume

E(yol^=l,i'(A')) = E(yo|Z> = 0,P(^))forZ6Supp(/ '(^)|Z)=l), (A-l")

which is an implication of (A-l), and E(rol^ = O, PiX)=p) is known, the estimator

is consistent for E(A|D= 1).
We compare the efficiency of the two estimators, Ap and Ax. We show that neither

is necessarily more efficient than the other. Neither estimator is feasible because both
assume the conditional mean function and PiX) are known whereas in practice they need
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to be estimated. However, the analysis of this case is of interest because the basic intuition
from the simple theorem established below continues to hold when the conditional mean
function and P{X) are estimated.

Theorem 1. Assume:

(i) (A-l') and (A-l") hotdfor 5=Supp {X\D= 1);
(ii) {^li,-^1 }/6/, cire independent and identicatty distributed;

and

(iii) 0<E(F?) E(y?)<oo.

Then Kx and Ap are both consistent estimators of (P-2) with asymptotic distributions
that are normat with mean 0 and asymptotic variances Vx and Vp, respectively, where

(r , |/)= 1, ^ ) |Z)= 1]-H Var [E(y, - ro|/)= 1, A')|Z)= 1],

and

|Z)= 1,/>(X))|£>= 1]-^ Var [E(r, - ro|/)= 1, P(Z))|Z)= 1].

The theorem directly follows from the central limit theorem for iid sampling with
finite second moment and for the sake of brevity its proof is deleted.

Observe that

E[Var (F, |£)= 1,Z)|D= l]^E[Var ( r , |/)= 1, i>(Z))|Z)= 1],

because X is in general a better predictor than P{X) but

Var [E(y, - Y^\D= \,X)\D= 1]^ Var [El(y, - Yo) \D^\, P{X)) \D= 1],

because vector X provides a finer conditioning variable than P{X). In general, there are
both costs and benefits of conditioning on a random vector X rather than P{X). Using
this observation, we can construct examples both where F^g Vp and where K -̂̂  Vp.

Consider first the special case where the treatment effect is constant, that is
E{Yi-Yo\D=\,X) is constant. An iterated expectation argument implies that
E(y| - yo|Z)= 1, P{X)) is also constant. Thus, the first inequality, F^-g Vp holds in this
case. On the other hand, if Yx = m{P{X)) + U for some measurable function m{ ) and £/
and X are independent, then

which is non-negative because vector X provides a finer conditioning variable than P{X).
So in this case Vx^Vp.

When the treatment effect is constant, as in the conventional econometric evaluation
models, there is only an advantage to conditioning on X rather than on P{X) and there
is no cost.'" When the outcome 7, depends on X only through P(X), there is no advantage
to conditioning on X over conditioning on P(X).

Thus far we have assumed that P(X) is known. In the next section, we investigate
the more realistic situation where it is necessary to estimate both P{X) and the conditional

10. Heckman (1992), Heckman and Smith (1998) and Heckman, Smith and Clements (1997) discuss the
central role ofthe homogeneous response assumption in conventional econometric models of program evaluation.



HECKMAN ET AL. MATCHING AS AN ESTIMATOR 271

means. In this more realistic case, the trade-off between the two terms in Vx and Vp
persists."

When we need to estimate P{X) or E(yo| Z) = 0, X), the dimensionality of the ̂  is a
major drawback to the practical application of the matching method or to the use of
conventional nonparametric regression. Both are data-hungry statistical procedures. For
high dimensional X variables, neither method is feasible in samples of the size typically
available to social scientists. Sample sizes per cell become small for matching methods
with discrete A"s. Rates of convergence slow down in high-dimensional nonparametric
methods. In a parametric regression setting, one may evade this problem by assuming
functional forms for E(t/o|A') (see e.g. Barnow, Cain and Goldberger (1980) and the
discussion in Heckman and Robb (1985, 1986)), but this approach discards a major advan-
tage of the matching method because it forces the investigator to make arbitrary
assumptions about functional forms of estimating equations.

Conditioning on the propensity score avoids the dimensionality problem by estimating
the mean function conditional on a one-dimensional propensity score P{X). However, in
practice one must estimate the propensity score. If it is estimated nonparametrically, we
again encounter the curse of dimensionality. The asymptotic distribution theorem below
shows that the bias and the asymptotic variance of the estimator of the propensity score
affects the asymptotic distribution of the averaged matching estimator more the larger the
effect of a change in the propensity score on the conditional means of outcomes.

6. ASYMPTOTIC DISTRIBUTION THEORY FOR KERNEL-BASED
MATCHING ESTIMATORS

We present an asymptotic theory for our estimator of treatment effect (P-2) using either
identifying assumption (A-l') or (A-4b'). The proof justifies the use of estimated P values
under general conditions about the distribution of X.

We develop a general asymptotic distribution theory for kemel-regression-based and
local-polynomial-regression-based matching estimators of (P-2). Let Tand Z be not neces-
sarily mutually exclusive subvectors of ̂ , as before. When a function depends on a random
variable, we use corresponding lower case letters to denote its argument, for example,
g(,t,p) = E{Yo\D=\, T=t,P{Z)=p) and P(z) = Pr (D= 1 |Z=z). Although not explicit
in the notation, it is important to remember that g{t, p) refers to the conditional expectation
conditional on Z)= 1 as well as T=t and P(Z)=p. We consider estimators of g(r, i'(z))
where P{z) must be estimated. Thus we consider an estimator g^t, P{z)), where P{z) is an
estimator of Piz). The general class of estimators of (P-2) that we analyse are of the form

^ NT'L.,[Yu-giTi,PiZd)]IiXieS)
^•^'' ( 6 )

where I{A) = l if A holds and =0 otherwise and S is an estimator of S, the region of
overlapping support, where S = Supp {X\D=\}r\Supp {X\D = O}. ^

To establish the properties of matching estimators of the form K based on different
estimators of P(z) and g{t, Piz)), we use a class of estimators which we call asymptotically

11. If we knew E( y, | Z) = 1, P(X )=p)as well, the estimator

would be more efficient than Ap. In practical applications, we do not know either E(Yi\D=\,P{x)=p) or
E{Yo\D = 0, P(X)=p) so this point is only a theoretical curiosum and is not investigated further.
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linear estimators with trimming. We analyse their properties by proving a series of lemmas
and corollaries leading up to Theorem 2. With regard to the estimators P(z) and git,p),
we only assume that they can he written as an average of some function of the data plus
residual terms with appropriate convergence properties that are specified below. We start
by defining the class of asymptotically linear estimators with trimming.

Definition L An estimator Oix) of Oix) is an asymptotically linear estimator with
trimming IixeS) if and only if there is a function y/„£"¥„, defined over some subset of a
finite-dimensional Euclidean space, and stochastic terms Six) and Rix) such that for
sample size n:

(i) [9ix)-9ix)]IixeS) = n-' Yl^^ ^|/„iXi, Yr,x) + Six
(ii) E{yf„iXl,Yr,X)\X=x} = O•,
(iii) p\im„^^n-'/^X"=, KX,) = b<oo;

An estimator ^ of )3 is called asymptotically linear if

holds.'^ Definition 1 is analogous to the conventional definition, hut extends it in five ways
to accommodate nonparametric estimators. First, since the parameter Oix) that we esti-
mate is a function evaluated at a point, we need a notation to indicate the point x at
which we estimate it. Conditions (i)-(iv) are expressed in terms of functions of x. Second,
for nonparametric estimation, asymptotic linearity only holds over the support of X—the
region where the density is hounded away from zero. To define the appropriate conditions
for this restricted region^ we introduce a trimming function IixeS) that selects ohserva-
tions only if they lie in S and discards them otherwise.

Third, nonparametric estimators depend on smoothing parameters and usually have
bias functions that converge to zero for particular sequences of smoothing parameters.
We introduce a subscript n to the ^-function and consider it to he an element of a class
of functions ^n, instead of a fixed function, in order to accommodate smoothing param-
eters. For example, in the context of kernel estimators, if we consider a smoothing param-
eter of the form ai^x) • hn, different choices of /»„ generate an entire class of functions H'n
indexed hy a function c( •) for any given kernel." We refer to the function Vn as a score
function. The stochastic tenn^^(j:) is the hias term arising from estimation. For parametric
cases, it often happens that Z>(jc) = O.

Fourth, we change the notion of the residual term heing "small" from Op(/i~'̂ )̂ to
the weaker condition (iv). We will demonstrate that this weaker condition is satisfied hy
some nonparametric estimators when the stronger condition 0;,(n~'̂ )̂ is not. Condition
(iii) is required to restrict the behaviour of the hias term. The hias term has to be reduced
to a rate o(« '̂ )̂ in order to properly centre expression (i) asymptotically. For the case
of rf-dimensional nonparametric model with/?-times continuously differentiable functions.
Stone (1982) proves that the optimal uniform rate of convergence of the nonparametric
regression function with respect to mean square error is («/log n)'''^^^'''"^. His result implies
that some undersmoothing, compared to this optimal rate, is required to achieve the
desired rate of convergence in the hias term alone. Note that the higher the dimension of
the estimand, the more adjustment in smoothing parameters to reduce bias is required.

12. See Newey and McFadden (1994) p. 2142.
13. See Ichimura (1996).
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This is the price that one must pay to safeguard against possible misspecifications of g(?, p)
or Piz). It is straightforward to show that parametric estimators of a regression function
are asymptotically linear under some mild regularity conditions. In the Appendix we
establish that the local polynomial regression estimator of a regression function is also
asymptotically linear.

