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Matching for Run-Length Encoded Strings

Alberto Apostolico*

1 Motivation

Gad M. Landaui

Feb. 15, 1997

Steven Skiena j

Measuring the similarity between two strings, through such standard measures as Hamming
distance, edit distance, and longest common subsequence, i.s one of the fundamental problems
in pattern matching. Tn this paper, we consider the problem of finding the longest common
subsequence of two strings. The standard dynamic progr<tTTlming algorithm computes the
longest common subsequence of strings X and Y in O(IXI . IYI) time. Here, we develop
significantly faster algorithms for a special class of strings which emerge frequently in pattern
matching problems.

1\ string is run-length encollcr! if it is described as an ordered sequence of pairs, each
consisting of an alpha.bet symbol (J and an integer counting the number of consecutive
occurrences of (J. For example, the string aaaabbbbcccabbbbcc can be encoded as a4b4c3alb4c2.
Such a run-length encoded string can be significantly shorter than the expanded string
representation. Indeed, run-length coding serves as a popular image compression technique,
since some classes of images, e.g., binary images in facsimile transmission, typically contain
large patches of identically-valued pixels.

The need to approximately match run-length encoded strings emerged during develop
ment of an OCR system in concert with Data Capture Systems Inc. [8], which has been
designed to achieve a low substitution error-rate via fixed-font character recognition. The
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ith row or column of pixels in a given query character image will define a hina,}"y string con
tainiTlg a small number of white-black transitions. By comparing this run-length encoded
string against the ith row or column of each of the character image-models, we can identify
similar characters. Since a typical row/column contains approximately 50 pixels but only
3-4 white-black transitions, a time savings of roughly two orders of magnitude would follow
by matching in time proportional to t.he product of the run lengths, instead of t.he full string
lengths.

This problem of Tn<Ltching of run-length encoded strings is a TlcLLural generalization of
the Ol"iginal sLring matching problem. Indeed, any matching algorithm which tal\:es time
proportional to the product of the run lengths on encoded strings would have the samc
worst-case complexity as standard matching algorithms while exploiting any runs which
happen to exist.

Our problem is a simplified version of the previously studied Set LCS and the Set-Set
LCS problems [6, 9]. In this paper, we present the first algorithm for finding the longest
common subsequence of strings X and Y which runs in time polynomial in the si~c of the
compressed strings. Our final algorithm HIllS in O(kllog(kl)) time, where k and 1 are the
compressed lengths of striTlgs X and Y, and is a substantial improvement on the previously
best algorithm of BUTlke and Csirik [3], which runs in Q(l!YI + klXI) time. Our algorithm
is elegant but non-trivial, and suitable for implementation.

2 Previous Work

Throughout this paper, we usc the following notation. Let XIX",! ... Xl denote the run length
encoding of string X, where Xi is a maximal run of identical characters and IX;! denotes
the length of this run. The length of string X, denoted lXI, represents the total number of
characters in X, so IXI = L~=l IX;]. Let Xi denote the unique character comprising run Xi.
Similarly Yiy; ... Yk denoLes the run length encoding of string Y.

A string W is said to be a subsequence of X if W can be obtained from X by deleting one
ot' more symbols. The Longest Common Subsequence (LeS) problem for input strings X
and Y consists of finding a longest string Hf which is a subsequence of both X and Y. String
editing and LCS problems have been extcnsively studied, resulting in a copious literature
for which we refer, e.g., to [2].

When the size of the alphabet :E is unbounded, an D(IXllog IX)) lower bound for com
puting LCS applies, due to Hirschberg [4]. The best known lower bound for bounded :E is
linear. Aho, Hirschberg and Ullman [1] showed that, for unbounded alphabets, any algo
rithm using only "equal-unequal" comparisons must take D(lXI 2 ) time in the worst case.
The asymptotica]]y fastest general solution rests on the corresponding solution by Masek
and Paterson [71 to the string editing, and hence takes time O(!XI'log log IXI/log IXI).

In practice, the following 0(IXI x IYI) dynamic programming algorithm from Hirschberg
[5] is used. The algot'ithm starts with a matrix L[O... [Yj, D... IXI] fi]]ed with zeroes, and then
transforms L in such a, way that L[i,j] (1 .::; i .::; JYI, 1 .::; j .::; IXI) contains the length of an
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LCS between XIXZ ...Xi and VIYz ...Yh as follows.

far i = 1 ta WI da
far j = 1 ta IXI da if Xi # Yj then L[i,j]

elseL[i,j] = L[i-l,j-1J + 1
Max {L[i,j -1]'L[i -1,j)]

The correctness of this paradigm follows from the following relations:

T,[i -1,j]
T,[i,j - lJ
L[i-l,j-l]

< L[i,j] < L[i - l,j] + I;
< L[i,j] < L[i,j -1] + 1;
< L[i,j] < L[i - l,j - I] +1.

