
Matching Events in a Content-based Subscription System

Marcos K. Aguilera1 Robert E. Strom2 Daniel C. Sturman2 Mark Astley3 Tushar D. Chandra2

Abstract

Content-based subscription systems are an emerging alternative to
traditional publish-subscribe systems, because they permit more
flexible subscriptions along multiple dimensions. In these systems,
each subscription is a predicate which may test arbitrary attributes
within an event. However, the matching problem for content-based
systems — determining for each event the subset of all subscriptions
whose predicates match the event — is still an open problem. We
present an efficient, scalable solution to the matching problem. Our
solution has an expected time complexity that issub-linearin the
number of subscriptions, and it has a space complexity that islinear.
Specifically, we prove that for predicates reducible to conjunctions
of elementary tests, the expected time to match a random event is
no greater thanO(N1��) whereN is the number of subscriptions,
and� is a closed-form expression that depends on the number and
type of attributes (in some cases,� � 1=2). We present some
optimizations to our algorithms that improve the search time. We
also present the results of simulations that validate the theoretical
bounds and that show acceptable performance levels for tens of
thousands of subscriptions.

1Department of Computer Science, Cornell University, Ithaca, N.Y. 14853-7501,
aguilera@cs.cornell.edu

2IBM T.J. Watson Research Center, Yorktown Heights, N.Y. 10598,fstrom, stur-
man, tusharg@watson.ibm.com

3Department of Computer Science, University of Illinois at Urbana-Champaign,
1304 W. Springfield Ave, Urbana, I.L. 61801, astley@cs.uiuc.edu

1 Introduction

Publish/subscribe (pub/sub) is a paradigm for interconnecting in-
formation providers to information consumers in a distributed en-
vironment. Information providers publish information in the form
of eventsto the pub/sub system, information consumers subscribe
to a particular category of events within the system, and the sys-
tem ensures the timely delivery of published events to all interested
subscribers. A pub/sub system is typically implemented over a
network ofbrokersthat are responsible for routing events between
publishers and subscribers.

The earliest pub/sub systems weregroup-based. In these sys-
tems, each event is classified as belonging to one of a fixed set of
groups (also known as subjects, channels, or topics). Publishers
are required to label each event with a group name; consumers sub-
scribe to all events in a particular group. For example a group-based
pub/sub system for stock trading may define a group for each issue.
Publishers post information labeled with the appropriate issue as
the group name, and subscribers subscribe to information regarding
some issue. In the past decade, systems supporting this paradigm
have matured significantly resulting in several academic and indus-
trial strength solutions [2, 7, 8, 9]. A similar approach has been
adopted by the OMG for CORBA event channels [5].

An emerging alternative to group-based systems is content-
based subscription systems [1, 3, 10]. These systems support
a number ofinformation spaces, each associated with anevent
schemadefining the type of information contained in each event.
Our stock trade example may be defined as an information space
whose event schema is a tuple containing threeattributes: an is-
sue, a price, and a volume, of string, dollar, and integer types
respectively. A subscription is then a predicate over these at-
tributes, such as(issue="IBM") and (price<120) and
(volume>1000) .

Note that with content-based pub/sub, subscribers have the
added flexibility of choosing filtering criteria along multiple di-
mensions, without requiring pre-definition of groups. In our stock
trading example, the group-based subscriber is forced to select
trades by issue name. In contrast, the content-based subscriber is
free to use an orthogonal criterion, such as volume, or indeed a
collection of criteria, such as issue, price and volume. Further-
more, content-based pub/sub removes the administrative overhead
of maintaining and defining groups, thereby making the system eas-
ier to manage. Finally, content-based pub/sub is more general in
that it can be used to easily implement group-based pub/sub while
the reverse is not true. While content-based pub/sub is the more
powerful paradigm, efficient and scalable implementations of such
systems have not yet been developed.

In order to efficiently implement a pub/sub system, one must
first find an efficient solution to the problem of matching an event

against a large number of subscriptions. We refer to this problem as
the matching problem. One of the strengths of group-based pub/sub
systems is that this problem is straightforward to solve using a mere
table lookup. However, for content-based pub/sub systems, the
matching problem does not have a known, scalable solution.

A simple algorithm for content-based matching is to test all
subscriptions against each event. This naive algorithm runs in
time linear in the number of subscriptions. In practice, pub/sub
systems may be deployed in environments with tens of thousands
of publishers and subscribers, and in general pub/sub systems have
been aimed at providing support for large-scale, widely distributed
applications. Therefore, a linear time solution to the matching
problem is not adequate.

In this paper, we propose an algorithm whose time complex-
ity is sub-linear in the number of subscriptions, and whose space
complexity is linear. Our algorithm initially pre-processes the set
of subscriptions into a data structure that allows fast matching.
Pre-processing makes sense in most pub/sub environments, where
subscriptions tend to change infrequently enough that they can be
considered approximately static, but where events are published at
a fast rate. In such cases, the speed-up gained by pre-processing far
outweighs its cost. Furthermore, our algorithm allows subscription
updates to be incrementally incorporated into existing pre-processed
data.