A typical estimator of a parametric regression function mix; P) takes the form
w(x; P), where m is a known function and P is an asymptotically linear estimator, with

^ n''^^^). In this case, by a Taylor expansion.

, P)-mix, p)] = n-'/' Y.%, [dmix, p)/8pWiX,, 7,)

+ [dmix, P)/dp-8mix, '

where P lies on a line segment between P and p. When E{ii/iXi, Yi)}=0 and
E{\i/iXi, Yi){i/iXi, Y,)'}<oo, under iid sampling, for example, n~'̂ ^EJ=i ViXi, Yi) =
Opil) and plim„^o,p = P so that p\imr,^^\dmix, P)/dp-dmix, P)/8p\=0j,il) if
dmix, P)/dp is Holder continuous at p.^*

Under these regularity conditions

^[mix, p)-mix, )3)] = «-•/'X-=, [^'«(^' P)/8PMX,, y,) + o^(l).

The bias term of the parametric estimator mix, P) is Six) = 0, under the conditions we
have specified. The residual term satisfies the stronger condition that is maintained in the
traditional definition of asymptotic linearity.

(a) Asymptotic linearity of the kernel regression estimator

We now establish that the more general kernel regression estimator for nonparametric
functions is also asymptotically linear. Corollary 1 stated below is a consequence of a
more general theorem proved in the Appendix for local polynomial regression models
used in Heckman, Ichimura, Smith and Todd (1998) and Heckman, Ichimura and Todd
(1997). We present a specialized result here to simplify notation and focus on main ideas.
To establish this result we first need to invoke the following assumptions.

Assumption 1. Sampling of {Xi, 7,} is i.i.d., X, takes values in R!' and F, in R, and
Var(y,)<oo.

When a function is />-times continuously differentiable and its p-th derivative satisfies
Holder's condition, we call the function/7-smooth. Let mix) = E{Yi\Xi=x}.

Assumption 2. mix) is ̂ -smooth, where p>d.

14. A function is Holder continuous at A'=xo with constant 0< a g 1 if |q^x, 0) - (p{xo, fl)| g C • \\x-Xo\\°
for some C> 0 for all x and 0 in the domain of the function cp(-,-). Usually Holder continuity is defined for
a function with no second argument B. We assume that usual Holder continuity holds uniformly over 0 whenever
there is an additional argument.
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We also allow for stochastic bandwidths:

Assumption 3. Bandwidth sequence a, satisfies p\im„^^a„/h„ = ao>0 for some
deterministic sequence {h„} that satisfies nh^/logn-yao and nhf-*c<ao for some c^O.

This assumption implies 2^>rf but a stronger condition is already imposed in Assump-
tion 2.'^

Assumption 4. Kernel function ^( •) is symmetric, supported on a compact set, and
is Lipschitz continuous.

The assumption of compact support can be replaced by a stronger assumption on the
distribution of Xi so that all relevant moments exist. Since we can always choose Ki •),
but we are usually not free to pick the distribution of Z,, we invoke compactness.

In this paper we consider trimming functions based on S and S that have the following
structure. hQifxix) be the Lebesgue density oiX,, S= {xeR'';fxix)^qo}, and S= {xeR'';
fxix)^qo}, where supxes\fxix)-fxix)\ converges almost surely to zero, and/;i-(jc) isp-
smooth. We also require that fxix) has a continuous Lebesgue density j | ^ in a neighbour-
hood of qo vnthffiqo) > 0. We refer to these sets S and S as p-nice on S. The smoothness
of fxix) simplifies the analysis and hence helps to establish the equicontinuity results we
utilize.

Assumption 5. Trimming is ^-nice on S.

In order to control the bias of the kernel regression estimator, we need to make
additional assumptions. Certain moments of the kernel function need to be 0, the under-
lying Lebesgue density of Xt,fxix), needs to be smooth, and the point at which the
function is estimated needs to be an interior point ofthe support of Z,. It is demonstrated
in the Appendix that these assumptions are not necessary for ^-th order local polynomial
regression estimator.

Assumption 6. Kernel function Ki •) has moments of order 1 through p - 1 that are
equal to zero.

Assumption!. />(:>(:) is ̂ -smooth.

Assumption 8. A point at which m(-) is being estimated is an interior point of the
support of A',.

The following characterization of the bias is a consequence of Theorem 3 that is
proved in the Appendix.

CoroUary 1. Under Assumptions 1-8, if Kiu^,..., Ud)=kiui) • • • kiuj) where ki •)
is a one dimensional kernel, the kernel regression estimator rhoix) of mix) is asymptotically

15. Assumption 3 implies />„ -• 0 and log n • A ̂ ^ "'' -• 0. These two imply 2p > d. Also notice that the assump-
tion implies K-^O.
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linear with trimming., where, writing e,= Yi-B{Yi\Xi}, and

Wn(.Xi, Yi • x) = (naohi)-'EiKi{Xi-x)/iaohr.))r{xeS)/fx(x),

Six) =

Our use of an independent product form for the kernel function simplifies the expression
for the bias function. For a more general expression without this assumption see the
Appendix. Corollary 1 differs from previous analyses in the way we characterize the
residual term.

(b) Extensions to the case of local polynomial regression

In the Appendix, we consider the more general case in which the local polynomial regres-
sion estimator for g(t, p) is asymptotically linear with trimming with a uniformly cqiisistent
derivative. The latter property is useful because, as the next lemma shows, if both P{z) and
g{t, p) are asymptotically linear, and if dg^t, p)/dp is uniformly consistent, then g^t, P(z)) is
also asymptotically linear under some additional conditions. We also verify in the Appen-
dix that these additional conditions are satisfied for the local polynomial regression
estimators.

Let P,(z) be a function that is defined by a Taylor's expansion pf i(r, P(z)) in the
neighbourhood of P(z), i.e. g{t, P(,z))=g(,t, P(z)) + dg(t, P,(z))/dp • [P(z)-P{z)l

Lemma 1. Suppose that:

(i) Both P(z) andg(t,p) are asymptotically linear with trimming where

(ii) dg(t,p)/dp and P(z) are uniformly consistent and converge to dg{t,p)/dp and
P(z), respectively and dg(t,p)/dp is continuous;

(iii) plim„-.oo «"'/' i ; - , S,(T,, P(Z,)) = b, and
plim«^««-'/' i ;_, 8g(Ti, PiZ,))/8p • b,iT,, P(Z,)) = b,^; ^

(iv) plim .̂oo «"'^' Z;-, lSg(T>, PT.iZi))/Sp-8g(Ti, P(Z,))/8p]
(V) plim^^^ n-'^' i ;^ , i ; 8 d i j P{Zd)/

then g(t, P{z)) is also asymptotically linear where

[g(t, Piz))-g{t, PizW(xeS) = n-' S;=, IVnAYj, Tj, P{Zj); t, P(z))

+ dgit, P(z))/dp • yifnp^Dj, Zj; z)] -I-b{x) + R{x),

andli ~'̂ ^ Z" MX)
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An important property of this expression which we exploit below is that the effect of
the kernel function v̂ n̂ CA, 'Zj\'^) always enters multiplicatively with dg{t, P{z))/dp. Thus
both the bias and variance of P{z) depend on the slope to g with respect to p. Condition
(ii) excludes nearest-neighbour type matching estimators with a fixed number of neigh-
bours. With conditions (ii)-(v), the proof of this lemma is just an application of Slutsky's
theorem and hence the proof is omitted.

In order to apply the theorem, however, we need to verify the conditions. We sketch
the main arguments for the case of parametric estimator P(z) of P{z) here and present
proofs and discussion of the nonparametric case in the Appendix.
^ Under the regularity conditions just presented, the bias function for a parametric
P{z) is zero. Hence condition (iii) holds '\fg(,t,p) is asymptotically linear and its derivative
is uniformly consistent for the true derivative. Condition (iv) also holds since \Rp{Z,) | =
Op {n '/^) and the derivative oig{t, p) is uniformly consistent. Condition (v) can be verified
by exploiting the particular form of score function obtained earlier. Observing that
W{D Z; Z) v ' ( Z ) WpiiDj, Zf), we obtain

, P{Zi))/dp]

g(Ti, P{Zi))/dp]xifp,{Zi)n-''^ Y.%, VpiiDj, Zj),

so condition (v) follows from an application of the central limit theorem and the uniform
consistency of the derivative of g(t,p).

For the case of nonparametric estimators, Vnp does not factor and the double summa-
tion does not factor as it does in the case of parametric estimation. For this more general
case, we apply the equicontinuity results obtained by Ichimura (1995) for general U-
statistics to verify the condition. We verify all the conditions for the local polynomial
regression estimators in the Appendix. Since the derivative of g{t,p) needs to be defined
we assume

Assumption 9. K() is 1-smooth.

Lemma 1 implies that the asymptotic distribution theory of A can be obtained for
those estimators based on asymptotically linear estimators with trimming for the general
nonparametric (in P and g) case. Once this result is established, it can be used with lemma
1 to analyze the properties of two stage estimators of the form g(t, P(z)).

