Matching Events in a Content-based Subscription System

Marcos K. Aguilera ~ RobertE. StroA Daniel C. Sturmah Mark Astley? Tushar D. Chandfa

Abstract 1 Introduction

Content-based subscription systems are an emerging alternative tdPublish/subscribe (pub/sub) is a paradigm for interconnecting in-
traditional publish-subscribe systems, because they permit moreformation providers to information consumers in a distributed en-
flexible subscriptions along multiple dimensions. In these systems, vironment. Information providers publish information in the form
each subscription is a predicate which may test arbitrary attributes of eventsto the pub/sub system, information consumers subscribe
within an event. However, the matching problem for content-based to a particular category of events within the system, and the sys-
systems — determining for each event the subset of all subscriptionstem ensures the timely delivery of published events to all interested
whose predicates match the event — is still an open problem. We subscribers. A pub/sub system is typically implemented over a
present an efficient, scalable solution to the matching problem. Our network ofbrokersthat are responsible for routing events between
solution has an expected time complexity thasub-linearin the publishers and subscribers.

number of subscriptions, and it has a space complexity thiaer. The earliest pub/sub systems wereup-based In these sys-
Specifically, we prove that for predicates reducible to conjunctions tems, each event is classified as belonging to one of a fixed set of
of elementary tests, the expected time to match a random event isgroups (also known as subjects, channels, or topics). Publishers
no greater tha®(IN'~*) whereN is the number of subscriptions, are required to label each event with a group name; consumers sub-
and is a closed-form expression that depends on the number andscribe to all events in a particular group. For example a group-based
type of attributes (in some cases,~ 1/2). We present some pub/sub system for stock trading may define a group for each issue.
optimizations to our algorithms that improve the search time. We Publishers post information labeled with the appropriate issue as
also present the results of simulations that validate the theoreticalthe group name, and subscribers subscribe to information regarding
bounds and that show acceptable performance levels for tens ofsome issue. In the past decade, systems supporting this paradigm
thousands of subscriptions. have matured significantly resulting in several academic and indus-
trial strength solutions [2, 7, 8, 9]. A similar approach has been
adopted by the OMG for CORBA event channels [5].

An emerging alternative to group-based systems is content-
based subscription systems [1, 3, 10]. These systems support
a number ofinformation spaceseach associated with agvent
schemadefining the type of information contained in each event.
Our stock trade example may be defined as an information space
whose event schema is a tuple containing ttatebutes an is-
sue, a price, and a volume, of string, dollar, and integer types
respectively. A subscription is then a predicate over these at-
tributes, such aéssue="IBM") and (price<120) and
(volume>1000)

Note that with content-based pub/sub, subscribers have the
added flexibility of choosing filtering criteria along multiple di-
mensions, without requiring pre-definition of groups. In our stock
trading example, the group-based subscriber is forced to select

1_Department of Computer Science, Cornell University, Ithaca, N.Y. 14853-7501, trades by issue name. In contrast, the content-based subscriber is
ag‘;':gﬁggs-cv\;’rt”e”-e;“ - Conter. Yorkiown Heichts. N.Y. 10dafrom. <t free to use an orthogonal criterion, such as volume, or indeed a
man, tushé}@ﬁafggn_igﬁfgg% enter, Yorktown Heights, N.Y. 10§&&om, stur collection of criteria, such as issue, price and volume. Further-
3Department of Computer Science, University of llinois at Urbana-Champaign, MOre, content-based pub/sub removes the administrative overhead
1304 W. Springfield Ave, Urbana, I.L. 61801, astley@cs.uiuc.edu of maintaining and defining groups, thereby making the system eas-
ier to manage. Finally, content-based pub/sub is more general in
that it can be used to easily implement group-based pub/sub while
the reverse is not true. While content-based pub/sub is the more
powerful paradigm, efficient and scalable implementations of such
systems have not yet been developed.
In order to efficiently implement a pub/sub system, one must
first find an efficient solution to the problem of matching an event

against a large number of subscriptions. We refer to this problem as2 The matching problem
the matching problemOne of the strengths of group-based pub/sub
systems is that this problem is straightforward to solve using a mere An event schemdefines the space of possible events, by specifying
table lookup. However, for content-based pub/sub systems, theattributenames and types. A subscriptisubis a boolean predicate
matching problem does not have a known, scalable solution. on events. We say that an everrhatchesa subscriptiorsubif and

A simple algorithm for content-based matching is to test all only if sub(e) = true. In the matching problem, we are given an
subscriptions against each event. This naive algorithm runs in event schema and a finite s&ib of subscriptions. Subsequently,
time linear in the number of subscriptions. In practice, pub/sub we are given an event, and the goal is to determine all those
systems may be deployed in environments with tens of thousandssubscriptions irBubthat matche. We allow pre-processing of the
of publishers and subscribers, and in general pub/sub systems haveetSub before we are given.
been aimed at providing support for large-scale, widely distributed A solution to the matching problem has two phasg® proc-
applications. Therefore, a linear time solution to the matching esgSub) and matchpre_processedlata evenj. The first phase
problem is not adequate. pre_proces$Sub) takes the set of subscriptiorfs.b and outputs

