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1 Introduction

The past decade has seen substantial improvements in the accuracy of fully exclusive event

generators. Matching schemes to simultaneously combine multiple leading-order (LO) ma-

trix elements have been interfaced with parton shower (PS) routines and implemented in

many event generators [1–9]. It has also become possible to match general next-to-leading-

order (NLO) calculations with a parton shower and produce physical event samples that

describe sufficiently inclusive distributions at NLO [10–16]. These NLO+PS event gen-

erators are now part of the standard tool set for experimental analyses and have made

significant impact on phenomenology. Recently, the merging of NLO calculations of differ-

ent multiplicities has been addressed by several groups [17–25]. Event generators continue

to push to higher precision, and the LHC physics program will continue to rely on progress

in this area.

The frontier of fixed-order precision is calculations at next-to-next-to-leading order

(NNLO) in QCD perturbation theory. Fully differential NNLO calculations exist for several

important hadron-collider processes involving W , Z, γ, and Higgs bosons as well as top

quarks [26–34], and the technology for these calculations is continually being pushed toward

more complex topologies [35–37]. Although experimental analyses regularly make use of

NNLO cross sections and distributions, there are many challenges inherent in directly

comparing fixed-order results with data.

An event generator that matches NNLO calculations with a parton shower would be an

ideal tool to bridge the gap between pure fixed-order calculations and the needs of experi-

mentalists. It would provide hadron-level events that can be more easily interfaced with an

analysis while maintaining NNLO accuracy for the underlying hard process, extending the

power and flexibility of an NLO+PS generator to NNLO+PS. An important first step in

this direction has been taken in ref. [38], where a MiNLO-improved Powheg simulation

for Higgs plus one jet [24] was used to produce an NNLO+PS event sample for Higgs boson

production by reweighting the events to the NNLO Higgs rapidity distribution.

In this work, we present a general method for combining NNLO calculations with

leading-logarithmic (LL) resummation to produce fully differential cross sections and for

attaching a parton shower routine to produce complete events. We derive the conditions

that an NNLO+LL generator must satisfy and provide a construction that satisfies these.

We also comment on the approach in ref. [38] and show how it can be derived as a special

case of our results.

Theoretically, there are two conceptually very distinct aspects to interfacing a fixed-

order calculation with a parton shower event generator. The first aspect is the LL im-

provement of the fully differential NNLO calculation. This corresponds to matching an

LL resummed calculation with an NNLO calculation to obtain a combined NNLO+LL

calculation, and doing so at a fully differential level. This aspect is, a priori, completely

independent of any particular parton shower algorithm or program and can be performed

solely at the partonic (or matrix-element) level. Here, the NNLO calculation first needs to

be recast in a way that is suitable for fully differential event generation. Beyond leading

order, the cross section for a fixed number of partons is infrared divergent and thus ill de-
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fined, meaning that to generate physical events with a given number of partons, the events

must correspond to a physically well-defined and infrared-safe partonic jet cross section. In

other words, each four-vector in the event should represent a partonic jet, which includes

the contribution of an arbitrary number of unresolved emissions below some jet resolution

cutoff. The NNLO calculation written in this way is then matched to an LL resummed

calculation to obtain a combined fully differential NNLO+LL calculation.

The second aspect is to attach an exclusive parton shower Monte Carlo to this

NNLO+LL calculation. In this step, events with N , N + 1, and N + 2 partons of the

NNLO+LL calculation are handed to a parton shower algorithm, which generates ad-

ditional emissions. Here, one has to take care of double counting between the shower

emissions and the partonic calculation as well as the compatibility of the LL parton shower

evolution with the partonic LL resummation.

The conceptual distinction between these two aspects has already been stressed in

refs. [22, 39, 40]. It becomes particularly important at NNLO. As we will see, the first

aspect of obtaining a consistent fully differential NNLO+LL matched calculation is the

more challenging one, which is why most of our discussion will focus on it. Once this

step has been carried out, the step of attaching a parton shower algorithm is relatively

straightforward.

This paper is organized as follows. In section 2, we discuss in detail the general

framework for generating physical events beyond leading order. The main outcome of

this section will be to identify the “Monte Carlo (MC) cross sections” dσmc, which are

the partonic jet cross sections according to which the different event multiplicities are

distributed. In particular, we show how the fixed-order (FO) calculation is cast into this

form to make it suitable for event generation. In section 3, we discuss the general procedure

and conditions for combining the pure FO and pure LL calculations into a matched FO+LL

calculation. As an instructive exercise, we review the corresponding MC cross section for

the known cases of LO+LL and NLO+LL calculations. In section 4, we then discuss in

detail how to construct the MC cross sections for an NNLO+LL calculation. In section 5,

we discuss how to interface the NNLO+LL calculation with a parton shower, including

the conditions needed to avoid any double counting that might arise. In section 6, we

discuss how our method encompasses proposed and existing approaches [22, 38, 41], and

in section 7, we give our conclusions.

2 General setup

2.1 Monte Carlo phase space integration vs. event generation

2.1.1 Monte Carlo phase space integration

Consider the cross section for some infrared-safe N -jet measurement MX , which can con-

tain a number of cuts (θ functions) as well as differential measurements (δ functions) of

observables, which we collectively refer to as X. At leading order in perturbation theory,

the cross section for measuring X is given by

σLO(X) =

∫
dΦN BN (ΦN )MX(ΦN ) , (2.1)

– 3 –
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where BN (ΦN ) is the tree-level (Born) squared matrix element for N emissions. In case of

hadronic collisions, we assume that the relevant parton densities (PDF) have already been

convolved with the matrix elements, and we will therefore avoid writing them out explicitly

in our formulae. The measurement function MX(ΦN ) implements the measurement on the

N -body phase space point ΦN . In particular, since MX is infrared safe, it cuts off any

possible IR divergences in BN (ΦN ). To obtain σ(X) from eq. (2.1), one usually performs

the phase space integral over ΦN numerically. Due to the large dimensionality of N -body

phase space, the typical method of choice is Monte Carlo integration: we generate points

ΦN with relative weights such that they are distributed according to BN (ΦN ).1 For each

generated point ΦN , we evaluate MX(ΦN ) and record the result for X into appropriate

histograms with the associated weight of the point ΦN .

At next-to-leading order in perturbation theory, σ(X) is given by

σNLO(X) =

∫
dΦN (BN + VN )(ΦN )MX(ΦN ) +

∫
dΦN+1BN+1(ΦN+1)MX(ΦN+1) . (2.2)

The virtual one-loop contribution VN and the (N + 1)-parton real-emission contribution

BN+1 are separately IR divergent. A convenient way to handle these divergences is the

standard subtraction method, where one writes2

σNLO(X) =

∫
dΦN (BN + V C

N )(ΦN )MX(ΦN ) (2.3)

+

∫
dΦN+1

{
BN+1(ΦN+1)MX(ΦN+1)−

∑
m

Cm
N+1(ΦN+1)MX [Φ̂m

N (ΦN+1)]

}
.

Here, V C
N denotes the virtual contribution including the appropriate integrated subtraction

terms to render it IR finite. The Cm
N+1 are the corresponding real-emission subtraction

terms. Written in this way, the ΦN and ΦN+1 integrals are separately IR finite and can

each be performed numerically by Monte Carlo integration.

The ΦN integral in eq. (2.3) can be performed as before at LO, except that the ΦN

points are now distributed according to BN + V C
N . The ΦN+1 integral is more involved

now due to the presence of the subtraction terms. Their precise form is not important for

our discussion. What is relevant is that generically several subtraction terms are needed

to remove all possible IR singularities in BN+1 and that in each subtraction term, the

measurement must be performed on a (in principle) different projected N -body phase

space point Φ̂m
N (ΦN+1). As a result, each generated point ΦN+1 contributes multiple times

to each histogram with multiple weights distributed according to BN+1 and Cm
N+1, which

1To be precise, if ΦN points are generated according to a probability distribution P (ΦN ), each point gets

assigned the weight w(ΦN ) = BN (ΦN )/P (ΦN ). The effective distribution of points is then w(ΦN )P (ΦN ) =

BN (ΦN ), as desired. The simplest would be to use a flat sampling P (ΦN ) = 1, while P (ΦN ) ≈ BN (ΦN )

would be statistically more efficient. While the choice for P (ΦN ) is important for the statistical efficiency

of the Monte Carlo integration, it is not relevant for our discussion.
2Alternatively, one can keep the ΦN point fixed during the ΦN+1 integration and evaluate the same

MX(ΦN ) for all the subtraction counterterms and different MX [Φ̂mN+1(ΦN )] for each different BmN+1 contri-

bution, where
∑
mB

m
N+1 = BN+1. This approach might be better for efficiency reasons and more suitable

for matching with the parton shower.
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are separately IR divergent. As we approach any IR-singular region, the different X values

obtained for the real emission term and the relevant subtraction terms approach each other

and eventually fall into the same histogram bin, where the IR-divergent contributions of

real emission and subtractions cancel each other.

2.1.2 Monte Carlo event generation

The above Monte Carlo phase space integration is how essentially all (N)NLO programs

using subtractions operate. Its main feature is that it allows one to obtain the exact

result (up to limitations due to numerical precision) for arbitrary IR-safe observables. It

can be contrasted with the event generation used in (parton shower) Monte Carlo event

generators. In an event generator, the basic goal is to produce physical events that are

generated and stored once and that can be repeatedly processed later, e.g., by performing

various measurements on them.

Theoretically, performing a measurement MX on the stored events is exactly equivalent

to making a theoretical prediction for σ(X). To illustrate this with a trivial example,

imagine we want to compute σLO(X) in eq. (2.1) by generating events. To do so, we take

dσmc≥N
dΦN

= BN (ΦN ) and σLO(X) =

∫
dΦN

dσmc≥N
dΦN

MX(ΦN ) . (2.4)

We now first generate a number of points ΦN (the actual generation routine can be the same

as before), call them “N -parton events,” and store them together with their weights. These

events are distributed according to the “MC cross section” dσmc≥N/dΦN . In the second step,

we run over all stored events, evaluate the measurement MX(ΦN ), and record the result

for X into histograms with the associated weight of each event. The result for σLO(X)

obtained in this way is obviously identical to that obtained by performing the Monte Carlo

integration of eq. (2.1) as described there. We have merely changed from two operations in

a single loop into two separate loops with one operation each. In practice, this separation

becomes vital as soon as the additional processing steps performed on the events become

very involved (theoretically and/or computationally intensive). This is the case when the

events are run through a parton shower and hadronization routine, which then also allows

one to perform much more detailed measurements, such as propagating them through a

complete detector simulation and using them in different experimental analyses.

Now, if we try to perform the NLO calculation in eq. (2.3) with the same approach,

then for each generated and stored ΦN+1 point with weight proportional to BN+1, we

would also have to keep track and store the complete set of associated (correlated) Φm
N

events with weights −Cm
N+1(ΦN+1). In principle, this is possible and would again give

the identical result for σ(X) as before (some fixed-order programs can indeed be run in

this mode). However, for experimental purposes, e.g., when matching onto parton shower

routines, it is impractical to deal with such “effective” events that consist of a number

of correlated unphysical events with large and opposite weights. The point is that BN+1

and Cm
N+1 separately are not physical cross sections. Their individual contributions are IR

divergent, and the divergences only cancel each other to give a physical result once they

are combined into a physical measurement, i.e., a single histogram bin.
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Therefore, the goal is to generate events that are physical in the sense that the contri-

bution from each event should correspond to an IR-safe cross section; i.e., all IR divergences

should cancel on a per-event basis rather than between several unphysical events.3 Con-

ceptually, this implies that each N -parton event should be considered a “bin entry” in a

partonic N -jet measurement, which is IR finite and fully differential in the corresponding

partonic N -jet phase space. In other words, the generated N -parton events really represent

points in an N -jet phase space rather than an N -parton phase space.

The definition of an N -jet cross section requires the presence of an N -jet resolution

variable, which we call TN . It is defined such that for an N -parton phase space point

TN (ΦN ) = 0, while for ΦM>N we have TN (ΦM )→ 0 in the IR limit ΦM → ΦN . Additional

emissions below TN < T cut
N are considered unresolved and T cut

N is called the N -jet resolution

scale. When generating events with N and N + 1 partons, they are distributed according

to the following Monte Carlo (MC) cross sections:

ΦN events:
dσmcN

dΦN
(T cut

N ) ,

ΦN+1 events:
dσmc≥N+1

dΦN+1
(TN > T cut

N ) . (2.5)

The cross section σ(X) measured from these events is given by

σ(X) =

∫
dΦN

dσmcN

dΦN
(T cut

N )MX(ΦN ) +

∫
dΦN+1

dσmc≥N+1

dΦN+1
(TN > T cut

N )MX(ΦN+1) . (2.6)

Physically, dσmcN /dΦN (T cut
N ) is a fully differential exclusive partonicN -jet cross section.

Perturbatively, it is the cross section for the emission of N identified partons plus any

number of unresolved emissions below the resolution scale T cut
N . (At higher orders, this

includes the necessary virtual corrections to render it IR finite.) Hence, as mentioned

already, ΦN really means Φjet
N here, and when specifying the jet resolution variable TN ,

one also needs to specify how unresolved emissions with TN < T cut
N are projected onto the

partonic N -jet phase space Φjet
N in which the events are distributed. To avoid cluttering

the notation, we suppress the explicit “jet” label in the rest of the paper.

The cross section dσmc≥N+1/dΦN+1(TN > T cut
N ) in eqs. (2.5) and (2.6) is an inclusive

partonic (N + 1)-jet cross section. Perturbatively, it is the cross section for the emission of

N + 1 identified partons above the N -jet resolution scale T cut
N . It includes any number of

additional emissions, which are mapped onto the partonic (N + 1)-jet phase space ΦN+1 ≡
Φjet
N+1 of the N + 1 identified partons (or rather partonic jets). The jet resolution variable

TN is part of the full ΦN+1, and we use the argument TN > T cut
N to explicitly indicate the

fact that dσmc≥N+1 only has support for TN above T cut
N .

3Note that the problem is not the use of weighted events to obtain the desired distribution, since as

long as the weighted events are statistically independent, they can be (partially) unweighted. What is very

impractical is to have unphysical events that must be treated as correlated due to their individual weights

being IR divergent, since there is no reasonable way to unweight these. One can also have an “intermediate”

case, where the final cross section is made up of independent IR-finite parts, some of which still require

events with negative weights. This causes much less severe but still important practical complications and

so should be avoided if possible.
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This procedure is essentially what every generator of physical events does, either

implicitly or explicitly. For example, in a pure parton shower generator, TN corresponds

to the shower evolution variable, and T cut
N is the parton shower cutoff. In this case,

dσmcN /dΦN (T cut
N ) is the no-emission probability, and dσmc≥N+1/dΦN+1(TN > T cut

N ) is the

probability to have at least one emission above T cut
N . This is discussed in detail in

section 2.3.

We now want to cast the FO calculation in eq. (2.2) into a form suitable for event

generation by applying the logic in eqs. (2.5) and (2.6) at fixed order. We start by consid-

ering the trivial example of an LO calculation. Since at tree level there are no additional

emissions, we do not need to specify a resolution variable, the N jets coincide with the N

tree-level partons, and measuring the N -jet phase space simply returns the full N -parton

information. Thus, at LO, the “MC measurement” function defining the MC cross section is

Mmc(Φ′N ) = δ(ΦN − Φ′N ) . (2.7)

That is, the partonic phase space Φ′N going into the measurement is mapped trivially onto

the partonic N -jet phase space ΦN ≡ Φjet
N of the Monte Carlo events. Inserting this into

the LO calculation in eq. (2.1), we obtain

dσmc≥N
dΦN

=

∫
dΦ′N BN (Φ′N )Mmc(Φ′N ) = BN (ΦN ) , (2.8)

which is the obvious result and corresponds to eq. (2.4).

Starting at NLO, the fully differential MC measurement becomes nontrivial. We now

need to specify how the measurement function acts on both ΦN and ΦN+1 points. At

NLO, the definition of the MC cross sections given below eq. (2.6) corresponds to the fully

differential MC measurements

Mmc(Φ′N ) = δ(ΦN − Φ′N ) ,

Mmc(Φ′N+1) = δ[ΦN − Φ̂N (Φ′N+1)] θ[TN (Φ′N+1) < T cut
N ]

+ δ(ΦN+1 − Φ′N+1) θ[TN (Φ′N+1) > T cut
N ] . (2.9)

For these to be IR safe, TN (ΦN+1) can be any IR-safe resolution variable, and Φ̂N (ΦN+1)

can be any IR-safe projection from ΦN+1 to ΦN . In particular, TN (ΦN ) = 0, and

TN (ΦN+1) > T cut
N cuts off all IR-singular regions in ΦN+1. Below the resolution scale

T cut
N , the additional emission in ΦN+1 remains unresolved, and ΦN+1 is projected onto a

corresponding ΦN point via Φ̂N (ΦN+1). Above T cut
N , the additional emission is resolved,

and we measure the full ΦN+1 dependence. Inserting eq. (2.9) into eq. (2.2), we obtain

dσmcN

dΦN
(T cut

N ) = (BN + VN )(ΦN ) +

∫
dΦN+1

dΦN
BN+1(ΦN+1) θ[TN (ΦN+1) < T cut

N ] ,

dσmc≥N+1

dΦN+1
(TN > T cut

N ) = BN+1(ΦN+1) θ[TN (ΦN+1) > T cut
N ] , (2.10)

where in the first equation, we have abbreviated

dΦN+1

dΦN
≡ dΦN+1 δ[ΦN − Φ̂N (ΦN+1)] . (2.11)

– 7 –
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Using eq. (2.10) as the MC cross sections in eq. (2.5), we can generate physical NLO events.

