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Abstract—The problem of matching a forensic sketch to a gallery of mug shot

images is addressed in this paper. Previous research in sketch matching only

offered solutions to matching highly accurate sketches that were drawn while

looking at the subject (viewed sketches). Forensic sketches differ from viewed

sketches in that they are drawn by a police sketch artist using the description of the

subject provided by an eyewitness. To identify forensic sketches, we present a

framework called local feature-based discriminant analysis (LFDA). In LFDA, we

individually represent both sketches and photos using SIFT feature descriptors

and multiscale local binary patterns (MLBP). Multiple discriminant projections are

then used on partitioned vectors of the feature-based representation for minimum

distance matching. We apply this method to match a data set of 159 forensic

sketches against a mug shot gallery containing 10,159 images. Compared to a

leading commercial face recognition system, LFDA offers substantial

improvements in matching forensic sketches to the corresponding face images.

We were able to further improve the matching performance using race and gender

information to reduce the target gallery size. Additional experiments demonstrate

that the proposed framework leads to state-of-the-art accuracys when matching

viewed sketches.

Index Terms—Face recognition, forensic sketch, viewed sketch, local feature

discriminant analysis, feature selection, heterogeneous face recognition.
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1 INTRODUCTION

PROGRESS in biometric technology has provided law enforcement
agencies additional tools to help determine the identity of
criminals. In addition to DNA and circumstantial evidence, if a
latent fingerprint is found at an investigative scene or a
surveillance camera captures an image of a suspect’s face, then
these cues may be used to help determine the culprit’s identity
using automated biometric identification. However, many crimes
occur where none of this information is present, but instead an
eyewitness account of the crime is available. In these circum-
stances, a forensic artist is often used to work with the witness in
order to draw a sketch that depicts the facial appearance of the
culprit according to the verbal description. Once the sketch image
of the transgressor is complete, it is then disseminated to law
enforcement officers and media outlets with the hopes of someone
knowing the suspect. These sketches are known as forensic
sketches and this paper describes a robust method for matching
forensic sketches to large mug shot (image) databases maintained
by law enforcement agencies.

Two different types of face sketches are discussed in this paper:
viewed sketches and forensic sketches (see Fig. 1). Viewed sketches are
sketches that are drawn while viewing a photograph of the person

or the person himself. Forensic sketches are drawn by interviewing a
witness to gain a description of the suspect. Published research on
sketch to photo matching to this point has primarily focused on
matching viewed sketches [1], [2], [3], [4], [5], despite the fact that
real-world scenarios only involve forensic sketches. Both forensic
sketches and viewed sketches pose challenges to face recognition
due to the fact that probe sketch images contain different textures
compared to the gallery photographs they are being matched
against. However, forensic sketches pose additional challenges due
to the inability of a witness to exactly remember the appearance of
a suspect and her subjective account of the description, which
often results in inaccurate and incomplete forensic sketches.

We highlight two key difficulties in matching forensic sketches:
1) matching across image modalities and 2) performing face
recognition despite possibly inaccurate depictions of the face. In
order to solve the first problem, we use local feature-based
discriminant analysis (LFDA) to perform minimum distance match-
ing between sketches and photos, which is described in Section 3
and summarized in Fig. 2. The second problem is considered in
Section 5, where analysis and improvements are offered for
matching forensic sketches against large mug shot galleries.

The contributions of the paper are summarized as follows:

1. We observe a substantial improvement in matching
viewed sketches over published algorithms using the
proposed local feature-based discriminant analysis.

2. We present the first large-scale published experiment on
matching real forensic sketches.

3. Using a mug shot gallery of 10,159 images, we perform
race and gender filtering to improve the matching results.

4. All experiments are validated by comparing the proposed
method against a leading commercial face recognition
engine.

The last point is significant since earlier studies on viewed sketches
used PCA (eigenface) matcher as the baseline. It is now well
known that the performance of PCA matcher can be easily
surpassed by other face matchers.

2 RELATED WORK

Most research on sketch matching has dealt with viewed sketches.
Much of the earlywork inmatching viewed sketcheswas performed
by Tang et al. [6], [2], [3], [5], [7]. These studies share a common
approach in that a synthetic photograph is generated from a sketch
(or vice versa) and standard face recognition algorithms are then
used to match the synthetic photographs to gallery photographs.
The different synthesis methods used include an eigentransforma-
tion method (Tang and Wang [6], [2]), local linear embedding (Liu
et al. [3]), and belief propagation on a Markov random field (Wang
and Tang [5]). Other synthesis methods have been proposed as well
[4], [8], [9], [10], [11]. The impact of matching sketches drawn by
different artists was studied by Al Nizami et al. [12].