In this paper, we propose an algorithm whose time complex- an internal representation of the subscriptions. The second phase
ity is sub-linear in the number of subscriptions, and whose space matcH pre_processed_data, event) takes this internal representa-
complexity is linear. Our algorithm initially pre-processes the set tion and an event, and outputs those subscriptions that match the
of subscriptions into a data structure that allows fast matching. event.
Pre-processing makes sense in most pub/sub environments, where We measure the performance of the solution by three parame-
subscriptions tend to change infrequently enough that they can beters:
considered approximately static, but where events are published at
afastrate. In such cases, the speed-up gained by pre-processing far e Pre-processing space complexifjhe amount of data gener-

outweighs its cost. Furthermore, our algorithm allows subscription ated bypre_process;

updates to be incrementally incorporated into existing pre-processed

data. e Pre-processing time complexityThe time needed to run
In the pre-processing phase, our algorithm createsmtching pre-process,

tree In the matching tree, each node is a test on some of the
attributes, and the edges are results of such tests. Each lower level
of the tree is a refinement of the tests performed at higher levels,
and at the leaves of the tree we have the subscriptions. With such a3 The tree matching algorithm
tree, we can find the subscriptions that match an event by traversing . . .
the tree starting from the root; at each node, we perform the test The matching problem can be solved easily by testing an event
prescribed by the node and follow all those edges consistent with 2Jainst each subscription (in this case, there is no pre-processing).
the result (there may be more than one edge). We then repeat thesd Nis naive solution runs in time proportional to the number of
steps until we get to the leaves. The leaves that are finally visited Subscriptions. In many applications, the number of subscriptions
correspond to the subscriptions that match the event. can be extremely high — in the order of magnitude of tens or
In the case where subscriptions consist of equality tests on thehundreds of thousands. If events are published at a fast rate, th_en
attributes, the asymptotic complexity of our algorithm is signifi- €Vents need to be matched at a fast rate as well, and the naive
cantly better than the one of the naive algorithm. More precisely, Solution does not perform adequately. In this section, we provide

¢ Matching time complexityThe time needed to rumatch.

the expected time to match a random ever®{sv'~*) where N an algorithm that performs significantly better. o

is the number of subscriptions, adddepends on the number and ~ Our algorithm initially pre-processes the set of subscriptions
type of attributes (in some cases 1/2). The constants hidden Into amatching tree We now describe this tree in detail, and then
behind the bigd notation are quite reasonable. we explain how it is used to match events. Henceforth, we assume

In summary, the main contributions of this paper are as follows: that each subscription is a conjunction elementary predicates
]]) where each elementary predicate represents one possible result of
1. We present a generic matching algorithm whose performance anelementary testAn elementary test is a simple operation on one
scales better than that of the naive algorithm; or more attributes of the eveat

2. In the case where subscriptions consist of equality tests, we 1 natis, a subscriptiosub is as follows:
show that the matching time grows only sub-linearly in the
number of subscriptions, and that the space requirement is
linear in the number of subscriptions. This is the first match-
ing algorithm with such characteristics. pr; = testi(e) = res;

We also present some optimizations to the matching algorithm, yhere the notatiortest;(...) — res; means thatest; produces

and show the result of simulations that validate the practicality of result res;. For example, in the subscriptioftity = New

the algorithm. _ _ York) and (temperature < 40) , we have two elementary
This paper is organized as follows: In Section 2 we formally predicatespr, andpr,, where

define the matching problem. We give the general version of our

algorithm for this problem in Section 3. This version allows sub-

scriptions that consist of conjunctions of arbitrary tests on attributes. pr, = testi(...) = New York

In Section 4 we present a version of our algorithm specialized for

sub = pryApra A--- Aprg

- . . : = testa(...) = "<"
the case when subscriptions contain only equality tests on attributes, T2 “es 2()) < o
and show that the asymptotic time complexity of this algorithm is tests = “ezamine attribute city
sub-linear in the number of subscriptions. In Section 5 we discuss testz = “compare attribute temperature 40"

enhancements that speed up the algorithm. In Section 6 we de-
scribe related work, and we conclude the paper in Section 7. In the
appendices, we provide some algorithmic details that were omitted we assume that subscriptions with identical predicates are coalesced into a single
from our explanations. subscription.