Of course, to distribute our N -parton events, we still have to perform the NLO calculation

in dσmcN /dΦN (T cut
N ) (which may be nontrivial and require subtractions as in eq. (2.3), but

which we will assume exists).

We can ask to what extent other measurements MX are reproduced at NLO when

using eq. (2.10) together with eq. (2.6):

σ(X) =

∫
dΦN (BN + VN )(ΦN )MX(ΦN ) +

∫
dΦN+1BN+1(ΦN+1) (2.12)

×
{
θ[TN (ΦN+1) < T cut

N ]MX [Φ̂N (ΦN+1)] + θ[TN (ΦN+1) > T cut
N ]MX(ΦN+1)

}
.

Comparing to eq. (2.2), it is clear that observables are correct to the appropriate fixed

order if and only if they are insensitive to the unresolved region of phase space below T cut
N

where the measurement is evaluated on the projected phase space point Φ̂N (ΦN+1) rather

than the exact ΦN+1. That is,

• N -jet (integrated) observables are correct to NLON up to power corrections that scale

as O(αsT cut
N /T eff

N ), where T eff
N is the typical resolution scale to which the measure-

ment is sensitive, i.e., up to which it integrates over ΦN+1. In particular, it should

contain the complete unresolved region of ΦN+1 where TN (ΦN+1) < T cut
N .

• (N+1)-jet (differential) observables are correct to LON+1 if they only include contri-

butions in the resolved region of ΦN+1, i.e., if their MX(ΦN+1) completely excludes

the unresolved TN (ΦN+1) < T cut
N region.

Here, M -jet observables are those that receive their first nonzero contribution from an M -

parton final state, and NnLOM refers to the O(αn
s ) correction relative to the corresponding

tree-level M -parton result.

An example of the effective resolution scale T eff
N is in Higgs boson production with

a veto on extra jets (requiring pjet
T < pcut

T ). If the resolution variable TN is chosen to be

the transverse momentum of the hardest jet, then T eff
N = pcut

T . For a different resolution

variable, T eff
N corresponds to the effective scale in TN to which the cut on pjet

T is sensitive.

For example, if TN is chosen to be the pT of the Higgs, then T eff
N ' pcut

T . If it is chosen to

be beam thrust [42], then T eff
N ∼ mH(pcut

T /mH)
√

2 [43].

The presence of power corrections in T cut
N /T eff

N clearly highlights the formal limitation

fundamental to the event generation method, namely that we inevitably lose the fully

differential information below the resolution cutoff. This is the price we have to pay for

the event-by-event IR-finiteness. Fortunately, in practice, this is not a problem, since

we can always make T cut
N small enough such that either power corrections in T cut

N are

irrelevant or else, if we do probe scales of order T cut
N , the FO expansion breaks down and

resummed perturbation theory is required to obtain a stable prediction. In this case, the

only observables for which we cannot obtain an accurate FO result are those for which we

would not want to use the FO calculation in the first place.

One might think that the breakdown of the FO expansion indicates that our events

also become unphysical again. However, the important point is that the events (or more

– 8 –
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precisely the underlying MC cross sections) are still defined in a physical IR-safe way. For

very small T cut
N , we are simply going into an extremely exclusive and thus IR-sensitive

region, where the FO calculation itself breaks down, irrespectively of how it is performed.

This is precisely the region where improving the FO calculation with the parton-shower

LL resummation or a higher-order resummation becomes necessary to obtain a meaningful

perturbative result. Rewriting the FO calculation in this way forms the basis (and in fact

is a necessary precondition) for combining it with a parton shower event generator. As

we will see later, after including the LL improvement, T cut
N will become equivalent to the

parton shower cutoff.

2.2 Event generation at NNLO

To implement an NNLO calculation in the form of event generation, we first have to extend

eq. (2.5) to include (N + 2)-parton events. To do so, we split dσmc≥N+1 into an exclusive

dσmcN+1 and an inclusive dσmc≥N+2 using an additional (N + 1)-jet resolution scale T cut
N+1.

Events with N , N + 1, and N + 2 partons are then distributed according to the following

MC cross sections:

ΦN events:
dσmcN

dΦN
(T cut

N ) ,

ΦN+1 events:
dσmcN+1

dΦN+1
(TN > T cut

N ; T cut
N+1) , (2.13)

ΦN+2 events:
dσmc≥N+2

dΦN+2
(TN > T cut

N , TN+1 > T cut
N+1) .

The cross section σ(X) measured from these events is given by

σ(X) =

∫
dΦN

dσmcN

dΦN
(T cut

N )MX(ΦN ) +

∫
dΦN+1

dσmcN+1

dΦN+1
(TN > T cut

N ; T cut
N+1)MX(ΦN+1)

+

∫
dΦN+2

dσmc≥N+2

dΦN+2
(TN > T cut

N , TN+1 > T cut
N+1)MX(ΦN+2) . (2.14)

Here, dσmcN (T cut
N ) is defined as before as an exclusive partonic N -jet cross section, i.e., the

IR-finite cross section for N identified partons plus any number of unresolved emissions

below the resolution scale T cut
N . Next, dσmcN+1(TN > T cut

N ; T cut
N+1) is an exclusive partonic

(N + 1)-jet cross section and is also IR finite. It contains N + 1 identified partons plus any

number of unresolved emissions below the resolution scale T cut
N+1. The argument TN > T cut

N

indicates that the cross section only has support above T cut
N , which acts as the condition

to have one additional resolved parton. Finally, dσmc≥N+2(TN > T cut
N , TN+1 > T cut

N+1) is an

inclusive partonic (N + 2)-jet cross section and is also IR finite. It contains at least N + 2

identified partons, where two additional partons are required to be above T cut
N and T cut

N+1,

respectively, as well as any number of additional emissions. Compared to eq. (2.5), where

N + 1 was the highest multiplicity and inclusive over additional emissions, now both N

and N + 1 are exclusive multiplicities, while the highest multiplicity is N + 2 and is again

inclusive over additional emissions. In figure 1, we illustrate the regions in TN and TN+1

contributing to each multiplicity.
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TN

TN+1

T cut
N

T cut
N+1

N N + 1

≥ N + 2

(ex
clu
de
d b
y T

N
+
1
<
TN

)

Figure 1. Illustration of the N -jet, (N + 1)-jet, and (N + 2)-jet regions in eq. (2.13) for resolution

variables that satisfy TN+1 < TN (e.g., the pT of the leading and subleading jet or N -jettiness [44]).

The N -jet bin has TN < T cut
N and is represented by N -parton events with TN = TN+1 = 0 (shown by

the black dot at the origin). The (N+1)-jet bin has TN > T cut
N and TN+1 < T cut

N+1 and is represented

by (N + 1)-parton events with TN+1 = 0 (shown by the black line on the TN axis). The inclusive

(N + 2)-jet bin has TN > T cut
N and TN+1 > T cut

N+1 and is represented by (N + 2)-parton events.

At fixed NNLO, the cross section σ(X) is given by

σNNLO(X) =

∫
dΦN (BN + VN +WN )(ΦN )MX(ΦN )

+

∫
dΦN+1

(
BN+1 + VN+1

)
(ΦN+1)MX(ΦN+1)

+

∫
dΦN+2BN+2(ΦN+2)MX(ΦN+2) , (2.15)

where WN contains the two-loop virtual corrections for N partons and VN+1 the one-loop

virtual corrections for N+1 partons. In principle, the phase space integrals in eq. (2.15) can

again be performed by Monte Carlo integration using subtractions. Since the singularity

structure of the real, virtual, and real-virtual contributions is much more complex than at

NLO, the required subtractions are far more intricate now.

We now want to recast eq. (2.15) in the form of eq. (2.14). At NNLO, the general

definition of the MC cross sections given below eq. (2.14) corresponds to the following MC

measurement functions:

Mmc(Φ′N ) = δ(ΦN − Φ′N ) ,

Mmc(Φ′N+1) = δ[ΦN − Φ̂N (Φ′N+1)] θ[TN (Φ′N+1) < T cut
N ] (2.16)

+ δ(ΦN+1 − Φ′N+1) θ[TN (Φ′N+1) > T cut
N ] ,

Mmc(Φ′N+2) = δ[ΦN − Φ̂N (Φ′N+2)] θ[TN (Φ′N+2) < T cut
N ]

+ δ[ΦN+1 − Φ̂N+1(Φ′N+2)] θ[TN (Φ′N+2) > T cut
N ] θ[TN+1(Φ′N+2) < T cut

N+1]

+ δ(ΦN+2 − Φ′N+2) θ[TN (Φ′N+2) > T cut
N ] θ[TN+1(Φ′N+2) > T cut

N+1] .
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For these measurements to be IR safe, TN and TN+1 can be any IR-safe resolution variables,

and the various Φ̂N (ΦM ) can be any IR-safe phase space projections. These conditions are

much more nontrivial at NNLO compared to NLO, since we now need explicit projections

from ΦN+2 down to ΦN , and furthermore, the condition TN (ΦN+2) > T cut
N must cut off all

double-unresolved IR-singular regions of ΦN+2. For example, at NLO, TN could simply be

defined as the pT or virtuality of the one additional emission (which is IR safe at NLO).

However, taking TN and TN+1 as the pT or virtuality of each of the two additional emissions

is not IR safe at NNLO. Instead, a properly IR-safe NNLO generalization for TN would

be to define it as the pT of the additional jet using an explicit jet algorithm with some

jet radius R. This corresponds to using a “local” resolution variable. Another choice is to

define it as the
∑
pT of all additional emissions or N -jettiness [44]. These correspond to

“global” resolution variables.

Plugging eq. (2.16) back into eq. (2.15), we obtain the required MC cross sections,

dσmcN

dΦN
(T cut

N ) = (BN + VN +WN )(ΦN )

+

∫
dΦN+1

dΦN
(BN+1 + VN+1)(ΦN+1) θ[TN (ΦN+1) < T cut

N ]

+

∫
dΦN+2

dΦN
BN+2(ΦN+2) θ[TN (ΦN+2) < T cut

N ] ,

dσmcN+1

dΦN+1
(TN > T cut

N ; T cut
N+1)

= (BN+1 + VN+1)(ΦN+1) θ[TN (ΦN+1) > T cut
N ]

+

∫
dΦN+2

dΦN+1
BN+2(ΦN+2) θ[TN (ΦN+2) > T cut

N ] θ[TN+1(ΦN+2) < T cut
N+1] ,

dσmc≥N+2

dΦN+2
(TN > T cut

N , TN+1 > T cut
N+1)

= BN+2(ΦN+2) θ[TN (ΦN+2) > T cut
N ] θ[TN+1(ΦN+2) > T cut

N+1] , (2.17)

where we have defined the generalization of eq. (2.11),

dΦM

dΦN
≡ dΦM δ[ΦN − Φ̂N (ΦM )] . (2.18)

Note that the implementation of the constraint TN > T cut
N in dσmcN+1 is nontrivial now.

For simplicity, we have not written any subtractions in eq. (2.17), which will be needed in

some form when evaluating the cross sections numerically to separate out and cancel the IR

divergences in the virtual and real emission contributions. Applying the MC measurement

functions in eq. (2.16) to the required subtraction terms is straightforward. The precise

form of the subtractions is, however, not important for our discussion, and one can apply

for example the NNLO subtraction techniques in refs. [45–48].

As at NLO, writing the NNLO calculation in terms of IR-finite MC cross sections, as

above, forms the basis for using it in an exclusive event generator for physical events. Using

eq. (2.17) together with eq. (2.14), the cross section for some measurement MX obtained

– 11 –
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in this way is

σ(X) =

∫
dΦN (BN + VN +WN )(ΦN )MX(ΦN )

+

∫
dΦN+1 (BN+1 + VN+1)(ΦN+1)

×
{
θ[TN (ΦN+1) < T cut

N ]MX [Φ̂N (ΦN+1)] + θ[TN (ΦN+1) > T cut
N ]MX(ΦN+1)

}
+

∫
dΦN+2BN+2(ΦN+2)

×
{
θ[TN (ΦN+2) < T cut

N ]MX [Φ̂N (ΦN+2)]

+ θ[TN (ΦN+2) > T cut
N ] θ[TN+1(ΦN+2) < T cut

N+1]MX [Φ̂N+1(ΦN+2)]

+ θ[TN (ΦN+2) > T cut
N ] θ[TN+1(ΦN+2) > T cut

N+1]MX(ΦN+2)
}
. (2.19)

This has the same inevitable limitations that we already saw in the NLO case. Since

N -parton and (N + 1)-parton events correspond to partonic N -jet and (N + 1)-jet cross

sections, the measurement is evaluated on the corresponding projected phase space points

in the unresolved regions of phase space. Therefore, the cross section σ(X) is correct to the

required fixed order (up to power corrections in the resolution scales) for measurements X

that are insensitive to the unresolved regions of phase space. This means:

• N -jet observables are correct to NNLON if they integrate over the complete un-

resolved regions of ΦN+1 and ΦN+2. [Power corrections are at most of relative

O(αsT cut
N /T eff

N ) and O(α2
sT cut

N+1/T eff
N+1) where T eff

N and T eff
N+1 are the typical resolution

scales up to which the measurement integrates over ΦN+1 and ΦN+2, and generically

T eff
N+1 . T eff

N .]

• (N + 1)-jet observables are correct to NLON+1 if they only include contributions in

the resolved region of ΦN+1, while integrating over the complete unresolved region of

ΦN+2. [Power corrections are at most of relative O(αsT cut
N+1/T eff

N+1) where T eff
N+1 ≤ TN

is the typical resolution scale up to which the measurement integrates over ΦN+2.]

• (N + 2)-jet observables are correct to LON+2 if they only include contributions in

the resolved region of ΦN+2.

As before, M -jet observables receive their tree-level contribution from an M -parton final

state, and NnLOM refers to the O(αn
s ) correction relative to that. The definition of T eff

N can

be understood using an example similar to that used when discussing MC cross sections at

NLO. These properties are fundamental to the event generation method and are shared by

all implementations. In turn, they will also be the necessary conditions on the FO accuracy

that should be maintained by the NNLO+LL calculation.

Although T cut
N and T cut

N+1 are jet resolution scales, they will typically not define jets

that are reasonable to measure experimentally. They effectively serve as IR cutoffs below

which observables should be inclusive over unresolved emissions (which in fact means they

– 12 –
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should be smaller than the typical scales probed in the experimental jet measurements).

In practice, T cut
N and T cut

N+1 can again be made sufficiently small such that FO perturbation

theory is no longer appropriate to describe observables that probe emissions at or below

these scales. As at NLO, at this point, we are not losing any relevant fixed-order infor-

mation, and the parton shower or higher-order resummation is required to provide a valid

perturbative description.

To conclude this subsection, we stress that so far we have not done any showering; we

have simply rewritten the FO calculation in a form suitable to generate physical events.

This will be our starting point for obtaining a fully differential NNLON+LL calculation

and defines the partonic jet cross sections that we will require as inputs from the FO

calculation. We assume these are available to us, and we will not discuss the techniques

used to compute them. For dσmcN+1 and dσmc≥N+2, these are the same inputs that are required

in the corresponding NLON+1+LL calculation. The genuine NNLO input required is the

cumulant cross section dσmcN /dΦN (T cut
N ). We assume that it is provided to us by the FO

calculation in a form that allows us to obtain a numerical result for any needed ΦN point

and T cut
N value. This is likely to be a challenging part in the practical implementation, and

its availability might restrict the possible choices for the concrete definitions of TN (ΦN+2)

and Φ̂N (ΦN+2) that can be used.

2.3 Event generation at LL

The parton shower produces events whose cross sections include resummed contributions

from all orders in perturbation theory. These resummed rates account for the large can-

cellations between virtual and real emissions in the IR region of phase space. The shower

can therefore describe the resummation region of observables more accurately than FO

calculations as well as produce high-multiplicity final states than can be passed through

hadronization routines to produce realistic events. In this subsection, we are interested in

using the parton shower approximation to obtain a resummed calculation for the MC cross

sections at leading-logarithmic (LL) order. This will serve as the basis for the LL improve-

ment of the FO cross sections to obtain matched FO+LL calculations in sections 3 and 4.

Note that here, we are not interested in the algorithmic construction of the parton shower.

Formulating the LL calculation in a parton-shower-like fashion will facilitate attaching an

actual parton shower to the matched FO+LL calculation.

The parton shower directly works as an event generator and is fundamentally based

on evolution in a resolution variable T , which characterizes the scale of an emission. Sub-

sequent emissions occur at increasingly smaller values of T , down to a low-scale cutoff

T cut ∼ 1 GeV, where the perturbative parton shower description ceases to be valid. Below

this cutoff, one enters the nonperturbative regime, where hadronization models are used.

In the leading-logarithmic limit, all emissions are strongly ordered; i.e., each emission oc-

curs at a much smaller value of T than the previous one, such that all emissions can be

considered independent. Due to this single-emission nature, at LL, there is no distinc-

tion between global and local resolution variables that are equivalent for a single emission.

