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Abstract-it is well-known that the problem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof matching two relational structure$ can be posed as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAan equivalent problem of linding a 
maximal clique in a (derived) '"association graph." However, it is not clear how to apply this approach to computer vision problems 
where the graphs are hierarchically organized, i.e., are trees, Since maximal cliques are not constrained to preserve the partial order. 
Here, we provide a solution to the problem of matching two trees by constructing the association graph using the graph-theoretic 
concept of connectivity. We prove that, in the new formulation, there is a one-to-one correspondence between maximal cliques and 
maximal subtree isomorphisms. This allows us to cast the tree matching problem,as an indefinite quadratic program using the Motzkin- 

Straw theorem, and we use "replicatol" dynamical systems developed in theoretical biology to solve it. Such continuous solutions to 
discrete problems are attractive because they can motivate analog and biological implementations. The framework is also extended to 
the matching 01 attributed trees by using weighted association graphs. We illustrate the power of the approach by matching articulated 
and delormed shapes described by shock trees. 

index Terms-Maximal subtree isomorphisms, association graphs, maximal cliques, replicator dynamical systems. shock trees, 
shape recognition. 
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1 INTRODUCTION 
HE relationships between discrete and continuous T mathematics have always been a subject of intensive 

study since the discovery of the irrationals by the 
Pythagorean school. Apart from the underlying philoso- 
phical implications, the interaction between the two 
domains can provide new insights into old problems and 
often allows techniques from one side to be profitably 
imported into the other. Entire branches of modern 
mathematics have been created with the specific motivation 
of exploring such connections, examples of which are 
singularity theory, combinatorial topology, and spectral 
graph theory. In more recent years, with the introduction of 
the ellipsoid and the interior point methods for linear 
programming, there has also been a tremendous interest in 
computer science and operations research in solving 
combinatorial optimization problems using continuous 
methods [XI, [44]. 

Following the seminal works of Hopfield and Tank [24], 
and Durbin and Willshaw [14], the neural network 
community also became interested in using continuous 
approaches for combinatorial optimization. The basic idea 
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consists of deriving a continuous "energy" function whose 
minimizers are in correspondence with the solutions of the 
discrete problem, and then minimizing it using continuous- 
or discrete-time dynamical systems, typically embedded in 
a parallel network of locally interacting processing ele- 
ments. Such continuous solutions to discrete problems are 
attractive not only because they offer the advantage of 
biological plausibility, but also because they can motivate 
parallel, ,analog VLSI implementations. Examples of 
problems attacked within this framework include the 
traveling salesman problem [14], [24], graph bipartitioning 
[16], the maximum clique problem [26], [46], the linear 
assignment problem [29], the knapsack problem [43], and 
the graph/subgraph isomorphism problems [ZO], [531. 

Thus far, the focus has been on "flat" problems in the 
sense that there is no partial ordering imposed on the data. 
In many practical problems, however, data are organized in 
a hierarchical manner, i.e., are trees, and the problem of 
matching such representations is of interest for pattern 
recognition. Applications in domains like computer vision 
(321, [36], [55], (571, [62], [66], molecular biology [58], and 
natural language processing [41] abound, and many 
traditional, discrete algorithms have been developed [31], 
[341, [371, [541, [591. On the other hand, no attempt has yet 
been made to approach such problems within a continuous 
framework, using analog continuous-time dynamics. The 
main difficulty is that it is not clear how to map the 
hierarchy embedded in the representations onto a "flat" 
optimization network. 

The matching of relational structures is a related (but 
different) problem which has also received considerable 
attention in computer vision and pattern recognition 
because of its applications in such problems as object 
recognition, motion, and stereo analysis, etc. [Z]. A classical 
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Fig. 1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAn example of matching two trees. In the standard formulation of 
the association graph, the maximum cliques do not preserve the 
hierarchical structure of the two trees (see text for details). 

solution to this problem consists of transforming it into the 
equivalent problem of finding a maximum clique in an 
auxiliary graph structure, known as the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAassociation graph [2], 
[3]. The idea goes back to Ambler et al. [l] and has since 
been successfully employed in a variety of different tasks, 
e.g., [6], [251, [42], [51], 1521, [65]. This framework is 
attractive because it casts relational structure matching as 
a pure graph-theoretic problem for which a solid theory and 
powerful algorithms have been developed. Although the 
maximum clique problem is known to be NP-complete [17], 
powerful heuristics have been developed which efficiently 
find good approximate solutions [9] and there exist many 
classes of graphs for which the problem is solvable in 
polynomial-time [Zl] ,  [9]. 