X
Figure 1: Example of a matching tree
lres3
In the matching tree, each non-leaf node contains a test, and
edges from that node represent results of that test. A leaf node
lres4

¢ contains a subscriptiosub, instead of a test. Intuitivelysub
is the subscription described by walking the tree from the root to
¢ and taking the conjunction of the elementary predicates. More
precisely, for any node on the tree, we define a predicate:d (v)
as followg: let the path from the root to be (test1, resi, testa,

ressz, ..., test;, resj,v); then)))
Figure 2: Matching tree with a *-edge

pred(v) := (test1 — res1) A --- A (test; — res;) (1)

With this, we require that the subscriptienb contained in a leaf
satisfies:

pred (€) = sub (2)

where= denotes logical equivalence.
Here are some simple examples of the matching tree. Suppose
subscriptionsubi andsub, sharetest, as follows:

subi = (test1 — res1) A (testa — res2) (3)
subp = (tests — rest) A (testz — res3) 4)
In this case, the matching tree is shown in Figure 1.
The tree can have special “don’t care edges” — which weteall
edges— that represent the fact that subscriptions reachable through
the edge do not care about the result of a test. These edges are res, l
necessary when some of the subscriptions are independent of that
test. For example, suppose:

subs

X
= (test1 — res1) A (testa — resz)
suba = (tests — ress) A (testa — resa)
In this case, the matching tree is shown in Figure 2. When the

matching tree has *-edges, for each nadeve definepred(v)

exactly as before (see Equation 1), and we assume by convention lr684
thattest; — # is equivalent tdrue. For example, in Figure 2, we
have thapred (suba) = (test1 — *)A(testz — ress) A(testa —

ress) = (tests — ress) A (testa — resa) = suba.

If test1 andtests happen to be related, the matching tree could
look different. More precisely, ittests — ress) = (test1 — Figure 3: Matching tree wheftests — ress) = (test1 — res1)
res1) then another possible matching tree is shown in Figure 3.

Note that it is still the case thatred (subs) = suba. Intuitively,

this matching tree is better than the one in Figure 2, because to match
an event, in Figure 2 we always need to evaluate, andtests,
whereas in Figure 3, we only evaluaists whentest, evaluates

to resi.

2If v is the root node, we defingred (v) to betrue.

1 procedure match Tree, event) -
2 visit(Tree, root, event) @
3 V \\:1.
4 procedurevisit(Tree, v, event)
5 if v is a leaf node offreethen output(v) - -
6 else @ @
7 perform test prescribed hyon event v, / X lvz
8 if v has an edge with the result of test
0 then visit(Tree (child of v at the endpoint - - -
10 of e in Tred, evenj @ @ @
u if v has a *-edge vsl vs,l vsl
12 then visit(Tree (child of v at the endpoint
13 of *in Tred, evenj
Figure 4: General matching algorithm Figure 5: A matching tree for equality tests
. !

In the specialization of the generic matching algorithm that we subz = (atiry = v1) A (attr2 = *) A (attrs = vs)

consider in Section 4, different tests in the tree will/erbe related. subs = (attri = v1) A (attro = v2) A (attrs = v3)

The algorithnpre_process that creates the matching tree works
as follows. We assume that the elementary predicates in subscrip-
tions are ordered according to a fixed total order. To create the |n this case, the subscription tree is shown in Figure 5.
matching tree, we start with the empty tree, and we process one sub- The pre-processing function that creates this tree is straightfor-
scription at a time by examining each of its elementary predicates ward and is given in Appendix B. The matching function is the
(in order), and adding nodes to the tree as necessary. For instancesgme as in Section 3. We now analyze the performance of the
the processing ofubi (see Equation 3) would create nodest 1, algorithm.
test, and suby of Figure 1; and the subsequent processingudb
(see Equation 4) would create the remaining two nodes (note that
test1 is not added again to the tree). The details of the algorithm
are given in Appendix A. For each subscription that we need to add to the matching tree, we
The algorithmmatchthat uses the tree to match events is given spend time proportional to the numkigrof attributes in procedure
in Figure 4. The idea is to walk the matching tree by performing the pre_process Therefore, if there aré/ subscriptions, the total time
test prescribed by each node and following the edge that representsspent inpre_processis O(NK).2 SinceK is a constant (which
the result of the test, and the *-edge if it is present. The set of depends on the event schema), the pre-processing time is linear in
matching subscriptions will be all those leaves that are visited. the number of subscriptions.
This particular algorithm traverses the tree in a depth-first order,
but clearly other orderings, such as breadth-first, would also work. Space complexity

Pre-processing time complexity

For the space complexity, note that each subscription can add at most
K + 1 nodes to the matching tree, namely, one for each attribute

We now consider a version of the tree matching algorithm spe- @nd one for the leaf node containing the subscription. Thus, the
cialized to the case where subscriptions consist of conjunctions of SPace required for the matching treedi¢V K), that is, linear in
equality tests of attributes against constant values. We analyze thh® number of subscriptions.