Hence, we can define the N -jet resolution variable TN as the emission scale T of the N+1st
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emission, with the resolution scale T cut
N given by the shower cutoff T cut; i.e.,

TN = T (N → N + 1) , TN+1 = T (N + 1→ N + 2) , T cut
N = T cut

N+1 ≡ T cut . (2.20)

To start, we consider an N -jet process (with N partons at the Born level) and are

interested in generating events with N and N + 1 partons as in eqs. (2.5) and (2.6). The

MC cross sections using the above N -jet resolution variable are then given at LL order as

dσmcN

dΦN
(T cut

N ) = BN (ΦN ) ∆N (ΦN ; T cut
N ) ,

dσmc≥N+1

dΦN+1
(TN >T cut

N ) =
∑
m

Sm
N+1(ΦN+1) ∆N [Φ̂m

N (ΦN+1); T m
N (ΦN+1)] θ[T m

N (ΦN+1)>T cut
N ]

≡
∑
m

Sm
N+1(ΦN+1) ∆N (Φ̂m

N ; T m
N ) θ(T m

N > T cut
N ) , (2.21)

where all ingredients and the notation we have introduced are discussed in detail in the

following. To shorten the notation, we will often drop the explicit dependence on ΦN+1 for

most objects, as in the last line of eq. (2.21), but one should keep in mind that in general,

all objects which depend on the emission label m (which is explained below) have ΦN+1 as

their argument.

First, ∆N (ΦN ; T cut
N ) is the N -parton Sudakov factor, which effectively sums the domi-

nant contribution from an arbitrary number of unresolved emission below T cut
N at LL, cor-

responding to the general definition of dσmcN /dΦN (T cut
N ) [cf. the discussion below eq. (2.6)].

It can be written as

∆N (ΦN ; T ) = exp

[
−
∫

dT ′ PN (ΦN , T ′) θ(T ′ > T )

]
, (2.22)

where PN (ΦN , T ) is a global N → N + 1 splitting function which sums over all possible

single-parton emissions from each parton in ΦN at the emission scale T . It arises from

projecting the full emission phase space dΦN+1/dΦN , which contains the complete set of

splitting variables, onto the resolution variable T ,

PN (ΦN , T ) =
∑
m

∫
dΦN+1 Pm

N (ΦN+1) δ[T − T m(ΦN+1)] δ[ΦN − Φ̂m
N (ΦN+1)] . (2.23)

The m labels in eqs. (2.21) and (2.23) run over all the possible (IR-singular) emission

channels (q → qg, g → gg, g → qq̄, etc.), including the information of which parton in ΦN

was split and which two partons in ΦN+1 resulted from the splitting. For each emission

channel m, T m(ΦN+1) determines the relevant emission scale, and the splitting function

Pm
N (ΦN+1) contains all coupling and kinematic prefactors times the usual Altarelli-Parisi

splitting function. For simplicity, we keep the upper limit T < T m
max on the emission scale

T implicit in the definition of Pm
N .4

4In general, the upper limit T < T mmax(ΦN+1) is a function of the full ΦN+1 and can be different for

different m. It can be determined purely by phase space limits or by an explicit upper cutoff of some form

in order to turn off the resummation above Tmax.
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Finally, the projection Φ̂m
N (ΦN+1) can be any IR-safe projection and as before, specifies

how the partonic ΦN+1 is mapped onto the partonic N -jet phase space point ΦN ≡ Φjet
N , in

which the N -parton events are distributed. The projection can be different for each m. (As

far as the parton shower goes, Φ̂m
N is the inverse of the momentum reshuffling performed

when splitting ΦN → ΦN+1 in channel m.)

Coming to dσmc≥N+1 in eq. (2.21), the differential parton shower rate for the emission

with index m is given by its splitting function times the Born contribution,

Sm
N+1(ΦN+1) = BN [Φ̂m

N (ΦN+1)]Pm
N (ΦN+1) . (2.24)

For future use, we also define

SN+1(ΦN+1) =
∑
m

Sm
N+1(ΦN+1) , (2.25)

which is the LL approximation of the full real emission contribution BN+1 in the IR-singular

limit. The Sudakov factor ∆N (Φ̂m
N ; T m

N ) appearing in dσmc≥N+1 in eq. (2.21) is the same as

in eq. (2.22) but evaluated at the emission scale T m
N . It effectively resums the contributions

from arbitrary additional emissions below T m
N at LL.

The cross section for some measurement MX obtained from the LL MC cross sections

in eq. (2.21) is

σ(X) =

∫
dΦN BN (ΦN ) ∆N (ΦN ; T cut

N )MX(ΦN )

+

∫
dΦN+1

∑
m

Sm
N+1(ΦN+1) ∆N (Φ̂m

N ; T m
N ) θ(T m

N > T cut
N )MX(ΦN+1) . (2.26)

To generate multiple emissions, one iteratively applies the splitting functions and Sudakov

factors starting from the BornN -parton events. This is most easily thought of as a recursive

procedure, where each additional emission is defined relative to the previously generated

multiplicity. The Sudakov factor and splitting functions used to generate each emission

then determine the relative weights of events.

To discuss the perturbative accuracy, we define

L = ln(TN/Q) , Lcut = ln(T cut
N /Q) , (2.27)

where Q ∼ T max
N is a typical hard scale in the process. Formally, the resummation corre-

sponds to a reorganization of the perturbative series, which is achieved by expanding in αs

while counting5

αsL
2 ∼ 1 , αsL

2
cut ∼ 1 , or equivalently, L ∼ Lcut ∼ α−1/2

s . (2.28)

The leading-logarithmic order is O(1) in this counting. For the cumulant cross section in-

tegrated up to T cut
N , this corresponds to resumming all terms ∼ αn

sL
2n
cut relative to the Born

cross section, while for the cross section differential in TN , this corresponds to resumming

all terms ∼ αn
sL

2n−1/TN . For a general measurement, this means:

5We use the simple logarithmic counting for the cross section, so LL stands for LLσ. Higher-order

resummation is usually performed not for the cross section but for the logarithm of the cross section and

using the stronger counting αsL ∼ 1.
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• N -jet (integrated) observables are correct to LL resumming all terms ∼
αn
s ln2n(T eff

N /Q), where here, T eff
N is the typical resolution up to which the mea-

surement is integrated. (In particular, for dσmcN /dΦN (T cut
N ), we have T eff

N ≡ T cut
N .)

• (N + 1)-jet (differential) observables are correct to LL resumming all terms

∼ αn
s ln2n−1(T eff

N /Q)/T eff
N , where here, T eff

N is the typical resolution to which the

measurement is sensitive. (In particular, for dσmc≥N+1/dΦN+1(TN ), we have T eff
N ≡TN .)

The parton shower intrinsically preserves probability, which is a consequence of the

fact that it is formulated as a Markov chain process, with the probability of each emission

given by the exact differential of the integrated probability. Taking the special case where

MX(ΦN+1) = MX [Φ̂m
N (ΦN+1)], we precisely reproduce the total leading-order N -jet cross

section from eq. (2.26),

σ(X) =

∫
dΦN

{
BN (ΦN ) ∆(ΦN ; T cut

N )MX(ΦN ) +BN (ΦN )
[
1−∆N (ΦN ; T cut

N )
]
MX(ΦN )

}
=

∫
dΦN BN (ΦN )MX(ΦN ) . (2.29)

Here, we used the fact that the differential TN spectrum is the exact derivative of the

integrated T cut
N cumulant cross section,

∑
m

∫
dΦN+1 S

m
N+1(ΦN+1) ∆N (ΦN ; T m

N ) θ(T m
N > T cut

N ) δ(ΦN − Φ̂m
N )

= BN (ΦN )

∫
dT PN (ΦN , T ) ∆N (ΦN ; T ) θ(T > T cut

N )

= BN (ΦN )
[
1−∆N (ΦN ; T cut

N )
]
. (2.30)

As a result, the T cut
N dependence precisely cancels between the cumulant and the integrated

spectrum in eq. (2.29). For a general measurement MX(ΦN+1) that cannot be written in

terms of the shower projection Φ̂m
N , the LO cross section is reproduced up to small power

corrections ∼ T cut
N /Q, which introduce a small residual T cut

N dependence.

In the resummation counting of eq. (2.28), the Sudakov factors in eqs. (2.26) and (2.29)

are O(1), and in particular, 1−∆N (T cut
N ) ∼ O(1), despite the fact that its FO expansion

would start at αs, which is essential for eq. (2.29) to work out. What happens is that

SN+1 ∼ αsL/TN , which upon integration over TN > T cut
N , becomes αsL

2
cut ∼ 1. In other

words, the TN spectrum at small TN is O(1) at LL, even though at fixed order, it only

starts at αs.

3 Combining fully differential FO calculations with LL resummation

In this section, we discuss the general conditions to combine the fully differential FO and

LL calculations in an event generator. After the general discussion in section 3.1, we will

review the LO+LL and NLO+LL cases in the following subsections. The NNLO+LL case

is then discussed in detail in section 4.
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3.1 General discussion

The goal of combining the FO calculation with the LL resummation is to improve the

perturbative accuracy in the resummation region, where the FO expansion itself becomes

invalid, to attain at least the O(1) accuracy provided by the LL resummation there. At

the same time, the perturbative accuracy of the FO calculation must be maintained in the

FO region where the resummation is unimportant.

As a necessary precondition, the combined FO+LL calculation must be simultaneously

correct to the desired fixed order (LO, NLO, etc.) and resummation order (LL, NLL, etc.).

Here, the fixed order is counted as usual by powers of αs, while the resummation order is

dictated by the logarithmic counting in eq. (2.28),

αsL
2 ∼ 1 , αsL

2
cut ∼ 1 , or equivalently, L ∼ Lcut ∼ α−1/2

s ,

where L = ln(TN/Q) and Lcut = ln(T cut
N /Q) [see eq. (2.27)]. Therefore, the MC cross

sections of the FO+LL calculation have to satisfy the conditions[
dσmc

]
FO

= dσmc-FO ,
[
dσmc

]
LL

= dσmc-LL , (3.1)

which require that, upon expanding/truncating the MC cross sections to either FO or LL,

denoted by [· · · ]FO or [· · · ]LL, the pure FO or LL results appearing on the right-hand sides

in eq. (3.1) correctly reproduce the results in section 2. These conditions ensure that the

input MC cross sections for each event multiplicity have the desired perturbative accuracy

in both the resummation and fixed-order regions. For example, at NLO+LL, where we need

events with N and N + 1 partons, the MC cross sections dσmcN and dσmc≥N+1 are correct to

NLON+LL and LON+1+LL, respectively. Similarly, for NNLO+LL, where we need events

with N , N+1, and N+2 partons, the corresponding dσmcN , dσmcN+1, and dσmc≥N+2 are correct

to NNLON+LL, NLON+1+LL, and LON+2+LL, respectively.

We also have to achieve the desired perturbative accuracy at FO and LL for general

measurements MX . As discussed in section 2, when generating physical events, σ(X) is

predicted at the desired accuracy only up to power corrections in the resolution scale T cut
N ,

which should therefore be as small as possible. At the same time, for integrated N -jet

observables, the residual dependence on the resolution scale T cut
N in the pure FO and LL

calculations is at most power suppressed. The important condition is now that the same

must also hold for the combined FO+LL calculation. Therefore:

• Since T cut
N must be taken as small as possible to minimize power corrections, it is

imperative that logarithms of T cut
N must be counted as in eq. (2.28), for which we

adopt the notation Ocut, such that αn
sL

m
cut ∼ Ocut(α

n−m/2
s ).

• For integrated N -jet and (N + 1)-jet observables that in fixed order are predicted at

αn
s with corrections starting at O(αn+1

s ), any residual logarithmic dependence on the

jet resolution scales T cut
N and T cut

N+1 must be Ocut(α
≥n+1
s ), i.e., only give corrections

at the level of accuracy (or higher) as expected from higher FO corrections.
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To ensure this, the conditions in eq. (3.1) alone are not sufficient. In addition, the MC

cross sections for different multiplicities must be consistent with each other and satisfy

the relation6

d

dT c
N

[
dσmcN

dΦN
(T c

N )

]
T cN=TN

=

∫
dΦN+1

dΦN
δ[TN − TN (ΦN+1)]

dσmc≥N+1

dΦN+1
(TN > T cut

N ) (3.2)

up to Ocut(α
≥n+1
s ) violations for an NnLON+LL calculation. (The missing exact depen-

dence on ΦN+1 below T cut
N will still introduce the same power corrections in T cut

N for general

measurements MX as in the pure FO and LL cases.) On the right-hand side, the fully dif-

ferential ΦN+1 dependence is projected onto {ΦN , TN}. The condition then enforces that

the resulting differential TN spectrum, at any TN > T cut
N and for any fixed ΦN , is the

derivative of the cumulant with respect to its T c
N argument, such that the dependence on

T cut
N cancels between the cumulant and the spectrum to the desired order. To make this

explicit, integrating eq. (3.2) over TN , we obtain the equivalent condition for the cumulant

being the integral of the TN spectrum. That is, for any T c
N > T cut

N and any fixed ΦN , we

have the condition

dσmcN

dΦN
(T c

N ) =
dσmcN

dΦN
(T cut

N ) +

∫
dΦN+1

dΦN

dσmc≥N+1

dΦN+1
(TN > T cut

N ) θ(TN < T c
N ) (3.3)

up to Ocut(α
≥n+1
s ) violations for an NnLON+LL calculation. In particular, the T cut

N de-

pendence must cancel between the two terms on the right-hand side to the desired order.

In figure 2, we show how the FO and resummed contributions determine the accu-

racy of the cross sections in different regions of phase space. In table 1, we summarize

the perturbative accuracy as well as the size of uncontrolled higher-order corrections from

fixed order, resummed, and residual resolution scale dependence for integrated N -jet ob-

servables and differential (N + 1)-jet observables for various FO+LL orders. To give an

example, at NNLON+LL, integrated N -jet observables are supposed to get the O(α0
s),

O(α1
s), and O(α2

s) terms correct, with corrections starting at O(α3
s). This implies that

the T cut
N dependence must cancel such that it only appears at Ocut(α

≥3
s ), so the lowest-

order dependence must be of the form αn
sL

2n−6
cut ∼ Ocut(α

3
s) or higher. A residual T cut

N

dependence of the form α2
s[1−∆N (T cut

N )], which starts at fixed O(α3
s), counts as Ocut(α

2
s)

because ∆N (T cut
N ) ∼ Ocut(1). Hence, such a T cut

N dependence would spoil the desired

O(α2
s) accuracy of the NNLO+LL calculation.

When increasing the FO accuracy, the condition in eq. (3.2) becomes more and more

stringent and thus more challenging. As we saw in section 2.3, in the LL calculation, the

cancellation of the T cut
N dependence to all orders is achieved by virtue of the fact that

the differential cross section in TN is given by the exact derivative of the cumulant cross

section with respect to T cut
N . The same is also obviously true for the pure FO calculation.

A simple and generic method to ensure the cancellation of the resolution scale dependence

(up to power corrections) also for the FO+LL calculation is thus to explicitly construct

6In general, the projection from ΦN+1 to ΦN and the definition of TN (ΦN+1) can depend on the emission

channel inside dσmc
≥N+1, which we have kept implicit in eq. (3.2). In a given implementation, this dependence

is naturally accounted for, as we will see in the discussions below.
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d
σ
/
d
T N

TN

Resummation Fixed OrderTransition
pert. accuracypert. accuracy

LL

NnLL

NnLO

T c
N

σ
(T

c N
)

T cut
N

Resummation Fixed OrderTransition
pert. accuracypert. accuracy

LL

NnLL

NnLO

Figure 2. Illustration of the perturbative accuracy of the cross section in different regions of the jet

resolution variable TN . On the left, we show the differential spectrum in TN , and on the right, we

show the cumulant as a function of T c
N , which approaches the total N -jet cross section (blue dashed

line) for large T c
N . For large T (c)

N , the FO contributions (blue) determine the perturbative accuracy.

As T (c)
N decreases into the transition region, the resummed terms become increasingly important.

At small T (c)
N , the resummation order determines the perturbative accuracy. The LL accuracy

(green) that determines the shape at small T (c)
N can be improved by higher-order resummation

(orange). In the LL cumulant, we show that two different T cut
N values (dotted vertical lines) should

produce the same cumulant cross section above T cut
N .

the spectrum and cumulant by enforcing eqs. (3.2) and (3.3) exactly. There are different

choices for doing so, as we will see in section 4, as well as different options for the practical

implementation, which we will come back to in section 6.

Note that, a priori, we do not require the resummation order to match the perturbative

accuracy of the fixed order. For example, the NLL terms in an NNLO+LL cross section

are allowed to be incorrectly predicted, even though in the resummation region, they are

formally more important than the NNLO terms. These higher-order resummed terms will

affect observables in the singular regime at small T eff
N but not observables at large T eff

N ,

which are controlled by FO corrections. In section 4, we will explicitly see how the mismatch

between the LL resummation and the NNLO calculation enters. A consistent matching of

fixed order and resummation at the same perturbative accuracy would clearly be a desirable

feature. As was shown in ref. [22], by performing the resummation at NNLL, the merging

of two NLO calculations with different multiplicities arises as a byproduct. Maintaining the

perturbative accuracy with higher-order matrix elements and higher-order resummation is

obviously more challenging as more ingredients are required and additional complications

arise; e.g., one has to employ a resolution variable that is resummable to the desired

order. These issues were thoroughly addressed in ref. [22], and we discuss the connection

in section 6.1.

3.2 LO+LL

The LL calculation performs the LL resummation in TN and T cut
N , as outlined in section 2.3.