Klare and Jain [1] proposed a method of sketch matching that
uses the same feature-based approach that has been successful in
other heterogeneous face recognition scenarios (specifically,
matching near-infrared face images to visible light). In using SIFT
feature descriptors [13], the intrapersonal variations between the
sketch and photo modality were diminished while still maintain-
ing sufficient information for interclass discrimination. Such an
approach is similar to other methods proposed in the literature
[14], [15], [16] of matching near-infrared images (NIR) to visible
light images (VIS), where local binary pattern [17] feature
descriptors are used to describe both NIR and VIS images.

In this paper, we extend our previous feature-based approach to
sketch matching [1]. This is achieved by using local binary patterns
(LBP) in addition to the SIFT feature descriptor, which is motivated
byLBP’s success in a similar heterogeneousmatching application by
Liao et al. [14]. Additionally, we extend our feature-based matching
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to learn discriminant projections on “slices” of feature patches,

which is similar to the method proposed by Lei and Li [15].

3 FEATURE-BASED SKETCH MATCHING

Image feature descriptors describe an image or image region using a

feature vector that captures the distinct characteristics of the image

[18]. Image-based features have been shown to be successful in face

recognition, most notably with the use of local binary patterns [19].

3.1 Feature-Based Representation

We will now describe how to represent a face with image

descriptors. Because most image descriptors are not sufficiently

verbose to fully describe a face image, the descriptors are computed
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Fig. 2. An overview of the (a) training and (b) recognition using the LFDA framework. Each sketch and photo are represented by SIFT and MLBP feature descriptors
extracted from overlapping patches. After grouping “slices” of patches together into feature vectors �ðkÞðk ¼ 1 � � �NÞ, we learn a discriminant projection �k for each slice.
Recognition is performed after combining each projected vector slice into a single vector ’ and measuring the normed distance between a probe sketch and a gallery
photo.

Fig. 1. The difference between viewed sketches and forensic sketches. (a) Viewed sketches and their corresponding photographs, (b) two pairs of good quality forensic
sketches and the corresponding photographs, and (c) two pairs of poor quality forensic sketches and the corresponding photographs.



over a set of uniformly distributed subregions of the face. The
feature vectors at sampled regions are then concatenated together
to describe the entire face. The feature sampling points are chosen
by setting two parameters: a region (or patch) size s and a
displacement size �. The region size s defines the size of the square
window over which the image feature is computed. The displace-
ment size � states the number of pixels the patch is displaced for
each sample; thus, ðs� �Þ is the number of overlapping pixels in
two adjacent patches. This is analogous to sliding a window of size
s� s across the face image in a raster scan fashion. For an H �W

image, the number of horizontal (N) and vertical (M) sampling
locations is given byN ¼ ðW � sÞ=� þ 1 andM ¼ ðH � sÞ=� þ 1. At
each of the M �N patches, we compute the d-dimensional image
feature vector �. These image feature vectors are concatenated into
one single ðM �N � dÞ-dimensional image vector �. Whereas fðIÞ :

I ! � denotes the extraction of a single feature descriptor from an
image, sampling multiple features using overlapping patches is
denoted as F ðIÞ : I ! �. Minimum distance sketch matching can
be performed directly using this feature-based representation of
subjects i and j by computing the normed vector distance kF ðIiÞ �

F ðIjÞk [1].
In our sketch matching framework, two feature descriptors are

used: SIFT and LBP. The SIFT feature descriptor quantizes both the
spatial locations and gradient orientations within an s� s-sized
image patch, and computes a histogram in which each bin
corresponds to a combination of a particular spatial location and
orientation. For each image pixel, the histogram bin corresponding
to its quantized orientation and location is incremented by the
product of 1) the magnitude of the image gradient at that pixel and
2) the value of a Gaussian function centered on the patch with a
standard deviation of s=2. Trilinear interpolation is used on the
quantized location of the pixel, which addresses image translation
noise. The final vector of histogram values is normalized to sum to
one. The reader is referred to [13] for a more detailed description of
how the SIFT feature descriptor is designed. It is important to
reiterate that because we are sampling SIFT feature descriptors
from a fixed grid and we do not use SIFT keypoint detection, the
SIFT feature descriptor is computed at predetermined locations.