(c) Theorem 2: The asymptotic distribution of the matching estimator under general
conditions

Theorem 2 enables us to produce the asymptotic distribution theory of a variety of estima-
tors A of the treatment effect under different identifying assumptions. It also produces the
asymptotic distribution theory for matching estimators based on different estimators of
g(t,p) and P(z). In Sections 3 and 4, we presented various matching estimators for the
mean effect of treatment on the treated invoking different identifying assumptions. An
altemative to matching is the conventional index-sufficient selection estimators that can
be used to construct estimators of E (yo|/)= 1, A )̂, as described in our companion paper
Heckman, Ichimura and Todd (1997) and in Heckman, Ichimura, Smith and Todd
(1996a, 1998). Our analysis is sufficiently general to cover the distribution theory for that
case as well provided an exclusion restriction or a distributional assumption is invoked.
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Denote the conditional expectation or variance given that A' is in S by Es ( ) or

Var5( ), respectively. Let the number of observations in sets h and h be No and N\,

respectively, where N=No + N^ and that 0<limAr_oo Ni/No=0<co.

Theorem 2. Under the following conditions:
(i) {yo,, Xi },e/o and {Yu, A', },e/, are independent and within each group they are i.i.d.

and Yoi for ielo and Yufor ielx each has a finite second moment;
(ii) The estimator g{x) of g{x) = ̂ {Yo\Di=\,Xi=x] is asymptotically linear with

trimming., where

Mix)-g{x)]I{xeS} = No' !, , ,„ ^foN^sX J'o,,Xi; x)

and the score functions y/dNoN,(Yd,X; x) for d=0 and 1, the bias term bgix), and

the trimming function satisfy:

(ii-a) E {Vrf̂ vo^v,(y</MXi;X)\Di = d,X,D=\)}=Ofor d=0 and 1, and
Var {ii/ciNoNXYdi,Xi •,X)} = oiN) for each ielou/, ;

(ii-b) pUm^v.̂ co A^r'^' I , , , , kXi) = b;
(ii-c) plim ,̂̂ <:o Var {E[y/oNoNXYo>,Xi;X)\ Yoi, Di = O,Xi,D=l]|/>= 1} = Ko<oo

plim^v.̂ oo Var {E[y/,!,,^,iYu, Xi; X) \ Yu, Di= 1, Xi, D= 1] |Z)= 1} = K, < co,

and
lim^v.̂ co E{[Yu-giXi)]IiXieS) •

lXD
(ii-d) S and S are p-nice on S, where p>d, where d is the number of regressors in X

and fix) is a kernel density estimator that uses a kernel function that satisfies
Assumption 6.

Then under (A-T) the asymptotic distribution of

is normal with mean ib/Pr iXeS\D=l)) and asymptotic variance

YAT, PiZ), D=

+ PriXeS\D=l)-^{V,+2-

Proof. See the Appendix.

Theorem 2 shows that the asymptotic variance consists of five components. The first
two terms are the same as those previously presented in Theorem 1. The latter three terms
are the contributions to variance that arise from estimating gix) = E{Yi\Di=l,Xi=x}.
The third and the fourth terms arise from using observations for which D = 1 to estimate
gix). If we use just observations for which D = 0 to estimate gix), as in the case of the
simple matching estimator, then these two terms do not appear and we only acquire the
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fifth term.'* We consider the more general case with all five terms. If Âo is much larger
than AT,, then the sampling variation contribution of the Z) = 0 observations is small as 6
is small.

Condition (i) covers both random and choice-based sampling and enables us to avoid
degeneracies and to apply a central limit theorem. Condition (ii) elaborates the asymptotic
linearity condition for the estimator of gix). We assume/7-nice trimming. The additional
condition on the trimming function is required to reduce the bias that arises in estimating
the support.

Note that there is no need for gix) to be smooth. A smoothness condition on gix)
is used solely to establish asymptotic linearity of the estimator of gix). Also note that the
sampling theory above is obtained under mean independence

Strong ignorability conditions given by (A-l), (A-2) or (A-3), while conventional in the
matching literature, are not needed but they obviously imply these equalities.

Theorem 2 can be combined with the earlier results to obtain an asymptotic distribu-
tion theory for estimators that use git, Piz)). One only needs to replace functions

iYoi>Xi; x) and iifiN^XYuyXr, x) and the bias term by those obtained in Lemma 1.

7. ANSWERS TO THE THREE QUESTIONS OF SECTION 1 AND MORE
GENERAL QUESTIONS CONCERNING THE VALUE OF

A PRIORI INFORMATION

Armed with these results, we now investigate the three questions posed in the Section 1.

il) Is it better to match on PiX) or X if you know

Matching on X, Ax involves ^-dimensional nonparametric regression function estimation
whereas matching on PiX), Kp only involves one dimensional nonparametric regression
function estimation. Thus from the perspective of bias, matching on PiX) is better in the
sense that it allows ^A^-consistent estimation of (P-2) for a wider class of models than is
possible if matching is performed directly on X. This is because estimation of higher-
dimensional functions requires that the underlying functions be smoother for bias terms
to converge to zero. If we specify parametric regression models, the distinction does not
arise if the model is correctly specified.

When we restrict consideration to models that permit >/F-consistent estimation either
by matching on PiX) or on X, the asymptotic variance of Kp is not necessarily smaller
than that of Kx. To see this, consider the case where we use a kernel regression for the
D = 0 observations i.e. those with ielo. In this case the score function

w (Y . . . , • ^ _
WONoN, ( -fOl, ^i , X)

where £,= yo,-E{ I'o/IA',, A = 0} and we write/A-(x|Z) = O) for the Lebesgue density of X,
given Z), = 0. (We use analogous expressions to denote various Lebesgue densities.) Clearly
V] and Covi are zero in this case. Using the score function we can calculate Ko when we
match on X. Denoting this variance by Vox,

16. An earlier version ofthe paper assumed that only observations for which £) = 0 are used to estimate
8(x).
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M ' J J

Now observe that conditioning on Xi and Fo,, e, is given, so that we may write the last
expression as

I r^((^r:^)^^^Mf^ 1 ij
r UjxiX\D = O)JKiu)du^ J' I

Now

r/.((X-^)/a.)/(X.5) 1
d' j

can be written in the following way, making the change of variable iX/-

aNoW\D = 0)

Taking limits as No-^oa, and using assumptions 3, 4 and 7, so we can take limits inside
the integral

since OATO^O and ^Kiw)dw/lKiu)du= 1. Thus, since we sample the Xi for which A = 0,

L ./A-(.̂ /IM —"J

Hence the asymptotic variance of AA- is, writing A=Pr {A'e5|Z) = 0}/Pr (.YeS'|£)= 1),

Pr iXeS\D = l)-'{YaTs [EsiY,- Yo\X, D= 1)\D= l] + Es[Vars(F, \X, Z)=

Similarly for Ap, VOP is

The first two terms for both variance expressions are the same as those that appear in Vx
and Vp in Theorem 1. To see that one variance is not necessarily smaller than the other,
consider the case where fxiX\D=l)=fxiX\D = O) and 9 = 1. Clearly in this case
fpiPiX)\D= l)=fpiPiX)\D = O). Propensity score matching has smaller variance if and
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only if

Es{EsiY,\PiX),D=l)EsiYo\PiX),D=l)\D=l}

>Es{EsiYt\X,D=l)EsiYo\X,D=l)\D=\}.

Since the inequality does not necessarily hold, the propensity score matching estimator in
itself does not necessarily improve upon the variance ofthe regular matching estimator."'*

(2) What are the effects on asymptotic bias and variance if we use an estimated value of F>.

When Pix) is estimated nonparametrically, the smaller bias that arises from matching on
the propensity score no longer holds true if estimation of Pix) is a ^/-dimensional non-
parmetric estimation problem where rf> 1. In addition, estimation of Pix) increases the
asymptotic variance. Lemma 1. informs us that the score, when we use estimated Piz)
but no other conditioning variables, is

for ieIj,d=O,\, where \i/dNoN,g are the scores for estimating gip) and IJ/NP is the score for
estimating Piz). By assumption (ii-a) they are not correlated with dgiPiz))/8p-
WspiDj, Zj; z), and hence the variance ofthe sum ofthe scores is the sum ofthe variances
of each score. So the variance increases by the variance contribution of the score
SgiPiz))/dp • y/NpiDj, Zjiz) when we use estimated, rather than known, Piz). Even with
the additional term, however, matching on X does not necessarily dominate matching on
PiX) because the additional term may be arbitrarily close to zero when dgiPiz))/8p is
close to zero.

(3) What are the benefits, if any, of econometric separability and exclusion restrictions on
the bias and variance of matching estimators?

We first consider exclusion restrictions in the estimation of Pix). Again we derive the
asymptotic variance formulae explicitly using a kernel regression estimator. Using Corol-
lary 1, the score function for estimating Pix) is

a%fxix)\Kiu)du '

uj=Dj-E{Dj\Xj}. Hence the variance contribution of estimation of Piz) without
imposing exclusion restrictions is

V2x= lim y&r{E[dgiPiZ))/dp
N*co

Kiu)du]\Dj,Xj,D=l]}

iDj\Xj)[dgiPiZj))/dp]' -fliXjlD^ l)/f%iXj)][PT {XjeS}]-\

Analogously, we define the variance contribution of estimating P(z) imposing exclusion
restrictions by Viz. Observe that when Z is a subset of the variables in X, and when there

17. FoTexamp\eEs(Y,\X,D\) Es{Yo\X,D=\)oTEs(Y,\X,D=\) = -Es(Yo\X,D=\)ainho\d.
18. In a later analysis, Hahn (1996) considers a special case of the models considered in this paper and

shows in a model with no exclusion restrictions that when P is not known, the estimated propensity score
estimator is efficient and that knowledge of P improves efficiency.
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are exclusion restrictions so PiX) = PiZ) then one can show that V2zS Vix- Thus, exclu-
sion restrictions in estimating PiX) reduce the asymptotic variance of the matching estima-
tor—an intuitively obvious result.