It naturally contains the full LON contribution, so it is already LON+LL correct but

does not include the full contribution from the LO≥N+1 matrix elements for additional
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T eff
N ∼ Q (fixed order) T eff

N � Q (resummation)

N -jet observables

LON 1 +O(αs) O(1)

NLON 1 + αs +O(α2
s) O(1)

NNLON 1 + αs + α2
s +O(α3

s) O(1)

LON+LL 1 +O(αs) 1 +O(α
1/2
s )

LON,N+1+LL 1 +O(αs) +Ocut(α
≥1
s ) 1 +O(α

1/2
s )

NLON+LL 1 + αs +O(α2
s) +Ocut(α

≥2
s ) 1 +O(α

1/2
s )

NLON,N+1+LL 1 + αs +O(α2
s) +Ocut(α

≥2
s ) 1 +O(α

1/2
s )

NNLON+LL 1 + αs + α2
s +O(α3

s) +Ocut(α
≥3
s ) 1 +O(α

1/2
s )

(N + 1)-jet observables

LON × ×
NLON 1 +O(αs) O(1)

NNLON 1 + αs +O(α2
s) O(1)

LON+LL O(1) 1 +O(α
1/2
s )

LON,N+1+LL 1 +O(αs) +Ocut(α
≥1
s ) 1 +O(α

1/2
s )

NLON+LL 1 +O(αs) +Ocut(α
≥1
s ) 1 +O(α

1/2
s )

NLON,N+1+LL 1 + αs +O(α2
s) +Ocut(α

≥2
s ) 1 +O(α

1/2
s )

NNLON+LL 1 + αs +O(α2
s) +Ocut(α

≥2
s ) 1 +O(α

1/2
s )

Table 1. Perturbative accuracy of N -jet (integrated) and (N + 1)-jet (differential) observables

satisfied at different FO and FO+LL. Here, T eff
N is the effective scale to which the observables are

sensitive. For T eff
N ∼ Q, the perturbative accuracy is set by the FO expansion, with corrections

from higher FO contributions as well as residual T cut
N dependence. (The latter will depend on the

details of the matching, so we show the minimal required accuracy, which has to match the FO

level of accuracy; see the discussion of eq. (3.2) for more details.) For T eff
N � Q, the perturbative

accuracy is set by the resummation counting in eq. (2.28).

jet multiplicities (beyond the shower approximation). The goal of LO+LL matching is to

combine the LO≥N+1 calculations with the LL resummation, an example of which is the

CKKW method [1–3, 7].

Considering the matching of LON , LON+1, and LL, denoted as LON,N+1+LL, the

exclusive N -jet and inclusive (N + 1)-jet MC cross sections are

dσmcN

dΦN
(T cut

N ) = BN (ΦN ) ∆N (ΦN ; T cut
N ) ,

dσmc≥N+1

dΦN+1
(TN > T cut

N ) =
∑
m

Bm
N+1(ΦN+1) ∆N (Φ̂m

N ; T m
N ) θ(T m

N > T cut
N ) ,

≡
∑
m

{
BN+1(ΦN+1) ∆N (Φ̂N ; TN ) θ(TN > T cut

N )
}
m
. (3.4)
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Here, the Bm
N+1 are defined such that BN+1 =

∑
mB

m
N+1, and whenever an emission m

becomes IR singular, Bm
N+1 contains all its divergences. A possible choice would be to

take Bm
N+1 = BN+1(Sm

N+1/SN+1). For ease of notation, from here on we always group the

emission label m on expressions with the notation
∑

m{· · · }m to denote that all relevant

terms within the curly brackets receive a label m.

The cross sections in eq. (3.4) are correct to LON and LON+1 respectively, simply

because any corrections to BN or BN+1 are of higher fixed order. The Sudakov factors

multiplying the Born contributions render the N -jet cumulant correct to LL in T cut
N and

the (N + 1)-jet spectrum correct to LL in TN .

To discuss the perturbative accuracy of integrated N -jet observables from residual T cut
N

dependence, we rewrite dσmc≥N+1 in eq. (3.4) as

dσmc≥N+1

dΦN+1
(TN > T cut

N ) =
∑
m

{
SN+1(ΦN+1) ∆N (Φ̂N ; TN )

+ (BN+1 − SN+1)(ΦN+1) ∆N (Φ̂N ; TN )
}
m
θ(T m

N > T cut
N ) . (3.5)

The first term on the right-hand side is identical to the pure LL cross section, and when

projected onto ΦN and integrated over TN , it produces BN (ΦN )[1−∆N (ΦN ; T cut
N )], which

exactly cancels the T cut
N dependence in the cumulant dσmcN (T cut

N ) [see eq. (2.30)]. The

second term corresponds to the FO matching correction, making dσmc≥N+1 to be LON+1

accurate. Its T cut
N dependence is determined by the accuracy of BN+1 − SN+1. If this

difference contains subleading singular dependence on TN , which would be terms ∼ αs/TN ,

then the T cut
N dependence in integrated N -jet observables will be of order αn

sL
2n−1
cut ∼

Ocut(α
1/2
s ). Interestingly, this is not actually sufficient to preserve the 1 +O(αs) accuracy

required at LON (see table 1). In the case that SN+1 does reproduce the full singular

structure of BN+1 (which generically will not be the case for parton showers), then the

residual T cut
N dependence will only appear as Ocut(αsT cut

N ) power corrections. Improved

LO+LL methods that explicitly remove this residual Ocut(α
1/2
s ) dependence and restore

the LON accuracy have been discussed in detail in refs. [21, 41, 49, 50]. They essentially

enforce the consistency conditions in eq. (3.3).

Finally, we note that at LON,N+1+LL, another possible valid choice for dσmc≥N+1 is

to take

dσmcN

dΦN
(T cut

N ) = BN (ΦN ) ∆N (ΦN ; T cut
N ) ,

dσmc≥N+1

dΦN+1
(TN > T cut

N ) =
∑
m

{
SN+1(ΦN+1) ∆N (Φ̂N ; TN )

+ (BN+1 − SN+1)(ΦN+1)
}
m
θ(T m

N > T cut
N ) , (3.6)

where compared to eq. (3.5), we have dropped the Sudakov factor in the last line. The T cut
N

dependence in this case is different numerically but of the same accuracy as for eq. (3.5),

depending in the same way on the extent to which SN+1 reproduces the IR singularities

of BN+1.
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3.3 NLO+LL

The matching of fully differential NLO calculations to parton shower routines has been

addressed by several frameworks [10, 12, 15, 22, 51, 52]. Here, we review the general

structure of the underlying matched NLO+LL calculation.

The MC cross sections underlying the MC@NLO [10] and Powheg [12, 13] approaches

are given by7

dσmcN

dΦN
(T cut

N ) =
dσS≥N
dΦN

∆N (ΦN ; T cut
N )︸ ︷︷ ︸

resummed

+
dσB−SN

dΦN
(T cut

N )︸ ︷︷ ︸
FO matching

,

dσmc≥N+1

dΦN+1
(TN > T cut

N ) =
∑
m

{
dσS≥N
dΦN

∣∣∣∣
ΦN=Φ̂N

SN+1(ΦN+1)

BN (Φ̂N )
∆N (Φ̂N ; TN ) θ(TN > T cut

N )

}
m

+
dσB−S≥N+1

dΦN+1
(TN > T cut

N ) , (3.7)

where

dσB−SN

dΦN
(T cut

N ) =
∑
m

{∫
dΦN+1

dΦN
(BN+1 − SN+1)(ΦN+1) θ(TN < T cut

N )

}
m

,

dσB−S≥N+1

dΦN+1
(TN > T cut

N ) =
∑
m

{
(BN+1 − SN+1)(ΦN+1) θ(TN > T cut

N )
}
m

(3.8)

are the FO matching corrections, and

dσS≥N
dΦN

= (BN + VN )(ΦN ) +
∑
m

{∫
dΦN+1

dΦN
SN+1(ΦN+1)

}
m

(3.9)

is essentially the inclusive NLON cross section, but using the real emission given by SN+1

instead of BN+1. This means that SN+1 must contain the full IR singularities of BN+1 in

the limit TN → 0, such that upon integration, the virtual IR divergences of VN are canceled

in eq. (3.9).

We can easily check that eq. (3.7) is correct to NLO and LL, i.e., that it satisfies

eq. (3.1). Dropping the NLO corrections, which amounts to taking dσS≥N → BN and

dropping the dσB−SN in dσmcN , we reproduce the LON,N+1+LL result in eq. (3.6). Using the

fixed O(αs) expansion of the Sudakov,

∆N (ΦN ; T cut
N ) = 1− 1

BN (ΦN )

∑
m

{∫
dΦN+1

dΦN
SN+1(ΦN+1) θ(TN > T cut

N )

}
m

+O(α2
s) ,

(3.10)

we see that expanding eq. (3.7) to NLO exactly reproduces eq. (2.10) at NLON and LON+1,

where the TN in the NLO calculation is now the same m-dependent resolution variable that

is used in the LL calculation.

7For Powheg, dσS≥N/dΦN ≡ BN (ΦN ). In MC@NLO, S events are generated with a weight de-

termined by dσS≥N/dΦN , while H events are generated according to dσB−S≥N+1/dΦN+1 ≡
∑
m{(BN+1 −

SN+1)(ΦN+1)}m.
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As written in eq. (3.7), the MC cross sections exactly satisfy eqs. (3.2) and (3.3).

In fact, they do so separately for the resummed contributions proportional to dσS≥N∆N

and the FO matching corrections dσB−SN and dσB−S≥N+1. The difference in the MC@NLO

and Powheg implementations lies in the (effective) choice of SN+1, which we discuss

briefly next.

In MC@NLO,

Sm
N+1(ΦN+1) = G(T m

N ) PSm
N+1(ΦN+1) + [1−G(T m

N )]Cm
N+1(ΦN+1) ,

with lim
TN→0

G(TN ) = 0 , G(TN > T cut
N ) = 1 , (3.11)

where PSm
N+1 denotes the parton shower approximation to BN+1 for channel m as deter-

mined by the splitting factors used in an actual parton shower algorithm like Herwig or

Pythia, Cm
N+1 could be used as an NLO subtraction for Bm

N+1, and the purpose of G(TN )

is to smoothly join the two. [In principle, G(TN ) ≡ Gm
N+1(ΦN+1) can depend on m and

the full ΦN+1.]

Note that the value of SN+1 for TN < T cut
N was not needed in the LL and LO+LL

discussions but is needed here, and the expressions we use are specific to the NLO+LL

construction. In our formulation of eq. (3.7), the MC@NLO method corresponds to taking

G(TN > T cut
N ) = 1, since an actual parton shower is used to generate the Sudakov factor

and T cut
N is identical to the parton shower cutoff. The condition limTN→0G(TN ) = 0 is

necessary to ensure that all IR divergences cancel in the limit TN → 0, because PSN+1

does not provide a valid NLO subtraction.

Even though there is no explicit T cut
N dependence in eq. (3.9), the fact that PSN+1 does

not reproduce the full IR singularities of BN+1 causes an implicit logarithmic sensitivity

to scales ≤ T cut
N in dσS≥N . To see this, we rewrite SN+1 = CN+1 +G(TN )(PSN+1−CN+1),

such that

dσS≥N
dΦN

= (BN + VN )(ΦN ) +
∑
m

{∫
dΦN+1

dΦN
CN+1(ΦN+1)

}
m

+
∑
m

{∫
dΦN+1

dΦN
(PSN+1 − CN+1)(ΦN+1)G(TN )

}
m

. (3.12)

The first three terms are IR finite and T cut
N independent. The last term is also IR finite

since limTN→0G(TN ) = 0. However, since G(TN > T cut
N ) = 1, the subleading singular

dependence in PSN+1 − CN+1 is integrated down to T cut
N and only cut off below, which

means this last term scales as Ocut(α
1/2
s ).8 Taking into account this implicit T cut

N depen-

dence, dσS≥N ≡ dσS≥N (T cut
N ), the conditions in eqs. (3.2) and (3.3) are no longer satis-

fied exactly. Rather, in the FO region, integrated N -jet observables are only accurate to

1 + αs + O(α2
s) + Ocut(α

3/2
s ), while differential (N + 1)-jet observables are only accurate

to 1 + O(αs) + Ocut(α
1/2
s ). Formally, this is not sufficient to maintain the perturbative

8The T cut
N dependence becomes explicit if one takes G(TN > T cut

N ) = θ(TN > T cut
N ), in which case the

integral would produce an explicit ln T cut
N . For a smooth G, this logarithm is smeared out, but the integral

has the same scaling.
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accuracy expected at NLON and LON+1, cf. table 1. In practice, the numerical impact de-

pends on how well the employed parton shower algorithm is able to capture the subleading

singular structure of the full real emission contribution. In refs. [10, 11], this was shown to

be a minor problem.

In Powheg, SN+1 is constructed by dividing the full BN+1 between the IR-singular

regions for the different emission channels,

Sm
N+1(ΦN+1) = BN+1(ΦN+1) Θm

N+1(ΦN+1)F (TN ) ,

with
∑
m

Θm
N+1 = 1 , lim

T mN →0
Θm

N+1 = 1 , lim
TN→0

F (TN ) = 1 . (3.13)

The conditions imposed on the Θm
N+1 ensure that the full BN+1 is obtained in any singular

limit, such that SN+1 reproduces the full IR-singular structure and dσS≥N is IR finite. The

function F (TN ) is included so the resummation can be turned off by letting F (TN )→ 0 at

large TN . [In principle, F (TN ) ≡ Fm
N+1(ΦN+1) can depend on m and the full ΦN+1.] In this

case, since SN+1 contains the full singular structure also above T cut
N , there is no implicit

T cut
N dependence. Strictly speaking, this is true as long as Θm and F do not introduce a

sensitivity to small TN .

The full ΦN+1 dependence in dσmc≥N+1 in eq. (3.7) is determined by SN+1(ΦN+1) in

the resummation term, i.e., by the approximate ΦN+1 dependence in the splitting factor

that determines the Sudakov factor. The FO matching correction, dσB−S≥N+1 ∼ (BN+1 −
SN+1)(ΦN+1), additively corrects the approximate ΦN+1 dependence in SN+1 to the full

LON+1 dependence given by BN+1. Another possible approach is to also multiply this

term by the Sudakov factor, or equivalently, directly use the full BN+1 dependence in the

resummed spectrum, such that

dσmcN

dΦN
(T cut

N ) =
dσS≥N
dΦN

∆N (ΦN ; T cut
N ) +

dσB−SN

dΦN
(T cut

N ) , (3.14)

dσmc≥N+1

dΦN+1
(TN > T cut

N ) =
∑
m

{
dσS≥N
dΦN

∣∣∣∣
ΦN=Φ̂N

BN+1(ΦN+1)

BN (Φ̂N )
∆N (Φ̂N ; TN ) θ(TN > T cut

N )

}
m

.

This corresponds to the usual CKKW procedure for LON,N+1+LL in eq. (3.4). It is also

analogous to the Geneva method in ref. [22], where the ΦN+1-differential FO calculation is

multiplicatively combined with the TN spectrum resummed to higher order. In eq. (3.14),

the spectrum is not the exact derivative of the cumulant anymore, resulting in a residual

T cut
N dependence in the integrated cross section. The effective correction term by which

eq. (3.3) is violated and that gets added to the correct NLON cross section is given by∫
dΦN+1

dΦN
(BN+1 − SN+1)(ΦN+1)

[
∆N (Φ̂N ; TN )− 1

]
θ(TN > T cut

N ) . (3.15)

In fixed order, this is O(α2
s) and beyond NLON . However, its impact on the perturbative

accuracy depends again on the extent to which the IR singularities of BN+1 are correctly

reproduced by SN+1. If SN+1 contains the full IR singularities, so BN+1 − SN+1 is finite

for TN → 0, then the leading term in eq. (3.15) scales as T cut
N α2

s ln2(T cut
N /Q), which is
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Ocut(αsT cut
N ). Therefore, in this case, the correction can be regarded as a power correc-

tion. If SN+1 does not reproduce the full IR singularities, so that BN+1 − SN+1 contains

subleading divergences ∼ αs/TN , then the leading term scales as α2
s ln3(T cut

N /Q). Hence,

in this case the correction is of Ocut(α
1/2
s ) and clearly violates the NLON+LL accuracy,

which allows at most Ocut(α
2
s) corrections (see the first column of table 1). Note that the

perturbative accuracy of the residual T cut
N dependence in either case here is the same as in

eq. (3.4) at LON,N+1+LL. The reason is that it is determined by the resummation counting

and the NLO matching by itself only improves the FO accuracy.

4 Combining NNLO calculations with LL resummation

As we saw in section 2.2, at NNLO, we need events representing N , N + 1, and N + 2

partonic jets, defined through the N -jet and (N + 1)-jet resolution variables TN and TN+1.

The same is therefore also the case at NNLO+LL. Hence, we need to construct expressions

for the corresponding fully differential MC cross sections [see eqs. (2.13) and (2.14)]

dσmcN

dΦN
(T cut

N ) ,
dσmcN+1

dΦN+1
(TN > T cut

N ; T cut
N+1) ,

dσmc≥N+2

dΦN+2
(TN > T cut

N , TN+1 > T cut
N+1) . (4.1)

As discussed in section 3.1, at NNLO+LL we require that N -jet observables are correct

to NNLON+LL, (N + 1)-jet observables to NLON+1+LL, and (N + 2)-jet observables to

LON+2+LL, provided that any observable built from these cross sections is sufficiently

inclusive over the unresolved regions of phase space. Since the FO calculation is sup-

plemented with the LL resummation of the jet resolution variables TN and TN+1, the

perturbative accuracy of the prediction in the IR-singular regime is improved relative to

the pure FO calculation, which breaks down in this region. The required perturbative

accuracy at NNLO+LL in the FO and resummation regions is summarized in table 1.