In the pre-processing phase, our algorithm creates amatching
tree. In the matching tree, each node is a test on some of the
attributes, and the edges are results of such tests. Each lower level
of the tree is a refinement of the tests performed at higher levels,
and at the leaves of the tree we have the subscriptions. With such a
tree, we can find the subscriptions that match an event by traversing
the tree starting from the root; at each node, we perform the test
prescribed by the node and follow all those edges consistent with
the result (there may be more than one edge). We then repeat these
steps until we get to the leaves. The leaves that are finally visited
correspond to the subscriptions that match the event.

In the case where subscriptions consist of equality tests on the
attributes, the asymptotic complexity of our algorithm is signifi-
cantly better than the one of the naive algorithm. More precisely,
the expected time to match a random event isO(N1��) whereN
is the number of subscriptions, and� depends on the number and
type of attributes (in some cases,� � 1=2). The constants hidden
behind the big-O notation are quite reasonable.

In summary, the main contributions of this paper are as follows:

1. We present a generic matching algorithm whose performance
scales better than that of the naive algorithm;

2. In the case where subscriptions consist of equality tests, we
show that the matching time grows only sub-linearly in the
number of subscriptions, and that the space requirement is
linear in the number of subscriptions. This is the first match-
ing algorithm with such characteristics.

We also present some optimizations to the matching algorithm,
and show the result of simulations that validate the practicality of
the algorithm.

This paper is organized as follows: In Section 2 we formally
define the matching problem. We give the general version of our
algorithm for this problem in Section 3. This version allows sub-
scriptions that consist of conjunctions of arbitrary tests on attributes.
In Section 4 we present a version of our algorithm specialized for
the case when subscriptions contain only equality tests on attributes,
and show that the asymptotic time complexity of this algorithm is
sub-linear in the number of subscriptions. In Section 5 we discuss
enhancements that speed up the algorithm. In Section 6 we de-
scribe related work, and we conclude the paper in Section 7. In the
appendices, we provide some algorithmic details that were omitted
from our explanations.

2 The matching problem

An event schemadefines the space of possible events, by specifying
attributenames and types. A subscriptionsubis a boolean predicate
on events. We say that an evente matchesa subscriptionsubif and
only if sub(e) = true . In the matching problem, we are given an
event schema and a finite setSub of subscriptions.1 Subsequently,
we are given an evente, and the goal is to determine all those
subscriptions inSubthat matche. We allow pre-processing of the
setSub before we are givene.

A solution to the matching problem has two phases:pre proc-
ess(Sub) and match(pre processeddata, event). The first phase
pre process(Sub) takes the set of subscriptionsSub and outputs
an internal representation of the subscriptions. The second phase
match(pre processed data ; event) takes this internal representa-
tion and an event, and outputs those subscriptions that match the
event.

We measure the performance of the solution by three parame-
ters:

� Pre-processing space complexity.The amount of data gener-
ated bypre process ;

� Pre-processing time complexity.The time needed to run
pre process ;

� Matching time complexity.The time needed to runmatch .

3 The tree matching algorithm

The matching problem can be solved easily by testing an event
against each subscription (in this case, there is no pre-processing).
This naive solution runs in time proportional to the number of
subscriptions. In many applications, the number of subscriptions
can be extremely high — in the order of magnitude of tens or
hundreds of thousands. If events are published at a fast rate, then
events need to be matched at a fast rate as well, and the naive
solution does not perform adequately. In this section, we provide
an algorithm that performs significantly better.

Our algorithm initially pre-processes the set of subscriptions
into amatching tree. We now describe this tree in detail, and then
we explain how it is used to match events. Henceforth, we assume
that each subscription is a conjunction ofelementary predicates,
where each elementary predicate represents one possible result of
anelementary test. An elementary test is a simple operation on one
or more attributes of the evente.

That is, a subscriptionsub is as follows:

sub := pr 1 ^ pr2 ^ � � � ^ prk

pr i := test i(e)! res i

where the notationtest i(: : :) ! res i means thattest i produces
result res i. For example, in the subscription(city = New
York) and (temperature < 40) , we have two elementary
predicates,pr 1 andpr 2, where

pr 1 = test 1(: : :)! New York

pr 2 = test 2(: : :)! “<"

test 1 = “examine attribute city"

test 2 = “compare attribute temperature 40"

1We assume that subscriptions with identical predicates are coalesced into a single
subscription.

