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ABSTRACT Vehicular edge computing has emerged as a promising technology to accommodate the

tremendous demand for data storage and computational resources in vehicular networks. By processing the

massive workload tasks in the proximity of vehicles, the quality of service can be guaranteed. However, how

to determine the task offloading strategy under various constraints of resource and delay is still an open issue.

In this paper, we study the task offloading problem from a matching perspective and aim to optimize the total

network delay. The task offloading delay model is derived based on three different velocity models, i.e., a

constant velocity model, vehicle-following model, and traveling-time statistical model. Next, we propose

a pricing-based one-to-one matching algorithm and pricing-based one-to-many matching algorithms for

the task offloading. The proposed algorithm is validated based on three different simulation scenarios,

i.e., straight road, the urban road with the traffic light, and crooked road, which are extracted from the

realistic road topologies in Beijing and Guangdong, China. The simulation results confirm that significant

delay decreasing can be achieved by the proposed algorithm.

INDEX TERMS Vehicular edge computing, task offloading, one-to-one matching, matching with quota,

SUMO.

I. INTRODUCTION

With the explosive development of wireless communications

and Internet of vehicles, the amount of intelligent trans-

portation applications such as automatic driving and vehic-

ular video streaming has been increasing consistently. The

successful implementation of these emergent applications

requires processing a large number of tasks with high com-

putational complexity and strict delay sensitivity [1]. Due to

the limited processing capability of vehicles, tasks have to be

offloaded from vehicles to remote cloud servers via cellular

networks [2]–[4]. However, this not only puts a heavy burden

on the already congested cellular networks, but also causes a

high computational delay due to the long distance between

vehicles and the cloud [5], [6]. To address this challenge,

vehicular edge computing (VEC) [7], which combines edge

computation and vehicle networks, has emerged as a promis-

ing solution.

Processing the task at the network edge has the following

advantages [8]. First, it can relieve the network overload since

the large amount of data needs not to travel through the
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whole network. Besides, it can avoid migrating the task in

the duplicated way, so the service quality can be enhanced

efficiently [9]. Second, due to the proximity between vehicles

and servers, the computational delay can be reduced. Last

but not least, it can increase resource utilization efficiency by

leveraging distributed servers with under-utilized resources,

and effectively process multi-source heterogeneous data [10].

Despite these advantages, VEC also meets some chal-

lenges [11]. First, the vehicle mobility has a large impact on

the task offloading optimization. A vehicle can only com-

municate with a road side unit (RSU) and upload its task

when it is within the coverage [12], [13]. The transmission

process will be interrupted once the vehicle moves out of

the coverage. Therefore, a precise estimation of the vehicle

dwell time is necessary for the optimization of task offload-

ing. Second, the self-interested and rational vehicles have

their own preferences towards edge servers. It is difficult to

derive a unified task offloading decision which can meet the

interests of each vehicle [14]. Third, most of the conventional

task offloading schemes are derived and evaluated based on

theoretical models. There lacks a comprehensive evaluation

under realistic traffic data to simulate a dynamic environment

and reflect the true vehicular performance.
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In this paper, we propose a task offloading algorithm based

on matching theory. The vehicles are considered as the one

side of matching, and the road side units (RSU) are con-

sidered as the other [15]. The proposed algorithm aims at

minimizing the total offloading delay. Besides, three vehic-

ular mobility models, i.e., constant velocity model, vehicle-

following model, and travelling-time model, are proposed to

estimate the delay, and the proposed algorithm is evaluated

under three realistic scenarios, i.e., straight road scenario,

urban road scenario with traffic light, and crooked road sce-

nario. The main contributions of this paper are summarized

as follows.

• Various mobility and delay models: Considering the

mobility of vehicles and the dynamic environment,

we study three vehicular mobility models to simulate the

movement of vehicles and derive the explicit expression

of waiting delay model and handover delay model.

• Matching-based task offloading: We propose a

matching-based task offloading algorithm to minimize

the network delay, in which both the one-to-one and one-

to-many matching are considered.

• Performance evaluation under various real-world

scenarios: The proposed algorithm is evaluated under

three realistic roads, i.e., straight road, urban road with

traffic light, and crooked road. The corresponding data

are obtained from SUMO and then used for the simula-

tion of task offloading in MATLAB.

The remaining parts of this paper are organized as follows.

The related works are presented in Section II. The system

model is introduced in Section III. Section IV describes

the problem formulation of the task offloading problem.

Section V and Section VI propose the task offloading based

on one-to-one matching algorithm and matching with quota

algorithm, respectively. Numerical Results are provided in

Section VII. Section VIII concludes this paper.

II. RELATED WORKS

The objective of this work is to study the task offloading prob-

lem in VEC. Edge computing has attracted intensive research

from both academia and industry [16]. Abbas et al. [17]

provided a mobile edge computing architecture and elabo-

rated its advantages, potential application areas and future

research directions. Rahman et al. [18] developed a mobile

edge computing framework to support real-time and location-

aware personalized services. Baktir et al. [19] provided a

comprehensive survey of edge computing and discussed its

technical challenges in depth.

In mobile edge computing, one of the most impor-

tant problems is task offloading [20]. A set of studies

have already focused on how to optimize task offload-

ing from different perspectives. Liu et al. [21] proposed

a distributed computation offloading algorithm based on

game theory. Ali et al. [22] developed a distributed and self-

organizing method to solve the matching game to minimize

the end-to-end latency in Internet of Things (IoT) networks.