To construct the NNLO+LL MC cross sections, it will be convenient to proceed in

two steps. In section 4.1, we first consider the separation between the exclusive N -jet and

inclusive (N + 1)-jet cross sections using TN and construct the corresponding exclusive

dσmcN (T cut
N ) and inclusive dσmc≥N+1(TN > T cut

N ). In section 4.2, we then consider the further

separation of dσmc≥N+1(TN > T cut
N ) into the final exclusive dσmcN+1(TN > T cut

N ; T cut
N+1) and

inclusive dσmc≥N+2(TN > T cut
N , TN+1 > T cut

N+1) using TN+1. To make the notation as transpar-

ent as possible, we drop the emission labels m throughout this section. They can be inserted

straightforwardly into all formulae giving the different contributions to the cross sections.

4.1 The exclusive N-jet and inclusive (N + 1)-jet cross sections

As we have already seen at LO and NLO, it is convenient to divide the full FO exclusive

N -jet cross section, dσFO
N (T cut

N ), into a singular and a nonsingular contribution,9

dσFO
N

dΦN
(T cut

N ) =
dσCN
dΦN

(T cut
N )︸ ︷︷ ︸

FO singular

+
dσB−CN

dΦN
(T cut

N )︸ ︷︷ ︸
FO nonsingular

. (4.2)

9To be precise, singular terms in the cumulant contain logarithms of T cut
N or constants, while nonsingular

terms vanish as T cut
N → 0. In the spectrum, singular terms contain plus distributions or delta functions of

TN , while nonsingular terms contain no singular distributions and at most integrable singularities.
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At NNLO, dσFO
N (T cut

N ) is given in eq. (2.17). Its singular approximation is given by

dσCN
dΦN

(T cut
N ) = (BN + VN +WN )(ΦN )

+

∫
dΦN+1

dΦN
(CN+1 + V CN+1)(ΦN+1) θ[TN (ΦN+1) < T cut

N ]

+

∫
dΦN+2

dΦN
CN+2(ΦN+2) θ[TN (ΦN+2) < T cut

N ] , (4.3)

where CN+1, V CN+1, and CN+2 reproduce the exact IR singularities of BN+1, VN+1,

and BN+2, respectively; i.e., they correspond to a valid set of NNLO subtractions, such

that eq. (4.3) is IR finite. The full logarithmic T cut
N dependence arises from integrating

BN+1, VN+1, and BN+2, over the IR-singular region, which is fully reproduced by the

CN+1, V CN+1, and CN+2 contributions in eq. (4.3). Therefore, dσCN (T cut
N ) contains all

logarithms in T cut
N , while the remainder dσB−CN (T cut

N ) in eq. (4.2) is a power correction

in T cut
N .

To identify the relevant terms, we rewrite the N -jet MC cross section in terms of a

resummed contribution and FO matching corrections. As we have seen at NLO+LL in

section 3.3, the LL resummed contribution can be obtained by multiplying an inclusive

cross section by the LL Sudakov factor for T cut
N . The resulting expression in general differs

from the correct FO result by both singular and nonsingular terms in T cut
N , which are

accounted for by adding corresponding FO singular and nonsingular matching corrections.

This gives

Case 1:
dσmcN

dΦN
(T cut

N ) =
dσC≥N
dΦN

∆N (ΦN ; T cut
N )︸ ︷︷ ︸

resummed

+
dσC−SN

dΦN
(T cut

N )︸ ︷︷ ︸
FO singular matching

+
dσB−CN

dΦN
(T cut

N )︸ ︷︷ ︸
FO nonsingular

matching

. (4.4)

The first term is the resummed contribution, where dσC≥N is the singular approximation of

the inclusive FO N -jet cross section, obtained by dropping the θ(TN < T cut
N ) in eq. (4.3).

It is by construction T cut
N independent, so all dependence on T cut

N in the resummed term re-

sides in the Sudakov factor ∆N (ΦN ; T cut
N ), which sums the LL series in T cut

N . The remaining

two terms are FO matching corrections to ensure the correct FO expansion of eq. (4.4).

The last term in eq. (4.4), labeled B − C, is the FO nonsingular term from eq. (4.2).

It contains the difference between the full FO contribution and its singular limit,

dσB−CN

dΦN
(T cut

N ) =
dσFO

N

dΦN
(T cut

N )−
dσCN
dΦN

(T cut
N ) . (4.5)

As discussed above, it contains no logarithmic dependence on T cut
N .

The second term in eq. (4.4), labeled C−S, is the singular FO matching correction. It

contains the difference between the singular approximation containing the full logarithmic
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T cut
N dependence and that obtained by expanding the resummed term in fixed order; i.e.,

dσC−SN

dΦN
(T cut

N ) =
dσCN
dΦN

(T cut
N )−

[
dσC≥N
dΦN

∆N (ΦN ; T cut
N )

]
FO

= −
∫

dΦN+1

dΦN
(CN+1 − SN+1)(ΦN+1) θ(TN > T cut

N ) +O(α2
s) . (4.6)

Hence, it supplies the FO singular terms in T cut
N that are not contained in the resummed

contribution. In the second line, we show the NLO result for illustration. As already

discussed in section 3.3, since the splitting function SN+1 generically only reproduces the

leading singularities in CN+1, dσC−SN (T cut
N ) can in general contain logarithmic dependence

as large as αsLcut at NLO and α2
sL

3
cut at NNLO, which contribute at Ocut(α

1/2
s ) with the

counting of eq. (2.28).

A potential problem with implementing eq. (4.4) is the presence of explicit logarithms

in dσC−SN (T cut
N ), which become large as T cut

N is reduced, meaning in particular dσC−SN (T cut
N )

diverges for T cut
N → 0. While by construction this divergence cancels in physical observ-

ables, it could give rise to events with large or even negative weights. To circumvent

this and regulate the logarithmic divergence, we can alternatively choose to multiply the

singular matching terms with the Sudakov factor and write

Case 2:
dσmcN

dΦN
(T cut

N ) =

[
dσC≥N
dΦN

+
dσ̃C−SN

dΦN
(T cut

N )︸ ︷︷ ︸
FO singular matching

]
∆N (ΦN ; T cut

N )

︸ ︷︷ ︸
resummed

+
dσB−CN

dΦN
(T cut

N )︸ ︷︷ ︸
FO nonsingular

matching

, (4.7)

where the FO singular matching corrections are now given by

dσ̃C−SN

dΦN
(T cut

N ) =

[
dσC−SN

dΦN
(T cut

N )
1

∆N (ΦN ; T cut
N )

]
FO

= −
∫

dΦN+1

ΦN
(CN+1 − SN+1)(ΦN+1) θ(TN > T cut

N ) +O(α2
s) . (4.8)

Note that, while multiplying with the Sudakov factor helps to suppress the FO T cut
N log-

arithms in dσ̃C−SN (T cut
N ), this choice does not amount to an actual resummation of these

logarithms. A downside of this choice is that it introduces a more complicated T cut
N depen-

dence at all orders that must be canceled in inclusive N -jet observables. Since dσ̃C−SN (T cut
N )

can contain logarithms α2
sL

3
cut, multiplying with the Sudakov factor introduces terms of

order αn
sL

2n−1
cut .

The singular matching correction is always required if the resummation term does

not contain all logarithms of T cut
N to the desired fixed order. Even if SN+1 in eq. (4.6)

contains the full subleading singularities at NLO (as in Powheg where CN+1 = SN+1, so

dσC−SN (T cut
N ) = 0), at NNLO, dσC−SN (T cut

N ) can still contain terms ∼ α2
sL

2
cut ∼ Ocut(αs).

Hence, to achieve NNLON+LL accuracy, it is essential to enforce the consistency conditions

in eqs. (3.2) and (3.3) for the dσC−SN or dσ̃C−SN contributions. Otherwise, these terms can

easily generate a residual T cut
N dependence in inclusive observables that destroys their

perturbative accuracy.
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To construct the inclusive (N + 1)-jet MC cross section, dσmc≥N+1(TN > T cut
N ), as with

dσmcN before, we split it into a resummed contribution and FO singular and nonsingular

matching corrections. Following the above discussion, these different contributions are

constructed from their corresponding counterparts in eqs. (4.4) and (4.7) by explicitly

enforcing eqs. (3.2) and (3.3). This gives

Case 1:
dσmc≥N+1

dΦN+1
(TN >T cut

N ) =
dσC≥N
dΦN

∣∣∣∣
ΦN=Φ̂N

SN+1(ΦN+1)

BN (Φ̂N )
∆N (Φ̂N ; TN ) θ(TN > T cut

N )

+
dσC−S≥N+1

dΦN+1
(TN > T cut

N ) +
dσB−C≥N+1

dΦN+1
(TN > T cut

N ) , (4.9)

Case 2:
dσmc≥N+1

dΦN+1
(TN >T cut

N ) =

{[
dσC≥N
dΦN

+
dσ̃C−SN

dΦN
(TN )

]
ΦN=Φ̂N

SN+1(ΦN+1)

BN (Φ̂N )
θ(TN >T cut

N )

+
dσ̃C−S≥N+1

dΦN+1
(TN >T cut

N )

}
∆N (Φ̂N ; TN ) +

dσB−C≥N+1

dΦN+1
(TN >T cut

N ) ,

(4.10)

where the various ingredients are discussed in detail in sections 4.1.1 and 4.1.2. For case 1,

the FO singular and nonsingular matching terms are pure FO corrections, and to obtain

them, it is sufficient to enforce that dσmc≥N+1 expands to the correct NLO cross section.

For case 2, the singular matching correction is more complicated, and its TN dependence

is obtained by taking the derivative of dσ̃C−SN (T cut
N ) ∆N (T cut

N ) in eq. (4.7) with respect

to T cut
N . This ensures that the singular matching corrections in the spectrum correctly

integrate up to cancel the corresponding T cut
N dependence in the cumulant.10

Before we give the detailed expressions for all ingredients required to construct

eqs. (4.4), (4.7), (4.9), and (4.10), it is instructive to see how the NLO+LL case arises

from this notation. At NLO, we have

dσC≥N
dΦN

= (BN + VN )(ΦN ) +

∫
dΦN+1

dΦN
CN+1(ΦN+1) , (4.11)

and the singular matching corrections for the cumulant, dσC−SN , are given in the second

line of eq. (4.6) [or eq. (4.8) for dσ̃C−SN ]. The nonsingular matching correction is

dσB−CN

dΦN
(T cut

N ) =

∫
dΦN+1

dΦN
(BN+1 − CN+1)(ΦN+1) θ(TN < T cut

N ) . (4.12)

The corresponding results for the differential spectrum are

dσC−S≥N+1

dΦN+1
(TN > T cut

N ) =
dσ̃C−S≥N+1

dΦN+1
(TN > T cut

N ) = (CN+1 − SN+1)(ΦN+1) θ(TN > T cut
N ) ,

dσB−C≥N+1

dΦN+1
(TN > T cut

N ) = (BN+1 − CN+1)(ΦN+1) θ(TN > T cut
N ) .

(4.13)

10Notice that there might be points in ΦN+1 for which BN (Φ̂N ) = 0 due to either kinematical or PDF

effects. To avoid that the ratio SN+1(ΦN+1)/BN (Φ̂N ) goes to infinity, one has to define SN+1 such that it

vanishes for these points. This implies that the contributions from these phase space regions are contained

in dσC−S or dσ̃C−S .
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Note that dσC−S and dσ̃C−S are equal at this order. They only start to differ at NNLO,

where the cross terms in the FO expansion of the product dσ̃C−SN ∆N become relevant.

As discussed in section 3.3, the splitting function of Powheg given in eq. (3.13)

reproduces the full singular dependence of the real emission. Thus, one can choose CN+1 =

SN+1, such that dσC−SN = 0 and dσC≥N = dσS≥N , and cases 1 and 2 both reduce to eq. (3.7).

For MC@NLO, the splitting function is given in eq. (3.11). It depends on a function

G(TN ), which for the sake of illustration we can choose as G(TN ) = θ(TN > T cut
N ) (even

though this is not the choice made in the MC@NLO implementation). In this case, the

expression for dσS≥N given in eq. (3.12) is equivalent to dσS≥N = dσC≥N + dσ̃C−SN , which

corresponds to case 2 in eq. (4.7) for the cumulant. However, the corresponding spectrum

in eq. (3.7) is not that of case 2 in eq. (4.10). This is the origin of the residual T cut
N

dependence in MC@NLO discussed below eq. (3.12).

It should be clear from the discussion so far that the expressions in eqs. (4.4) and (4.9)

for case 1, or alternatively eqs. (4.7) and (4.10) for case 2, provide a completely general

result for the FO+LL matching valid to any fixed order. The explicit NNLO+LL expres-

sions are given in detail below in section 4.1.1 for case 1 and section 4.1.2 for case 2.

Besides the choice one has between the two cases, different implementations can be ob-

tained by making different choices for the CN+1, V CN+1, and CN+2 contributions that are

used to approximate the singular behavior of the full theory, as well as for the splitting

function SN+1 that is used to define the Sudakov factor. This amounts to shifting non-

singular corrections or subleading logarithms between the resummed contribution and the

FO matching corrections.

4.1.1 Case 1

Here, we use dσmcN (T cut
N ) as given in eq. (4.4) with its corresponding inclusive dσmc≥N+1(TN >

T cut
N ) given in eq. (4.9), which we repeat here for completeness:

dσmcN

dΦN
(T cut

N ) =
dσC≥N
dΦN

∆N (ΦN ; T cut
N ) +

dσC−SN

dΦN
(T cut

N ) +
dσB−CN

dΦN
(T cut

N ) ,

dσmc≥N+1

dΦN+1
(TN > T cut

N ) =
dσC≥N
dΦN

∣∣∣∣
ΦN=Φ̂N

SN+1(ΦN+1)

BN (Φ̂N )
∆N (Φ̂N ; TN ) θ(TN > T cut

N )

+
dσC−S≥N+1

dΦN+1
(TN > T cut

N ) +
dσB−C≥N+1

dΦN+1
(TN > T cut

N ) .

The explicit expressions for all ingredients are given in the following. By construction,

these are correct to NNLON and NLON+1 and include the correct LL resummation for

T cut
N and TN , respectively. Also, each of the three terms in the cumulant and spectrum

separately satisfy the exact consistency relations in eqs. (3.2) and (3.3) without any residual

T cut
N dependence.
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The singular inclusive cross section, dσC≥N , appearing in the resummed terms is ob-

tained by removing the constraints on TN in eq. (4.3), which gives

dσC≥N
dΦN

= (BN + VN +WN )(ΦN ) +

∫
dΦN+1

dΦN
(CN+1 + V CN+1)(ΦN+1)

+

∫
dΦN+2

dΦN
CN+2(ΦN+2) . (4.14)

Since dσC≥N is explicitly T cut
N independent, the resummed terms satisfy eq. (3.2) because

[see eq. (2.30)]

d

dT cut
N

[
∆N (ΦN , T cut

N )
]
T cut
N =TN

=

∫
dΦN+1

dΦN
δ[TN − TN (ΦN+1)]

SN+1(ΦN+1)

BN (ΦN )
∆N (ΦN , TN ) .

(4.15)

The nonsingular matching correction, dσB−CN , is defined in eq. (4.5). Taking the dif-

ference of eqs. (2.17) and (4.3), we can immediately obtain its NNLO result,

dσB−CN

dΦN
(T cut

N ) ≡
dσNNLO

N

dΦN
(T cut

N )−
dσCN
dΦN

(T cut
N )

=

∫
dΦN+1

dΦN
(BN+1 − CN+1 + VN+1 − V CN+1)(ΦN+1) θ[TN (ΦN+1) < T cut

N ]

+

∫
dΦN+2

dΦN
(BN+2 − CN+2)(ΦN+2) θ[TN (ΦN+2) < T cut

N ] . (4.16)

The differential equivalent dσB−C≥N+1(TN > T cut
N ) is defined exactly analogously,

dσB−C≥N+1

dΦN+1
(TN > T cut

N ) ≡
dσNLO
≥N+1

dΦN+1
(TN > T cut

N )−
dσC≥N+1

dΦN+1
(TN > T cut

N )

= (BN+1 − CN+1 + VN+1 − V CN+1)(ΦN+1) θ[TN (ΦN+1) > T cut
N ]

+

∫
dΦN+2

dΦN+1
(BN+2 − CN+2)(ΦN+2) θ[TN (ΦN+2) > T cut

N ] , (4.17)

and one can easily see that eqs. (4.16) and (4.17) explicitly satisfy the consistency condition

in eq. (3.3).

Finally, the singular matching corrections, dσC−S , are defined as

dσC−SN

dΦN
(T cut

N ) =
dσCN
dΦN

(T cut
N )−

[
dσC≥N
dΦN

∆N (ΦN ; T cut
N )

]
NNLON

,

dσC−S≥N+1

dΦN+1
(TN > T cut

N ) =
dσC≥N+1

dΦN+1
(TN > T cut

N ) (4.18)

−
[

dσC≥N
dΦN

∣∣∣∣
ΦN=Φ̂N

SN+1(ΦN+1)

BN (Φ̂N )
∆N (Φ̂N ; TN ) θ(TN > T cut

N )

]
NLON+1

.