Since, in the standard association graph formulation, the 
solutions are not constrained to preserve the required 
partial order, it is not clear how to apply the framework for 
matching hierarchical structures. The extension of associa- 
tion graph techniques to tree matching problems is there- 
fore of considerable interest. To illustrate the difficulties 
with the standard formulation, consider the problem of 
finding the largest subtree in the left tree of Fig. 1, which is 
isomorphic to a subtree in the right tree. Up to permuta- 
tions, the correct solution is clearly given by 3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt a, 4 i b, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 i c, 6 + d, 7 i f, and 8 i g. In other words, the 
subtree rooted at node 3 is matched against that rooted at 
node a in the tree on the right. However, using the standard 
association graph formulation (cf. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[2, p. 366]), it is easily 
verified that the solutions induced by the maximum cliques 
correspond (up to permutations) to the following: 2 i h, 
3 1  a , 4 +  b , 5 +  c , 6 +  d , 7 +  f , a n d 8 +  g,which, 
while perfectly in accordance with the usual subgraph 
isomorphism constraints, do violate the requirement that the 
matched subgraphs be trees (note, in fact, that nodes 2 and 
h are isolated from the rest of the matched subtrees). 

In this paper, we introduce a solution to this problem by 
providing a novel way of deriving an association graph 
from two (rooted) trees, based on the graph-theoretic 
notions of connectivity and the distance matrix. We prove 
that, in the new formulation, there is a one-to-one 
correspondence between maximal (maximum) cliques in 
the derived association graph and maximal (maximum) 
subtree isomorphisms. As an obvious corollary, the 
computational complexity of finding a maximum clique in 
such graphs is therefore the same as that of the subtree 
isomorphism problem, which is known to be polynomial in 
the number of nodes [17]. This formulation allows us to 
map the hierarchical information contained in the trees onto 

a flat structure and this turns out to be the key to the 
proposed framework. 

Following the development in [48], [49], we use the 
Motzkin-Straus theorem [40] to formulate the maximum 
clique problem on the association graph as a (continuous) 
quadratic program whose solutions are in one-to-one 
correspondence with the solutions of the original tree 
matching problem. To solve it, we employ replicator 
equations, a class of continuous- and discrete-time dynami- 
cal systems developed and studied in various branches of 
mathematical biology 1231, [63], which are also closely 
related to parallel relaxation labeling networks [56]. In 
addition, we extend the framework to handle the matching 
of attributed trees by casting the problem as that of finding 
a maximum weight clique in a weighted association graph. 
A recent generalization of the Motzkin-Straus theorem 
applies [19], allowing the use of the same replicator 
dynamics as in the unweighted case. We illustrate the 
power of the proposed approach via several examples of 
matching articulated and deformed shapes described by 
shock trees [62]. 

2 TREE ISOMORPHISM AND MAXIMAL CLIQUES 
2.1 Notations and Definitions 
Before going into the details of the proposed framework, we 
need to introduce some graph-theoretical notations and 
definitions. More details can be found in standard textbooks 
of graph theory, such as [22]. Let.G = ( V , E )  be a graph, 
where Vis the set of nodes and E is the set of (undirected) 
edges. The order of G is the number of nodes in V, while its 
size is the number of edges. Two nodes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv t V are said to 
be adjacent (denoted U - v) if they are connected by an edge. 
A path is any sequence of distinct nodes I L , ~ ~ ~ .  . . urL such 
that, for all zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi = 1. . . n, u ~ - ~  - U,; in this case, the length of the 
path is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn. If U" = U,, the path is called a cycle. A graph is said 
to be connected if any pair of nodes is joined by a path. The 
distance between two nodes U and TI, denoted by d(u,v), is 
the length of the shortest path joining them (by convention, 
d(u,w) = 00 if there is no such path). Given a subset of 
nodes C i V ,  the induced subgraph G [ q  is the graph having 
C as its node set and two nodes are adjacent in G [ q  if and 
only if they are adjacent in G. 

A connected graph with no cycles is called a tree. A 
rooted tree is one which has a distinguished node, called 
the root. The level of a node U in a rooted tree, denoted by 
lev(u), is the length of the path connecting the root to U .  

Note that there is an obvious equivalence between rooted 
trees and directed trees, where the edges are assumed to 
be oriented. We shall therefore use the same terminology 
typically used for directed trees to define the relation 
between two adjacent nodes. In particular, if U - v and 
lev(v) - lcv(u) = +1, we say that 11 is the parent of w and, 
conversely, v is a child of U. Trees have a number of 
interesting properties. One which turns out to be very 
useful for our characterization is that in a tree any two 
nodes are connected by a unique path. 