Gu et al. [23] designed a task assignment mechanism to

reduce overall energy consumption, which can also satisfy the

heterogeneous delay requirements and support good scalabil-

ity. However, these works have not considered the mobility of

vehicles and the complicated transportation scenarios.

There exist some works which have investigated task

offloading in VEC. Qiao et al. [24] developed a novel

paradigm to offload the computational-intensive tasks to het-

erogeneous mobile edge computing servers and resource-

rich vehicles. In [21], in order to reduce the latency of the

computation offloading of vehicles, Liu et al. formulate the

problem as a multi-user task offloading problem, and pro-

posed a distributed task offloading algorithm to reduce the

offloading delay of vehicles. Zhou et al. [25] proposed an

energy-efficient VEC framework for in-vehicle user equip-

ment (UEs) with limited battery capacity, and developed an

alternating direction method of multipliers (ADMM)-based

energy-efficient resource allocation algorithm. Liu and Zhang

[14]investigated the task offloading problem, and proposed a

heuristic searching algorithm to solve the problem by opti-

mizing candidates selection, offloading ordering and task

allocation.

Matching theory provides a strong tool to solve the com-

binational problem about task offloading [26]. It can be

used to study the establishment of dynamic and mutually

beneficial relations. It is particularly effective in developing

extendable, flexible, decentralized, and practical solutions

for some complex networks [27]. In particular, it can effec-

tively deal with the high dynamics of networks, by consider-

ing the competitive, distributed nature of network elements,

limited radio resources, and the dynamic quality of service

(QoS) constraints of different elements [28], [29]. Thematch-

ing theory originates from stable marriage problem (SM).

There are some classical algorithms such as the conven-

tional Gale-Shapley algorithm [30], swapmatching algorithm

[31], and pricing-based matching algorithm [27] to solve

the general concepts of matching models. Matching problem

can also be divided into four categories, i.e., one-to-one,

one-to-many, many-to-one, and many-to-many matching.

Wang et al. [32] proposed a one-to-one stable matching algo-

rithm for latency optimization in the D2D-based social IoT

networks. Zhao et al. [33] proposed a novel algorithm for

obtaining a sub-optimal solution based on the many-to-many

two-sided matching game with externalities. Gu et al. [34]

introduced the idea of cheating inmatching to further improve

the throughput of D2D communications.

We also resort matching to solve the vehicle task offloading

problem. Our feature is that we employ different velocity

models to analyze the complex delay models. Particularly,

we study three vehicular mobility models and derive the

mathematic expressions of constant velocity model, vehicle-

following model and travelling-time statistical model. Fur-

thermore, we also use SUMO to evaluate our algorithm based

on realistic road topologies [35] because a realistic evaluation

scenario is crucial to evaluate the performance of proposed

algorithm. SUMO is a road traffic simulation software to

evaluate the real-world road topologies without deploying
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FIGURE 1. The architecture of VEC.

a physical equipment to catch realistic data and has been

widely used for performance evaluation in vehicular net-

works. In [36], the proposed content distribution algorithm

was compared with two heuristic schemes based on real-

world map and realistic vehicular traffic by employing both

SUMO and MATLAB. Zhou et al. [37], investigated the con-

tent distribution problem in D2D-based cooperative vehicular

networks, based on realistic vehicular traffic provided by

SUMO, which is useful to give a more precise construction

of a dynamic environment. Codeca et al. [36] used SUMO

to rebuild a realistic traffic pattern and dealt with traffic

congestion problems.

III. SYSTEM MODEL

The three-layer VEC framework is presented in Fig.1, which

is composed of the centralized control layer, the distributed

VEC layer and the vehicular network layer.

The centralized control layer is responsible for task assign-

ment and handover management. The macro base station

(MBS) locates at the center of the road, and we assume

that the coverage of the MBS is large enough to ensure that

all the vehicles can access to it. The MBS connects with

a remote cloud server, which can offer the computational

resource to the MBS. Here, we consider that the remote cloud

server has enough computational resource but causes a heavy

delay due to the long distance. The MBS can determine the

task offloading strategy based on the collected information

from vehicles (the task computing requirements, position,

and velocity information, etc.), RSUs and the remote cloud

server (the idle computational resources and channel state

information, etc.).

In the distributed VEC layer, M RSUs with differ-

ent coverage areas are considered to be deployed along

this unidirectional road, the set of which is denoted as

RSU = {RSU1, · · · ,RSUm, · · · ,RSUM }, and the

corresponding set of indices is denoted as M =

{1, · · · ,m, · · · ,M}. The coverage radius of RSUm is denoted

as rm. Based on the coverage area of M RSUs with different

radius, the road is divided into M segments with different

sizes. A vehicle can only communicate with RSUm when it

is located in the section m. For any RSUm ∈ RSU , it has a

co-located edge server to offer the computational resource,

which is denoted as δm. For the sake of narrative, the MBS

can be denoted as RSU0 and added into the setRSU . Besides,

the corresponding index is m = 0 and the computational

resource of the remote cloud server is denoted as δ0.