performance of the tree matching algorithm in this special case, and

show that (1) the time complexity to match events is sub-linear in Matching time complexity

the number of subscriptions, (2) the space complexity is linear in the

number of subscriptions, and (3) the time complexity to pre-process match We measure the event matching time by counting the num-

is linear in the number of subscriptions. ber of tree nodes that are visited during the match. Inanv r. nabl
More precisely, in this section we assume subscriptions are of . erottree nodes that are visited during thé match. Inany reasonable

implementation of the matching procedureatch this number is

4 Matching equality tests

We now analyze the time required to match an event in procedure

the form proportional to the actual time necessary to match the event, since
sub = (attry = v1) A+ A (attrx = vi) the algorithm performs a si_mple elementary test per _nod(_e, which is
assumed to take constant time. For example, in a typical implemen-
whereK is the number of attributes in the schema, and egdb tation, the attribute is evaluated, and its value searched in a hash
either a constant or it is *, meaning that any value matcheg-the ~ table to determine the successor edge (if any); that successor edge,
predicate. if present, and the *-edge, if present, are then followed.
With this assumption, we can assign each level of the matching ~ The event matching time is a function of the set of subscriptions:
tree to an attribute. For simplicity we assume thatittie attribute a large set of subscriptions generates a large matching tree, which

is assigned to level At level i, all nodes contain the test “exam- ~ requires alargertime torunthe algorithm. The matchingtime is also
ine the contents of attribut&, and edges from the nodes are the @ function of the particular event being matched; indeed, different

values against which thieth attribute is being tested. For example, ~€vents cause different sets of nodes to be visited during matching
suppose the set of subscriptions is — even if the set of subscriptions is kept constant. One way to

3 . - .)
Note th. | hm th alv i | .
suby = (attrl — Ul) A (attrz — 112) A (attrg — Us) ote thatanyalgorithm that reads subscriptions requires time at led$tK’

handle this difficulty is to consider the worst case: how long does When allV* events are equally likely, then the probability that
it take to match the worst possible event, as a function of the set of a nodev is visited when matching a random event is clearly equal
subscriptions? Unfortunately, there are cases where the worst casdo V= cost (v). Thus, the expected numbgi(S) of nodes ofSt
performance is linear in the number of subscriptions. For example, visited is:
let v be any value and consider a tree that contains only edges
labeledv and *-edges. To match the event whose attributes are all Z
v, we need to visit all nodes in the tree. Thus the matching time is venodes(Sz)
equal to the size of the tree. Itis easy to see that the size of the tree is
betweer|S| and(K + 1)|S| whereS is the set of subscriptions and ~ Wherenodes(St) is the set of nodes of the trefr-.
K is the number of attributes in the schema. Thus, in this example, o
the (worst-case) matching time grows linearly with the number of Lemma 1 Foranyj : 0 < j < K, St contains at most™’ (jfl)
subscriptions. _ _ _ nodes with cost equal tg " =7,

In the rest of this section we take a different approach. We p;qqf. Let j be such that &< j < K. A noden has cost/ <
compute thexpectedime to match a random event, and show that ;s 519 only if the path from the root to the node has exagthon-*
even with the subscriptions chosen to maximize this expected time, gqges. Such paths are uniquely determined by (1) the number of
the expected time is sub-linear in the number of subscriptions. edges in the path, (2) the position of the non-* edges and (3) the
Although here we assume a uniform distribution on events, the \31yes of the non-* edges. We can bound the number of paths with
techniques we describe can be used to analyze other distributions; 5. edges by counting the possible ways to specify (1), (2) and
as well. We also make the simplifying assumption that all attributes 3). The numben of edges is betweep and K; the position of
range over the same set of values, but our analysis can be extende e non-* edges arg distinct numbers between 1 amg and so
to the more general case where attributes range over different set Ofthere areZi:j...K (z) _ (K+1) ways of choosing (1) and (2).

values (this extension is very cumbersome, however). i/ o \g+l N
Henceforth. let: Moreover, we can assigw distinct values for each non-* edges.

Therefore, the number of paths$ir with exactly; non-* edges is

at mosty” (fjll) O

ol)y=v=r cost(v)

(6)

o K bethe number of attributes inthe schema,K_nd: K+1;

e V be the number of possible values for each attribute; Corollary 2 For any j : 0 <

K[KVT nodes with cost equal

Proof. _
vif B)<y
j+1) —
We can obtain an easy upper bound @(S) by noting that
when we match an event we follow at most two branches for every | emma 2 St has at mosf?|5| nodes.
level in the tree. Thus, the total number of nodes visited is at proof. A subscription is associated with a path withedges (one

j < K, Sr contains at most
. - oI,
e S be an arbitrary set of subscriptions.
e ((S) the expected time to match a random event against the

K+t —
cte < K[KVY}
setS of subscriptions.