2.2 Deriving the Association Graph 
Let TI = (VI, El)  and T2 = (E, E2) be two rooted trees. Any 
bijection 4 : H1 i H2, with H I  Vi and H2 & E, is called a 
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Fig. 2. An illustration of the hypotheses of Lemma 1. Each curved line represents a path between two nodes; when two paths are labeled by the 
same symbol, the corresponding path-strings are assumed to be the same. The lemma states that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAstr(wI,zI) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAstr(w2,z2), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
subtree isomorphism if it preserves the adjacency and 
hierarchical relationships between the nodes and, in 
addition, the subgraphs obtained when we restrict our- 
selves to HI and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHz, i.e., Tl[Hl]  and Tz[Hz], are trees. The 
former condition amounts to stating that, given U ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw E H I ,  

we have U N zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU if and only if $(U)  - $(U), and U is the parent 
of U if and only if $ ( U )  is the parent of $(U) .  A subtree 
isomorphism is maximal if there is no other subtree 
isomorphism zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4' : Hi - Hi with Hi a strict subset of H:, 

and maximum if HI has largest cardinality. The maximal 
(maximum) subtree isomorphism problem is to find a 
maximal (maximum) subtree isomorphism between two 
rooted trees. 

We now introduce the notion of a path-string, which will 
be central to the subsequent development. 

Definition zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. Let U and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw be two distinct nodes of a rooted tree T,  

and let U = xoxl . , . x, = U be the (unique) path joining them. 
The path-string ofu and w, denoted by str(u, w), is the string 
S I S ~ .  . . s. on the alphabet 1-1, +1} where,for all i = 1 . .  . n, 
si = lev(x,) ~ lev(xi_l). By convention, when U = U we 
define str(u, w) = E, where E is the null string Ke., the string 
having zero length). 

The path-string concept has a very intuitive meaning. 
Suppose that you stand on a particular node in a rooted tree 
and want to move to another adjacent node. Because of the 
orientation induced by the root, only two types of moves 
can be done, i.e., going down to one of the children (if one 
exists) or going up to the parent (if you are not on the root). 
Let ns assign to the first move the label +1 and, to the 
second, the label -1. Now, suppose that you want to move 
from node U to w, following the unique path joining them. 
Then, the path-string of U and w is simply the string of 
elementary moves required to reach U, starting from U. It 
may be thought of as the degree of relationship between 
two relatives in a "family" tree. As an illustrative example, 
referring to Fig. 1, we have str(2,8) = -1 + 1 + 1 + 1. Note 
that if str(u, w )  = SI . . . .sn-1s71, then str(w, U )  = S,S,,_l . . .SI ,  
where 4 = -1 if si = +1 and Si = +1 otherwise ( i  = 1 , , , n), 

Definition 2. The tree association graph (TAG) of two rooted 
trees Tl = (V,,El) and Tz = (&,Ez)  is the graph G = 

(V ,  E )  where 

v=vixv, 
and, for any two nodes ( U ,  w)  and (U, z )  in V,  we have 

( U ,  w )  N ( w ,  z )  e str(u, U) = str(w, z ) .  

Intuitively, two nodes ( U ,  w )  and (U, z )  are adjacent in the 
TAG if and only if the relationship between U and w in T, is 
the same as that between w and z in T2. Note that this 
definition of the association graph is stronger than the 
standard one used for matching arbitrary relational 
structures [Z], [31. A subset of vertices of G is said to be a 
clique if all its nodes are mutually adjacent. A maximal clique 
is one which is not contained in any larger clique, while a 
maximum clique is a clique having largest cardinality. The 
maximum clique problem is to find a maximum clique of G. 

Our main goal in this section is to establish a one-to-one 
correspondence between maximal cliques in the TAG and 
maximal subtree isomorphisms. To this end, we need the 
following result. 

Lemma 1. Let u1 .w1 ,w l l z l t I 4  and U Z , U Z , W ~ . Z ~ ~ ~ / ~  be 
dis t inct  nodes o f  rooted trees TI = (V , ,El )  and 
Tz = (K, Ez), and suppose that thefollowing conditions hold 
(see Fig. 2): 

1. 
2. str(u1,wI) = str(u2, WZ) 

3. str(w1,vl) = str(wz,wz) 
4. str(u1,zI) = str(u2,zz) 
5 .  str(w1, z1) = str(vz,z2) 

Then, str(w1,zl) = str(wz,zz). 

w1 is on the'ulul-path and w2 is on the uzuz-path 

Proof. See the Appendix. U 

The following theorem, which is the basis of the work 
reported here, establishes a one-to-one correspondence 
between the maximum subtree isomorphism problem and 
the maximum clique problem. 