The vehicular network layer is composed of N vehi-

cles travelling towards the same direction into an uni-

directional road. Denote the set of vehicles as V =

{V1, · · · ,Vn, · · · ,VN }, and the corresponding set of indices

is denoted as N = {1, · · · , n, · · · ,N }. The velocity and

acceleration of Vn are denoted as vn and an, respectively. For

each vehicle Vn, it will generate a task when it arrives at the

road, which can be characterized by a triplet {Dn,Cn, τn}.

Dn represents the data size of the task (bits), Cn denotes

the computational resource demand for processing the task

(MHz), and τn is the delay constraint (seconds).

The task offloading and execution process are imple-

mented as follows. Firstly, each vehicle Vn ∈ V informs the

MBS of its task computational requirement, i.e., Dn, Cn, and

τn. Then, the MBS determines to offload the tasks either to

the RSUs or the MBS for execution in order to reduce the

offloading delay. Next, theMBSwill inform the vehicles with

the task offloading decision, based on which, the task will be

either offloaded to the corresponding RSU, or to the MBS.

If the vehicle chooses the RSU to offload its task, the task will

be processed by the edge server with a short delay. Otherwise,

the task will be offloaded to the MBS and processed by
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TABLE 1. Parameter.

the remote cloud server with a heavy delay, though it has

ample computational resource. During the task computational

period, a vehicle may travel into the coverage of another RSU

due to the mobility of vehicles, in this situation, the MBS has

to collect all the task computational results.When the task has

been processed, the computational result will be feed back to

the RSU, in which the vehicle is located currently, then the

result is transmitted to the target vehicle.

Denote the total offloading delay as the time difference

between the vehicle entering the road and receiving the

computational results, which consists of transmission delay,

task computational delay, waiting delay, and handover delay.

Among the various types of delay, the waiting delay and

handover delay depend on the specific mobility models.

In this paper, we consider three types of mobility models

to simulate the motion of vehicles and calculate the wait-

ing delay and handover delay, which are constant velocity

model, vehicle-following model and travelling-time statisti-

cal model. Besides, we compare the performance of these

three models with the real motion data generated by SUMO.

The detailed mobility model, handover model, and delay

model are elaborated as follows. The mathematical variables

used throughout this work are summarized in Table 1.

A. THE MOBILITY MODEL AND WAITING DELAY

If the vehicle Vn determines to offload its tasks to RSUm,

a precedent condition is that the vehicle must locate in the

coverage of RSUm. That is to say, the vehicle Vn cannot

offload its task to RSUm until it reaches the coverage of

RSUm, and the corresponding waiting time is called waiting

delay, which is denoted as Twn,m. In this section, we introduce

three vehicular mobility models, and derive the correspond-

ing waiting delay.

Without loss of generality, we consider a scenario that the

RSUs are arrayed from left side of the road to right side,

i.e., RSU1 is at the far left of the road and RSUM is at the far

right of the road, as shown in Fig. 1. Furthermore, we assume

that all vehicles enter into the road from the left edge of

the road, i.e., the coverage of the RSU1. Thus, the travelling

distance of any vehicle until it enters into the coverage of

RSUm can be calculated as

Sm = 2

m−1
∑

i=1

ri. (1)

Remark 1: If the vehicle Vn determines to offload its tasks

to the MBS or RSU1, there will be no travelling distance and

waiting delay, i.e., the travelling distance is S0 = S1 = 0, and

the waiting delay is Twn,0 = Twn,1 = 0.

Then, vehicular mobility models are described in details as

follows.

1) CONSTANT VELOCITY MODEL

We assume that any vehicle Vn ∈ V travels with a constant

velocity vn when it enters into the road, and the velocity

of each vehicle Vn is uniformly distributed in the range of

[0, 27.7] m/s. Then the waiting delay of the vehicle Vn can be

calculated as

Twn,m =
Sm

vn
. (2)

2) VEHICLE-FOLLOWING MODEL

In the urban traffic scenario, the vehicle-following model is

often adopted, in which the vehicle velocity is affected by

numerous factors [38], such as the traffic lights, the mobile

behavior of the leading vehicle, etc. We mainly consider the

impact of traffic lights here and the impact of the leading

vehicle can be analyzed similarly. Specifically, we assume

that there exists K traffic lights located evenly in this road.

The vehicle-followingmodel consists of three phases when

the vehicle Vn passes a traffic light, which are the continuous

braking phase, the stationary phase, and the acceleration

phase. The details are described as follows.

The vehicleVn is assumed to travel with a constant velocity

vn initially. During the continuous braking phase, the velocity

of the vehicle Vn will decrease from vn to zero with a constant

deceleration an after the driver notices the traffic light and

takes the braking action. The distance of the vehicle Vn in

this stage is calculated as

dan =
v2n

2an
, (3)

and the braking time tan is calculated as

tan =
vn

an
. (4)
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Then during the stationary phase, the vehicle Vn will wait

for a period of time twn at the intersection, which is

twn = βnTmax , (5)

where Tmax is the predetermined maximum waiting delay for

red light. βn is the ratio of the remaining waiting delay for red

light to the maximum waiting delay Tmax , which is related to

the time when the vehicle arrives at the intersection and can

be seen as a random value in the simulation.