G = ()

O

most 2 + 2! + ... + 2% * This bound, however, is unsatisfactory
because it is exponential . We are interested in bounds that are
polynomial inK, V and|S|, and we next show one such a bound
that is sublinear insS|.

edge for each attribute). This path contailis+ 1 = K nodes.
Thus, if the tree hakS| subscriptions, it has at mosf|S| nodes.
O

Henceforth, we order the nodes 8f by decreasing order of
their cost, and we lef(z) be the cost of the i-th node in the order

Theorem 1 Suppose that all events are equally likely. The expected (it ; js greater than the number of nodes, wefled) be zero). By

timeC(S) to match a random event is bounded above by

VK(K|S|** = 1)(InV +InK)

< 5
cs) < (VK -1 InK ®
where
InV
= ———— >0
InV+InK >

SinceV > 2 andK > 2, we have(VK)/(VK — 1) < 4/3.
Also, sinceK > 2, we have 1In K < 3/2. By introducing these
results in equation (5), we derive the following

Corollary 1 C(S) < 2K|S|* > (InV + InK).

We now proceed to prove Theorem 1. Henceforth,Setbe
the subscription tree obtained when we pre-procgsdor each
nodev of this tree, we defineost (v) to be the number of times that
this node is visited when we run the matching algorithm with all
the possible/ ® events. Note that this number is always a power
of V. For example, ib is the root node of the tree, thenst(v) is
V. Ingeneralcost(v) = V> where) is the number of non-*
edges in the path from the root to node

“This actually gives a bound on the time to mactyevent, not just on the average
matching time.

Equation (6) and Lemma 2, we have that

K|S|

CS)=v "> 16 (8)

Definition 1 Henceforth, let

g(z) ;= (Az + B)™>

where
A VR~ 1K) ©)
B R (10)
InV
= — 11
NV +InK (11

Lemma 3 f(z) < g(x)
Proof. By Corollary 2 and the definition of, we have that for
eachi such that < 7 < K and for eacly such that

Y KKVP <j< Y KKV
p=0...i—1 p=0...7

the following holds:

fGysveEs

Now,
_ [
— = —[KV]'*T -1
KIKV]?) = K[i
o(Y KIKVY) =g(K55—) /\2
p=0...7
By using the definition ofj, we conclude that ®
— w * 3
g K[KVI) =V5 . /\
(2 KIEvT) c
p=0...7 . .
The lemma now follows becaugés a non-increasing function. \
|
Proof of Theorem 1. We have that 1 1 2
o 0o
K|S|
) = v f@) 473
v=t e o0
K|S|
< VY g . . . _
gt Figure 6: A matching tree with successor node annotations
K|S|
-K
sV /0 g(z)dx matching the even(l, 2, 3,8, 2). We follow the pata1 = 1, a» =

— 1o 1o 2,a3 = 3) to node C in Figure 6, and then find ourselves blocked
x (AK|S| + B) —-B whenas = 8 and there is no non-* path to follow. Static analysis
Al-=X) can predict that any search reaching node C must later traverse the
paths labeleda1 = *,a2 = 2,a3 = 3), (a1 = 1,a2 = *,a3 = 3)
and{a1 = 1,a2 = 2, a3 = x), if they exist, since these predicates
are implied by{a1 = 1,a2 = 2,a3 = 3). The second and third of
— = -2 these paths exist and lead to nodes G and H. At analysis time, we
c(S) < VE[(VK|S|—[5] +1) —1] designate G and H asiccessoref C. But the remaining path (to the
(VK -1)(1-X) dotted node labeled D) does not exist; so instead of D, D’s successors
] _ _ (the nodes E and F whose paths are = *, a2 = *,a3 = 3) and
After using the fact thaV K|S| — S| + 1 < VK|S| and that (a1 = %, a2 = 2,a3 = *)) are designated as successors of C. (Of
(VK)'™* = K, and after replacing the value dfgiven in (11) we course, the node |, reached from C via a *-edge, is also designated
obtain Equation (5). | as a successor.)
More formally, if the pattp to a node N ends in consecutive
non-* segments, the successor$8fp) corresponding to that path
consists of then pathsp; obtained by replacing one of the non-*

A certain amount of static analysis of the subscription tree can be Segments with a *. The successor node set stored in the node at
used to streamline the search in the above algorithm. An extremelycontains: for eaclp; in SS(p), a pointer to the node reached by
straightforward and obvious optimization is to collapse a chain of Pathp; if it exists, else the nodes in the successor node set of the
edges into a single edge whenever the intermediate nodes havéode afp;. If there is a child node reachable from N by a segment
only a *-edge. For example, the edge from node J to node A in labeled *, this child node is also |ncll_Jded in the successor n_ode set.
Figure 6 can be rewritten to lead directly to node B. Inthe simulation N the general case, nodé; is a successor ofV; iff
runs discussed later, where some attributes are rarely tested by @red(N1) = pred(Nz) and there does not exist an intermediate
subscription, this simple transformation of the tree led to a 60% NodeNs such thapred(N1) = pred(Nz2) = pred(Ns).
reduction in matching time. Even more aggressive static analysis can be performed. For
A second optimization allows some successor nodes to be pre-€xample, suppose we know at analysis time that we will always
computed at analysis time, thereby reducing the number of attribute follow a successful test before following *-edges. Then if we have
re-evaluations needed at matching time. This optimization is basedreéached node C and if we are blocked, we know not only that
upon the assumption that the parallel subsearches (steps 9 and 12 dfz1 = 1,a2 = 2,a3 = 3), but also thatis # 1. This information
Figure 4) will be performed in some known serial order, e.g. a non- allows us to refine the successor set, since we know that at nodes F,
* edge will be followed before a *-edge. We can then annotate the G. and H, the test of, will also fail. We replace F, G, and H with
search data structure to use the information obtained by traversingtheir successor nodes, which in this case is the single node K, the
the non-* edges to skip over tests in the *-path which are implied successor of G.) o]
by tests already performed in the non-* path. When this form of static analysis is used, the order of following
For example, let us suppose that all subscriptions are equality "odes at matching time is constrained so that only non-* branches