Figure 1: Example of a matching tree

In the matching tree, each non-leaf node contains a test, and
edges from that node represent results of that test. A leaf node
` contains a subscriptionsub, instead of a test. Intuitively,sub
is the subscription described by walking the tree from the root to
` and taking the conjunction of the elementary predicates. More
precisely, for any nodev on the tree, we define a predicatepred (v)
as follows2: let the path from the root tov be (test 1; res1; test2;
res2; : : : ; test j ; res j ; v); then

pred(v) := (test 1! res1) ^ � � � ^ (test j ! resj) (1)

With this, we require that the subscriptionsub contained in a leaf̀
satisfies:

pred (`) � sub (2)

where� denotes logical equivalence.
Here are some simple examples of the matching tree. Suppose

subscriptionssub1 andsub2 sharetest1 as follows:

sub1 = (test1 ! res1) ^ (test 2! res2) (3)

sub2 = (test1 ! res
0
1) ^ (test 3! res3) (4)

In this case, the matching tree is shown in Figure 1.
The tree can have special “don’t care edges” — which we call*-

edges— that represent the fact that subscriptions reachable through
the edge do not care about the result of a test. These edges are
necessary when some of the subscriptions are independent of that
test. For example, suppose:

sub3 = (test 1! res1) ^ (test2 ! res2)

sub4 = (test 3! res3) ^ (test4 ! res4)

In this case, the matching tree is shown in Figure 2. When the
matching tree has *-edges, for each nodev we definepred (v)
exactly as before (see Equation 1), and we assume by convention
that test i ! � is equivalent totrue. For example, in Figure 2, we
have thatpred(sub4) = (test1 ! �)^(test 3 ! res3)^(test 4!
res4) � (test3 ! res3) ^ (test 4! res4) = sub4.

If test 1 andtest3 happen to be related, the matching tree could
look different. More precisely, if(test 3 ! res3)) (test 1 !
res1) then another possible matching tree is shown in Figure 3.
Note that it is still the case thatpred(sub4) � sub4. Intuitively,
this matching tree is better than the one in Figure 2, because to match
an event, in Figure 2 we always need to evaluatetest 1 andtest 3,
whereas in Figure 3, we only evaluatetest 3 whentest 1 evaluates
to res1.

2If v is the root node, we definepred (v) to betrue .

Figure 2: Matching tree with a *-edge

Figure 3: Matching tree when(test 3! res3)) (test1 ! res1)

1 procedurematch(Tree ; event)
2 visit(Tree ; root ; event)
3

4 procedurevisit(Tree ; v; event)
5 if v is a leaf node ofTreethen output(v)
6 else
7 perform test prescribed byv on event
8 if v has an edgee with the result of test
9 then visit(Tree, (child of v at the endpoint
10 of e in Tree), event)
11 if v has a *-edgee
12 then visit(Tree, (child of v at the endpoint
13 of * in Tree), event)

Figure 4: General matching algorithm

In the specialization of the generic matching algorithm that we
consider in Section 4, different tests in the tree willneverbe related.

The algorithmpre process that creates the matching tree works
as follows. We assume that the elementary predicates in subscrip-
tions are ordered according to a fixed total order. To create the
matching tree, we start with the empty tree, and we process one sub-
scription at a time by examining each of its elementary predicates
(in order), and adding nodes to the tree as necessary. For instance,
the processing ofsub1 (see Equation 3) would create nodestest 1,
test 2 andsub1 of Figure 1; and the subsequent processing ofsub2

(see Equation 4) would create the remaining two nodes (note that
test 1 is not added again to the tree). The details of the algorithm
are given in Appendix A.

The algorithmmatchthat uses the tree to match events is given
in Figure 4. The idea is to walk the matching tree by performing the
test prescribed by each node and following the edge that represents
the result of the test, and the *-edge if it is present. The set of
matching subscriptions will be all those leaves that are visited.
This particular algorithm traverses the tree in a depth-first order,
but clearly other orderings, such as breadth-first, would also work.

4 Matching equality tests

We now consider a version of the tree matching algorithm spe-
cialized to the case where subscriptions consist of conjunctions of
equality tests of attributes against constant values. We analyze the
performance of the tree matching algorithm in this special case, and
show that (1) the time complexity to match events is sub-linear in
the number of subscriptions, (2) the space complexity is linear in the
number of subscriptions, and (3) the time complexity to pre-process
is linear in the number of subscriptions.

More precisely, in this section we assume subscriptions are of
the form

sub := (attr 1 = v1) ^ � � � ^ (attrK = vK)

whereK is the number of attributes in the schema, and eachvj is
either a constant or it is *, meaning that any value matches thej-th
predicate.

With this assumption, we can assign each level of the matching
tree to an attribute. For simplicity we assume that thei-th attribute
is assigned to leveli. At level i, all nodes contain the test “exam-
ine the contents of attributei”, and edges from the nodes are the
values against which thei-th attribute is being tested. For example,
suppose the set of subscriptions is

sub1 := (attr 1 = v1) ^ (attr 2 = v2) ^ (attr 3 = v3)

Figure 5: A matching tree for equality tests

sub2 := (attr 1 = v1) ^ (attr 2 = �) ^ (attr 3 = v03)

sub3 := (attr 1 = v01) ^ (attr 2 = v2) ^ (attr 3 = v3)

In this case, the subscription tree is shown in Figure 5.
The pre-processing function that creates this tree is straightfor-

ward and is given in Appendix B. The matching function is the
same as in Section 3. We now analyze the performance of the
algorithm.