During the acceleration phase, the velocity of the vehicle

Vn will increase from zero to vn again with a constant accel-

eration a′
n. Similar to those in the continuous braking phase,

the vehicle Vn travelling distance da
′

n and the corresponding

acceleration time ta
′

n in this phase can be expressed as

da
′

n =
v2n

2a′
n

, (6)

ta
′

n =
vn

a′
n

. (7)

As discussed above, the total travelling distance of the

vehicle Vn passing an intersection with the traffic light can

be calculated by

dvn = dan + da
′

n , (8)

and the total time of the vehicle Vn passing an intersection is

tvn = tan + twn + ta
′

n . (9)

Considering there are K traffic lights located in the road,

and the vehicle Vn has passed by K ′
n traffic lights before

it enters to the segment m. Then, the waiting delay for the

vehicle Vn entering the coverage of RSUm is composed of

two part. One is the uniform motion phase and the moving

distance can be expressed as the difference between Sm and

K ′
nd

v
n . The other is the continuous braking phase and acceler-

ation phase, the total travelling time can be expressed asK ′
nt
v
n .

From what has been discussed above, the waiting delay can

be obtained as

Twn,m =
Sm − K ′

nd
v
n

vn
+ K ′

nt
v
n, (10)

here, we must have K ′
n ≤ K .

3) TRAVELLING-TIME STATISTICAL MODEL

The two theoretical models described above are too optimistic

for real-world implementation, especially in complex traffic

scenarios. Several works have focused on the vehicular trav-

elling time for a given road segment, i.e., the waiting delay,

which is demonstrated to follow a Gamma distribution [39],

[40]. The details are described as follows.

Generally, if the vehicle Vn travels for a distance dn, and

the corresponding time is denoted as tn, then the probability

distribution function (PDF) of Gamma distribution Ga(dn, θ)

can be expressed as

f (tn, dn, θ) =
t
dn−1
n e−

tn
θ

θdnŴ(dn)
, (dn > 0, θ > 0), (11)

where dn is also called the shape parameter and θ is called the

scale parameter. Ŵ(dn) is the Gamma function which is given

by

Ŵ(dn) =

∫ +∞

0

tdn−1
n e−tndtn. (12)

Therefore, when the travelling distance of the vehicle Vn
is Sm, i.e., dn = Sm, the waiting delay is assumed to follow

a Gamma distribution, i.e., tn ∼ Ga(Sm, θ), where θ is deter-

mined by the actual conditions of the road segment [41] and

can be obtained based on the historical traffic information,

including the vehicle trajectory, road congestion, accident

probability and so on. We take the expectation of tn as the

waiting delay of the vehicle Vn arriving at the coverage of

RSUm, i.e.,

Twn,m = Smθ. (13)

4) MOBILITY MODEL BY SUMO

In addition to the three vehicular mobility models described

above, we can get the actual motion data of the vehicle by

SUMO.

The traffic simulator software, SUMO, is able to select the

real-world map for simulation, and with which we can avoid

the expensive costs for deploying a physical transportation

measurement system. Each vehicle Vn is treated as an inde-

pendent element in SUMO and various mobility parameters

of vehicles such as acceleration, deceleration, velocity, and

route, can be adjusted and controlled separately. Particularly,

we consider three different scenarios, which are the straight

road, urban road with traffic light and crooked road, as shown

in Fig. 2,3 and 4, respectively. The application of TSUMO

with different scenarios is described in details in Section VII.

B. THE DATA TRANSMISSION MODEL

Assuming that each vehicle Vn is allocated with orthogonal

channel, i.e., there is no interference among the vehicles.

Considering the data are transmitted from the vehicle Vn
to RSUm, the effective signal to noise ratio (SNR) of the

transmission link between Vn and RSUm can be expressed as

γn,m =
Ptgn,m

N0
, (14)

where Pt is the transmission power of the vehicle Vn, which

is constant for each vehicle Vn. N0 is the power of the

additive white Gaussian noise (AWGN). gn,m represents the

channel power gain of the transmission link from the vehicle

Vn to RSUm. Due to the mobility of vehicle, the channel

varies rapidly and it is difficult to get the real-time channel

state information. Previous works have verified that only

considering the large-scale fading causes little performance

degradation. For the sake of simplification, we ignore the

small-scale fading and the channel power gain is expressed as

gn,m = r−α
m [21]. Here, we consider the vehicle Vn transmits

its task once it enters to the coverage of RSUm, and α is

pathloss exponent. Then the data transmission rate of the

27632 VOLUME 7, 2019



P. Liu et al.: Matching-Based Task Offloading for VEC

FIGURE 2. The scenario of straight road.

FIGURE 3. The scenario of urban road with traffic light.

vehicle Vn can be calculated as

Rn,m = B log(1 + γn,m), (15)

where B refers to the channel bandwidth, and we assume that

the bandwidth is same for each vehicle Vn. If the vehicle

Vn transmits its task with data size Dn to RSUm, the data

transmission delay can be calculated as

T tn,m =
Dn

Rn,m
. (16)

Remark 2: The data transmission process must be com-

pleted during the time that the vehicle Vn is within the cov-

erage of RSUm, i.e., the dwell time T
tmax
n,m . That is to say,

the transmission delay T tn,m must be less then or equal to

T
tmax
n,m . The representations of dwell time T

tmax
n,m in different

vehicular mobility models can be expressed as:

• Constant velocity model:

T tmaxn,m =
2rm

vn
. (17)

• Vehicle-following model:

T tmaxn,m =











2rm − dvn

vn
+ tvn, if Vn meets traffic light

2rm

vn
, otherwise

,

(18)

here, 2rm − dvn means the travelling distance in uniform

motion phase, which is similar to (10).