By definition, they satisfy eqs. (3.2) and (3.3) because each of the terms on the right-

hand sides do so. To obtain their explicit expressions, we use the NNLO expansion of the
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Sudakov factor, which we write as

∆N (ΦN ; T cut
N ) = 1 + ∆

(1)
N (ΦN ; T cut

N ) + ∆
(2)
N (ΦN ; T cut

N ) ,

∆
(1)
N (ΦN ; T cut

N ) = −
∫

dΦN+1

dΦN

S
(1)
N+1(ΦN+1)

BN (ΦN )
θ(TN > T cut

N ) ,

∆
(2)
N (ΦN ; T cut

N ) =
1

2

[
∆

(1)
N (ΦN ; T cut

N )
]2 − ∫ dΦN+1

dΦN

S
(2)
N+1(ΦN+1)

BN (ΦN )
θ(TN > T cut

N ) . (4.19)

Here, we used S
(n)
N+1 to denote the αn

s contribution to SN+1; i.e.,

SN+1(ΦN+1) = S
(1)
N+1(ΦN+1) + S

(2)
N+1(ΦN+1) + · · · . (4.20)

For convenience, we also define the subtracted one-loop virtual correction, which is the

IR-finite NLO term in dσC≥N ,

V C
N (ΦN ) = VN (ΦN ) +

∫
dΦN+1

dΦN
CN+1(ΦN+1) . (4.21)

The differential version is easier to obtain (since it does not explicitly require ∆
(2)
N ), and

we find

dσC−S≥N+1

dΦN+1
(TN > T cut

N ) (4.22)

= (CN+1 + V CN+1)(ΦN+1) θ(TN > T cut
N ) +

∫
dΦN+2

dΦN+1
CN+2(ΦN+2) θ[TN (ΦN+2) > T cut

N ]

−
[
1 +

S
(2)
N+1(ΦN+1)

S
(1)
N+1(ΦN+1)

+
V C
N (Φ̂N )

BN (Φ̂N )
+ ∆

(1)
N (Φ̂N , TN )

]
S

(1)
N+1(ΦN+1) θ(TN > T cut

N ) .

The cumulant version is given by

dσC−SN

dΦN
(T cut

N ) = −
∫

dΦN+1

dΦN

dσC−S≥N+1

dΦN+1
(TN > T cut

N )

= −
∫

dΦN+1

dΦN
(CN+1 + V CN+1)(ΦN+1) θ[TN (ΦN+1) > T cut

N ] (4.23)

−
∫

dΦN+2

dΦN
CN+2(ΦN+2) θ[TN (ΦN+2) > T cut

N ]

−BN (ΦN )
[
∆

(1)
N (ΦN ; T cut

N ) + ∆
(2)
N (ΦN ; T cut

N )
]
− V C

N (ΦN ) ∆
(1)
N (ΦN ; T cut

N ) .

The integrals here are explicitly over TN > T cut
N , which cuts off all IR singularities that do

not cancel between the full FO singular contributions and their LL approximation arising

from the Sudakov expansion, which is given by the last lines in eqs. (4.22) and (4.23).

Note that CN+2 here fulfills two roles. First, it produces the leading double logarithms

α2
s(L

4
cut + L3

cut) (for the cumulant). The α2
sL

4
cut is always canceled by the square [∆

(1)
N ]2

inside ∆
(2)
N , and the α2

sL
3
cut is also canceled if ∆

(1)
N produces the correct single logarithm

αsLcut at NLO. Second, the (N+1)-parton virtual IR divergences in V CN+1 are canceled by

the TN+1 → 0 limit in the ΦN+2 integral over CN+2, where the remainder is an αs(αsL
2
cut +

αsLcut) correction. Generically, these are only partially canceled by the corresponding

V C
N ∆

(1)
N (T cut

N ) term.
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4.1.2 Case 2

For this case, we use dσmcN (T cut
N ) as given in eq. (4.7), with its corresponding inclusive

dσmc≥N+1(TN > T cut
N ) given in eq. (4.10), which we repeat here for completeness:

dσmcN

dΦN
(T cut

N ) =

[
dσC≥N
dΦN

+
dσ̃C−SN

dΦN
(T cut

N )

]
∆N (ΦN ; T cut

N ) +
dσB−CN

dΦN
(T cut

N ) ,

dσmc≥N+1

dΦN+1
(TN > T cut

N ) =

{[
dσC≥N
dΦN

+
dσ̃C−SN

dΦN
(TN )

]
ΦN=Φ̂N

SN+1(ΦN+1)

BN (Φ̂N )
θ(TN > T cut

N )

+
dσ̃C−S≥N+1

dΦN+1
(TN > T cut

N )

}
∆N (Φ̂N ; TN ) +

dσB−C≥N+1

dΦN+1
(TN > T cut

N ) .

The explicit expressions for all ingredients are given in the following. As for case 1, these

are correct to NNLON and NLON+1 and include the correct LL resummation for T cut
N

and TN , respectively. The resummation terms involving dσC≥N∆N and the nonsingular FO

matching terms, dσB−C , are the same as in case 1 [see eq. (4.14) and eqs. (4.16) and (4.17)]

and separately satisfy the consistency relations in eqs. (3.2) and (3.3).

The difference to case 1 is how the singular matching corrections, dσ̃S−C , are included.

For the cumulant, we have

dσ̃C−SN

dΦN
(T cut

N ) =

[
dσC−SN

dΦN
(T cut

N )
1

∆N (ΦN ; T cut
N )

]
NNLON

=
dσC−SN

dΦN
(T cut

N ) (4.24)

+ ∆
(1)
N (ΦN ; T cut

N )

∫
dΦN+1

dΦN
(CN+1 − S(1)

N+1)(ΦN+1) θ[TN (ΦN+1) > T cut
N ] ,

where dσC−SN (T cut
N ) is given in eq. (4.23). The corresponding differential result in the

spectrum is obtained by requiring eq. (3.3),

dσ̃C−S≥N+1

dΦN+1
(TN > T cut

N )

=
dσC−S≥N+1

dΦN+1
(TN > T cut

N )−
{

∆
(1)
N (Φ̂N ; TN ) (CN+1 − S(1)

N+1)(ΦN+1) (4.25)

+
S

(1)
N+1(ΦN+1)

BN (Φ̂N )

∫
dΦ′N+1

dΦN

(
CN+1 − S(1)

N+1

)
(Φ′N+1) θ[TN (Φ′N+1) > TN ]

}
θ(TN > T cut

N ) ,

where dσC−S≥N+1(TN > T cut
N ) is given in eq. (4.22). One can easily check that with this result

the expression for dσmc≥N+1 in case 2 expands to the correct NLON+1 result.
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4.2 The exclusive (N + 1)-jet and inclusive (N + 2)-jet cross sections

The inclusive (N + 1)-jet MC cross section is divided into the exclusive (N + 1)-jet and

inclusive (N + 2)-jet MC cross sections using a resolution scale T cut
N+1,

dσmc≥N+1

dΦN+1
(TN > T cut

N ) =
dσmcN+1

dΦN+1
(TN > T cut

N ; T cut
N+1)

+

∫
dΦN+2

dΦN+1

dσmc≥N+2

dΦN+2
(TN > T cut

N , TN+1 > T cut
N+1) . (4.26)

Note that this is just a special case of the consistency condition in eq. (3.3) applied to TN+1

and taking T c
N+1 ≡ T max

N+1.

The inclusive dσmc≥N+1 already resums the leading logarithms of TN in the (N + 1)-

parton phase space. On top of that, we also want to resum the leading logarithms of T cut
N+1

and TN+1 appearing in dσmcN+1(T cut
N+1) and dσmc≥N+2(TN+1). The LL resummation for TN+1

is obtained using the (N + 1)-parton Sudakov factor, ∆N+1, which is defined as

∆N+1(ΦN+2; T cut
N+1) = exp

{
−
∫

dΦN+2

dΦN+1

SN+2(ΦN+2)

BN+1(Φ̂N+1)
θ[TN+1(ΦN+2) > T cut

N+1]

}
, (4.27)

where the upper limit on the integration over TN+1 should be chosen of order TN . Note

that the (N + 1)-parton splitting function SN+2 enters in the Sudakov factor relative to

the (N + 1)-parton Born matrix element BN+1, which is required to correctly sum the

logarithms of TN+1 across the whole range of TN , even for TN ∼ T max
N . In terms of the

resummation accuracy, achieving (N)LON+1+LL implies that the (N + 1)-parton Sudakov

factor must multiply the complete BN+1 matrix element to obtain the LL resummation of

TN+1 (or T cut
N+1) in the limit TN+1 � TN for both TN � T max

N and TN ∼ T max
N .

Given these considerations, we again divide the exclusive (N + 1)-jet and inclusive

(N + 2)-jet MC cross sections into a resummed contribution and FO matching corrections,

dσmcN+1

dΦN+1
(TN > T cut

N ; T cut
N+1)

=
dσ′C≥N+1

dΦN+1
(TN >T cut

N ) ∆N+1(ΦN+1; T cut
N+1)︸ ︷︷ ︸

resummed

+

(
dσC−SN+1

dΦN+1︸ ︷︷ ︸
FO singular

matching

+
dσB−CN+1

dΦN+1︸ ︷︷ ︸
FO nonsing.

matching

)
(TN >T cut

N ; T cut
N+1) ,

dσmc≥N+2

dΦN+2
(TN > T cut

N , TN+1 > T cut
N+1)

=
dσ′C≥N+1

dΦN+1
(TN > T cut

N )

∣∣∣∣
ΦN+1=Φ̂N+1

SN+2(ΦN+2)

BN+1(Φ̂N+1)
∆N+1(Φ̂N+1; TN+1) θ(TN+1 > T cut

N+1)

+

(
dσC−S≥N+2

dΦN+2
+

dσB−C≥N+2

dΦN+2

)
(TN > T cut

N , TN+1 > T cut
N+1) . (4.28)

This has precisely the structure of the usual NLON+1+LL calculation [see eq. (3.7)], but

with the dependence on the singular and nonsingular FO matching corrections, dσC−S

and dσB−C , written out explicitly. Furthermore, dσ′C≥N+1(TN > T cut
N ) is the singular
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approximation to the full (N+1)-jet inclusive cross section on which the TN+1 resummation

acts. The crucial difference compared to the usual NLO+LL case discussed in section 3.3

is that the NLON+1+LL calculation is used down to very small values TN > T cut
N , and

so dσ′C≥N+1(TN > T cut
N ) now has to include the LL resummation in TN . In terms of the

inclusive dσmc≥N+1(TN > T cut
N ) [given by either eq. (4.9) or eq. (4.10)], we can write it as

dσ′C≥N+1

dΦN+1
(TN > T cut

N ) =
dσmc≥N+1

dΦN+1
(TN > T cut

N )

−
∫

dΦN+2

dΦN+1
(BN+2 − CN+2)(ΦN+2) θ[TN (ΦN+2) > T cut

N ] , (4.29)

where the second term on the right-hand side removes the dependence on BN+2 from

dσmc≥N+1; i.e., it removes the last line in dσB−C≥N+1 in eq. (4.17). By definition of CN+2, this

term has no logarithmic dependence on TN and therefore does not affect the LL resumma-

tion in TN . Expanding this to fixed NLON+1 reproduces the N + 1 version of eq. (4.11),[
dσ′C≥N+1

dΦN+1
(TN > T cut

N )

]
NLON+1

= (BN+1 + VN+1)(ΦN+1)

+

∫
dΦN+2

dΦN+1
CN+2(ΦN+2) θ[TN (ΦN+2) > T cut

N ] . (4.30)

This shows that, in the limit of turning off the TN resummation, eq. (4.28) reproduces the

correct NLON+1+LL result as required.

The FO matching corrections are determined by imposing the correct NLON+1 and

LON+2 expansions of eq. (4.28). The nonsingular matching corrections are given as

dσB−CN+1

dΦN+1
(TN > T cut

N ; T cut
N+1)

=

∫
dΦN+2

dΦN+1
(BN+2 − CN+2)(ΦN+2) θ[TN (ΦN+2) > T cut

N ] θ[TN+1(ΦN+2) < T cut
N+1] ,

dσB−C≥N+2

dΦN+2
(TN > T cut

N , TN+1 > T cut
N+1)

= (BN+2 − CN+2)(ΦN+2) θ[TN (ΦN+2) > T cut
N ] θ[TN+1(ΦN+2) > T cut

N+1] , (4.31)

and (again by definition of CN+2) have no logarithmic dependence on T cut
N+1. For the

singular matching corrections, we then find

dσC−SN+1

dΦN+1
(TN > T cut

N ; T cut
N+1)

= −
∫

dΦN+2

dΦN+1

{
CN+2(ΦN+2) θ[TN (ΦN+2) > T cut

N ]− SN+2(ΦN+2) θ[TN (Φ̂N+1) > T cut
N ]

}
× θ[TN+1(ΦN+2) > T cut

N+1] ,

dσC−S≥N+2

dΦN+2
(TN > T cut

N , TN+1 > T cut
N+1)

=
{
CN+2(ΦN+2) θ[TN (ΦN+2) > T cut

N ]− SN+2(ΦN+2) θ[TN (Φ̂N+1) > T cut
N ]

}
× θ[TN+1(ΦN+2) > T cut

N+1] . (4.32)
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Here, we can explicitly see the mismatch between the exact definition of TN (ΦN+2) re-

quired at NNLON and the shower approximation in the SN+2 term, which inherits the

Φ̂N+1(ΦN+2) dependence from the projection from ΦN+2 to ΦN+1 in the (N + 1)-jet Su-

dakov factor. Generically, this can introduce a subleading logarithmic dependence on T cut
N

in dσC−S (even in the limit SN+2 = CN+2), whose coefficient scales as ∼ T cut
N .

With the above results, we can check that no residual T cut
N+1 dependence (beyond power

corrections) is introduced in physical observables because eqs. (3.2) and (3.3) are explicitly

satisfied. For the FO matching corrections, this is clear from their above expressions.

The resummed terms also combine correctly to the inclusive dσ′C≥N+1 using the equivalent

relation to eq. (2.30) for the (N + 1)-parton Sudakov,∫
dΦN+2

dΦN+1

SN+2(ΦN+2)

BN+1(Φ̂N+1)
∆N+1(Φ̂N+1; TN+1) θ(TN+1 > T cut

N+1) = 1−∆N+1(ΦN+1; T cut
N+1) .

(4.33)

Using this relation, we can also easily check that eq. (4.26) is satisfied. Upon integration

over dΦN+2/dΦN+1, the dσC−SN+1 and dσC−S≥N+2 terms cancel each other, while the dσB−CN+1

and dσB−C≥N+2 terms combine to precisely cancel the second line in eq. (4.29). Hence, we

precisely get back dσmc≥N+1(TN > T cut
N ), which shows that no residual T cut

N dependence is

introduced.

In the above construction, we have the same amount of freedom as in section 4.1 in

how to implement the TN+1 resummation and where to put the FO singular corrections.

Above, we have used the analog of case 1 from section 4.1, where dσC−S is included at

fixed order. Various alternatives are:

• One can multiply dσC−SN+1 by the ∆N+1 Sudakov, analogous to case 2 in section 4.1.

In this case, eq. (4.26) is maintained exactly when the corresponding case 2 version

is also used for the differential spectrum.

• One has the freedom in eq. (4.29) and all the results following it to use a C ′N+2

different from the CN+2 used in section 4.1. This includes whether one uses TN (ΦN+2)

or TN (Φ̂N+1) to implement the TN > T cut
N constraint for the C ′N+2 contribution. In

particular, one could use a simpler NLON+1 subtraction for C ′N+2. (In general, this

can change the logarithmic dependence on TN at the subleading level.)

• One can use different choices for SN+2. In particular, in conjunction with using an

alternative C ′N+2, one can use a Powheg approach for NLON+1+LL, such that one

can take SN+2 = C ′N+2.

5 Matching the NNLO+LL calculation with a parton shower

In the previous sections, we have shown how to consistently combine LO, NLO, and NNLO

calculations with LL resummation and how to obtain the MC cross sections dσmcN , dσmcN+1,

and dσmc≥N+2. In this section, we discuss how to interface the corresponding N -parton,

(N + 1)-parton, and (N + 2)-parton events with a parton shower and avoid any double

counting of phase space between the partonic calculation and the parton shower. The
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resulting NNLO+LL event generator will thus be able to produce events with any parton

multiplicity.

The NNLO+LL MC cross sections in section 4 provide resummation in the resolution

variables TN and TN+1, but in general, do not explicitly resum large logarithms arising

in singular regions of phase space for other observables. In the resummation regime, the

shape of a generic exclusive observable will therefore only be accurately predicted after the

addition of the parton shower, which in general provides LL accuracy. Furthermore, care

must be taken when interfacing to the parton shower such that the perturbative accuracy

provided by the MC cross sections dσmcM is maintained. This includes the FO accuracy,

the LL accuracy in the evolution variables, and the absence of residual dependence on the

resolution scales T cut
N and T cut

N+1. Precisely, the matching with the parton shower must

satisfy three conditions:

1. Any exclusive observable must be correct to at least LL in the resummation regime.

This includes the resolution variables TN and TN+1, for which the LL accuracy of the

MC cross sections must be maintained. Additionally, the LL accuracy requirement

extends to observables requiring more than N + 2 jets, for which the parton shower

provides the only prediction.

2. The FO accuracy of any observable should be that of the NNLO calculation (see

section 2.2), which means:

• N -jet observables are correct to NNLON up to power corrections of relative order

O(αsT cut
N /T eff

N ) and O(α2
sT cut

N+1/T eff
N+1), where T eff

N and T eff
N+1 are the effective

resolution scales to which the observable is sensitive.

• (N + 1)-jet observables are correct to NLON+1 if they only include contribu-

tions in the resolved region of ΦN+1, up to power corrections of relative order

O(αsT cut
N+1/T eff

N+1), where T eff
N+1 is the effective resolution scale to which the ob-

servable is sensitive.

• (N + 2)-jet observables are correct to LON+2 if they only include contributions

in the resolved region of ΦN+2.

Note that no FO accuracy is implied for observables sensitive to the unresolved regions

of phase space, TN < T cut
N and TN+1 < T cut

N+1, as the parton shower provides the only

prediction in these regions (see below).