3 Longest Common Subsequence - initial algorithm

In this section, we present an algorithm for computing the longest common subsequence of
run length encoded strings X = X 1X 2 ... XI and Y = Y1Y; ... Y;' in O(kl(k + I)) time. This
algorithm maintains an I x k matrix M of blocks, such that 111[i,j] contains the value of an
optimal solution between prefixes X(i) = X 1 X 2 ••• Xi and y(j) = yj y; ... l'i. The correctness
of our algorithm follows because Ail contains all the essential information of the standard
IXI x IYI alignment matrix L associated with the uncompressed strings.

A_._.__.---
A =- __
-=--=

,

, ,

=

ciifiiiil=.;-~= :-==;.- ------~~---_...

A ~:-~_---.--.-•.g;g===:._~_f-: :._:-:'~ ----.. __ :=:
=.- - --- :~:.=--->-?-~~. j

Figure 1: Light and dark blocks dcIined by strings X and Y.

Figure 1 illustrates l.his matrix of blocks for input strings X = a6b3 asb3 and Y = a3 b6 c1a4
•

We say that block (i,j) is dark if the corresponding characters match, i.e. Xj = Vj. Block
(i,j) is light if Xi f Vj. Any common subsequence defines a monotonically non-decreasing
path fmm (0,0) to (IXI,IYI). Each rightward step on this path denotes the deletion of a
character from X, and each downward step a deletion from Y. The matched characters in
the common subsequence correspond to diagonal down-right steps across lVI, hence the LCS
maximizes the total number of such diagonal steps through the dark blocks of J1tI.
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Any such path can exit a dark block in one of three ways - at the lower right corner,
along the bottom side, or along the right side. The longest common subsequence of Figure 1
(shown as the solid line), happens to enter and exit each dark block only through its corners.
An optimal path with this additional constraint is computed easily in O(kl) by dynamic
programming. However, paths which exit dark blocks through sides are more complicated to
account for, since the llllTnber of possible exit points on either side of a block can dominate
the number of blocks OIl very long runs.

\"'le now consider t.wo special classes of paths across lVI. vVe define a corner path as one
which enters dark blocks only at the upper-left corner and exits only through the lower-right
corner. Vve say that a path beginning at the upper-left corner of dark block (i,j) is f01'ced if
it exits through a side of (i,j), and proceeds to the next dark block by a straight horizontal
or vertical "leap", according to the case. As illustrated by t.he dotted line in Figure 1, there
is precisely one forced path beginning from the upper lefthand corner of any dark block.

A subpath Pi ... Pi of path P is a contiguous chain of edges from P. Subpaths of forced
and corner paths can be composed to define an interesting class of paths through iV!:

Lemnla 1 l'he1'e is always a longest common subsequence vll of X and Y such that 111 18

defined by a path composed of subpaths of forced and corner paths.

Proof: Consider any path through .M which defines the longest common subsequence of
X and Y. \Ve now describe a sequence of transformations which reduce it to a path of the
prescribed shape.

First, consider any maximal subpath passing only through light blocks. Such a subpath
consists only of l·ight.wa.rd and downward moves, for it contributes no matched charaders to
the longest. common subsequence. Therefore, wit.hout loss of generality, all of the rightward
moves can be collected t.o appear before any of the downward moves.

Figure 2: Converting an arbitrary subpath into a forced subpath.

Second, consider ilny maximal subpath through dark block (oi,j). This path cannot
contain both a rightward and a downward move, since by replacing these with a diagonal
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move we increase the length of the putative longest common subsequence. Therefore, without
loss of generality, all of the diagonal moves can be collected to appear before any of the
verticalfhoriwntal moves.

Finally, we consider Lhe dark blocks in Lhe order they are enconntered on the paLh from
(0,0) to (IXI,IYI). Consider the first dark block which is either (1) not enLered through
its uppcr-Iefthand corner or (2) is not exited through its lower-righthand corner. Case (1)
cannot occur in a longest common subsequence, since the subsequence will be lengthened
by entering in the upper-lefthand corner. Ca.sc (2) describes the start of ..t forced subpath,
unless dark blocks are noL completely traversed. The reduction of Figure 2 converts this
subpath into a forced subpath, thus giving the claimed result. I

Theorenl 2 A longest common subsequence oJ Tun len!]th encoded strings X = X t X 2 ..• XI
and Y = Yi Y2 ••• yj. can be computed in O(kl(k + 1)) time.