• Travelling-time statistical model:

T tmaxn,m = 2rmθ, (19)

here, we consider dn = 2rm and the dwell time T
tmax
n,m

follows the Gamma distribution Ga(2rm, θ).

Specially, if the task is offloaded to theMBS, then it will be

processed by the remote cloud server. Thus, the transmission

delay from the vehicleVn to theMBS adds an additional delay

Tcloud , which is composed of the transmission time from

the MBS to the remote cloud server and the feedback time.
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FIGURE 4. The scenario of crooked road.

For the sake of simplification, denote Tcloud as an constant

value. Then, the transmission delay from the vehicle Vn to

the MBS is calculated as follows:

T tn,0 =
Dn

Rn,0
+ Tcloud . (20)

where Rn,0 is the data transmission rate of the vehicle Vn
which offload its task to the MBS.

C. THE TASK COMPUTATIONAL MODEL

When the task generated by Vn is offloaded to RSUm, the task

with computational request Cn will be processed by the co-

located edge server or the remote cloud server. The computa-

tional delay can be expressed as

T cn,m =
Cn

δm
, (21)

where δm is the computational capability of RSUm. Here,m =

0 means the task is processed by the remote cloud server.

D. HANDOVER MODEL

During the period of task processing, the vehicle Vn might

move out of the coverage of RSUm and enter into the coverage

of another RSU RSUm′ , and m′ ≥ m. The computational

result has to be transmitted firstly from RSUm to RSUm′ , and

then transmitted from RSUm′ to the target vehicle Vn. Assum-

ing that the data size of computational result is negligible

compared to that of the task, and the feedback delay can be

ignored. Then the handover delay is mainly related to the

backhaul delay, which is expressed as

T hm,m′ = (m′ − m)ct , (22)

where ct means the handover delay from RSUm to RSUm+1,

which is assumed as a constant value. From (22), it can be

seen that the critical issue is to predict where the vehicle Vn
is located. From arriving at the coverage of RSUm to the task

has been finished, the travelling time of the vehicle Vn is

Tn = T tn,m +T cn,m, which can be obtained from (16) and (21).

Then the corresponding travelling distance dn can be pre-

dicted by centralized controller under three different vehic-

ular mobility models.

• Constant velocity model:

dn = vnTn. (23)

• Vehicle-following model:

dn=

{

k ′
nd

v
n+(Tn − k ′

nt
v
n)vn, if Vn meets traffic light

vnTn, otherwise
,

(24)

here, Tn−k
′
nt
v
n means themoving time in uniformmotion

phase, which is easy to derive from (10).

• Travelling-time statistical model:

dn =
Tn

θ
, (25)

here, we treat Tn as the expectation value of the Gamma

distribution Ga(dn, θ), then (25) can be derived from

(13).

When the vehicle travels from RSUm to RSUm′ , the following

inequality must be satisfied:

2

m′−1
∑

i=m

ri ≤ dn ≤ 2

m′
∑

j=m

rj. (26)

Then the location of the vehicle Vn can be predicted.

Remark 3: If the vehicle Vn is still within the coverage of

RSUm or it offloads its task to the MBS, there will be no

handover cost, i.e, T hm,m = 0.

E. TOTAL OFFLOADING DELAY

Based on the discussion above, the total offloading delay can

be expressed as the sum of transmission delay, the computa-

tional delay, the waiting delay and the handover delay, that
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is

Tn,m = T tn,m + T cn,m + Twn,m + T hm,m′ . (27)

IV. PROBLEM FORMULATION

The optimization variable of the task offloading is defined as

xn,m. Here, xn,m = 1 means the vehicle Vn offload its task

to RSUm, and otherwise, xn,m = 0. Then the task offload-

ing problem can be transformed into a matching problem

between vehicles and RSUs. This work aims at minimizing

the total offloading delay, which can be formulated as fol-

lows:

P1 : min
{xn,m}

∑

m∈M,n∈N

xn,mTn,m,

s.t. C1 : xn,mTn,m ≤ τmaxn , ∀m ∈ M, ∀n ∈ N ,

C2 : T tn,m ≤ T tmaxn,m , ∀m ∈ M, ∀n ∈ N ,

C3 : γn,m ≥ γmin, ∀m ∈ M, ∀n ∈ N ,

C4 : xn,m ∈ {0, 1}, ∀m ∈ M, ∀n ∈ N ,

C5 :
∑

m∈M

xn,m ≤ 1, ∀n ∈ N ,

C6 :
∑

n∈N

xn,m ≤ qm, ∀m ∈ M. (28)

Here,C1 represents that the delay tolerate of the whole task

offloading process. C2 is the transmission delay constraint

that the vehicle Vn must finish its transmission process during

the dwell time in the coverage of RSUm. C3 denotes the QoS

requirement in terms of SNR. C4 ∼ C6 denote the task

offloading relationship between vehicles and RSUs, which

means that a vehicle can only offload its task to only one RSU,

but the RSU can serve up to qm vehicles, simultaneously.