For the local binary pattern feature descriptor [17], we extended
the LBP to describe the face at multiple scales by combining the
LBP descriptors computed with radii r 2 f1; 3; 5; 7g. We refer to
this as the multiscale local binary pattern (MLBP). MLBP is similar
to other variants of the LBP, such as MB-LBP [14], but we obtained
slightly improved accuracy using MLBP.

The choice of the MLBP and SIFT feature descriptors was based
on reported success in heterogeneous face recognition and through
a quantitative evaluation of their ability to discriminate between
subjects in sketches and photos [20]. Though variants of LBPs have
led to substantial success in previous heterogeneous face recogni-
tion scenarios, the use of SIFT feature descriptors for this
application is quite novel. However, recent work [1] clearly
demonstrates the success of SIFT feature descriptors for viewed
sketch recognition. SIFT feature descriptors have also been shown
to perform comparatively with LBP feature descriptors in a
standard face recognition scenario [21]. These feature descriptors
are well-suited for sketch recognition because they describe the
distribution of the direction of edges in the face; this is the
information that both sketches and photos contain. By densely
sampling these descriptors, sufficient discriminatory information
is retained to more accurately determine a subject’s identity over
previously used synthesis methods [1].

The feature-based representation requires each sketch and
photo image to be normalized by rotating the angle between the
two eyes to 0 degree, scaling the images to a 75 interocular pixel
distance, and cropping the image size to 200 by 250 pixels. The
experimental results reported in Sections 4 and 6 for each of the

two descriptors are based on the sum of score fusion of the match

scores generated from computing descriptors with patch sizes of

s ¼ 16 and s ¼ 32. This also holds for the global discriminant

described in Section 3.2; we fuse the matching scores computed

using two separate patch sizes of 16 and 32. When combining the

SIFT and MLBP features, the sum of score fusion is used as well.

3.2 Local Feature-Based Discriminant Analysis

With both sketches and photos characterized using SIFT and

MLBP image descriptors, we further refine this feature space using

discriminant analysis. This is done to reduce the large dimension-

ality of the feature vector �. A straightforward approach would be

to apply classical subspace analysis (such as LDA) directly on �,

and to extract discriminant features for classification. However,

there are several problems with this approach. First, the feature

dimensionality is too high for direct subspace analysis. In our

experiments, each image is divided into either 154 overlapping

patches (for s ¼ 32Þ or 720 overlapping patches (for s ¼ 16Þ, with

each patch producing a 128-dimensional SIFT descriptor or a 236-

dimensional MLBP descriptor. The second problem is the

possibility of overfitting due to the small sample size (SSS) [22].
In order to handle the combination of a large feature size and

small sample size, an ensemble of linear discriminant classifiers

called LFDA is proposed. Other discriminant analysis methods

have been proposed to handle the SSS problem, such as random

sampling LDA [23], regularized LDA [24], and direct LDA [25].

However, we chose the proposed LFDA method because it is

designed to work with a feature descriptor representation (as

opposed to an image pixel representation), and it resulted in high

recognition accuracy.
In the LFDA framework, each image feature vector � is first

divided into “slices” of smaller dimensionality, where slices

correspond to the concatenation of feature descriptor vectors from

each column of image patches. Next, discriminant analysis is

performed separately on each slice by performing the following

three steps: PCA, within class whitening, and between class

discriminant analysis. Finally, PCA is applied to the new feature

vector to remove redundant information among the feature slices

to extract the final feature vector.
To train the LFDA, we use a training set consisting of pairs of

a corresponding sketch and photo of n subjects (which are the

n training classes). This results in a total of 2n training images

with two supports for each subject i: the image feature

representation of the sketch �i
s ¼ F ðIisÞ and the photo

�i
p ¼ F ðIipÞ. We combine these feature vectors as a column vector

in training matrices and refer to them as Xs ¼ ½�1
s �

2
s . . . �

n
s � for

the sketch, Xp ¼ ½�1
p �

2
p . . . �

n
p � for the photo, and X ¼

½�1
s . . . �

n
s �1

p . . . �
n
p � for the photo and sketch combined.