tests, that each elementary test is a simple evaluation of an attribute@re followed until a node is reached for which there is no child
that the matching tree is the one shown in Figure 6, and that we node labeled with the value of the tested attribute, or until a leaf is

always follow non-* paths before *-paths. Suppose that we are reached. Then the successor node set is used to determine where

= V7

After replacing the values oft and B given in (9) and (10), and
simplifying, we obtain:

5 Optimizations to the general tree matching algorithm

to continue the search. The performance of this approach has been

measured, and leads to increased (but still linear) space, and about 5 L]
a 20% additional improvement in search time relative to the first i~ ppurations .
optimization.

The search can be further improved, at the cost of increased
space, by factoring out certain attributes. That is, certain attributes
— preferably those for which the subscriptions rarely contain “don’t
care” tests — are selected as indices. A separate subtree is built
for each possible value of the index attributes. The subtrees do not
include tests for the index attributes. A subscription (minus the
tests for index attributes) is placed into each subtree consistent with
those of its elementary predicates which test the index attributes.
This means that if the subscription has “don’t care"rarof the
index attributes, and there aké values per attribute, it must be
inserted intd/™ subtrees. Therefore, in order for this optimization
to be scalable, the number of index attributes must be kept small
enough so that™ is small relative to the number of subscriptions.

o dpdiE

&

3

20

Oiperaliong per Event
Soace Thoumpords of Cals

Ty

il 4 10 15 W I35) 15 48
10 o Subseiigli o

6 Related Work Figure 7. Performance of matching algorithm under simulated
workload

As far as we know, there are no other algorithms for the matching

problem with sub-linear time-complexity, and linear space com- o

plexity. The content-based subscription systems that have been delion would contain a test for this attribute as opposed to a “don't

veloped so far have not yet adapted scalable matching algorithms.Car€”- By convention, the first attribute was the most popu-

SIENA allows content-based subscriptions to a distributed network 185 With @peare(1) = p1. Each successive attribute was pro-

of event servers (brokers) [3]. SIENA filters events before forward- 9ressively less popular by a degradation factor[af that is

ing them on to servers or clients. However, a scalable matching Peare (i + 1) = Dpeare (i). The values tested in the subscriptions

algorithm for use at each server has not been developed. The Elvinv&ried according to a Zipf distribution. _

system [10] uses an approach similar to that used in SIENA. Publish- e generated random events assuming thavtpessible val-

ers are informed of subscriptions so that they may “quench" events Yes Of each attribute were uniformly distributed.

(not generate events) for which there are no subscribers. In [10],, _Figure 7 shows asetof simulations for= 3, K’ = 30, and the

plans are discussed for optimizing Elvin event matching by inte- factoring optimization for 3 index attributes (that is, 27 subtrees).

grating an algorithm similar to the one in this paper. This algorithm, Values ofp1 and D were chosen so that the number of matches per

presented in [4], converts subscriptions into a deterministic finite €Vent was held at 100 independentof The space was measured

automata for matching. However, the main difference between [4] PY counting the number of edges plus the size of the successor sets

and our work is that we seek matching algorithms with (worst-case) US€d by the optimization discussed in Section 5.

space complexityinear in the number of subscriptions, while in Other measurements in an actual Java-based prototype have

[4], the space complexity is exponential. shown that evenwith asmany as 25,000 sul_:)scrlptlpns, we can _match
Another algorithm for optimizing matching is discussed in [6]. 2" event 5|n under 4 milliseconds, even with a fairly unoptimized

At analysis time, one of the tesis; of each subscription is chosen ~ a&gorithm> .