To show this first note that in this case Var (D|^) = Var (/)|Z). Thus

iD\Z)[dgiPiZ))/8pf

= 0.

Since the other variance terms are the same, imposing the exclusion restriction helps to
reduce the asymptotic variance by reducing the estimation error due to estimating the
propensity score. The same is true when we estimate the propensity score by a parametric
method. It is straightforward to show that, holding all other things constant, the lower
the dimension of Z, the less the variance in the matching estimator. Exclusion restrictions
in T also reduce the asymptotic variance of the matching estimator.

By the same argument, it follows that E{[f%iX\D=l)/fJciX\D = O)] - 1 |D = 0} ^0 .
This implies that under homoskedasticity for Fo, the case/(A'|Z)= l)=/(X|£> = 0) yields
the smallest variance.

We next examine the consequences of imposing an additive separability restriction
on the asymptotic distribution. We find that imposing additive separability does not neces-
sarily lead to a gain in efficiency. This is so, even when the additively separable variables
are independent. We describe this using the estimators studied by Tjostheim and Auestad
(1994) and Linton and Nielsen (1995)."

They consider estimation of fi(^i),g2(A'2) in

where x = (xi, X2). There are no overlapping variables among Xi and X2. In our context,
E( Y\X = x)=git) + KiPiz)) and EiY\X=x) is the parameter of interest. In order to focus
on the effect of imposing additive separability, we assume /'(z) to be known so that we
write P for/'(Z).

Their estimation method first estimates E{Y\T=t,P=p}=git) +Kip) non-para-
metrically, say by fi {y| T= t, P=p}, and then integrates £ { y| 7= /, P=p} over p using
an estimated marginal distribution of P. Denote the estimator by git). Then under additive
separability, git) consistently estimates git)+ E{KiP)}. Analogously one can integrate
fi { y| T= t, P=p] —git) over t using an estimated marginal distribution of T to obtain a
consistent estimator of Kip)-E{KiP)). We add the estimators to obtain the estimator
of EiY\X=x) that imposes additive separability. The contribution of estimation of the
regression function to asymptotic variance when T and P are independent and additive

19. The derivative of E{ Y\T=t, P=p) with respect to p only depends on p if it is additively separable.
Fan, Hardle and Mammen (1996) exploits this property in their estimation. Using this estimator does not lead
to an improvement in efficiency, either.
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separability is imposed, is Pr iXeS\D = l)~^ times

YolT, P, D =
iP\D = O) fiT\D = O)

When additive separability is not used, it is Pr iXeS\D=l)~^ times

Note that the first expression is not necessarily smaller, since fiP\D= 1) •/(r|Z>= 1) can
be small without both/(P|Z)= 1) and fiT\D=l) being simultaneously small. '̂

Imposing additive separability per se does not necessarily improve efficiency. This is
in contrast to the case of exclusion restrictions where imposing them always improved
efficiency. Whether there exists a method that improves efficiency by exploiting additive
separability is not known to us.

Note that when/(P|Z)= 1)=/(P|D = O) andfiT\D= l )= / ( r |£ ) = O) both hold, the
variance for the additively separable case and for the general case coincide. Under homo-
skedasticity of ^0, the most efficient case arises when the distributions of (r, PiZ)) given
D= 1 and (T, PiZ)) given D = 0 coincide. In the additively separable case, only the mar-
ginal distributions of PiZ) and T respectively have to coincide, but the basic result is the

Note that nearest neighbour matching "automatically" imposes the restriction of
balancing the distributions of the data whereas kernel matching does not. While our
theorem does not justify the method of nearest neighbour matching, within a kernel
matching framework we may be able to reweight the kernel to enforce the restrictions that
the two distributions be the same. That is an open question which we will answer in our
future research. Note that we clearly need to reweight so that the homoskedasticity condi-
tion holds.

8. SUMMARY AND CONCLUSION

This paper examines matching as an econometric method for evaluating social pro-
grammes. Matching is based on the assumption that conditioning on observables eliminates
selective differences between programme participants and nonparticipants that are not
correctly attributed to the programme being evaluated.

We present a framework to justify matching methods that allows analysts to exploit
exclusion restrictions and assumptions about additive separability. We then develop a
sampling theory for kernel-based matching methods that allows the matching variables to
be generated regressors produced from either parametric or nonparametric estimation
methods. We show that the matching method based on the propensity score does not

20. The derivation is straightforward but tedious. Use the asymptotic linear representation of the kernel
regression estimator and then obtain the asymptotic linear expression using it

21. Let a(P)=f(P\D=l)/f{P\D = O) and b(T)=/{T\D=\)/f{T\D = O) and define an interval H(T) =
[l\-b(T)]/[l+b(T)], 1] when b(T)<l. If whenever b(T)>\, a(P)>l and whenever b(T)<\,a{P)eHiT)
holds, imposing additive separability improves efficiency. On the other hand, if whenever b(T)>l,a(P)<l and
whenever b(T)<\, a(P) lies outside the interval H(T), then imposing additive separability using the available
methods worsens efficiency even if the true model is additive.

22. The expression above implies that the same can be said for the estimator that is constructed without
imposing additive separability. However that result is an artifact of assuming independence of P(Z) and T.
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necessarily reduce the asymptotic bias or the variance of estimators of M(S) compared
to traditional matching methods.

The advantage of using the propensity score is simplicity in estimation. When we use
the method of matching based on propensity scores, we can estimate treatment effects in
two stages. First we build a model that describes the programme participation decision.
Then we construct a model that describes outcomes. In this regard, matching mimics
features of the conventional econometric approach to selection bias. (Heckman and Robb
(1986) or Heckman, Ichimura, Smith and Todd (1998).)

A useful extension of our analysis would consider the small sample properties of
alternative estimators. In samples of the usual size in economics, cells will be small if
matching is made on a high-dimensional X. This problem is less likely to arise when
matching is on a single variable like P. This small sample virtue of propensity score
matching is not captured by our large sample theory. Intuitively, it appears that the less
data hungry propensity score method would be more efficient than a high dimensional
matching method.

Our sampling theory demonstrates the value of having the conditional distribution
of the regressors the same for £> = 0 and D=\. This point is to be distinguished from the
requirement of a common support that is needed to justify the matching estimator.
Whether a weighting scheme can be developed to improve the asymptotic variance remains
to be investigated.

APPENDIX

In this Appendix we prove Corollary 1 by proving a more general result, Theorem 3 stated below, verify the
conditions of Lemma 13, for the case of a local polynomial regression estimator, and prove Theorem 2. We first
establish the property that local polynomial regression estimators are asymptotically linear with trimming.

A. 1. Theorem 3

Theorem 3 will show that local polynomial regression estimators are asymptotically linear with trimming. Lemma

1 follows as a corollary.

The local polynomial regression estimator of a function and its derivatives is based on an idea of approxim-
ating the function at a point by a Taylor's series expansion and then estimating the coefficients using data in a
neighbourhood ofthe point. In order to present the results, therefore, we first develop a compact notation to write
a multivariate Taylor series expansion. Let x = ( x i , . . . , x^) and 9 = ( 9 , , . . . , qd)eR'' where qj (j= 1 </) are
nonnegative integers. Also let y = x?'.. .xy/(q^ ... qJ). Note that we include iq,<.... qjl) in the definition. This
enables us to study the derivative of x' without introducing new notation; for example, 5x'/5xi =x* where q =
(q,-\ qj), if gi S1 and 0 otherwise. When the sum of the elements of 9 is i, x* corresponds to a Taylor
series polynomial associated with the term d'm(x)/(dx^'... dx^J). In order to consider all polynomials that
correspond to i-th order derivatives we next define a vector whose elements are themselves distinct vectors of
nonnegative integers whose elements sum to .s. We denote this row vector by Q(s) = ({q],... ,qd))<,,+ ••+<,^-s',
that is Q(s) is a row vector of length (s + d- \y./[s\(d-1)!] whose typical element is a row vector ( 9 , , . . . , qj),
which has arguments that sum to .s. For concreteness we assume that {(q,,..., q^)} are ordered according to
the magnitude of ^f.., •O''"''?; from largest to smallest. We define a row vector x^''' = (x'" "'),, + ...+,^.,. This

row vector corresponds to the polynomial terms of degree j . Let x^' = (x'^''^),e{o.i...j,) • This row vector represents
the whole polynomial up to degree p from lowest to the highest.

Also let m'''(x) for s^\ denote a row vector whose typical element is 5'm(x)/(5x1f'... SxJ*) where
q, + - • •+qj=s and the elements are ordered in the same way {{q,,... ,qj)} are ordered. We also write m'°'(x) =
m(x). Let P*(xo) = (m""(xo), • . . , m^\xo)y. In this notation, Taylor's expansion of m(x) at Xo to orderp without
the remainder term can now be written as (x-xo)^'^*(xo).