Pre-processing time complexity

For each subscription that we need to add to the matching tree, we
spend time proportional to the numberK of attributes in procedure
pre process. Therefore, if there areN subscriptions, the total time
spent inpre processis O(NK).3 SinceK is a constant (which
depends on the event schema), the pre-processing time is linear in
the number of subscriptions.

Space complexity

For the space complexity, note that each subscription can add at most
K + 1 nodes to the matching tree, namely, one for each attribute
and one for the leaf node containing the subscription. Thus, the
space required for the matching tree isO(NK), that is, linear in
the number of subscriptions.

Matching time complexity

We now analyze the time required to match an event in procedure
match. We measure the event matching time by counting the num-
ber of tree nodes that are visited during the match. In any reasonable
implementation of the matching procedurematch, this number is
proportional to the actual time necessary to match the event, since
the algorithm performs a simple elementary test per node, which is
assumed to take constant time. For example, in a typical implemen-
tation, the attribute is evaluated, and its value searched in a hash
table to determine the successor edge (if any); that successor edge,
if present, and the *-edge, if present, are then followed.

The event matching time is a function of the set of subscriptions:
a large set of subscriptions generates a large matching tree, which
requires a larger time to run the algorithm. The matching time is also
a function of the particular event being matched; indeed, different
events cause different sets of nodes to be visited during matching
— even if the set of subscriptions is kept constant. One way to

3Note thatanyalgorithm that reads allN subscriptions requires time at leastNK.

handle this difficulty is to consider the worst case: how long does
it take to match the worst possible event, as a function of the set of
subscriptions? Unfortunately, there are cases where the worst case
performance is linear in the number of subscriptions. For example,
let v be any value and consider a tree that contains only edges
labeledv and *-edges. To match the event whose attributes are all
v, we need to visit all nodes in the tree. Thus the matching time is
equal to the size of the tree. It is easy to see that the size of the tree is
betweenjSj and(K+1)jSj whereS is the set of subscriptions and
K is the number of attributes in the schema. Thus, in this example,
the (worst-case) matching time grows linearly with the number of
subscriptions.

In the rest of this section we take a different approach. We
compute theexpectedtime to match a random event, and show that
even with the subscriptions chosen to maximize this expected time,
the expected time is sub-linear in the number of subscriptions.
Although here we assume a uniform distribution on events, the
techniques we describe can be used to analyze other distributions
as well. We also make the simplifying assumption that all attributes
range over the same set of values, but our analysis can be extended
to the more general case where attributes range over different set of
values (this extension is very cumbersome, however).

Henceforth, let:

� K be the number of attributes in the schema, andK̄ := K+1;

� V be the number of possible values for each attribute;

� S be an arbitrary set of subscriptions.

� C(S) the expected time to match a random event against the
setS of subscriptions.

We can obtain an easy upper bound onC(S) by noting that
when we match an event we follow at most two branches for every
level in the tree. Thus, the total number of nodes visited is at
most 20 + 21 + � � �+ 2K .4 This bound, however, is unsatisfactory
because it is exponential inK. We are interested in bounds that are
polynomial inK, V andjSj, and we next show one such a bound
that is sublinear injSj.

Theorem 1 Suppose that all events are equally likely. The expected
timeC(S) to match a random event is bounded above by

C(S) �
V K̄(K̄jSj1�� � 1)(lnV + ln K̄)

(V K̄ � 1) ln K̄
(5)

where

� :=
lnV

lnV + ln K̄
> 0

SinceV � 2 andK̄ � 2, we have(V K̄)=(V K̄ � 1) � 4=3.
Also, sinceK̄ � 2, we have 1= ln K̄ < 3=2. By introducing these
results in equation (5), we derive the following

Corollary 1 C(S) � 2K̄jSj1�� (lnV + ln K̄).

We now proceed to prove Theorem 1. Henceforth, letST be
the subscription tree obtained when we pre-processS. For each
nodev of this tree, we definecost(v) to be the number of times that
this node is visited when we run the matching algorithm with all
the possibleV K events. Note that this number is always a power
of V . For example, ifv is the root node of the tree, thencost (v) is
V K . In general,cost(v) = V K�� where� is the number of non-*
edges in the path from the root to nodev.

4This actually gives a bound on the time to matchanyevent, not just on the average
matching time.

When allV K events are equally likely, then the probability that
a nodev is visited when matching a random event is clearly equal
to V �Kcost(v). Thus, the expected numberC(S) of nodes ofST
visited is:

C(S) = V �K
X

v2nodes(ST)

cost(v) (6)

wherenodes(ST) is the set of nodes of the treeST .