as the gating test; the remaining tests of the subscription (if any) '€ analysis and results above are for the special case where

are residual tests. At matching time, each of the attribufés the all attribute tests are equality tests. We also have a version of

event being matched is examined. The event valuis used to e algorithm for inequality and range tests. However, we do not

selectthose subscriptions i whose gating tests inalyde= v;. The yet have a good enough definition for “typical” ranges to generate

residual tests of each selected subscription are then evaluated: if anypimulated loads for a performance analysis. Work on a theoretical

residual testfails, the subscription is not matched: if all residual tests @nalysis of the algorithm with range tests is underway. We are

succeed, the subscription is matched. Our tree matching algorithm@/S0 working on analyzing the performance improvements of the

erforms this type of test for each attribute, not just a single gating ©Ptimizations of Section 5.
Fest attribute. P : gie gating The authors’ Gryphon pub/sub system [1] uses this matching

algorithm (for both equality and inequality tests) to implement a
. . distributed, high-performance content-based pub/sub system. The
7 Discussion goal of the Gryphon project is to advance the state-of-the-art in
distributed messaging from simple group-based pub/sub, to a full
featuredmessage brokeringystem incorporating content-based
gueries and customized message transformations.

In this paper, we have presented a matching algorithm suitable for
a content-based subscription system. For the case where subscri
tions contain only equality tests, the algorithm matches events in
expected time sub-linear in the number of subscriptions, given a
uniform distribution of events but a worst-case set of subscriptions. Acknowledgements
The space requirement for the matching tree is linear in the number .
of subscriptions. We would like to thank the anonymous referees for helpful com-
In addition to the theoretical analysis of this algorithm, perfor- Ments.
mance was also tested with a variety of simulated loads. In these 5this simulation was run on a Pentium 100Mhz, with = 30 andV = 30.
tests, we assumed an event schem& ddttributes, each attribute Subscriptions were generated randomly with a probability of 65% of having a * for
havingV possible values. each attribute.
We generated a random mix & subscriptions as follows:
We assumed that the attributes varied in “popularity”, where pop-
ularity measured the likelihoog..,. that a particular subscrip-

attributes is being tested in the subscription (if attributés not
being tested, we set to *). This is done in line 10. Then, we
We now present in detail there_process algorithm that is briefly simply succesively call functioffollow on valuesri,rz, ..., rx
outlined in Section 3. This algorithm is used to generate the match- (lines 13 and 14). With this, we obtain a leaf node, and then add
ing tree, and is shown in Figure 8. The matching tree is representedthe subscription to that node (line 15).
by a sefl’ of triples(v, r, v"), where such a triple represents the fact
that is an edge labeledfrom nodev to nodev’. The root of the
tree is represented by a specially designed node cattedroot.
For each node, v.data represents the data associated wiflthis
data is a test i) is not a leaf, and it is a subscription:ifis a leaf).

Procedurepre_process processes each subscription in the set
Sub, one at a time, by invoking procedupeocess_sub. The latter
procedure is responsible for adding the subscription to the currently
existing tree. Initially, we check if the tree already exists, and if
not we create it (lines 7 and 8). Next, we loop over the primitive
predicates in the subscription to check which are already present [2] K. P. Birman. The process group approach to reliable dis-
in the tree (loop in lines 11-25). Finally, we add the remaining tributed computingCommunications of the AGN6(12):36—
primitive predicates that are not yet in the tree (lines 26-35). 53, December 1993.

The loop in lines 11-25 starts at the root of the tree=t
tree_root) and proceeds down the tree by successively checking [3] Antonio Carzaniga, David S. Rosenblum, and Alexander L.
that the tree contains the primitive predicatess r1,. .., t; — 74 Wolf. Design of a scalable event notification service: In-
of the subscription. In line 12 we check if the current tree node terface and architecture. Technical Report CU-CS-863-98,
is a leaf, and in that case, we replace that node with a primitive Department of Computer Science, University of Colorado,
predicate and we exit the loop by settifigind to false In line 17, August 1998.
we deal with the case that the current tree nodgthe current test
t;. Inthis case, there are two sub-cases: the tree does not contain an : e - .
edge for the current resulf (line 18), and the tree already contains ina d'St.”bUtEd system. IRroceedings of ACSC-18delaide,
such an edge (line 19). In the first sub case, we simply exit the loop Australia, 1995.

by settingfound to false In the second sub case, we follow that (5] Opject Management Group. Corbaservices: Commo object

edge on the tree, and continue the loop with the next primitive test. service specification. Technical report, Object Management
If v is not the current test, we continue searching the tree for Group, July 1998.

t; as follows: (1) if the test in the current nodes related to result
r' of testt; as we described in Section 3 (that {8; — ;) = [6] Eric N. Hanson, Moez Chaabouni, Chang-Ho Kim, and Yu-

A The pre-processing algorithm

References

[1] Guruduth Banavar, Tushar Chandra, Bodhi Mukherjee, Jay
Nagarajarao, Robert E. Strom, and Daniel C. Sturman. An ef-
ficient multicast protocol for content-based publish-subscribe
systems. Technical report, IBM, 1998. To appear in the
Proceedings of the 19th IEEE International Conference on
Distributed Computing Systems, Austin, Texas, 1999.