The first step in LFDA is to separate the image feature vector

into multiple subvectors or slices. Given the M �N array of

patches consisting of SIFT or MLBP descriptors, we create one slice

for each of the N patch columns. With a d-dimensional feature

descriptor, each of the N slices is of dimensionality ðM � dÞ. We call

this a “slice” because it is similar to slicing an image into N pieces.

After separating the feature vectors into slices, the training

matrices now become Xs
k 2 IR

M�d;n, Xp
k 2 IR

M�d;n, and Xk 2 IR
M�d;2n

(k ¼ 1 . . .N), which are all mean-centered.
We next reduce the dimensionality of each training slice

matrix Xk using the PCA matrix Wk 2 IR
M�d;r with r eigenvectors.

The purpose is to remove the noisy features which are usually

associated with the trailing eigenvectors with the smallest

eigenvalues. In our experiments, we use the 100 eigenvectors with

the largest eigenvalues (which preserves about 90 percent of the

variance). The discriminant extraction proceeds by generating the

mean projected class vectors
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Yk ¼ WT

k

�

Xs
k þXp

k

�

=2; ð1Þ

which are used to center the sketch and photo training instances of
each class by

~Xs
k ¼ WT

k Xs
k � Yk;

~Xp
k ¼ WT

k Xp
k � Yk:

ð2Þ

To reduce the intrapersonal variation between the sketch and the

photo, a whitening transform is performed. Whitening the within-

class scatter matrix reduces the large feature dimensions that

represent the principal intrapersonal variations, which in this case

correspond to intrapersonal differences between sketches and

photos. To do so, we recombine the training instances into
~Xk ¼ ½ ~Xs

k
~Xp
k�. PCA analysis is performed on ~Xk such that the

computed PCA projection matrix ~Vk 2 IR
100;100 retains all data

variance from ~Xk. Let �k 2 IR
100;100 be a diagonal matrix whose

entries are the eigenvalues of the corresponding PCA eigenvec-

tors ~Vk. The whitening transform matrix is Vk ¼ ð�
�1

2

k V T
k ÞT.

The final step is to compute a projection matrix that maximizes
the intraperson scatter by performing PCA on V TYk (which is the
whitening transform of the mean class vectors). Using all but one

of the eigenvectors in the PCA projection matrix, the resultant
projection matrix is denoted as Uk 2 IR

100;99. This results in the final
projection matrix for slice k:

�k ¼ WkVkUk: ð3Þ

With each local feature-based discriminant trained, we match

sketches to photos using the nearest neighbor matching on the
concatenated slice vectors. We first separate the feature represen-
tation of an image into individual slices

� ¼ ½�ð1ÞT �ð2ÞT . . . �ðNÞT �T; ð4Þ

where �ðiÞ 2 IR
M�d is the ith slice feature vector. We then project

each slice using the LFDA projection matrix �k, yielding the new
vector representation ’ 2 IR

M�99:

’ ¼
��

�
T

k �ð1Þ
�T �

�
T

k �ð2Þ
�T

. . .
�

�
T

k �ðNÞ
�T�T

: ð5Þ

With the LFDA representation of the sketch ’s and photo ’p, the
normed distance k’s � ’pk is used to select the gallery photo with
the minimum distance to the probe sketch.

The proposed LFDA algorithm is a simple yet effective method.
From the results in Section 4, we can clearly see that LFDA is able

to significantly improve the recognition performance over the basic
feature-based sketch matching framework. Similar to other
variants of LDA that are designed to handle the small sample

size problem [25], [24], [23], LFDA has several advantages over
traditional linear discriminant analysis. First, LFDA is more
effective in handling large feature vectors. The idea of segregating

the feature vectors into slices allows us to work on more
manageable sized data with respect to the number of training
images. Second, because the subspace dimension is fixed by the

number of training subjects, when dealing with the smaller sized
slices, the LFDA algorithm is able to extract a larger number of

meaningful features. This is because the dimensionality of each

slice subspace is bounded by the same number of subjects as a

subspace on the entire feature representation would be.