Proof: Lemma 1 guara,ntees that a lOTlgcst common subsequence of X <md y' can always be
obtained by concatenation of subpaths of forced and comer paths. The following algorithm
exhaustively constructs all such subpaths via dynamic programming:

LCSI(X, Y)
l1t[[i,j] = 0, 1::; i ::; I, 1 $ j $ k
for i = 1 to k

for j = I 1.0 I
if (color(i,j) == "lighl") t.hen M[i,j] = max(M[i -I,j], M[i,j - I])
else begin (* dark block *)

d = min(IX;j, Wil)
M[i,j] = max(M[i - I,j - I] +d, M[i,j], 111[i - I,j]' 111[i,j - 1])
ForcedPat.h\Jpdate(i, j, M)

end

The procedure ForcedPathUpdate explicitly traces out Lhe forced path originating at
block (i,j), proceeding vertically if IX,. I > llil a.nd horizontally if IXiI < II'jl, until the
next dark block (say (i',j)) is encountered. On exiting each dark block (i',j) along this
forced path, Lhe block value is updated where !H'-[i',j] = max(M[i l ,j],.111[i,j] + dl), where
ell is the diagonal length of the forced path through (il,j). This process continues unLil the
forced path exits the cornel' of a block, or the end of one of Lhe strings is encountered. This
ForcedPathUpdate operation can be computed in O(k + I) time for any block (i.,j).

Each light block requires constant time to update, while each dark block takes O(k + I).
The total time complexity follows since there are O(kl) dark blocks_ I
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4 Longest Common Subsequence - a faster algorithm

In this section we present an algori thm that computes the LCS of the run length encoded
strings in O(kllog(kl)) time.

In the previous algorithm, each iteration (i,j) was compnted in 0(1) if colol'(i,j) is
"light.". When color(i,j) is dark the iteration computed Jl1[i,j] in 0(1) time before per
forming a ForcedPathlTpclate operation in O(k + I) time. In this scdioTl, we show how to
replace this ForccdPathUpdate by a much morc efficient operation.

The ForccdPathUpdate operation starts from (1:,j) and updates all JH[i',lls encountered
011 the way toward thE' lower right corner. Eventually, each dark J\!I[i',J'] is updated hy all
forced paths that cross its block. In this improved algorithm, the ForcedPaLhUpdaLe is
eliminated. vVhile compnting l11[i,j]' only two [arced piLths from previous iterations will be
considered, and their relevant values will be computed upon request.

Figure 3: Two forced paths that match the character A.

Lemma 3 All chamcfers which a1'C mnlched on any gi1Jen forced path will be identical. Also,
two forced paths which p'/'Oceed on matches oj lhe srune charadeI' will nevel' (;ro-5S each other
(Fig S).

Consider a forced path that starts in an upper lefL comer of a dark block (i,j) that
matches the character 0'. Its initial value v is 111[i - 1,j - 1], This path moves down and
La the right in light blocks and diagonally on dark blocks that match 0's. By Lemma 3,
this path will not cross blocks that match characters other then CY. A record is kept for each
forced path, including the following information: (a) (i,j) - starting location of the path;
(b) the letter of the mi1.teh; and (c) its initial value v.

Define '1'OPi(o:) to be the number of occurrences o[ the letter 0: in the uncompressed
version of Xl", Xj, and LEFT'(o) to be the number of occurrences of the letter 0: in
Y1 ••• 1-';'. For example. when string Y = aaaabbbbcccabbbbcc is encoded as a"'b-ldJal b4 c2

,
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LEP1'5(b) is 8. LEFT'-(O') will be defined only when Yi = 0' or }';-+1 = 0', and TOpi(a)
defined only when X j = 0' or Xi+! = 0'.

Consider a forced path which stmts at (i,j) and matches 0: with an initial value v. When
this path crosses column j' > j its value will be Vi = V + TOpi'(a) - TOpi-l(a) (Fig 3).
Moreover, it crosses column j' al row i"', where i- is the minimum row such that

Similarly, when this ]l<tth crosses row i' > i, its valuc will be v' = v + LEFTi'(a) 
LE1"'1'i-1(0:), and it crosses row i ' on column j- such that

Lemm.a 4 Consider (l Jorced path which slaTls nl (i,j) nnrl mnlchcs 0' with an initial value
v. Given a column j' (1'010 if), the value of each !on;ed path that (TOSSeS this column (row)
can be computed in O( 1) time following O(k + l) time prepmcessing.