Lemma 1 For anyj : 0 � j � K, ST contains at mostV j
�
K̄
j+1

�
nodes with cost equal toV K�j .
Proof. Let j be such that 0� j � K. A noden has costV K�j

if and only if the path from the root to the node has exactlyj non-*
edges. Such paths are uniquely determined by (1) the number of
edges in the path, (2) the position of the non-* edges and (3) the
values of the non-* edges. We can bound the number of paths with
j non-* edges by counting the possible ways to specify (1), (2) and
(3). The numbern of edges is betweenj andK; the position of
the non-* edges arej distinct numbers between 1 andn, and so
there are

P
i=j:::K

�
i
j

�
=
�
K+1
j+1

�
ways of choosing (1) and (2).

Moreover, we can assignV distinct values for each non-* edges.
Therefore, the number of paths inST with exactlyj non-* edges is
at mostV j

�
K+1
j+1

�
. 2

Corollary 2 For any j : 0 � j � K, ST contains at most
K̄[K̄V]j nodes with cost equal toV K�j .
Proof.

V j

�
K̄

j + 1

�
� V j K̄j+1

(j + 1)!
� K̄[K̄V]j (7)

2

Lemma 2 ST has at mostK̄jSj nodes.
Proof. A subscription is associated with a path withK edges (one
edge for each attribute). This path containsK + 1 = K̄ nodes.
Thus, if the tree hasjSj subscriptions, it has at most̄KjSj nodes.
2

Henceforth, we order the nodes ofST by decreasing order of
their cost, and we letf(i) be the cost of the i-th node in the order
(if i is greater than the number of nodes, we letf(i) be zero). By
Equation (6) and Lemma 2, we have that

C(S) = V �K

K̄jSjX
i=1

f(i) (8)

Definition 1 Henceforth, let

g(x) := (Ax+B)��

where

A := V �K̄=�[V � 1=K̄] (9)

B := V �K̄=� (10)

� :=
lnV

lnV + ln K̄
< 1 (11)

Lemma 3 f(x) � g(x)
Proof. By Corollary 2 and the definition off , we have that for
eachi such that 0� i � K and for eachj such that

X
p=0:::i�1

K̄[K̄V]p < j �
X
p=0:::i

K̄[K̄V]p

the following holds:

f(j) � V K�i

Now,

g
� X
p=0:::i

K̄[K̄V]p
�
= g
�
K̄

[K̄V]i+1 � 1
K̄V � 1

�

By using the definition ofg, we conclude that

g
� X
p=0:::i

K̄[K̄V]p
�
= V K�i:

The lemma now follows becauseg is a non-increasing function.
2

Proof of Theorem 1. We have that

C(S) = V �K

K̄jSjX
x=1

f(x)

� V �K

K̄jSjX
x=1

g(x)

� V �K

Z K̄jSj

0

g(x)dx

= V �K (AK̄jSj+B)1�� �B1��

A(1� �)

After replacing the values ofA andB given in (9) and (10), and
simplifying, we obtain:

C(S) �
V K̄[(V K̄jSj � jSj+ 1)1�� � 1]

(V K̄ � 1)(1� �)

After using the fact thatV K̄jSj � jSj + 1 � V K̄jSj and that
(V K̄)1�� = K̄, and after replacing the value of� given in (11) we
obtain Equation (5). 2

5 Optimizations to the general tree matching algorithm

A certain amount of static analysis of the subscription tree can be
used to streamline the search in the above algorithm. An extremely
straightforward and obvious optimization is to collapse a chain of
edges into a single edge whenever the intermediate nodes have
only a *-edge. For example, the edge from node J to node A in
Figure 6 can be rewritten to lead directly to node B. In the simulation
runs discussed later, where some attributes are rarely tested by a
subscription, this simple transformation of the tree led to a 60%
reduction in matching time.

A second optimization allows some successor nodes to be pre-
computed at analysis time, thereby reducing the number of attribute
re-evaluations needed at matching time. This optimization is based
upon the assumption that the parallel subsearches (steps 9 and 12 of
Figure 4) will be performed in some known serial order, e.g. a non-
* edge will be followed before a *-edge. We can then annotate the
search data structure to use the information obtained by traversing
the non-* edges to skip over tests in the *-path which are implied
by tests already performed in the non-* path.

For example, let us suppose that all subscriptions are equality
tests, that each elementary test is a simple evaluation of an attribute,
that the matching tree is the one shown in Figure 6, and that we
always follow non-* paths before *-paths. Suppose that we are

Figure 6: A matching tree with successor node annotations

matching the eventh1; 2; 3; 8; 2i. We follow the pathha1 = 1; a2 =
2; a3 = 3i to node C in Figure 6, and then find ourselves blocked
whena4 = 8 and there is no non-* path to follow. Static analysis
can predict that any search reaching node C must later traverse the
paths labeledha1 = �; a2 = 2; a3 = 3i, ha1 = 1; a2 = �; a3 = 3i
andha1 = 1; a2 = 2; a3 = �i, if they exist, since these predicates
are implied byha1 = 1; a2 = 2; a3 = 3i. The second and third of
these paths exist and lead to nodes G and H. At analysis time, we
designate G and H assuccessorsof C. But the remaining path (to the
dotted node labeled D) does not exist; so instead of D, D’s successors
(the nodes E and F whose paths areha1 = �; a2 = �; a3 = 3i and
ha1 = �; a2 = 2; a3 = �i) are designated as successors of C. (Of
course, the node I, reached from C via a *-edge, is also designated
as a successor.)