4 VIEWED SKETCH MATCHING RESULTS

In order to compare our proposed LFDA framework to published

methods on sketch matching, we evaluated our method using

viewed sketches from the CUHK data set1 [5]. This data set

consists of 606 corresponding sketch/photo pairs that were drawn

from three face data sets: 1) 123 pairs from the AR face database

[27], 2) 295 pairs from the XM2VTS database [28], and 3) 188 pairs

from the CUHK student database [6]. Each of these sketch images

was drawn by an artist while looking at the corresponding

photograph of the subject. Two examples of these viewed sketches

are shown in Fig. 1a. For the methods presented in this paper, all

results shown are the recognition rates averaged over five separate

random splits of 306 training subjects and 300 test subjects.
The results of viewed sketch matching experiment are

summarized in Table 1. The first column of the table shows the

baseline methods, which includes the top two performing methods

in the literature [1], [5] (each used 306 training subjects and 300 test

subjects) and Cognitec’s FaceVACS commercial face recognition

engine [26]. FaceVACS has been shown [1] to perform at the same

level as earlier solutions specifically trained for viewed sketch

recognition [2]. In the second column, the matching accuracies

achieved by directly comparing SIFT and MLBP feature vectors �

are listed. The method “SIFT + MLBP” indicates a sum of score

fusion [29] of the match scores from SIFT matching and MLBP

matching. While both the SIFT and MLBP methods offer similar

levels of performance, using LFDA (third column) the accuracy

increases to the point where (one average) less than two sketches

are incorrectly identified out of the 300 sketches in the probe set.
While LFDA was able to reduce the error in half, the use of LDA

actually induced higher error. In the same experiment shown in

Table 1, we applied LDA on the entire feature vector � instead of

breaking it into slices and performing LDA on each slice vector as

is done in LFDA. The accuracy of LDA+SIFT was 95.47 percent,

LDA+MLBP was 91.53 percent, and (SIFT+MLBP)+LDA was

97.07 percent. In each case, LDA actually lowered the accuracy

from the non-LFDA case. The decrease in accuracy observed when

applying the standard LDA is due to the small sample size

problem and the curse of dimensionality [22]. Given our large

feature representation (for a 32-pixel patch size, the SIFT

representation contains 19,712 components and the MLBP repre-

sentation contains 36,344 components), the subspace projections

are too tightly fit to the training data. Because the LFDA method is

an ensemble method, it is better suited to avoid this overfitting

problem. Other LDA variants have been shown to handle the small

sample size problem as well, such as random sampling LDA [23]

and regularized LDA [24].
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TABLE 1
Rank-1 Recognition Rates for Matching Viewed Sketches Using the CUHK Public Data Set

The standard deviation across the five random splits for each method in the middle and right columns is less than 1 percent.

1. The CUHK Face Sketch Database is available for download at: http://
mmlab.ie.cuhk.edu.hk/facesketch.html.



5 MATCHING FORENSIC SKETCHES

The available methods for matching forensic sketches to photos are
limited. Uhl and Lobo [30] proposed a now antiquated method of
matching sketches drawn by forensic artists using photometric
standardization and facial features. Yuen and Man [31] matched
lab generated forensic composites to photographs based on point
distribution models.

5.1 Forensic Sketch Database

In our study, we used a data set consisting of 159 forensic sketches,
each with a corresponding photograph of the subject who was later
identified by the law enforcement agency. All of these sketches
were drawn by forensic sketch artists working with witnesses who
provided verbal descriptions after crimes were committed by an
unknown culprit. The corresponding photographs (mug shots) are
the result of the subject later being identified. The forensic sketch
data set used here comes from four different sources:

1. 73 images from the forensic sketch artist Lois Gibson [32],
2. 43 images from the forensic sketch artist Karen Taylor [33],
3. 39 forensic sketches provided by the Michigan State Police

Department, and
4. 4 forensic sketches provided by the Pinellas County

Sheriff’s Office.

In addition to these 159 corresponding forensic sketch and photo
pairs, we also made use of a data set of 10,000 mug shot images
provided by theMichigan State Police to populate the gallery. Thus,
the matching experiments closely replicate real-world scenarios
where a law enforcement agency would query a large gallery of
mug shot images with a forensic sketch. Examples of the forensic
sketches used in our experiments are shown in Figs. 1, 6, and 7.

Certain sketch images in our collection of forensic sketches are
of poor quality in terms of not capturing all of the facial features of
the suspect. For most of these sketches, it is unlikely that they can
be successfully matched automatically to the corresponding photos
because they barely resemble the subject. For this reason, we
separated our forensic sketches into two categories: good quality
and poor quality. This separation was performed subjectively by
looking at the corresponding pairs (sketch and photo) and labeling
them as good if the sketch possessed a reasonable resemblance of
the subject in the photo and labeling them as poor if the sketch was
grossly inaccurate. We believe that this leads to a more accurate
portrayal of how accurately forensic sketches can be matched.
Fig. 1 shows the difference between good quality and poor quality
sketches.