3. For observables that must be correct to NnLO, any residual dependence on the res-

olution scales T cut
N and T cut

N+1 must enter at Ocut(α
≥n+1
s ).

The conditions above naturally echo those imposed on the MC cross sections in sec-

tion 3.1, and in particular, ensure that no double counting occurs in the matching. In fact,

in cases where the parton shower yields events with ≤ N+2 partons, the exact phase space

constraints implemented by the MC cross section definitions can be used on the shower (see

figure 1). In cases with more emissions, one must develop analogous constraints making

sure the above conditions remain satisfied.
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5.1 LL shower constraints

Condition 1 above requires us to maintain the LL accuracy of the event sample and combine

it with the parton shower LL resummation for additional emissions. For this purpose, the

identical considerations apply to our NNLO+LL calculation as in the case of interfacing a

merged LON,N+1,N+2+LL calculation with a parton shower [1–9]. The reason is that, as

far as the LL structure is concerned, the only relevance of the higher FO accuracy in our

case is that it imposes a tighter constraint in condition 3 above. However, since the parton

shower is formulated such that the probability of an emission is the exact differential of

the no-emission probability [i.e., of the Sudakov factor, see eq. (2.30)], condition 3 will be

satisfied as long as any additional constraints imposed on the parton shower do not spoil

this relation.

The simultaneous LL resummation of TN and TN+1 in the NNLO+LL calculation can

be achieved by choosing both variables to be equivalent (at the single-emission/LL level)

to the same local shower evolution variable T [see eq. (2.20)], in which case we can assume

that they are ordered as TN+1 < TN .

5.1.1 Equivalent resummation and shower evolution variables

The simplest case is when the evolution variable of the parton shower is equivalent to T
(i.e., it has the same LL structure). The event sample with N , N+1, and N+2 partons can

then be viewed as the result of the first two steps in the normal parton shower evolution in

T , and attaching the parton shower simply corresponds to continuing this evolution down

to the shower cutoff, where the relevant starting scale, Tres, is given by the scale of the last

emission or the resolution scale, namely

• Tres ≡ T cut
N for the N -parton events

• Tres ≡ T cut
N+1 for the (N + 1)-parton events

• Tres ≡ TN+1(ΦN+2) for the (N + 2)-parton events

In this case, conditions 1 and 3 are automatically satisfied because the parton shower itself

respects them.

This is precisely consistent with the physical interpretation of the MC cross sections.

The dσmcN (T cut
N ) and dσmcN+1(TN > T cut

N ; T cut
N+1) cross sections represented by the N -parton

and (N+1)-parton events are exclusive jet cross sections defined to only include additional

emissions below T cut
N and T cut

N+1. The dσmc≥N+2(TN > T cut
N , TN+1 > T cut

N+1) cross section

represented by the (N + 2)-parton events is an inclusive cross section defined to contain

any number of additional emissions below TN+1.

Note also that, in principle, one can choose T cut
N = T cut

N+1 to be equal (or very close) to

the actual shower cutoff T cut, such that no (or very few) additional emissions need to be

generated for the N -jet and (N + 1)-jet samples.
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5.1.2 Different resummation and shower evolution variables

If the local evolution variable T ′ of the parton shower differs in its LL structure from the

variable T used to implement the LL resummation in the partonic FO+LL calculation,

one has to utilize a veto procedure on the shower to achieve condition 1. In principle,

two approaches may be used here, using either a vetoed shower algorithm or a global veto

procedure. Additionally, one has to specify the starting scale of the shower evolution.

The use of a vetoed parton shower was discussed in detail in refs. [1, 12] for the case

where T is the pT of an emission and using an angular-ordered parton shower where T ′

is the emission angle. The same veto procedure can be applied here. The vetoed shower

works by evolving in T ′, and in each emission step, only emissions satisfying the constraint

T < Tres are allowed, where Tres is given as above. If an emission at some T ′ violates

this constraint, it is vetoed, and the evolution continues from T ′. This vetoed shower

exponentiates the T < Tres constraint, which effectively transforms the shower evolution

variable from T ′ into T .

In the global veto procedure, one lets the evolution proceed undisturbed. After the

showering is done, the showered event is accepted if the condition T < Tres is satisfied for

all emissions. If this is not the case, the showering is repeated from the start on the same

partonic event, and this is done until an acceptable showered event is generated. This

second approach is certainly less efficient, but it has the advantage that one does not need

to modify the parton shower algorithm at all.

In either vetoing approach, one has to choose appropriate starting scales for the T ′

evolution. First, one determines the maximal starting scale T ′max, which should be either

the value T ′max(ΦN ) that one would normally choose when starting the shower directly from

BN (ΦN ), or the maximum value of T ′ kinematically allowed for a given Tres, whichever

is smaller. The simplest approach is then to start the shower at T ′max for all partons. A

somewhat better approach is to choose the starting scale according to the emission history.11

For partons that had no emissions, the shower is started at T ′max. For the daughter partons

of an extra emission step in the (N + 1)-jet and (N + 2)-jet samples, the shower is started

from the scale T ′res of the emission. The possible additional emissions for T ′max > T ′ > T ′res

are then added by running a truncated shower [12] from T ′max to T ′res along the parent

parton line of the emission.

5.2 FO shower constraints

The constraints on the shower implied by condition 2 are simpler for event samples with

higher jet multiplicity, as the desired perturbative accuracy is lower. Therefore, we start

by discussing the (N + 2)-jet sample, working our way down to the N -jet sample. Note

that if the shower evolves directly in T and both T cut
N and T cut

N+1 are set to the shower

cutoff, only the (N + 2)-jet sample gets showered, and the additional complications arising

for the (N + 1)-jet and N -jet samples become irrelevant.

11The LL resummation in TN and TN+1 is formulated as a consecutive sum over emission channels m

when splitting from N to N + 1 partons (in the construction of dσmc
≥N+1) and from N + 1 to N + 2 partons

(in the construction of dσmc
≥N+2). Hence, we can naturally associate each contribution in this sum with an

emission history for going from the underlying ΦN to the final ΦN+1 or ΦN+2 point.

– 38 –



J
H
E
P
0
6
(
2
0
1
4
)
0
8
9

5.2.1 Showering the (N + 2)-jet event sample

The MC cross section dσmc≥N+2 of the NNLO+LL calculation is given in eq. (4.28). Its per-

turbative accuracy is LON+2+LL, which the parton shower can easily maintain by applying

constraints analogous to those applied to the highest jet multiplicity in an LO+LL matched

event sample. The LON+2 accuracy of the cross section is automatically guaranteed by the

fact that additional emissions from the parton shower are higher order in αs. Therefore,

there are no additional FO constraints on the shower. (Strictly speaking, the showered

events in this sample must still satisfy the constraints TN > T cut
N and TN+1 > T cut

N+1. If

TN+1 < TN , ignoring this gives rise to at most power corrections.)

5.2.2 Showering the (N + 1)-jet event sample

The MC cross section dσmcN+1(TN > T cut
N ; T cut

N+1) of the NNLO+LL calculation is given

in eq. (4.28). It contains the integrated cross section for TN+1 < T cut
N+1 calculated to

NLON+1+LL. Before adding the parton shower, it is represented by (N+1)-parton events,

which have TN+1 = 0 (see figure 1). By adding emissions, the parton shower distributes

the events located at TN+1 = 0 to nonzero TN+1 values. In doing so, it must respect the

exclusive (N + 1)-jet definition of the cross section; i.e., the cross section for TN+1 < T cut
N+1

after showering has to remain accurate to NLON+1+LL. Since the parton shower preserves

the total cross section, this means it is only allowed to fill out the region 0 < TN+1 < T cut
N+1.

[The cross section for TN+1(ΦN+2) > T cut
N+1 is already included in the inclusive (N + 2)-jet

sample generated from dσmc≥N+2(TN > T cut
N , TN+1 > T cut

N+1).]

At LL accuracy, this is achieved by vetoing shower emissions with T > T cut
N+1, as dis-

cussed in section 5.1. In addition, to satisfy condition 2, it is also necessary that the cross

section for TN+1 < T cut
N+1 remains correct to NLON+1. The veto on single emissions with

T > T cut
N+1 is sufficient for this purpose as well, so we do not require an additional con-

straint on the shower. To see this, consider the shower emission with the largest value of

T , and sum over all other emissions. Strictly speaking, we need the emission to satisfy

TN+1[Φ̂N+2(ΦN+1,Φrad)] < T cut
N+1, where Φrad is the emission phase space and Φ̂N+2 is

the inverse of the phase space projection Φ̂N+1(ΦN+2) that is used in the NLON+1 cal-

culation. The single-emission veto in the shower corresponds to imposing the constraint

T ≡ TN+1[Φ̂PS
N+2(ΦN+1,Φrad)] < T cut

N+1, where Φ̂PS
N+2 is the phase space map used in the

parton shower. In principle, the two constraints can be different since the two phase space

maps can be different. However, both maps have to be IR safe and must agree in the IR

limit T cut
N+1 → 0. Therefore, the difference can be at most a power correction in T cut

N+1.

From this discussion, it follows that a generic (N + 1)-jet observable receives at most

power corrections from showering of O(αsT cut
N+1/T eff

N+1), where T eff
N+1 is the effective scale

that the observable is sensitive to. Similarly, since dσmc≥N+1 contributes at O(αs) to generic

N -jet observables, they receive at most power corrections of O(α2
sT cut

N+1/T eff
N+1). Hence,

condition 2 is satisfied. In fact, as long as the T cut
N+1 value is kept small, the spectrum for

TN+1 < T cut
N+1 is correctly described by the shower. The parton shower therefore improves

the description of the previously unresolved region TN+1 < T cut
N+1. As a result, the power

corrections induced by the shower actually compensate for the power corrections in the
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partonic calculation arising from the unresolved region below T cut
N+1. Of course, this is only

true if the shower cutoff is lower than T cut
N+1.

5.2.3 Showering the N-jet event sample

The MC cross section dσmcN (T cut
N ) of the NNLO+LL calculation is given in eq. (4.4) or

eq. (4.7). It contains the integrated cross section for TN < T cut
N calculated to NNLON+LL,

which before showering, is represented by N -parton events with TN = 0.

The basic considerations here are similar as for the (N + 1)-jet case. Repeating the

discussion in section 5.2.2, the shower must be constrained not to change the cross section

for TN < T cut
N , but only to fill out the TN spectrum below T cut

N . Since the action of the

parton shower is entirely within the N -jet cumulant bin, the induced power corrections of

O(αsT cut
N /T eff

N ) are again at the level allowed by condition 2 and will actually improve the

prediction of observables, because the unshowered events at TN = 0 are distributed over

the previously unresolved region TN < T cut
N with an LL-accurate shape.

There is a further complication, however, that arises starting at NNLO. At NLO+LL,

the resolution variable must have two properties: it must realize an IR-safe separation of

the phase space at the level of a single emission, and it must have an LL resummation.

Because LL resummation arises from exponentiating independent emissions, these two

properties are essentially one and the same. For example, in an NLO+LL calculation

of vector boson production, the resolution variable separating events with 0 jets and 1

jet can be chosen as the transverse momentum of the leading parton, with 0-jet events

corresponding to pT < pcut
T and 1-jet events corresponding to pT > pcut

T . At NNLO+LL,

however, the story is different: defining the jet resolution variable analogous to the shower

evolution in terms of independent single-parton variables is no longer sufficient to also

ensure the IR safety of the NNLO 0-jet cross section. To see how the problem arises, it is

instructive to consider again the example of vector boson production with two emissions

illustrated in figure 3. Demanding that the transverse momentum of each emitted parton

is below pcut
T (dashed lines) does not yield an IR-safe definition for the 0-jet cross section.

If the two partons are collinear to each other and each satisfies p
(i)
T < pcut

T , while their sum

gives p
(1)
T + p

(2)
T > pcut

T , this IR-divergent contribution would be included in the 0-jet cross

section, while the corresponding IR-divergent virtual diagram on the right would contribute

to the 1-jet cross section. As already discussed in section 2.2, we must use a resolution

variable which is properly IR-safe at NNLO. For example, we can sum over all emissions

(TN =
∑
pT ) or combine them using an IR-safe jet-clustering procedure (TN = pjet

T ).

From this discussion, it is clear that the constraint TN < T cut
N that the parton shower

needs to satisfy cannot be formulated in terms of individual emissions but must take at

least two emissions into account. Generally, it is not sufficient to only consider the two

hardest emissions, since they do not necessarily correspond to the hardest jet of the NNLO

calculation. Therefore, the NNLO constraint can only be imposed via a global veto after

the showering. In case one uses a vetoed shower with a single-emission local veto to enforce

the LL constraints as described in section 5.1, the additional NNLO constraint should be

enforced separately.
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pcut
T pcut

T

Figure 3. Illustration of the issues in defining an IR-safe phase space separation at NNLO using

single-parton variables in the case of vector boson production. Limiting each emission to be below

pcut
T (dashed lines) results in a miscancellation of IR divergences between the tree-level contribution

on the left, which would contribute to dσmc
0 (pcut

T ), and the corresponding one-loop contribution on

the right, which would contribute to dσmc
≥1(pT > pcut

T ).

6 Implementation and relation to existing approaches

In this section, we discuss the relation of our framework to recent related work and the

NNLO+PS implementation given in ref. [38]. This will show that our method is indeed

quite general and encompasses these other approaches. It also illustrates that an actual

implementation of our results is indeed feasible.

6.1 GENEVA

The motivation to build an NNLO+LL event generator is to interface the most precise

FO calculations available with a parton shower routine to be able to simulate realistic

events with high perturbative accuracy. Whenever higher logarithmic resummation is also

available (NLL for several resolution variables, NNLL for certain resolution variables such

as N -jettiness, and NNLL′ for select processes12), it can be implemented to also improve

the perturbative accuracy in the resummation region (see figure 2) following the Geneva

approach [22].

If NNLL′ resummation is available, the resummation order matches the fixed NNLO

accuracy in the sense that all NNLO singular terms are naturally included in the resum-

mation. Hence, the FO singular matching correction vanishes,

dσC−SN

dΦN
(T cut

N ) = 0 , (6.1)

because the FO expansion of the NNLL′ resummed result reproduces the full NNLO sin-

gular corrections. The remaining contributions in the N -jet MC cross section can then be

associated as follows:

dσC≥N
dΦN

∆N (ΦN ; T cut
N ) →

dσresummed
N

dΦN
(T cut

N ) ,

dσB−CN

dΦN
(T cut

N ) →
dσnonsingular

N

dΦN
(T cut

N ) . (6.2)

12While NNLL resummation includes all logarithmic terms through NNLO, NNLL′ also includes delta

function terms to capture all NNLO singular terms including the 2-loop virtual corrections.
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That is, the cross section takes the form of a traditional resummed calculation, with the FO

nonsingular corrections corresponding to dσB−CN and the higher-order resummed cumulant

replacing the resummation term dσC≥N∆N (T cut
N ). The same relations also apply for the

exclusive (N + 1)-jet and inclusive (N + 2)-jet cross sections.

The results in ref. [22] took this approach, using a jet resolution variable T2 for which

higher-order logarithmic resummation is available. There, the NNLL′ resummation for

e+e− → jets for small T2 was used together with the NLO2 nonsingular terms, combined

with the fully differential 3-jet cross section at NLO3, and interfaced with a parton shower

algorithm. As discussed above, the resummation to NNLL′ already incorporates the full

singular contributions up to NNLO, including the two-loop virtual corrections. Thus, the

only missing contributions to make the calculation in ref. [22] correct to full NNLO2 are

the nonsingular corrections at NNLO2. Since they scale as a power correction in T cut
2 , one

could also take the value of T cut
2 small enough to make their numerical impact small.

6.2 NNLO+PS using HJ-MiNLO

Results combining the inclusive NNLO Higgs cross section with a parton shower algorithm

were presented recently in ref. [38]. This approach uses the Multi-Scale Improved NLO

(MiNLO) calculation for the production of Higgs in association with a jet [53], in which

the Powheg HJ calculation [54] is supplemented by an analytic Sudakov resummation

factor, which includes logarithmic terms that become large as the transverse momentum of

the Higgs boson tends to zero. The Sudakov factor effectively regulates the divergences in

the Powheg HJ calculation when the transverse momentum of the Higgs boson, qT , goes

to zero. As a result, the HJ-MiNLO sample can be used over the whole phase space even

in the limit qT → 0. In practice, it is used down to qT of order ΛQCD ∼ 1 GeV.

It was shown in ref. [24] that by explicitly including NNLL information in the Sudakov

factor, the HJ-MiNLO cross section integrates up to the correct inclusive Higgs cross

section at NLO0. The HJ-MiNLO sample is then reweighted to the differential NNLO0

Higgs cross section, which is facilitated by the fact that it is only singly differential in the

Higgs rapidity. This provides NNLO0 accurate predictions for 0-jet observables without

spoiling the NLO1 accuracy of 1-jet observables. One feature of this approach is that it

does not require a Higgs + 0-jet sample, since the full NNLO0 information of inclusive

Higgs production is explicitly included through the reweighting factor.

While this approach seems at first sight quite different from the discussion in this paper,

we will now show that it directly follows as a special case from our results in section 4.

Hence, it can be viewed as a specific implementation of the general method developed in this

paper. We first write the results of ref. [38] in terms of the MC cross sections dσmc0 (T cut
0 )

and dσmc≥1(T0 > T cut
0 ), corresponding to the exclusive Higgs + 0-jet and inclusive Higgs +

1-jet cross sections. We then show how these expressions follow directly from our general

results by making specific choices.