V. TASK OFFLOADING BASED ON

ONE-TO-ONE MATCHING

We firstly consider a simple scenario where each vehicle can

offload its task to one RSU and each RSU merely execute

the computational task of one vehicle, i.e., qm = 1, m ∈

{1, 2, · · · ,M}. Then, the problem P1 can be converted to a

one-to-one matching [31] between N vehicles and M RSUs,

which can be expressed as

P2 : min
{xn,m}

∑

n∈N ,m∈M

xn,mTn,m,

s.t. C1 ∼ C5,

C7 :
∑

n∈N

xn,m ≤ 1, ∀m ∈ {1, 2, · · · ,M}, (29)

where C7 represents that any RSU can accept no more than

one vehicle. The transformed problem is defined as a triplet

(V,RSU ,F), where V and RSU are two finite and distinct

sets of the participants in this matching, i.e., N vehicles and

M RSUs, respectively. F denotes the set of the matching

preference.

Definition 1 (One-to-One Matching): For the formulated

matching problem (V,RSU ,F), a matching φ represents a

one-to-one correspondence from the set V ∪ RSU onto the

set V ∪ RSU ∪ {∅} based on the preference F . φ(Vn) =

RSUm represents that the vehicle Vn is matched with RSUm.

Specially, if the vehicle Vn is rejected by all the RSUs, it will

be matched with MBS, i.e., φ(Vn) = RSU0.

To carry out thematching, each vehicle is required to estab-

lish its preference list via arranging RSUs from the other side

according to its preference. Denote G = {G1, ...,Gm, ...GM }

as the price set of vehicles, in whichGm represents the match-

ing cost of RSUm. For any vehicle wishing to be matched with

RSUm, it has to bear the matching cost Gm. For the sake of

simplicity, we define the preference of Vn towards RSUm as

the difference between the reciprocal of offloading delay Tn,m
and the matching cost Gm, which is given by

Un,m |φ(Vn)=RSUm=
1

Tn,m
− Gm. (30)

It is noted that the initial value of Gm ∈ G is set as zero for

simplification.

A complete, reflexive, and transitive binary preference

relation, i.e., ‘‘≻’’, is introduced to compare the preferences.

For instance, the vehicle Vn prefers RSUm to RSUm′ can be

represented as RSUm ≻Vn RSUm′ , ∀n ∈ N , m,m′ ∈ M, and

m 6= m′, which is given by

RSUm ≻Vn RSUm′ ⇔ Un,m > Un,m′ . (31)

Denote the preference list ofVn asFn, which is constructed

by arranging all the M RSUs according to the obtained Un,m
in a descending order. In the procedure of the one-to-one

matching,N vehicles andM RSUs will be matched with each

other in accordance with the derived preference lists.

The matching is implemented in an iterative manner. Any

vehicle Vn that remains unmatched will send a matching

request to its most preferred RSUm in Fn. If RSUm receives

only one request, then a matching between Vn and RSUm will

be constructed, i.e., xn,m = 1. A matching conflict arises

when RSUm receives multiple matching requests from the

vehicles simultaneously. In this case, the RSUm will increase

its price step by step. During the i-th pricing rising step,

the price of RSUm is given by

Gm[i] = Gm[i− 1] + 1G, (32)

whereGm[i] means the price of RSUm at the i-th pricing rising

step. 1G is a price increment which is a predefined amount.

Afterwards, the preference lists of competing vehicles will

be updated in accordance with the latest preference of RSUm,

which is decreased due to1G. As the matching cost increase,

some competing vehicles will give up RSUm if another more

preferred RSUs occur, that is, these vehicles will prefer

another RSU RSUm′ than RSUm (m 6= m′), i.e., RSUm′ ≻Vn

RSUm. The price rising process will be finished when only

one vehicle remains. The matching iteration will terminate

when any vehicle Vn ∈ V has been matched with either

an RSU or the MBS. The one-to-one matching is shown in

Algorithm 1.

We give the definitions of the Blocking Pair and Stable

Matching [42].
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Algorithm 1 The Iterative Matching Algorithm

1: Input : V ,RSU , 1G ;

2: Output : φ;

3: Initialization :

4: Each vehicle Vn ∈ V builds its preference list Fn based

on (31);

5: Set φ = ∅,Pm = 0,RSUV
m = ∅,∀m ∈ M,

6: while ∃φ(Vn) = ∅ do

7: for Vn ∈ V do

8: Each vehicle Vn ∈ V proposes to the most preferred

RSU RSUm in its preference list Fn;

9: end for

10: for RSUm ∈ RSU do

11: if RSUm receives only one request then

12: Match the vehicle Vn with RSUm directly;

13: end if

14: if RSUm receives more than one requests then

15: Add Vn which proposed to RSUm to the condition

set RSUV
m .

16: end if

17: if RSUV
m 6= ∅ then

18: while RSUV
m 6= ∅ do

19: Rising price Gm based on (32);

20: The vehicleVn ∈ RSUV
m update its correspond-

ing preference list Fn;

21: if Vn ∈ RSUV
m has a better choice then

22: Remove Vn from RSUV
m .

23: end if

24: end while

25: end if

26: end for

27: end while

Definition 2 (Blocking Pair): The vehicle Vn and

the RSU RSUm form a blocking pair if both Vn and

RSUm prefer the others than their currently matched

result.

Definition 3 (Stable Matching): A matching 8 is defined

as stable if it is not blocked by any pair.