Proof: By a performing a prefix-slITJI computation, the functions Lb'FT and TO P CiUJ be
precomputed in O(k + I) time, such that TOpi(a) or LEF'l'i(a) can retrieved in consLant
lime. The appropriate values can be computed using the formulas above. I

As described in Section 3, l\l[i,j] is the maximurn of M[i - 1,j], l1I[i,j - 1] and the
forced paths that cross its block, including the one that starts on iLs upper left corner. The
set of forced p;.tLhs can he divided into two groups. The first group contains all paths Lhat
cross column j above row i, while the second group cont.ains <tIl p<tths that cross row i left
La column j. Our goal is to find the path with the highcst score in each group, so that
M[i,j] can be computed in 0(1) time. Bclow, we discuss only how to find the highest in
the rirst group, considering forced paths that match the character 0'; the second group and
olher characters can be handled in the same way.

Since two forced paths that match the same character never intersect, the forced paths of
character 0: define a top-down order. vVe define the order of a path starting from 111[i,j] as
ORDER(o.; i,j) = TO pi-lea) - LEFT i - 1 (a). The paths intersect any column j' <tccording
to the value of ORDER. However, the values of Lhe forced paths at column j' do noL
increase monotonically in their crossing order, bccause certain paths may hegin wilh lower
ioi tial values, and they maintain the following property:

Lemnla 5 Consider two f01'ced paths with values 'V~ and v~ when they CI'OSS column /, and
V~' and v~ when they cross column iff. These paths mainlctin the equality: v~ - v~ = v:' - v~

(Fig 3).

Therefore, if a forced path Pl intersect column i' lower than another forced path P2 and
ils value on j' is smaller than the value of P2 on j', then path Ih can be deleLed. Om goal is
to ma,intain, in order: only the paths which have higher values than the paths above them.
A balanced binary search tree can be built with the records of the forced paths mat.ching 0',
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with the key of each pal.h defined by its ORDER function. This tree will be pruned so as
to insure that for any given column j', the values of the paths in the nodes increase during
an in-order traversal.

vVe will maintain two balance binary sea.rch trees for each IcLter (x, one maintaining the
order of paths crossiTlg columns, the other maintaining the order of paths crossing rows.
These same two trees will be used in dealing with all dark blocks that match (X. For each
such block lV1[i, j], we insert, separately, to both trees a new forced path that st.trts from
the upper left corner of 111[i,j]. Then we get the highest scores crossing the lower a,nd right
sides of JVJ[i, j], one from each tree. 'Vhen computing a dark block 1\11 [i, j] the following
operations are performed:

• Step 1. Insed a Tlew forced path.

• Step TI. Find the highest score (0) of the forced paths on column j, ahove row i.

• Step ITI. Find the highest score (R) of the forced paths on row i, left to column j.

• Step TV. 111(i,jl = max(111[i - l,j],111[i,j - 11, C, R).

Step [ - Insertion of a new path.
(a) Compute ORDE R(a; i,j) := l'OPi-' (a) - LEFl'i-'(a).
(b) Compute v:= 111[i -1,j -1].
(c) Insert the ncw path into the tree.
(d) Compute the valuE' of the path that is stored in the leaf on the left. If its value is greater
th<tn v delete the TlCW path.
(e) Compute the value of the path that is stored in the leaf on the right. If its value is
smaller than v delete Ute old path. Continue till you reach a path with a greater value.

Step II - Finding the highest score of the forced paths on column j, above row i.
(a) Compute 0:= TOpi(a) - LEFT'(a).
(b) Find the locatioTl of 0 in the tree.
(c) Compute the value 0, of the path that is stored in the leaf all the left.

Step III is computed ill <tn analogous way to SLcp II.

Theorem 6 A longest common subsequence of 1'1Ln length encod(;d strings X = X I X 2 .•• XI
and Y = Y1Y 2 .. _Y k can be computed in O(kllog( k + I)) t.ime.

Proof: The correctness of this procedure follows from the fact that all the relevant forced
paths from the algorithm of Theorem 2 are evaluated in the dynamic programming phase of
the current algorithm. The time complexity may be analyzed as follows. Precomputing the
variables LEFT and 'FOP as in Lemma 4 takes O(k + I) time. Each of the 2· E balanced
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binary search trees has at most kl nodes, so any insertion, deletion or membership operation
takes O(log(kl)) time. We perform Steps I to IV for each of the Jd blocks. Step I takes
O(log( kl) + (number of deletions) log(kl)) time. Since each deleted block mnst previously
have been inserted, the total number of deletions is O(kl). Steps 11 and lIT are computed
in O(1og(kl)) while Step IV requires 0(1) time. Therefore, O((kl) log(kl)) time suffices to
compute the longest common subsequence of X and Y.

5 Open Problems

vVhat can be said abont more general versions of string matching, in particular edit distance
computations?
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