5.2 Large-Scale Forensic Sketch Matching

Matching forensic sketches to large mug shot galleries is different
in several respects from traditional face identification scenarios.
When presenting face recognition results in normal recognition
scenarios, we are generally concerned with exactly identifying the
subject in question in a fully automated manner. For example,
when preventing multiple passports from being issued to the
same person, human interaction should be limited to only
ambiguous cases. This is due to the large volume of requests
such a system must process. The same is true for matching
arrested criminals against existing mug shot databases to confirm
their identity. However, when matching forensic sketches, it is not
critical for the top retrieval result to be the correct subject as long
as it is in the top R retrieved results, say R ¼ 50. This is because
the culprit being depicted in a forensic sketch typically has
committed a heinous crime (e.g., murder, rape, and armed
robbery) that will receive a large amount of attention from
investigators. Instead of accepting or dismissing only the top
retrieved photo, law enforcement officers will consider the top R
retrieval results as potential suspects. Generally, many of the

returned subjects can be immediately eliminated as suspects for
various reasons, such as if they are currently incarcerated or
deceased. The remaining candidates can each then be investigated
for their culpability of committing the crime. This scenario is also
true of crimes in which a photograph of a suspect is available.
Investigators will consider the top R retrieval results instead of
only the highest match. Based on the practice followed in
forensics, we would like R to be around 50; that is, we are
mainly concerned with whether or not the true subject is within
the top 50 retrieved images.

In order to improve the accuracy of matching forensic sketches,
we utilize ancillary or demographic information provided by the
witness, to be used as a soft biometric [34]. For example, suppose the
witness reports that the race of the culprit is Caucasian; then we can
eliminate all non-Caucasian members of the gallery to not only
speed up the matching but also to improve the matching
performance. The same is true for gender: If the suspect is reported
to be a female, then we disregard any male subject in the gallery. To
use this approach, we manually labeled all of the 10,159 mug shot
images and all of the forensic sketch/photo pairs in our database
with race and gender. For gender, we considered one of three
possible categories: male, female, and (in rare cases) unknown. For
race, we considered one of three categories: Caucasian, African-
American, and “other.” The “other” includes individuals who are of
Hispanic, Asian, or multiple races. Table 2 lists the percentage of
members from each race and gender category in the forensic
sketches and the mug shot gallery used in our experiments.

We lack additional ancillary information (e.g., age, height, scars,
marks, and tattoos) that could potentially be used to further
improve the matching accuracy.

6 FORENSIC SKETCH MATCHING RESULTS

Forensic sketch recognition performance using the 159 forensic
sketch images (probe set) and 10,159 mug shot images (gallery)
will now be presented. In these matching experiments, we use the
local feature-based discriminant analysis framework presented in
Section 3. Our matching uses the sum of score fusion of MLBP and
SIFT LFDA, as this was the highest performing method for
matching viewed sketches (Table 1).

The performance of matching sketches classified as good and
poor can be found in Fig. 3. There is a substantial difference in the
matching performance of good sketches and poor sketches. Despite
the fact that poor sketches are extremely difficult to match, the
CMC plots in Fig. 3 show that the proposed method performs
roughly the same on the poor sketches than a state-of-the-art
commercial matcher (FaceVACS) does on the good sketches.

Fig. 4 and Table 3 show the recognition performance when race
and gender information is used to filter the gallery. By utilizing
this ancillary information, we can significantly increase the
performance of forensic sketch recognition. We noticed a larger
performance gain by using race information than the gender
information. This is likely due to the more uniform distribution of
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TABLE 2
Demographics of the 159 Forensic Sketch Images

and the 10,159 Mug Shot Gallery Images



race membership than gender membership in our gallery. The use

of other demographic information such as age and height should

offer further improvements.
Fig. 5 demonstrates how recognition accuracy decreases as the

gallery size increases. This indicates that the proposed LFDA

method is scalable with respect to the even larger size galleries that

will be encountered in real-world scenarios.
Examples of failed retrievals are shown in Fig. 6. While the top

retrieved mug shot is not correct in these two examples, the probe

sketch appears to be more similar to the top matched photo than
the true photograph. This was nearly always the case: The top
retrieved images appeared highly similar to the probe sketch in the
incorrect matchings.