The 0-jet resolution variable used in ref. [38] to separate 0 from 1 or more extra jets is

the transverse momentum of the Higgs boson, so

T0 ≡ qT . (6.3)
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We do not need to discuss how to separate the inclusive 1-jet sample into an exclusive

1-jet and an inclusive 2-jet sample. For this purpose, ref. [38] uses the standard Powheg

approach, which we have already shown in section 3.3 to be a special case of our approach.

As mentioned already, the Higgs + 0-jet cross section is not included in ref. [38], since

it vanishes in the limit T cut
0 → 0. The inclusive MC cross section for one or more jets is

then given by

dσ
ref. [38]
≥1

dΦ1
(T0 > T cut

0 ) = R̃(Φ0; T cut
0 )

dσHJ-MiNLO
≥1

dΦ1
θ(T0 > T cut

0 ) . (6.4)

Here, the inclusive 1-jet cross section, dσHJ-MiNLO
≥1 , is equivalent to the modified B̄ function

from HJ-MiNLO, which is obtained from the usual B̄ function in Powheg by multiplying

with the Sudakov factor ∆̃0(T0) and subtracting its first-order expansion to maintain the

NLO1 accuracy,

dσHJ-MiNLO
≥1

dΦ1
=

{
B1(Φ1)

[
1− ∆̃

(1)
0 (Φ̂0; T0)

]
+ V1(Φ1) +

∫
dΦ2

dΦ1
B2(Φ2)

}
∆̃0(Φ̂0, T0) . (6.5)

The term in curly brackets contains the full singular T0 dependence at NLO1. The crucial

ingredient [24] is the fact that the exponent of the Sudakov factor ∆̃0(T0) contains the full

NNLL set of T0 logarithms to O(α2
s). This causes the spectrum to become the total deriva-

tive of the NLO0-correct 0-jet cumulant, dσNLO
≥0 ∆̃0(T cut

0 ), up to nonsingular corrections in

T0 and higher orders in αs. As a result, the spectrum integrates to the correct NLO0 cross

section up to power corrections that vanish as T cut
0 → 0,∫

dΦ1

dΦ0

dσHJ-MiNLO
≥1

dΦ1
θ(T0 > T cut

0 ) =
dσNLO
≥0

dΦ0
+O(αsT cut

0 ) +O(α2
s) . (6.6)

The reweighting factor R̃(Φ0; T cut
0 ) in eq. (6.4) is then given by the ratio

R̃(Φ0; T cut
0 ) =

dσNNLO
≥0

dΦ0

/∫
dΦ1

dΦ0

dσHJ-MiNLO
≥1

dΦ1
θ(T0 > T cut

0 ) , (6.7)

and by construction, ensures that the Higgs + 1-jet spectrum in eq. (6.4) integrates to the

correct NNLO0 inclusive Higgs cross section. At the same time, because of eq. (6.6), the

reweighting factor has the form

R̃(Φ0; T0) = 1 +O(αsT cut
0 ) +O(α2

s) , (6.8)

and therefore does not affect the NLO1 accuracy of the inclusive 1-jet cross section up to

power corrections in T cut
0 . By taking T cut

0 → ΛQCD, these become negligible, and the result

becomes a valid NNLO+LL implementation.

To derive this result as a special case of our framework, we make the following two

choices:

1. Choose all singular terms equal to the exact tree-level and one-loop contributions,

C1(Φ1) = B1(Φ1) , C2(Φ2) = B2(Φ2) , V C1(Φ1) = V1(Φ1) . (6.9)
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2. Choose the splitting functions as

S
(1)
1 (Φ1) = B1(Φ1) , (6.10)

S
(2)
1 (Φ1) = V1(Φ1) +

∫
dΦ2

dΦ1
B2(Φ2)−B1(Φ1)

[
V C

0 (Φ̂0)

B0(Φ̂0)
+ ∆

(1)
0 (Φ̂0; T0)

]
.

With these two choices, the singular inclusive cross section defined in eq. (4.14) is given by

the full NNLO0 expression,

dσC≥0

dΦ0
=

dσNNLO
≥0

dΦ0
, (6.11)

while all FO matching corrections vanish,

dσC−S0

dΦ0
(T cut

0 ) =
dσB−C0

dΦ0
(T cut

0 ) = 0 ,
dσC−S≥1

dΦ1
(T0>T cut

0 ) =
dσB−C≥1

dΦ1
(T0>T cut

0 ) = 0 . (6.12)

The choice of the splitting function S2(Φ2) is not relevant for this discussion since its

purpose is to determine how to split the inclusive 1-jet cross section into an exclusive 1-jet

and an inclusive 2-jet cross section.

Using the results of section 4.1.1 (or section 4.1.2, which are identical in this case), we

then find for the exclusive 0-jet and inclusive 1-jet MC cross sections

dσmc0

dΦ0
(T cut

0 ) =
dσNNLO
≥0

dΦ0
∆0(Φ0; T cut

0 ) ,

dσmc≥1

dΦ1
(T0>T cut

0 ) =
dσNNLO
≥0

dΦ0

∣∣∣∣
Φ0=Φ̂0

S1(Φ1)

B0(Φ̂0)
∆0(Φ̂0; T0) θ(T0 > T cut

0 )

=
dσNNLO
≥0

dΦ0

∣∣∣∣
Φ0=Φ̂0

1

B0(Φ̂0)

{
B1(Φ1)

[
1−∆

(1)
0 (Φ̂0; T0)− V C

0 (Φ̂0)

B0(Φ̂0)

]
+V1(Φ1)

+

∫
dΦ2

dΦ1
B2(Φ2)

}
∆0(Φ̂0; T0) θ(T0 > T cut

0 ) , (6.13)

where in the last equation, we inserted the explicit expression for S1(Φ1) from eq. (6.10).

We can now compare this to the HJ-MiNLO result in eq. (6.4). Since the exclusive 0-jet

cross section is proportional to the Sudakov factor ∆0(Φ0; T cut
0 ), it vanishes in the limit

T cut
0 → 0. Thus, in this limit, the entire 0-jet cross section can be obtained by integrating

the inclusive 1-jet result over all values of T0, precisely analogous to what happens in

refs. [24, 38]. Since in practice, T cut
0 ∼ ΛQCD ∼ 1 GeV, one could also keep the 0-jet

cumulant, which would avoid introducing any additional power corrections in T cut
0 . The

term in curly brackets times the Sudakov factor ∆0(Φ̂0; T0) is equivalent to dσHJ-MiNLO
≥1 /dΦ1

in eq. (6.5), except for the additional V C
0 (Φ̂0) term. By including this term, the prefactor in

dσmc≥1 becomes simply the inclusive NNLO cross section normalized to the tree-level result,

dσNNLO
≥0 /B0(Φ0), without any need to reweight the events.

With the choice C1(Φ1) = B1(Φ1) from above, V C
0 (Φ0) is the NLO correction to the

inclusive cross section [see eq. (4.21)],

dσNLO
≥0

dΦ0
= B0(Φ0) + V C

0 (Φ0) , (6.14)

– 44 –



J
H
E
P
0
6
(
2
0
1
4
)
0
8
9

and is in particular T0 independent. Although in principle there is no need to do so, we

can rewrite dσmc≥1 and pull this term outside into the prefactor, which gives

dσmc≥1

dΦ1
(T0 > T cut

0 ) = R(Φ̂0)

{
B1(Φ1)

[
1−∆

(1)
0 (Φ̂0; T0)

]
+ V1(Φ1) +

∫
dΦ2

dΦ1
B2(Φ2)

}
× ∆0(Φ̂0; T0) θ(T0 > T cut

0 ) , (6.15)

with the rescaling factor

R(Φ0) =
dσNNLO
≥0

dΦ0

/{
dσNLO
≥0

dΦ0
− V C

0 (Φ0)

B0(Φ0)

∫
dΦ1

dΦ0
S

(2)
1 (Φ1) ∆0(Φ0, T0)

}
. (6.16)

The last term in the denominator here is the O(α3
s) cross term that arises from pulling

V C
0 (Φ0) out into the rescaling factor. It must be kept because it scales as α3

s(ln T0)/T0,

which upon integration over T0, becomes an α2
s correction. Equations (6.15) and (6.16)

are now the exact equivalent of the expressions in eqs. (6.4), (6.5), and (6.7). By writing

the factor in curly brackets in eq. (6.15) as S1(1 + V C
0 /B0)− (V C

0 /B0)S
(2)
1 , one can easily

check that the denominator in eq. (6.16) is exactly the integral of eq. (6.15) modulo the

R(Φ0) prefactor.

As we have seen, with the two choices given above, our method gives an expression

with an analogous structure as in ref. [38]. In fact, the result in eq. (6.13) that follows

immediately from our approach is automatically correct to NNLO0 without requiring an

additional reweighting. Another difference is the precise form of the Sudakov factors,

∆0(Φ0; T0) and ∆̃0(Φ0; T0). In our approach, ∆0 is constructed from the splitting functions

S
(i)
1 (Φ1), while in ref. [24], ∆̃0 is obtained from the analytic qT NNLL resummation formula.

Both expressions have the same logarithmic dependence on T0 expanded to O(α2
s) in the

exponent. We also like to point out that in the approach of refs. [24, 38] the known

NNLL structure of the T0 = qT spectrum is essential to analytically control all singular

logarithms through O(α2
s). In this respect, this approach is thus closely related to the

Geneva approach [22] discussed in section 6.1.

6.3 UNLOPS

In section 4, we have explicitly constructed the required exclusive N -jet and (N+1)-jet MC

cross sections to satisfy all the requirements to obtain a correct NNLO+LL event sample

discussed in section 3.1. Alternatively, one could also start from the inclusive FO+LL

M -jet cross sections and generate the exclusive MC cross sections numerically,

dσmcN

dΦN
(T cut

N ) =
dσmc≥N
dΦN

−
∫

dΦN+1

dΦN

dσmc≥N+1

dΦN
(TN > T cut

N ) ,

dσmcN+1

dΦN+1
(TN > T cut

N ; T cut
N+1) =

dσmc≥N+1

dΦN+1
(TN > T cut

N )

−
∫

dΦN+2

dΦN+2

dσmc≥N+2

dΦN+1
(TN > T cut

N , TN+1 > T cut
N+1) . (6.17)

This method has been applied to merge multiple NLO+LL calculations in refs. [23, 41, 55],

where it is referred to as UNLOPS.

– 45 –



J
H
E
P
0
6
(
2
0
1
4
)
0
8
9

Using eq. (6.17), the consistency conditions in eqs. (3.2) and (3.3) between different

multiplicities is automatically enforced. The inclusive MC cross sections that are used as

inputs must be correct at the relevant FO+LL accuracy according to eq. (3.1). For dσmc≥N ,

this means it has to be correct to NNLON , so it is simply given by the inclusive NNLON

cross section,
dσmc≥N
dΦN

=
dσNNLO
≥N

dΦN
. (6.18)

The inclusive (N+1)-jet cross section must be correct to NLON+1 with the TN dependence

resummed to LL, and the inclusive (N + 2)-jet cross section must be correct to LON+2

with the dependence on both TN and TN+1 resummed to LL, for which our general results

in section 4 [see eqs. (4.9) and (4.28)] can be used.

The major drawback of subtracting the integrals over the inclusive cross sections in

eq. (6.17) numerically is that one has to generate events with negative weights. The advan-

tage is that the expressions for the inclusive cross sections can be simplified substantially by

dropping all higher-order dependence inherited from lower multiplicities. For the inclusive

(N + 1)-jet cross section, one could then use, for example,

dσmc≥N+1

dΦN+1
(TN > T cut

N ) =

[
dσNLO
≥N+1

dΦN+1
(TN > T cut

N )−BN+1(ΦN+1) ∆
(1)
N (Φ̂N ; TN ) θ(TN > T cut

N )

]
×∆N (Φ̂N ; TN ) , (6.19)

which includes the correct LL resummation and expands to the correct NLON+1 result.

One could also have written this result using a singular approximation to the inclusive cross

section and added an FO matching correction, or only have the Born-level result multiply

the Sudakov factors, and then add all higher-order terms in the FO matching correction.

This last choice corresponds to what is done in refs. [23, 41, 55]. For the inclusive (N+2)-jet

MC cross section, one could use the equivalent of the CKKW result,

dσmc≥N+2

dΦN+2
(TN > T cut

N , TN+1 > T cut
N+1) = BN+2(ΦN+2) θ(TN > T cut

N ) θ(TN+1 > T cut
N+1)

×∆N (Φ̂N ; TN ) ∆N+1(Φ̂N+1; TN+1) . (6.20)

7 Conclusions

In this paper, we have developed a general method to combine fully differential NNLO

calculations with LL resummation in the form of an event generator for physical events that

can be directly interfaced with a parton shower. The basic quantities in our construction

are Monte Carlo (MC) cross sections

dσmcN

dΦN
(T cut

N ) ,
dσmcN+1

dΦN+1
(TN > T cut

N ; T cut
N+1) ,

dσmc≥N+2

dΦN+2
(TN > T cut

N , TN+1 > T cut
N+1) , (7.1)

representing an exclusive partonic N -jet cross section, calculated to NNLON+LL; an ex-

clusive partonic (N + 1)-jet cross section, calculated to NLON+1+LL; and an inclusive

partonic (N + 2)-jet cross section, calculated to LON+2+LL. We use NnLLM to refer to
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the O(αn
s ) result relative to an M -parton tree-level result. These MC cross sections are

represented in the generator by events with N , N + 1, and N + 2 partons. They are

characterized by N -jet and (N + 1)-jet resolution variables TN and TN+1, with resolution

scales T cut
N and T cut

N+1 defining the separation between them. We stress that these are not

jet-merging scales but IR cutoffs equivalent to a parton shower cutoff.

We have formulated the general conditions on the perturbative accuracy that a com-

plete and fully differential NNLO+LL calculation must satisfy. They require that the MC

cross sections must have the correct FO expansion (NNLON for dσmcN , NLON+1 for dσmcN+1,

and LON+2 for dσmc≥N+2), as well as include the LL resummation of the resolution variables

and scales (T cut
N for dσmcN , TN and T cut

N+1 for dσmcN+1, and TN and TN+1 for dσmc≥N+2). In

addition, the consistent combination of FO and LL requires that all observables that are

expected to be correctly predicted at O(αn
s ) at fixed order must be independent of the

resolution scales T cut
N and T cut

N+1 up to residual corrections of Ocut(α
≥n+1
s ) [using the LL

counting in eq. (2.28)] to maintain their expected perturbative accuracy. We have shown

that this can be achieved in general by enforcing a derivative relationship between M -jet

exclusive and (M + 1)-jet inclusive cross sections.

Our main results are given in section 4, where we derive in detail the MC cross sections

needed to construct the NNLO+LL event generator. The MC cross sections are explicitly

given in terms of the constituent matrix elements used in FO calculations and the parton

shower. Our results are general, and we make no choices about the techniques used to

evaluate the FO contributions in the MC cross sections. The primary and only NNLO

ingredients that are required are a singular approximation of the inclusive NNLO N -jet

cross section, dσC≥N , and the corresponding NNLO subtractions, both of which are naturally

part of existing NNLO calculations. All other ingredients are NLO in nature and therefore

obtainable as in existing NLO+LL implementations. We proved that our construction

explicitly satisfies all required conditions on the perturbative accuracy of an NNLO+LL

event generator.

We have discussed how the partonic NNLO+LL event generator can be interfaced with

standard parton showers using existing technologies, as well as the constraints that must

be placed on the parton shower routine. This matching must preserve the FO and LL

accuracy of the MC partonic jet cross sections, and the parton shower will provide LL

accuracy for general N -jet, (N + 1)-jet, and (N + 2)-jet observables, producing events at

all parton multiplicities. For the (N + 1)-jet and (N + 2)-jet samples, which are needed

to NLON+1+LL and LON+2+LL accuracy respectively, the constraints are essentially the

same as for the well-known case of NLO+PS matching. For the showering of the exclusive

N -jet sample, which is needed at NNLON+LL accuracy, we showed that the constraints on

the parton shower cannot be implemented at the level of individual emissions as was possible

for the other multiplicities. However, a global veto on the parton shower can still be used

in this case. Alternatively, if the shower evolution variable coincides with the TN and TN+1

resummation variables, the resolution scales T cut
N and T cut

N+1 can be set equal to the parton

shower cutoff itself, in which case only the inclusive (N + 2)-jet sample must be showered.

Finally, we have discussed how other methods for matching higher-order perturbative

calculations with parton showers fit into our general framework. For the well-known case
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of NLO+LL matching, the Powheg and MC@NLO approaches naturally follow as spe-

cial cases. When employing the higher-order resummation at NNLL′ as in Geneva, the

only missing ingredients to achieve full NNLO accuracy are power-suppressed nonsingular

contributions. We have also shown explicitly how the recent results for NNLO+PS using

HJ-MiNLO arise as a special case from our general results. We also commented how the

ideas of UNLOPS fit into our method.

Our results provide a path for combining the precision frontier of fixed-order calcula-

tions with the flexibility and versatility of parton shower Monte Carlo programs. There

are various steps that should be taken next toward a practical implementation. While the

comparison to existing approaches makes it clear that the implementation is feasible, it

remains to be seen what the optimal choices are to make the implementation sufficiently

generic so that new NNLO calculations can be incorporated with limited effort. Finally,

it should be clear from our discussion that our general setup not only applies to NNLO

calculations, but can also be extended to even higher order, should such results become

available, though the details remain to be worked out in this case.
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[18] S. Höche, F. Krauss, M. Schonherr and F. Siegert, QCD matrix elements + parton showers:

The NLO case, JHEP 04 (2013) 027 [arXiv:1207.5030] [INSPIRE].
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