Theorem 1: Given the set of vehicles V and RSUs

RSU , Algorithm 1 achieves a stable matching between

them.

Proof: Contradiction is utilized to verify the validity of

Proposition 1. Assuming that the matching result is φ(Vn) =

RSUm′ , but Vn and RSUm form a blocking pair, that is, Vn and

RSUm prefer to be matched each other, but they have not been

matched, thus we have φ(Vn) 6= RSUm, RSUm ≻Vn RSUm′ .

However, according to the pricing strategy of Algorithm 1,

φ(Vn) = RSUm is not the matching result, which means that

the vehicle Vn has abandoned RSUm during the process of

rising prices. Furthermore, the final winner for Vn is RSUm′ ,

that is RSUm′ ≻Vn RSUm. The analysis result contradicts

the assumption. Therefore, Algorithm 1 achieves a stable

matching.

VI. TASK OFFLOADING BASED ON

MATCHING WITH QUOTA

There is a practical scenario in which one RSU can accept

multiple tasks generated by multiple vehicles. That is to

say, each vehicle can offload its task to only one RSU but

each RSU can execute the computational task from up to qm
vehicles, i.e., qm ≥ 2. Thus, the problem P1 can be converted

to a one-to-many matching [30], which is expressed as

P3 : min
{xn,m}

∑

m∈M,n∈N

xn,mTn,m,

s.t. C1 ∼ C5,

C8 :
∑

n∈N

xn,m ≤ qm, ∀m ∈ {1, 2, · · · ,M},

(33)

Here, C8 represents that RSUm can accept up to qm tasks

simultaneous. Similar to the one-to-one matching, the trans-

formed problem P3 is a one-to-many matching problem and

can be defined as a triple (V,RSU ,F). φ(Vn) = RSUm
means that the Vn is matched with RSUm. Specially, the vehi-

cle Vn which is not matched with any RSU will be matched

with the MBS.

In the one-to-many matching process, each vehicle pro-

poses to its most preferred RSU based on the preference

list Fn, similar to the one-to-one matching process. If RSUm
receives nomore than qm computational request, it will accept

all the proposed vehicles. Otherwise, RSUm will increase

its matching price Gm based on (32) until only qm vehicles

remain. The stability of one-to-many matching is different

from that of one-to-one matching. In the one-to-many match-

ing, we can use the concept of group stability. At first, a coali-

tion C ⊂ V ∪RSU consists of at least one RSU. A matching

φ is blocked by a coalition C if there exists another matching

φ′ that meets the following conditions:

• φ′(RSUm) ∈ C, ∀RSUm ∈ C;

• Un,m′ |φ′(Vn)=RSUm′ ≥ Un,m |φ(Vn)=RSUm , ∀Vn ∈ C;

• If Vn ∈ φ′(RSUm), then Vn ∈ φ(RSUm) ∪ C.

The first condition ensures that all the vehicles Vn in C are

matched to RSUm in C. The second conditions denotes that all

vehicles in C prefer their current matching results in φ′ to their

matching results in φ, and the third condition represents that

each vehicle can be matched with a combination of new RSU.

Therefore, φ is blocked by some coalition C, if the vehicle Vn
and the RSUm both find a better choice to φ. Given the above

conditions, group stability is defined as follows.

Definition 4 (Group Stable Matching): A matching φ is

defined as group stable if it is not blocked by any coalition.

Theorem 2: Given the set of vehicles V , RSUs RSU and

quota qm, ∀m ∈ M, the proposed algorithm achieves a group

stable matching between V andRSU .

Proof: Assuming that the matching result is φ, but it

is blocked by a coalition C, i.e., a matching φ′ is better than

current matching φ. Thus, it must have Un,m′ |φ′(Vn)=RSUm′ ≥

Un,m |φ(Vn)=RSUm , ∀Vn ∈ C. However, according to the
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pricing strategy of the proposed algorithm, φ(Vn) = RSUm′ is

not the matching result, which means that the vehicle Vn has

abandoned RSUm′ during the process of rising prices, and the

winner for Vn is RSUm. Thus, it must have RSUm ≻Vn RSUm′ .

The analysis result contradicts the assumption. Therefore,

the proposed matching algorithm achieves a stable matching

result.

VII. NUMERICAL RESULTS

In this section, we evaluate the proposed algorithm based

on different scenarios and vehicular mobility models. Firstly,

we introduce the scenario establish and the experimental set-

ting. Then, we present the numerical results. The simulation

parameters can refer to previous work [43], and they are

summarized in TABLE 2.

TABLE 2. Simulation parameters.

We adopt SUMO to evaluate the proposed algorithm based

on real-world road topologies. The characteristic information

of the real-world scenarios is extracted from OpenStreetMap,

and using JOSM, which is an extensible editor for Open-

StreetMap, to process the digital map. Then these digital map

data are imported to SUMO for the processing, in which

the vehicular traffics are generated based on the specific

road topologies. Via the predefined interfaces of SUMO [35],

some key parameters of vehicles, such as velocity and the

corresponding time can be obtained during the simulation.

These essential information will be saved as several XML

files for data processing. The three simulation scenarios are

presented as follows.

• The Scenario of Straight Road: It is a unidirectional

straight lane which is the basic element in most traf-

fic scenarios. A typical straight road, named Wugang

Road, in FoshanCity of theGuangdong Province, China,

is selected for evaluation. Fig. 2(a) shows its real-world

map based on aerial photography, and Fig. 2(b) shows

its simulation scenario based on SUMO.