We now define the local polynomial regression estimator with a global smoothing parameter aA,, where
o e [ a o - 5 , a o + 5 ] f o r s o m e a o > 0 a n d a o > 5 > 0 . Wedenoteja^ = [ a o - 5 , a o + 5 ] . Let K|,{s) = {ah„)'''K(s/(ah„))
and KM(S) = (aM'''. K(s/(aM), and let ^ = ( )8 i , . . . , P,)', where p', is conformable with m""(xo), for r = 0 p.
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Also let y = ( y , , . . . , ¥„)', W(A:o) = diag (K,(X,-xo),..., K.iX^-xo)), and

Then the local polynomial regression estimator is defined as the solution to

or, more compactly

P,(xo) = arg min (Y-X^(xo)p)' fV(xo)( Y-X,(xo)P).

Clearly the estimator equals [X'p(xaW(xo)Xp(xo)Y'X'p{xa)W(xo)Y when the inverse exists. When /) = 0, the
estimator is the kernel regression estimator and when/)= 1 the estimator is the local linear regression estimator."

Let //=diag (\,(aKyUj,..., (a/i,)"''i(;,+rf-i),/[;,t(rf-i,,,), where i, denotes a row vector of size s with 1 in
all arguments. Then P,(x<,) = H[M,„{xor'\n''H•X',{x„)W{xo)Y, where M,Axa) = n-'WX;(xo)W(x<,)X,(xa)H.

Note that by Taylor's expansion of order p^p at Xo,m(X,) = (X,-Xn)°'P*{xo) + rf(X,,Xo), where
rp(.Xi, Xa) = (X,-xo)^''\m'^\x,)-m^\xo)] and Xt lies on a line between X, and Xa. Write

W = (TO(X,), . . . , m(X„))•, r^(xo) = (r^(X,, ATo),..., r^(X„, Xo))', and e = (e^,..., e j ' .

Let M,«(xo) be the square matrix of size j ; ^ . ^ [{q + d- 1 )\/q\ (d- 1)!] denoting the expectation of / / ,„ (xo),

where the j-th row, /-th column "block" of A/,»(;co) matrix is, for Og.s, r g p .

Let lim,^» M,„(xo) = M,•/(J»ro)''*^ Note that M^ only depends on K() when Xo is an interior point of the
support of A-. Also write l = I{X,eS} and /, = /{X,65}, /o = /{A:oeS} and 1^ = 1 {xoeS}. We prove the following
theorem.

Theorem 3. Suppose Assumptions 1-4 hold. If M^ is non-singular, then the local polynomial regression
estimator of order p, m^ix), satisfies

where 6(xo) = o(/i^),/i- '^'£;_, R(X,) = o^O), and

; Xo) = (l , 0 0)

Furthermore, suppose that Assumptions 5-7 hold. Then the local polynomial regression estimator of order
O^p<p ihpix), satisfies

where

Fan (1993), Ruppert and Wand (1994), and Masry (1995) prove pointwise or uniform convergence prop-
erty^of the estimator. As for any other nonparametric estimator the convergence rate in this sense is slower than
n -rate. We prove that the averaged pointwise residuals converges to zero faster than n"'^^-rate.

We only specify that M, is nonsingular because one can find different conditions on Ar( ) to guarantee it.
For example, assuming that fC(u,,... ,uj)=k(u,)... k{uj), if J s'^k(s)ds > 0, then M, is nonsingular.

23. Ruppert and Wand (1994) develop multivariate version of the local linear estimator. Masry (1995)
develops multivariate general order local polynomial regression.
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To prove the theorem, note first that Y=m+B=Xp{xa)P*(xo) + rp{X,,Xa) +e. We wish to consider the

situation where the order of polynomial terms included,/?, is less than the underlying smoothness of the regression

function, p. For this purpose let Xp(x,,) = [Xp(xQ),Xp(xo)'\ and partition p* conformably: P*(xo) =

[^; (xo)', Pt (xo)T. thus note that

(A-3)

) • h (B-3)

(C-3)

Note that if we use a p-th order polynomial when m(x) is ;7-th order continuously differentiable, that is p=p,

the second term (B-3) is zero.

Denote the first element of P{xo) by m^ixo). We establish asymptotic linearity of thpixo) and uniform
consistency of its derivative. Lemma 2 shows that the first term (A-3) determines the asymptotic distribution.
Lemma 7 shows that the second term (B-3) determines the bias term, and the right hand side of 8 shows that
the third term (C-3) is of sufficiently small order to be negligible. Together, these lemmas prove the theorem.

Lemma 2 (Term (A-3)). Under the assumptions of Theorem 3, the right-hand side of

(A-3) = e, • [M^(xo)Y'"~'H'X'p(X(,)W{xo)e • Io+R^Xa),

where e, = (1, 0 , . . . , 0) and n"'^' E"-, RAX,) = Op(\).

Proof We first define neighbourhoods of functions e, • [Mp„{x)Y\fx(x), l(xeS), and point Oo. We

denote them by Tn, Jtf, J, and si, respectively, where

for some small e ,>0 , j r = {/(x);sup«sl/(Jc)-/A-(x)l £« /} for some small e />0,

J={l(x^S),S= {x; f{x)^qo} forsome/(A:)e.?r(jc)},

and J3̂  = [ff0-5o, ao + 5a], where O<Sa<ao.^*

Using the neighbourhoods we next define a class of functions ^ i , as follows:

where it is indexed by a row vector-valued function yn(x)ern, aeja^, which is also implicit in Ki,(), and an

indicator function TjeJ. Let y^(Ay) = c, • [M,,(A'y)]-', y,(.^O) = e, • [ M \

and

J

since Ri(xa)=gn{ei,X,,xo)-gM(e,,X,,xo), the result follows if two conditions are met: (1) equicontinuity of

the process I J . , S^., ?„(£,, X,,Xj) over ^ , , in a neighbourhood of ^^(e , , ^ , , Xj) and (2) that, with probability

approaching 1, §„(£,,X,,Xj) lies within the neighbourhood over which we establish equicontinuity. We use the

jSf^-norm to examine (1). We verify both of these two conditions in tum.

We verify the equicontinuity condition (1) using a lemma in Ichimura (1995)." We first define some

notation in order to state his lemma. For r = 1 and 2, let 3C' denote the r-fold product space of 3^<=/?'' and

define a class of functions i^» defined over SC'. For any v^e*?,, write v,./, as a short hand for either v,(x,)

or i^n(x,,, x,j), where ii ?ti2. We define {/„ Vn = l]j V'n.*,. where X, denotes the summation over all permutations

of r elements of {xi , . . . ,Xn} f o r r = l or 2. Then {/„ Vn is called a U-process over (f/nST,. For r = 2 we assume

that \^n(Xi,Xj)=\yn(Xj,X,). Note that a normalizing constant is included as a part of v'n- A U-process is

24. Note that a calculation using change of variables and the Lebesgue dominated convergence theorem
shows that on 5, [A/,n(x)]~' converges to a nonsingular matrix which only depends of K(-) times [l / /( .x)l '* ' .
Hence, on S, each element of [Mp,,(x)Y^ is uniformly bounded. Thus use of the sup-norm is justified.

25. The result extends Nolan and Pollard (1987), Pollard (1990), Arcones and Gine (1993), and Sherman
(1994) by considering U-statistics of general order r g 1 under inid sampling, allowing ^ to depend on n. When
3^ depends on n, we need to assume condition (ii) in the lemma below as noted by Pollard (1990) when r=\.
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called degenerate if all conditional expectations given other elements are zero. When r = l , this condit ion is

defined so that E(l|/„) = O.

We assume that '¥,cSe\3>>'), where <e\0>') denotes the :Sf'-space defined over x' using the product

measure of ^ , ^ \ We denote the covering number using i f ' - n o r m , || • II2, by N2(e, ^, * „ ) . "

Lemma 3 (Equicontinuity). Let {X,)".^ be an iid sequence of random variables generated by 9. For a
degenerate U-process {U„l|/„} over a separable class of functions ^'„<^^\^') suppose the following assumptions
hold {let \\vA2 = [i:,^^{w.j,}]"y,

(i) There exists an F^^<e\9') such that for any l|/„e'¥„,\y/„\<F„ such that lim sup,^«
ZE{FlJ

(ii) For each e>0, lim,^« l^^ ̂ {Flj, I{F,.,,> e}} = 0;

(iii) There exists X(e) and e>0 such that for each e>0 less than e.

and \l [log X (x)\'''^dx < 00. Then for any e>0, there exists S>0 such that

limPr{ sup |f4(v,,-V2»)l >e} = 0.
\ \ h S S

Following the literature we call a function F„J^ an envelope function of .^n if for any l|/„e^„, y/nj ^F„, holds.
In order to apply the lemma to the process XJ., Z;. ,^,(£, ,X, A}) over ^, , in a neighbourhood of

g«o(e,, XI, XJ), we first split the process into two parts; the process Yjg,(£i, X,, Xj) = '^ g°(,ei, X,, EJ, XJ), where

gl(e,, X,, sj, XJ) = \g,(e,,X,, Xj) +gAej,Xj,X,)]/!,

and the process i ; . , ^™(£,,X,,^,). Note that g„(e„X,,X,) = n-^'^ • Yn(X,) • e\ • er (ah^)-''K{0) • 7, is a order
one process and has mean zero, hence it is a degenerate process. On the other hand g°{ei,Xi, ej,Xj) is a order
two process and not degenerate, although it has mean zero and is symmetric. Instead of studying
g'!,(e,,Xi,ej,Xj) we study a sum of degenerate U-processes following Hoeffding (1961)." Write Z,=
(e,. A-,), (̂ »(Z,) = E{g»(Z,, z)|Z,} = E {g°(r, Z,) |Z,}, and

gl(Z,, ZJ) =g'i,{Z,, ZJ) - MZ,) - MZj).