More formally, if the pathp to a node N ends inn consecutive
non-* segments, the successor setSS(p) corresponding to that path
consists of then pathspi obtained by replacing one of the non-*
segments with a *. The successor node set stored in the node atp
contains: for eachpi in SS(p), a pointer to the node reached by
pathpi if it exists, else the nodes in the successor node set of the
node atpi. If there is a child node reachable from N by a segment
labeled *, this child node is also included in the successor node set.

In the general case, nodeN2 is a successor ofN1 iff
pred(N1)) pred(N2) and there does not exist an intermediate
nodeN3 such thatpred(N1)) pred(N2)) pred(N3).

Even more aggressive static analysis can be performed. For
example, suppose we know at analysis time that we will always
follow a successful test before following *-edges. Then if we have
reached node C and if we are blocked, we know not only that
ha1 = 1; a2 = 2; a3 = 3i, but also thata4 6= 1. This information
allows us to refine the successor set, since we know that at nodes F,
G, and H, the test ofa4 will also fail. We replace F, G, and H with
their successor nodes, which in this case is the single node K, the
successor of G.

When this form of static analysis is used, the order of following
nodes at matching time is constrained so that only non-* branches
are followed until a node is reached for which there is no child
node labeled with the value of the tested attribute, or until a leaf is
reached. Then the successor node set is used to determine where

to continue the search. The performance of this approach has been
measured, and leads to increased (but still linear) space, and about
a 20% additional improvement in search time relative to the first
optimization.

The search can be further improved, at the cost of increased
space, by factoring out certain attributes. That is, certain attributes
— preferably those for which the subscriptions rarely contain “don’t
care” tests — are selected as indices. A separate subtree is built
for each possible value of the index attributes. The subtrees do not
include tests for the index attributes. A subscription (minus the
tests for index attributes) is placed into each subtree consistent with
those of its elementary predicates which test the index attributes.
This means that if the subscription has “don’t care" onm of the
index attributes, and there areV values per attribute, it must be
inserted intoV m subtrees. Therefore, in order for this optimization
to be scalable, the number of index attributes must be kept small
enough so thatV m is small relative to the number of subscriptions.

6 Related Work

As far as we know, there are no other algorithms for the matching
problem with sub-linear time-complexity, and linear space com-
plexity. The content-based subscription systems that have been de-
veloped so far have not yet adapted scalable matching algorithms.
SIENA allows content-based subscriptions to a distributed network
of event servers (brokers) [3]. SIENA filters events before forward-
ing them on to servers or clients. However, a scalable matching
algorithm for use at each server has not been developed. The Elvin
system [10] uses an approach similar to that used in SIENA. Publish-
ers are informed of subscriptions so that they may “quench" events
(not generate events) for which there are no subscribers. In [10],
plans are discussed for optimizing Elvin event matching by inte-
grating an algorithm similar to the one in this paper. This algorithm,
presented in [4], converts subscriptions into a deterministic finite
automata for matching. However, the main difference between [4]
and our work is that we seek matching algorithms with (worst-case)
space complexitylinear in the number of subscriptions, while in
[4], the space complexity is exponential.

Another algorithm for optimizing matching is discussed in [6].
At analysis time, one of the testsaij of each subscription is chosen
as the gating test; the remaining tests of the subscription (if any)
are residual tests. At matching time, each of the attributesaj in the
event being matched is examined. The event valuevj is used to
select those subscriptions i whose gating tests includeaij = vj . The
residual tests of each selected subscription are then evaluated: if any
residual test fails, the subscription is not matched; if all residual tests
succeed, the subscription is matched. Our tree matching algorithm
performs this type of test for each attribute, not just a single gating
test attribute.

7 Discussion

In this paper, we have presented a matching algorithm suitable for
a content-based subscription system. For the case where subscrip-
tions contain only equality tests, the algorithm matches events in
expected time sub-linear in the number of subscriptions, given a
uniform distribution of events but a worst-case set of subscriptions.
The space requirement for the matching tree is linear in the number
of subscriptions.

In addition to the theoretical analysis of this algorithm, perfor-
mance was also tested with a variety of simulated loads. In these
tests, we assumed an event schema ofK attributes, each attribute
havingV possible values.

We generated a random mix ofN subscriptions as follows:
We assumed that the attributes varied in “popularity”, where pop-
ularity measured the likelihoodpcare that a particular subscrip-

Figure 7: Performance of matching algorithm under simulated
workload

tion would contain a test for this attribute as opposed to a “don’t
care”. By convention, the first attribute was the most popu-
lar, with a pcare(1) = p1. Each successive attribute was pro-
gressively less popular by a degradation factor ofD; that is
pcare(i + 1) = Dpcare(i). The values tested in the subscriptions
varied according to a Zipf distribution.