Fig. 7 shows three of the best matches and three of the worst
matches among all of the good sketches using the proposed LFDA
recognition method. For each image, we have listed the match rank
returned by LFDA and FaceVACS.

We performed additional studies to show how the human
memory can impact the accuracy of face recognition performance. In
these additional experiments, the recognition accuracies of indivi-
dual facial components (eyes, nose, mouth, and chin) are measured.
It is shown that the “external” regions of forensic sketches (chin,
hairline, etc.) are more salient than the “internal” regions (eyes,
nose, and mouth). While this is contrary to the saliency in face
photographs, it is in agreement with cognitive science research on
the ability of humans to remember unfamiliar subjects [35]. Due to
space limitations, the results are included in a technical report [20].

One limitation of our study is the small number of forensic
sketches in our data set, but obtaining a large collection of forensics
sketches and the mated photographs from law enforcement
agencies is not easy. Not only does this limit the evaluation of
our method, but it also affects the performance of our local feature-
based discriminant analysis. The LFDA needs a reasonable number
of training examples to learn the most discriminative projections.
In the case of viewed sketch recognition, we used 306 pairs of
sketches and photos for training. For the forensic sketches, even if
we performed leave-one-out cross validation, there would still be
only a small number of good quality training samples. For this
reason, we trained the discriminant on the viewed sketches when
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Fig. 3. Performance of matching forensic sketches that were labeled as good
(49 sketches) and poor (110 sketches) against a gallery of 10,159 mug shot
images without using race/gender filtering.

Fig. 4. Performance of matching good sketches with and without using ancillary
demographic information (race and gender) to filter the results.

Fig. 5. Drop in Rank-50 accuracy using LFDA and FaceVACS on the good
sketches, without race and gender filtering, as the gallery size increases.

TABLE 3
Recognition Performance of Matching Good Quality Forensic Sketches (49 Sketches) against a Gallery of 10,159 Subjects

Criminal investigators are generally interested in the top 50 retrieved results.



matching forensic sketches. However, we believe that with a larger

number of forensic sketches, we could more properly train our

discriminant and further improve the matching performance. The

bottleneck in finding additional forensic sketches for our experi-

ments is in obtaining the photograph mates. While forensic

sketches exist from numerous crimes, even if there is an eventual

identification of the subject, the mated sketch and photo are not

often stored together in a central database. We are currently

working with various law enforcement agencies to increase our

data set of forensic sketch pairs.

7 CONCLUSIONS

We have presented methods and experiments in matching forensic

face sketches to photographs. Matching forensic sketches is a very

difficult problem for two main reasons: 1) Forensic sketches are
often an incomplete and poor portrayal of the subject’s face. 2) We
must match across image modalities since the gallery images are
photographs and the probe images are sketches.

One of the key contributions of this paper is using SIFT and
MLBP feature descriptors to represent both sketches and photos.
We improved the accuracy of this representation by applying an
ensemble of discriminant classifiers, and termed this framework
local feature discriminant analysis. The LFDA feature-based repre-
sentation of sketches and photos was clearly shown to perform
better on a public domain-viewed sketch data set than previously
published approaches.

Another major contribution of the paper is the large-scale
experiment on matching forensic sketches. While previous
research efforts have focused on viewed sketches, most real-world
problems only involve matching forensic sketches. Using a
collection of 159 forensic sketches, we performed matching against
a gallery populated with 10,159 mug shot images. Further
improvements to the LFDA method were achieved by utilizing
ancillary information such as race and gender to filter the 10,159
member gallery. For an unbiased evaluation of our methods, we
used a state-of-the-art face recognition system, FaceVACS [26].

Continued efforts on matching forensic sketches are critical for
assisting law enforcement agencies in apprehending suspects. A
larger data set of forensic sketches and matching photographs
needs to be collected to further understand the nature and
complexity of the problem.
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Fig. 6. Two examples of failed retrievals on good sketches where the first column
shows the probe sketches, the second column shows the incorrect Rank-1
matches, and the third column shows the true mated photographs. These are
typical cases in which the true subject photo was not retrieved at rank 1, but the
impostor subject retrieved at rank 1 visually looks more similar to the sketch than
the true subject.

Fig. 7. Example matches from good quality forensic sketches with a background gallery of 10,159 subjects. We show (a) three of the best matches and (b) three of the
worst matches. Below each example is the rank of correct match obtained by the proposed LFDA method and FaceVACS.
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