Then

where g°(Zi, Zj) and 2 • (/i- 1) • (|>„(Z|) are degenerate U-processes. Hence we study the three degenerate U-
processes: | ; (Z, ,Z,) ,2- ( n - l ) - 0,(Z,), and g„(e,,Xl,X|), by verifying the three conditions stated in the
equicontinuity lemma.

We start by verifying conditions (i) and (ii). An envelope function for g°(Z,, Zj) can be constructed by
the sum of envelope functions for g„(e,,X|,X|) and g,(e,,A',,A'y). Similarly an envelope function for
i"(Zi, ZJ) can be constructed by the sum of envelope functions for gJ(Z,, Zy) and 2 • 0n(Z,). Thus we only
need to construct envelope functions that satisfy conditions (i) and (ii) for g„^S|,X|,X|), gn{e,,X,,Xj) and
2n•<|>„(Zl).

Let l7 = \{fx(X,)^qa-2Ef} for some 9o>2£/>0. Since sup«s|/(;c)-/fWI ge/, If-^l holds for any
7,6J*. Also for any neighbourhood of [A/^(x)] ' defined by the sup-norm, there exists a C>0 such that
\[M,„{x)Y'\^C so that \g„{e„X,,X,)\^n-"^•C• \s,\ • l{ao-S„)h„^''K(0)• If and the second moment of
the right hand side times n is uniformly bounded over n since the second moment of e, is finite and nht-<-oa.
Hence condition (i) holds. Condition (ii) holds by an application of Lebesgue dominated convergence theorem
since nh^-* 00.

26. For each e>0, the covering number N,(e,^,^) is the smallest value of m for which there exist
functions ? , , . . . ,?„ , (not necessarily in ^) such that min, [E{|/-g,|'} "'\ g e for each / in S^. If such m does
not exist then set the number to be 00. When the sup-norm is used to measure the distance in calculating the
covering number, we write N^{e, ^).

27. See also Serfling (1980).
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Note that any element of [[{X,-XJ)/(ah„)\°'\'KH{X,-X)) is bounded by C^•[{ao-S„)h„\-•'

l{\\X,-Xj\\<.C2-h^} for some C, and Cj.Thus

^-\ e,\ CQ- Hao-Sa)h„]-'I{\\X,-XJ\\^C2h„} • if.

Therefore, analogous to the previous derivation, conditions (i) and (ii) hold for gn{Si,Xi,Xj).
Note further that since the density of x is bounded on 5 by some constant, say, Ci>Q,\4>n(et,X,)\i.

n'^''^-\e,\ • C- Ci- Cj and hence 2 • n • | (^„(e,,X)| has an envelope function w''̂ ^2 • | e,| • C- C^- Cj that satis-
fies the two conditions.

To verify condition (iii), first note the following. Write Ji,(X,-Xj)-^[[(X,-Xj)/{aK)Y'];KH{X,-Xj) and
Xj) = [[(X-Xj)/(aoK)f'^K^(Xi-Xj). Using this notation

£,| • \r^(Xj) • MX-Xj) • Ij

E>\ • \y„(XJ)-Y.o(XJ)\ • C, • l(ao-Sa)h„]-''I{\\X-XJ\\SC2•h„} • If

^\ e,| • \rno(Xj)\ • \MX!-Xj)-JUX,-Xj)\ • If

Xj)\ -iTj-Ijl. (L-3)

For g„{e,,X|,X|) the right hand side is bounded by some O O ,

Since nA^->oo, the if2-covering number for the class of functions denoted by g,(ei,Xi,X,) for^.eS?], can be
bounded above by the product of the covering numbers of F,, si, and J. Since it is the log of the covering
number that needs to be integrable, if each of three spaces satisfy condition (iii), then this class will also. Cleariy
.s^ satisfies condition (iii). To see that F, and J do also, we use the following result by Kolmogorov and
Tihomirov (1961)." First they define a class of functions for which the upper bound of the covering number is
obtained.

Definition 2. A function in'ViK) has smoothness q>Q, where q=p + a with integer p and 0 < a g 1, if

for any xeK and x + heK, we have

/!, X),

where Bt(h, x) is a homogenous form of degree kinh and \R^(.h, x)\^C\\h\\'', where C is a constant.

Let I f (C) { v ( ) | ^ ( , ) | g | | r }
If a function defined on K is p-times continuously differentiable and the p-th derivative satisfies Holder

continuity with the exponent 0< a g 1, then a Taylor expansion shows that the function belongs to f* (C) for
some C, where q=p + a.

Lemma 4 (K-T). For every set Ac:^'^(C), where KczR'', wehave,forO<d,q<co,

Iog2 N^(e, A)^L(d, q, C, K)(\/e)'"''

for some constant L(d, q,C,K)>0.

Hence, because d/q<\, condition (iii) holds for F, and J. Analogously we can verify condition (iii) for
the remaining U-processes. Hence all three processes are equicontinuous.

The remaining task is to verify that §„{£,,Xi,Xj) lies in the neighbourhood of gM(ei,Xi,Xj) over which
we showed equicontinuity. By the inequality in Lemma 3 (L-3), this follows from Assumptions 3 and 5, and by
verifying that almost surely

sup \\M,„(x)-M,„(x)\\->q,
xeS.aej^

where limn^« inf^^sdet (M,,(x))>0." The latter follows directly from the nonsingularity of matrix Af, and the
trimming rule. Hence the following lemma completes the proof.

28. See pp. 308-314. Kolmogorov and Tihomirov present their result using the concept of packing number
instead of covering number.

29. Recall from the discussion of Theorem 3 that M,»(x) depends on the parameter a.
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Lemma 5. Under the assumptions of Theorem 3, almost surely,

sup \\M,„^x)-M,„(x)\\-^O.
xeS.aej/

Proof Note that any element of the matrix difference Mp„ (x) - Mp„ (x) has the form

where in the notation introduced in Section A.I the kernel function G(s) = ̂  • ^K(s) for some vectors q and r
whose elements are integers and they sum to p or less, where q and r depend on the element of M being
examined. To construct a proof, we use the following lemma of Pollard (1984).^"

Lemma 6 (Pollard). For each n, tet ̂ „ be a separable class of functions whose covering numbers satisfy

supN,(e,&>,'i>„)^Ae''*' for 0<e<\

with constants A and W not depending on n. Let {^„} be a non-increasing sequence of positive numbers for which
lim,^» nC,£,l/\ogn = co. / / | vl g 1 and (E{v'} f'^'^l^^for each y/ in "¥„, then, almost surely.

To use this lemma, we need to calculate N,(e, 9, "V,). Let C, Ssup,e« G(s), Cj is a Lipschitz constant for
G, and Cj is a number greater than the radius of a set that includes the support of G. In our application, recall
from our proof of Theorem 3 that .â  = [oo - 5 , , oo + 5.1, where 0 < S. < Oo so that

The upper bound of the right hand side does not depend on 3». Moreover, the right hand side can be made less
than E • C for some C> 0 by choosing I a i - Oj | g e and | xo, - Xo21 g e. Since S and .aT are both bounded subsets
of a finite dimensional Euclidean space, the uniform covering number condition holds. To complete the proof
of Lemma 5, note that we are free to choose ^, = 1 and f „ = C • Af ̂  in our application of the lemma. ||

Next we examine the second term (B-3).

Lemma 7 (Term (B-3)). Under the assumptions of Theorem 3

where

"~'̂ ^Z"_i R2(X,) = 0p(\), and Ri^Xo) is defined as the difference between Term (B-3) and b„{xo).

Proof. Note that

(B-3) = c, • lM,Axo)V'n-'H'X',ixo)Wixo)J^f(xo)^*{xo) • I

= e, • [M,„(x„)]- I f . , , , « - i ; . , ll(X,-xo)/(ah„)]<^']'^X,-xo)°'•W^\xo)K,(X,-xo) • /„

= e, • [M,„(xo)]" I f . , , , «-' i ; . , mX,-Xo)/(ah„)]°']'iX,-Xo)'''^'K,(X,-Xo)

- E {l[(X,-Xo)/(ah„)f']'(X^-Xo)'^">K,{X,-Xo)\xo}W'\xo) • I (L-7A)

+ e, • [M^Axo)]-' I f . , , , mliX,-xo)/(ah„)f']'{X,-Xo)°"'K,iX,-Xo)\x„}m'^\xo) • /„. (L-7B)

30. His lemma only requires that .^n is a permissible class of functions. In our applications ^„ is always
separable. His Example 38, pp. 35-36, gives a similar result. We provide a proof here for completeness and for
later reference.
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Define term (L-7A) as Ri\{xo). We apply the same method as in Lemma 2 to show that
n'"^ Z"_i 2̂1 (X) = Op(l). Instead of 'S^„, define the class of functions ^ i , as follows:

where it is indexed by a row vector-valued function •f„(x)eT„, ae.s^, which is also implicit in Ki,(), and an
indicator function ijSJ. Let

j X,-XJ) • Ij,

and

To prove that term (L-7B) equals b(xo) + o{hi) we use the assumption that all the moments of Ar(-) of order
p +1 and higher up to p have mean zero, that Xo is an interior point of the support of x that is more than
(ao + 5 )/!„ C interior to the closest edge of the support, where C is the radius of the support of Ar( •), and the
assumption that the density of x is ^-times continuously differentiable and its p-th derivative satisfies a Holder
condition. Using a change of variable calculation and the Lebesgue dominated convergence theorem, and Lemma
5 the result follows. ||

Note that this term converges to zero with the specified rate only if xo is an interior point. Thus for kernel
regression estimators for higher dimensions, we need to introduce a special trimming method to guarantee this.
Use of higher order local polynomial regression alleviates the problem for higher dimensional problems, but at
the price of requiring more data locally.