• The Scenario of Urban Road with Traffic Light: This

scenario is based on the urban roadwith the traffic lights,

and only considers the impact of the traffic lights on the

vehicular velocity. A straight road with a traffic intersec-

tion in JianguomenOverpass area in Beijing City, China,

is selected. Fig. 3 (a)-(b) show its real-world map and the

simulation scenario based on SUMO, respectively.

• The Scenario of Crooked Road: Complex road topol-

ogy of roads, especially the road turning, is mainly con-

sidered in this scenario. We select a crooked road with a

turning intersection in Changping District, Beijing City,

China as the road simulation scenario. Fig. 4 (a)-(b)

show its real-world map and the simulation scenario

based on SUMO, respectively.

FIGURE 5. The average offloading delay versus the number of vehicles
(qm = 1).

FIGURE 6. The average offloading delay versus the number of vehicles
(qm = 2).

Fig. 5 and Fig. 6 show the average offloading delay ver-

sus the number of vehicles under two different situations,

which are formulated as one-to-one matching (qm = 1) and

one-to-many matching (qm = 2), respectively. The number

of RSUs is M = 4. It is clearly that the average delay

increases monotonously with the number of vehicles N . The

reason is that a larger number of vehicles leads to more

tasks to be offloaded and processed, which increases both the
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data transmission and task computation delay. Furthermore,

the increasing number of vehicles may lead to a longer wait-

ing delay due to competition in vehicles. It is obviously that

the constant velocity model and the straight road scenario

can achieve a smaller average delay compared with other

models or scenarios. The reason is that they are more ideal

and do not consider the influence of traffic light and turning.

Thus, the average offloading delay is also smaller, since the

waiting delay has a greater impact on average delay compared

with transmission delay and handover delay. The traffic lights

will have a large impact on the velocity of vehicles in vehicle-

following model and the urban road scenario, which will

cause a worse average offloading delay performance.

FIGURE 7. The average offloading delay in different models or scenarios
(N = 6).

Fig. 7 shows the average offloading delay versus different

models or scenarios under different quota values. The number

of vehicles N is set to 6. The performances of qm = 1 and

qm = 2 are consistent with the performances shown in Fig. 5

and Fig. 6, respectively. Specifically, we can note that the

average offloading delay is inversely proportional to the quota

value, i.e., a larger quota value gives rise to a smaller average

delay. The reason is that the RSU can process more tasks

when the quota value is large, which will reduce the waiting

delay, and lead to a more efficient task offloading work.

Fig. 8 shows that the average waiting delay versus different

models and scenarios under different quota values. It can

be seen that with the increasing of quota, the waiting delay

increases firstly and then decreases. Compared to Fig. 7, it can

be seen although the waiting delay increases, the average

offloading delay decreases. The reason is that when qm = 2,

more vehicles choose RSU rather than the MBS to offload

their tasks, which will indeed reduce the offloading delay, but

the waiting delay will increase due to the fact that the vehicle

has to reach the target RSU based on matching results, which

may be far away from the vehicle. With the quota further

increasing, the vehicles choose nearby RSUs to offload theirs

FIGURE 8. The average waiting delay in different models or scenarios
(N = 6).

FIGURE 9. The average offloading delay in different models or scenarios
(N = 6).

tasks, which reduces both the average offloading delay and

the waiting delay.

Fig. 9 shows the proportion of transmission delay, com-

putational delay, waiting delay and handover delay in the

average offloading delay, with N = 6 and qm = 1. It can

be seen that the offloading delay is mainly dominated by

waiting delay and computational delay. Given a task, and

the computational delay is a determined value. Thus, how to

reduce the task offloading delay mainly depends on how to

reduce the waiting delay.

Fig. 10 and Fig. 11 show the average offloading delay

versus the velocity of vehicle and task complexity, respec-

tively. In Fig. 10, it can be seen that with the increasing of

velocity, the average offloading delay is decreasing. It should

be pointed out that the performance of travelling-time sta-

tistical model is little related to velocity, so it is a straight

line. In Fig. 11, the average offloading delay increases almost
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FIGURE 10. The average offloading delay versus the velocity of vehicle
(qm = 1, N = 6).

FIGURE 11. The average offloading delay versus the task complexity
(qm = 1, N = 6).

linearly with the task complexity. The reason is that the

increasing delay is mainly related to the computational delay

which is a linear function of the task complexity.

VIII. CONCLUSIONS

In this paper, we investigated the task offloading problem

in vehicular edge computing, which aimed to minimize the

task offloading delay. The task offloading delay was con-

sist of data transmission delay, task computational delay,

waiting delay, and handover delay, which was derived based

on three different velocity models, i.e., constant velocity

model, vehicle-following model, and travelling-time statis-

tical model. Then a novel matching-based task offloading

algorithm was proposed, and the original problem was trans-

formed into one-to-one matching and matching with quota,

respectively. The proposed algorithm was validated under

three different simulation scenarios extracted by SUMO,

which were straight road, urban road with traffic light, and

crooked road. The numerical results showed that the proposed

algorithm can effectively simulate the overall motion of the

vehicle with suitable vehicular mobility models under differ-

ent real-road topology scenarios, and achieve a significant

delay decreasing.
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