We generated random events assuming that theV possible val-
ues of each attribute were uniformly distributed.

Figure 7 shows a set of simulations forV = 3,K = 30, and the
factoring optimization for 3 index attributes (that is, 27 subtrees).
Values ofp1 andD were chosen so that the number of matches per
event was held at 100 independent ofN . The space was measured
by counting the number of edges plus the size of the successor sets
used by the optimization discussed in Section 5.

Other measurements in an actual Java-based prototype have
shown that even with as many as 25,000 subscriptions, we can match
an event in under 4 milliseconds, even with a fairly unoptimized
algorithm.5

The analysis and results above are for the special case where
all attribute tests are equality tests. We also have a version of
the algorithm for inequality and range tests. However, we do not
yet have a good enough definition for “typical” ranges to generate
simulated loads for a performance analysis. Work on a theoretical
analysis of the algorithm with range tests is underway. We are
also working on analyzing the performance improvements of the
optimizations of Section 5.

The authors’ Gryphon pub/sub system [1] uses this matching
algorithm (for both equality and inequality tests) to implement a
distributed, high-performance content-based pub/sub system. The
goal of the Gryphon project is to advance the state-of-the-art in
distributed messaging from simple group-based pub/sub, to a full
featuredmessage brokeringsystem incorporating content-based
queries and customized message transformations.

Acknowledgements

We would like to thank the anonymous referees for helpful com-
ments.

5This simulation was run on a Pentium 100Mhz, withK = 30 andV = 30.
Subscriptions were generated randomly with a probability of 65% of having a * for
each attribute.

A The pre-processing algorithm

We now present in detail thepre process algorithm that is briefly
outlined in Section 3. This algorithm is used to generate the match-
ing tree, and is shown in Figure 8. The matching tree is represented
by a setT of triples(v; r; v0), where such a triple represents the fact
that is an edge labeledr from nodev to nodev0. The root of the
tree is represented by a specially designed node calledtree root .
For each nodev, v:data represents the data associated withv (this
data is a test ifv is not a leaf, and it is a subscription ifv is a leaf).

Procedurepre process processes each subscription in the set
Sub, one at a time, by invoking procedureprocess sub. The latter
procedure is responsible for adding the subscription to the currently
existing tree. Initially, we check if the tree already exists, and if
not we create it (lines 7 and 8). Next, we loop over the primitive
predicates in the subscription to check which are already present
in the tree (loop in lines 11–25). Finally, we add the remaining
primitive predicates that are not yet in the tree (lines 26–35).

The loop in lines 11–25 starts at the root of the tree (v =
tree root) and proceeds down the tree by successively checking
that the tree contains the primitive predicatest1! r1; : : : ; tq ! rq
of the subscription. In line 12 we check if the current tree nodev
is a leaf, and in that case, we replace that node with a primitive
predicate and we exit the loop by settingfound to false. In line 17,
we deal with the case that the current tree nodev is the current test
ti. In this case, there are two sub-cases: the tree does not contain an
edge for the current resultri (line 18), and the tree already contains
such an edge (line 19). In the first sub case, we simply exit the loop
by settingfound to false. In the second sub case, we follow that
edge on the tree, and continue the loop with the next primitive test.

If v is not the current testti, we continue searching the tree for
ti as follows: (1) if the test in the current nodev is related to result
r0 of test ti as we described in Section 3 (that is,(ti ! ri))
(v:data ! r0) for some edger0 in the tree), then we follow edge
r0 (line 21), (2) if there is some *-edge atv, then we follow that
edge (line 22); or (3) if there are no *-edges atv, then we create a
*-edge atv pointing to a node withti and we exit the loop (lines 24
and 25).

Once we exit the loop of lines 11–25, we check if there are still
primitive predicates that need to be added to the tree (line 26). In that
case, we add those predicates, followed by the subscription itself
(lines 27–29). Else, we add the subscription to the tree as follows:
if the current node is a leaf node, there is nothing to be done — the
subscription is already in the tree (line 31); else, we follow *-edges
until it is no longer possible, and then add the subscription to the
tree (lines 33–35).

B The pre-processing algorithm for equality tests

In this section, we present the preprocess algorithm specialized for
the case when subscriptions contain only equality tests. The algo-
rithm is given in Figure 9, and is much simpler than the general one.
As in Section A, we assume that the matching tree is represented by
T . Just as before, leaf nodes ofT contain subscriptions, but unlike
before, non-leaf nodes ofT do not contain any data; this is because
the test associated with a non-leaf node is implicit by the position
of the node in the tree. More precisely, if a nodev is at leveli of
the tree, then the test associated with a node in leveli is always
“examine the contents of attributei”, and the edges leavingv are
possible values of attributei (or it could be the *-edge).