Lemma 8 (Term (C-3)). Under the assumptions of Theorem 3,

(C-3) = o,(/.j).

Proof. Recall that the third term equals e, • [Mpn(xo)]'''n''H'X'p(xo)lVixo)rp(xo) • h. Note that

W(xo)rf{xo)Io\\

"-1 [(.X-Xo)/(ah„)]^'1{X,-xo)/h„f'^\m'f\x,) -m'^\xo)]K,(xo-X>)/ij ||

where the inequality follows from the Holder condition on m'̂ '(xo) and the compact support condition on K( •),
and the last equality follows from the same reasoning used to prove Lemma 5. The conclusion follows from
Lemma 5 and the assumption of nonsingularity of Mp(xo). ||

Lemmas 2-8 verify Theorem 3. Corollary 1 in the text follows as a special case for /? = 0.

A.3. Verifying the assumptions of Lemma 1

Five assumptions in Lemma 1 are as follows:
(i) Both P(z) and g(t, p) are asymptotically linear with trimming where

lg{t,p)-g(t,p)]I(xeS) = n-' i ; . , y/„,^YJ, Tj, P{Zj);

(ii) dg(t,p)/dp and P{z) converge uniformly to dg{t,p)/dp and P{z), respectively, and that dg(l,p)/dp is
continuous for all ( and p;

(iii) p\im„^^n-"^•Z';.,b,(.Tl,XJ) = b, and plim„_„«-'^='S;., dg(T,, P(Z,))/8p b,{T,, P(Z<)) = b,^\

(iv) plim„^„«-•/^S;., [di(T,,Pr,(Z,))/Sp-dg(T,,P(Z,))/dp]-R,(Z,) = (i-

(V) plim_««-'^^E;-, E ; . , [dg(T,,Pr,(Z,))/8p-dg(T,,P(Z,))/8p] • v'»,(D;, Z^; Z,) = 0.

We verify these assumptions for the local polynomial regression estimator. Condition (i) is just a conse-
quence of Theorem 3. We next show that the derivative of the local polynomial regression estimator converges
uniformly to the derivative of the limit of the local polynomial regression estimator.
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Theorem 4. If Assumptions 1-4, and 8 hold, then dg(t,p)/dp is uniformly consistent for dg{t,p)/dp.

Proof For convenience we drop the subscripts p, p, and the argument Xo of X,, (xo), Pp (xo), P* (xo), and
^(xo) here so thatX=Xp(xo), P = Pp(xo), P* = P*{xo), and_ W= ^(xo). Also denote the derivative with respect
to the first argument of xo by V. Note that X'fVY=X'lVXp. Hence by the chain rule.

Since

{^(X-W)-lV(X'fVX)](X']VX)-'X'W}xp*

we obtain

Note that for.sgl.

= [((A:-XO)<" " ' )„+. .- .„ . , - , , 0 , . . . , 0],

where the second equality follows from our convention on the order of the elements.
Thus

VX=-{0 1 0 . . . 0 (;t-xo)e"> 0 . . . 0 . . . (x-xo)^"-" 0 . . . 0).

Note that each column of VX is either a column of X or the column with all elements being 0. Hence there
exists a matrix J such that VX=-XJ, where 7 is a matrix that selects appropriate column of A" or the zero
column. Without being more specific about the exact form of J we can see that
-(X'fVXy'(X'fVVX)P* = Jp*, and also that

Next, to simplify the last expression, we use some specific properties of matrix J. The key properties of J we
use are that all elements of the first column are 0 and that the first element of the second column of 7 is I. That
is, the first column of AJ is always the 0-vector, regardless of A and the second column of AJ is the first column
of A. Since the first column is chosen by J exactly once, the preceding observations also imply that the first row
of 7 is ej, where e2 = (0, 1,0,. . . , 0) if p^ 1 and 0, if p = 0. Therefore
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where ei • JP* = Vm(x). That the remaining two terms converge uniformly to zero can be shown analogously as
in Lemma S. ||

Condition (iii) of Lemma 1 clearly holds under an i.i.d. assumption given the bias function defined in
Theorem 3. In order to verify condition (iv) of the lemma recall the definition of the residual terms and use the
same equicontinuity argument as in the proof of Theorem 3.

Finally condition (v) can be verified by invoking the equicontinuity lemma. This is where the additional
smoothness condition is required.

Armed with these results, we finally turn to the proof of key Theorem 2.

A.3. Proof of Theorem 2

Note first that, writing I,=I(X,eS),

We first consider the numerator and then tum to the denominator of the expression. Note that the numerator
of the right-hand side of (T-1) is the sum of three terms (TR-l)-(TR-3): writing g, (x) = E5(y,|Z)= LA"=x).

Terms (TR-1) and (TR-2) are analogous to terms we examined in Theorem 1. Term (TR-3) is the additional
term that arises from estimating g{x). However, the first two terms from Theorem 1 have to be modified to
allow for the trimming function introduced to control the impact of the estimation error of g(x).

Central limit theorems do not apply directly to the sums in (TR-1) and (TR-2) because the trimming
function depends on all data and this creates correlation across all i. Instead, writing I, = I(XieS), we show that
these terms can be written as

and

respectively. One can use the equicontinuity lemma and our assumption of p-nice trimming to show the result
for term (TR-1). The same method does not apply for term (TR-2), however. This is because when we take an
indicator function 7/ from J, where / ,#/, , then

It is necessary to recenter this expression to adjust for the bias that arises from using 7,.
In order to achieve this we observe that, writing As(A',) = [gi(A'i)-g(A',)]-Es(yi- yol-D=l),

where d(A',) = |/(A',)-/(A',)|, ^-(.s) = 1 i f -1 g.s<0 and 0 otherwise, and ^+(.s)= 1 if Ogj< 1 and 0 otherwise.
Since/(X,) = (iVoa»)"''E^^, KiXXi-Xi)lan), the latter two terms can be expressed as double sums. We then
apply an equicontinuity argument to the expressions
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and

and control the bias by ^-smoothness of/(A",).

Finally, term (TR-3) can be written as the sum of three terms

and

^,^ £.̂ ,̂  V<^MYoj,Xj;X,), (TR-3-1)

(TR-3-2)

(TR-3-3)

Terms (TR-3-2) and (TR3-3) are 0,(1) by the definition of asymptotic linearity of ̂ (;ir,). Term (TR-3-1) is a
U-statistic and a central limit theorem can be obtained for it using the lemmas of Hoeffding (1948) and Powell,
Stock, and Stoker (1989) and a two-sample extension of the projection lemma as in Serfling (1980). We first
present the Hoeffding, Powell, Stock, and Stoker result.

Lemma 9 (H-P^S). Suppose {Z,}?., is i.i.d., U„y/„=in • ( n - 1))-' J,. V»(Z,, Z,), where ^,„{Z,, Zj) =

Vn{Zj,Z,) and V.{v^(Z,,Zj)}=Q, and &„ V-. = ' ' " ' I ^ . . , 2 •;7,(Z,), H-Zie/-/ ;,,(Z,) = E{v,,(Z,, Z,)|Z,}. / /

^{^l^„(Zi,ZJf}=o(n), then /IE[(t/„ v , - [ / „ ,/'„)'] = o(l).

We also make use of the results of Serfling (1980).

Lemma 10 (Serfling). Suppose {Zaj},,,^ and {Z,,,},^,, are independent and within each group they are i.i.d.,

Un,.., Vn,.n, = ("o ' «,)^' !,„„ I, , , , w^.., (Zoi, Z,j), and E{ ^ ^ , „ , (Zoi, Z,j)} = O,and

t4o.», W.o.m = no ' I,,,,/'o^o.,, (Zo,) -I- nr' I,.,,, p,^.^, (Z,j), where for k = Q,\, p,^,„^ (Z,j) = E{ ^>^,^^ (Zo,, Z,,) |Z*,}.

/ / 0<lim»^» «,/«„=;;< 00, where « = «„ + /,, and E{v^^,»,(Zo,, Z,^)^} =o(no) + o(n,), then

E[(f/ U )'] (l)

In order to apply the lemmas to term (TR-3-1), note that it can be written as

^ r ' ^ ' I,^,, I,.^,, j ^ , ViATjAT, (Y,j, XJ ; X,) (TR-3-la)

+ A^r'^'Z,e,, Vi«.Ar,(r,,,X,;.y,) (TR-3-lb)

+ N^"^ No' E,,,, Y.J,,, VowoAT,(Ko,,XJ;.V,). (TR-3-lc)

Term (TR-3-la) can be rewritten as Afr'^' I , , , , E,.^,, ^^. v?;vo«, (Y,j, Xj; ̂ , ; Y,,, X,; Â )̂ where

Wif^o^, ( J'ly, A-y; X,; X,,, A-,; A ,̂) = [y,,^^,,, (K,,, A ,̂; X ) + VÎ VOA-, (X,,, A",; Ay)]/2.