[4] John Gough and Glenn Smith. Efficient recognition of events

(v.data — r') for some edge’ in the tree), then we follow edge
r' (line 21), (2) if there is some *-edge at then we follow that
edge (line 22); or (3) if there are no *-edgesvathen we create a

Wang Wang. A predicate matching algorithm for database
rule systems. IrProceedings of SIGMODpages 271-280,
Atlantic City, New Jersey, May 1990.

*-edge atv pointing to a node with; and we exit the loop (lines 24 .)))
and 25). [7] _Shlvakant Mishra, Larry L. Peterson, and Richard D. Schlicht-

Once we exit the loop of lines 11-25, we check if there are still ing. Consul: A communicaiton substrate for fault-tolerant
primitive predicates that need to be added to the tree (line 26). Inthat distributed programs. Technical Report TR 91-32, Depart.
case, we add those predicates, followed by the subscription itself of Computer Science, The University of Arizona, November
(lines 27-29). Else, we add the subscription to the tree as follows: 1991.

if tge C!”tr.em.“o‘fe is 2 '.eatL”C;de’ t?eregii r_‘°‘|hi“9 to fbeﬁ done " the 8] Brian Oki, Manfred Pfluegl, Alex Siegal, and Dale Skeen. The
subscription is already in the tree (line 31); else, we follow *-edges information bus: An architecture for extensible distributed

until itis no longer possible, and then add the subscription to the systemsOperating Systems Revie®7(5):58-68, December
tree (lines 33-35). 1993

B The pre-processing algorithm for equality tests [9] David Powell. Group communicationsCommunications of
the ACM 39(4):50-97, April 1996.

[10] Bill Segall and David Arnold. Elvin has left the building: A
publish/subscribe notification service with quenchingPia-
ceedings of AUUGYQBrisbane, Australia, September 1997.

In this section, we present the ppeocess algorithm specialized for
the case when subscriptions contain only equality tests. The algo-
rithm is given in Figure 9, and is much simpler than the general one.
As in Section A, we assume that the matching tree is represented by
T. Just as before, leaf nodes®fcontain subscriptions, but unlike
before, non-leaf nodes @f do not contain any data,; this is because
the test associated with a non-leaf node is implicit by the position
of the node in the tree. More precisely, if a nodés at leveli of

the tree, then the test associated with a node in leielalways
“examine the contents of attribui& and the edges leaving are
possible values of attributie(or it could be the *-edge).

Procedure prgroces§Sub) works as before: it loops over
each subscription to be added, and invogescess_sub. Function
follow takes a verticay and a valuer, and returns the node
obtained by following edge of nodew (if such an edge does not
exist at nodev, the function adds it to the tree). In procedure
processsul(sub), for each: we setr; to be the value against which

26

30

32
33
34
35

procedure pre_proces$Sub)
for each sub € Sub do processsub(sub)

procedure processsul(sub)
let sub be given by(t1 — r1) A ... A (tg = 1q)
{ ¢ is the number of conjunctions Bub}
if tree_root = L
then tree_root < new node; tree_root.data < t1; found < false
elsefound < true
v < tree_root; i < 1
while foundandi <= ¢ do
if v is a leaf nodehen
letw, ' be such thatw,r’,v) € T { edge going inta }
v+ new node; v'.data + t;
T T\ {(w,r',0)} U{(w,7",0'), (v, %,v)}
v+ v'; found « false
else ifv.data = t; then
if Aw: (ti,ri,w) € T then found <« false
elseletw : (¢, ri,w) ET; v+ w;i+i+1
else v.data # t;
if I, w: (v,r',w) €T A[(ti = 1) = (v.data — r')] thenv + w
else ifdw : (v, *,w) € T thenv < w
else { Aw: (v,*x,w) €T}
v’ new node; v'.data — t;
T «+ TU{(v,*,v")}; v < v'; found « false
if not foundthen
while i <= g do
v’ < new node; if i < qthenv’.data = t; 11 elsev’.data = sub
T+ TU{(v,ri,v)};i+i+1
else {found}
if v is a leaf nodghen nop { subscription already in tree
else
while Jw : (v, *,w) € Tdov + w
if v is a leaf nodehen nop { subscription already in tree
elsev’ < new node; v'.data < sub; T < T U (v, *,v")

Figure 8: The pre-processing algorithm

© ©® N o O & w N e

N
o » w N P O

procedure pre_proces$Sub)
for each sub € Sub do processsub(sub)

function follow (v, r): node
if 3’ : (v,r,v") € T thenreturn o'
elsev’ < new node; T < T U (v, r,v"); return v’

procedure processsul(sub)
{ K is the number of attributes in the schefna
let sub be given by(attry = r1) A ... A (attrx = rk) { we setr; to “*” if attribute ¢ is not tested irsub}
if tree_root = L then tree_root < new node
v < tree_root
for i < 1to K do
v < follow (v, r;)
v.data < sub

Figure 9: The pre-processing algorithm for equality tests