Procedure preprocess(Sub) works as before: it loops over
each subscription to be added, and invokesprocess sub. Function
follow takes a verticev and a valuer, and returns the nodev0

obtained by following edger of nodev (if such an edge does not
exist at nodev, the function adds it to the tree). In procedure
processsub(sub), for eachi we setri to be the value against which

attributei is being tested in the subscription (if attributei is not
being tested, we setri to *). This is done in line 10. Then, we
simply succesively call functionfollow on valuesr1; r2; : : : ; rK
(lines 13 and 14). With this, we obtain a leaf node, and then add
the subscription to that node (line 15).

References

[1] Guruduth Banavar, Tushar Chandra, Bodhi Mukherjee, Jay
Nagarajarao, Robert E. Strom, and Daniel C. Sturman. An ef-
ficient multicast protocol for content-based publish-subscribe
systems. Technical report, IBM, 1998. To appear in the
Proceedings of the 19th IEEE International Conference on
Distributed Computing Systems, Austin, Texas, 1999.

[2] K. P. Birman. The process group approach to reliable dis-
tributed computing.Communications of the ACM, 36(12):36–
53, December 1993.

[3] Antonio Carzaniga, David S. Rosenblum, and Alexander L.
Wolf. Design of a scalable event notification service: In-
terface and architecture. Technical Report CU-CS-863-98,
Department of Computer Science, University of Colorado,
August 1998.

[4] John Gough and Glenn Smith. Efficient recognition of events
in a distributed system. InProceedings of ACSC-18, Adelaide,
Australia, 1995.

[5] Object Management Group. Corbaservices: Commo object
service specification. Technical report, Object Management
Group, July 1998.

[6] Eric N. Hanson, Moez Chaabouni, Chang-Ho Kim, and Yu-
Wang Wang. A predicate matching algorithm for database
rule systems. InProceedings of SIGMOD, pages 271–280,
Atlantic City, New Jersey, May 1990.

[7] Shivakant Mishra, Larry L. Peterson, and Richard D. Schlicht-
ing. Consul: A communicaiton substrate for fault-tolerant
distributed programs. Technical Report TR 91-32, Depart.
of Computer Science, The University of Arizona, November
1991.

[8] Brian Oki, Manfred Pfluegl, Alex Siegal, and Dale Skeen. The
information bus: An architecture for extensible distributed
systems.Operating Systems Review, 27(5):58–68, December
1993.

[9] David Powell. Group communications.Communications of
the ACM, 39(4):50–97, April 1996.

[10] Bill Segall and David Arnold. Elvin has left the building: A
publish/subscribe notification service with quenching. InPro-
ceedings of AUUG97, Brisbane, Australia, September 1997.

1 procedurepre process(Sub)
2 for each sub 2 Sub do processsub(sub)
3

4 procedureprocesssub(sub)
5 let sub be given by(t1! r1) ^ : : : ^ (tq ! rq)
6 f q is the number of conjunctions insubg
7 if tree root = ?
8 then tree root new node; tree root :data t1; found false

9 elsefound true

10 v tree root ; i 1
11 while foundand i <= q do
12 if v is a leaf nodethen
13 letw; r0 be such that(w; r0; v) 2 T f edge going intov g
14 v0 new node; v0:data ti
15 T T n f(w; r0; v)g [f(w; r0; v0); (v0; �; v)g
16 v v0; found false

17 else ifv:data = ti then
18 if 6 9w : (ti; ri; w) 2 T then found false

19 elseletw : (ti; ri; w) 2 T ; v w; i i+ 1
20 else v:data 6= ti
21 if 9r0; w : (v; r0; w) 2 T ^ [(ti ! ri)) (v:data ! r0)] then v w
22 else if9w : (v; �; w) 2 T then v w
23 else f 6 9w : (v; �; w) 2 T g
24 v0 new node ; v0:data ti
25 T T [f(v; �; v0)g; v v0; found false

26 if not foundthen
27 while i <= q do
28 v0 new node; if i < q then v0:data = ti+1 elsev0:data = sub
29 T T [f(v; ri; v

0)g; i i+ 1
30 else f foundg
31 if v is a leaf nodethen nop f subscription already in treeg
32 else
33 while 9w : (v; �; w) 2 T do v w
34 if v is a leaf nodethen nop f subscription already in treeg
35 elsev0 new node; v0:data sub; T T [(v; �; v0)

Figure 8: The pre-processing algorithm

1 procedurepre process(Sub)
2 for each sub 2 Sub do processsub(sub)
3

4 function follow(v; r): node
5 if 9v0 : (v; r; v0) 2 T then return v0

6 elsev0 new node; T T [(v; r; v0); return v0

7

8 procedureprocesssub(sub)
9 f K is the number of attributes in the schemag
10 let sub be given by(attr1 = r1) ^ : : : ^ (attrK = rK) f we setri to “*” if attribute i is not tested insubg
11 if tree root = ? then tree root new node
12 v tree root
13 for i 1 to K do
14 v follow(v; ri)
15 v:data sub

Figure 9: The pre-processing algorithm for equality tests