Thus by Lemma 9 and assumption (ii-a), term (TR-3-la) is asymptotically equivalent to

A^r'-" I , , , , E {v/,;v<,/v, (Yu,X<; XJ)I y,,, AT,}.

By assumption (ii-a), term (TR-3-Ib) is o,( l) . By Lemma 10 and assumption (ii-a), term (TR-3-lc) is asymptoti-
cally equivalent to

j ^ A-, ( YOJ, XJ ; X,)\ YOJ, XJ}.

Hence putting these three results together, term (TR-3-1) is asymptotically equivalent to

Collecting all these results, we have established the asymptotic normality of the numerator.

We next examine the denominator of (T-1). Note that N^' E,̂ ,̂  ii=N'[' E_ ,̂ I, + NT' £.^, ( / , - / , ) . The

first term on the right-hand side converges in probability to E(/) by the law of large numbers. To see that the

second term is o,(l), note that Afr ' l l , , , ,(7,-/ ,) | gAT' I , , , , | / , - / , | . The Markov inequality implies for any
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e>0, Pr {AT' X,^, |7i-/, |>£}gE{|/,-/ ,!}/£. Hence assumption (ii-d) implies that the second term iso,(l).

This result, in conjunction with our result for the denominator, proves Theorem 2. ||

Acknowledgements. The work reported here is a distant outgrowth of numerous conversations with
Ricardo Barros, Bo Honore, and Richard Robb. We thank Manuel Arellano and three referees for helpful
comments. An eariier version of this paper "Matching As An Evaluation Estimator: Theory and Evidence on
Its Performance applied to the JTPA Program, Part L Theory and Methods" was presented at the Review of
Economic Studies conference on evaluation research in Madrid in September, 1993. This paper was also presented
by Heckman in his Harris Lectures at Harvard, November, 1995, at the Latin American Econometric Society
meeting in Caracas, Venezuela, August, 1994; at the Rand Corporation, U.C. Irvine, U.S.C., U.C. Riverside,
and U.C. San Diego September, 1994; at Princeton, October, 1994; at UCL London, November, 1994 and
November, 1996, and at Texas, Austin, March, 1996 and at the Econometric Society meetings in San Francisco,
January, 1996.

REFERENCES
ARCONES, M. A. and G I N 6 , E. (1993), "Limit Theorems for U-processes", Annals of Probability, 21, 1494-

1542.
BARNOW, B., CAIN, G. and GOLDBERGER, A. (1980), "Issues in the Analysis of Selectivity Bias," m E.

Stromsdorfer and G. Farkas (eds.). Evaluation Studies Review Annual, Volume 5 (San Francisco: Sage).
BARROS, R. (1986), "Nonparametric Estimation of Causal Effects in Observational Studies" (University of

Chicago, mimeo).
COCHRANE, W. G. and RUBIN, D. B. (1973), "Controlling Bias In Observational Studies", Sankyha, 35,

417-446.
DAWID, A. P. (1979), "Conditional Independence in Statistical Theory", Journal of The Royal Statistical

Society Series B, 41, 1-31.
FAN, J. (1993), "Local Linear Regression Smoothers and Their Minimax Efficiencies", The Annals of Statistics,

21, 196-216.
FAN, J., HARDLE, W. and MAMMEN, E. (1996), "Direct Estimation of Low Dimensional Components m

Additive Models" (Working paper).
HAHN, J. (1996), "On the Role of the Propensity Score in the Efficient Semiparametric Estimation of Average

Treatment Effects" (unpublished manuscript. University of Pennsylvania).
HECKMAN, J. (1974), "Shadow Prices, Market Wages, and Labor Supply", Econometrica, 42, 679-694.
HECKMAN, J. (1990), "Varieties of Selection Bias", American Economic Review, 80, 313-318.
HECKMAN, J. (1997), "Instrumental Variables: A Study of the Implicit Assumptions Underlying One Widely

Used Estimator for Program Evaluations", Journal of Human Resources, 32, 441-462.
HECKMAN, J., ICHIMURA, H., SMITH, J. and TODD, P. (1996a), "Nonparametric Characterization of

Selection Bias Using Experimental Data, Part II: Econometric Theory and Monte Cario Evidence"
(Unpublished manuscript. University of Chicago).

HECKMAN, J., ICHIMURA, H., SMITH, J. and TODD, P. (19966), "Sources of Selection Bias in Evaluating
Programs: An Interpretation of Conventional Measures and Evidence on the Effectiveness of Matching
As A Program Evaluation Method", Proceedings of The National Academy of Sciences, 93, 13416-13420.

HECKMAN, J., ICHIMURA, H., SMITH, J. and TODD, P. (1998), "Characterizing Selection Bias Using
Experimental Data", Econometrica (forthcoming).

HECKMAN, J., ICHIMURA, H. and TODD, P. (1997), "Matching As An Econometric Evaluation Estimator:
Evidence from Evaluating a Job Training Program", Review of Economic Studies, 64, 605-654.

HECKMAN, J. and ROBB, R. (1985), "Altemative Methods For Evaluating The Impact of Interventions", in
J. Heckman and B. Singer (eds.). Longitudinal Analysis of Labor Market Data (Cambridge: Cambridge
University Press).

HECKMAN, J. and ROBB, R. (1986), "Altemative Method For Solving the Problem of Selection Bias in
Evaluating The Impact of Treatments on Outcomes," in H. Wainer (ed.). Drawing Inferences from Self-
Selected Samples (New York: Springer-Veriag).

HECKMAN, J. and SMITH, J. (1998), "Evaluating The Welfare State", Frisch Centenary, Econometric Mono-
graph Series (Cambridge: Cambridge University Press), forthcoming.

HECKMAN, J., SMITH, J. and CLEMENTS, N. (1997), "Making the Most Out of Social Experiments:
Reducing the Intrinsic Uncertainty in Evidence From Randomized Trials With An Application to the
National JTPA Experiment", Review of Economic Studies, 64, 487-535.

ICHIMURA, H. (1993), "Semiparametric Least Squares (SLS) and Weighted SLS Estimation of Single Index
Models", Journal of Econometrics, 58, 71-120.

ICHIMURA, H. (1995), "Asymptotic Distribution of Nonparametric and Semiparametric Estimators with
Data-Dependent Smoothing Parameters" (Unpublished manuscript. University of Chicago).

KOLMOGOROV, A. N. and TIHOMIROV, V. M. (1961), "e-Entropy and £-Capacity of Sets in Functional
Spaces", American Mathematical Society Translations, series 2, 17, 277-364.



294 REVIEW OF ECONOMIC STUDIES

LINTON, O. and NIELSON, J. P. (1995), "A Kernel Method of Estimating Structural Nonparametric Regres-
sion Based on Marginal Integration", Biometrika, 82, 93-100.

NOLAN, D. and POLLARD, D. (1987), "U-processes: Rates of Convergence", Annal of Statistics, 15, 405-
414.

NEWEY, W. K. and McFADDEN, D. L. (1994), "Large Sample Estimation And Hypothesis Testing", in R.
F. Engle and D. L. McFadden (eds.). Handbook of Econometrics. Vol. IV. (Amsterdam: Elsevier).

MASRY, E. (1995), "Multivariate Local Polynomial Regression for Time Series" (Unpublished manuscript).
POLLARD, D. (1990), Empirical Processes: Theory and Applications (Hayward: IMS).
POWELL, J. L., STOCK, J. H. and STOKER, I. M. (1989), "Semiparametric Estimation of Index Coefficients",

Econometrica, 57, 1403-1430.
ROSENBAUM, P. and RUBIN, D. B. (1983), "The Central Role of the Propensity Score in Observational

Studies for Causal Effects", Biometrika, 70, 41-55.
RUPPERT, D. and WAND, M. P. (1994), "Multivariate Locally Weighted Least Squares Regression" The

Annals of Statistics, 22, 1346-1370.
SERFLING, R. J. (1980), Approximation Theorems of Mathematical Statistics (New York: Wiley).
SHERMAN, R. P. (1994), "Maximal Inequalities for Degenerate U-processes with Applications to Optimization

Estimators", Annal of Statistics, 11, 439-459.
STONE, C. (1982), "Optimal Global Rates of Convergence For Nonparametric Regression", Annals of Statistics

10, 1040-1053.
TJOSTHEIM, D. and AUESTAD, B. H. (1994), "Nonparametric Identification of Nonlinear Time Series:

Projections", Journal of the American Statistical Association, 89, 1398-1409.
WESTAT, INC. (1980), "Net Impact Report No. 1, Impact on 1977 Eamings of New FY 1976 CETA Enrollees

in Selected Program Activities" (Rockville, Maryland, Westat Inc.).
WESTAT, INC. (1982), "CLMS Follow up Report No. 7 (18 Months After Entry), Postprogram Experiences

and Pre/Post Comparisons For Terminees Who Entered CETA During July 1976 Through September
1977" (Rockville, Maryland, Westat Inc.).

WESTAT, INC. (1984), "Summary of Net Impact Results" (Rockville, Maryland, Westat Inc.).