Theorem 1. Any maximal (maximum) subtree isomorphism 
between two rooted trees induces a maximal (maximum) clique 
in the corresponding TAG, and vice versa. 

Proof. Let $ : H I  ---t HZ be a maximal subtree isomorphism 
between rooted trees zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2'1 and Tz, and let G = (V, E )  
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denote the corresponding tree association graph. Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
C, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC V be defined as: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

C, = { ( U ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd,(.)) : E HI 1. 
From the definition of a subtree isomorphism, it follows 
that 6 maps the path between any two nodes U ,  U zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt H I  
onto the path joining 4(u) and 4(w). This clearly implies 
that str(u, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU) = str(<j(u), d ( v ) )  for all U E H I  and, there- 
fore, C, is a clique. Trivially, C, is a maximal clique 
because d, is maximal. This proves the first part of the 
theorem. 

Suppose now that C = { (ti1, ?aI), . . . , (U*, tu,&)} is a 
maximal clique of G, and let H I  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{w,. . . , urZ} i V, 
and H, = {tol,. . .,ut,} V,. Define d, : H I  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi HZ as 
d,(&) = wz, for all i = 1 . .  .TI. From the definition of a 
tree association graph and the hypothesis that C is a 
clique, it is simple to see that 4 is a one-to-one and onto 
correspondence between Hi and H,, which trivially 
preserves both the adjacency and the hierarchical 
relationships between nodes. The fact that 4 is a maximal 
isomorphism is a straightforward consequence of the 
maximality of C. 

To conclude the proof we have to show that the 
subgraphs that we obtain when we restrict ourselves to 
H I  and H,, i.e., Tl[Hl] and Tz[H2], are trees and this is 
equivalent to showing that they are connected. Suppose, 
by contradiction, that this is not the case and let ui,  uj t 
HI be two nodes which are not joined by a path in TI [HI]. 
Since both U &  and uj are nodes of TI, however, there must 
exist a path ui = zozl . . . zm = u3 joining them in TI.  Let 
zf = xi;, for some k = 1 . .  . m, be a node on this path 
which is not in Ifl. Moreover, let U' = gk be the kth node 
on the path tuz = yoy l . .  . ym = wj which joins wi and wJ in 
31 (remember that str(ui,uj) = str(w,, W J ~ )  and, hence, 
d(wi;uij) = m). We now show that the set {(z*,y*)} U 

C 2 Vis a clique. To this end, let ( U ,  w) E C. Since (Q, wi )  
a n d  ( u ? , ~ , ~ )  are  also nodes  in  C, w e  have  
str(ui,u) = str(wi,w), and str(uj,u) = str(wJ, w). Further- 
more, we have that x* and y' are on the uvuj- and iuiw,- 

paths, respectively, and, clearly, str(ui, z') = str(wi, y') 

and str(z*, t i j )  = str(y', tuj). Therefore, all the hypotheses 
of Lemma 1 are satisfied and this implies that 
str(z*,u) = str(y', w), which amounts to stating that 
node (z*, y*) is adjacent to ( U ,  w), for all ( U ,  w) E C. This 
means that {(z*,y*)}  U C  is a clique, thereby contra- 
dicting the hypothesis that C is a maximal clique and 
proving the second part of the theorem. 

The "maximum" part of the statement is proven 
similarly. 0 

The next proposition provides us with a straightforward 
criterion to construct the TAG. 

Proposition 1. Let Tl = (V,,El) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT2 = (V2,E2) be two 
rooted trees, U,U t V,, and w ,  z t E. Then, str(u, 7 ~ )  = 

str(w, z)  i f a n d  only if the following two conditions hold: 

I .  
2. 

d(u, U )  = d(w, z) 
1cv(u) - Icv(v) = lcv(w) - Icv(z). 

Proof. The proposition is a straightforward consequence of 
the observation that, given any two nodes U and v in a tree, 

' 1  

Fig. 3. The simplex S, 

withstr(u,v) = sls2 . .  .s,,wehavelev(u) - lev(v) = Ci si, 

and the fact that .si = +1 implies sj = +1 for all j 2 i. 0 

This property allows us to efficiently derive the TAG by 
using a classical representation for graphs, i.e., the so-called 
distance matrix (see, e.g., [22]) which, for an arbitrary graph 
G = (V, E )  of order n, is the n x n matrix D = (4j) where 
dij = d(ui, uj) ,  the distance between nodes ui and uj. 

3 A CONTINUOUS FORMULATION OF THE MAXIMUM 
CLIQUE PROBLEM 

We now exploit the interplay between discrete and 
continuous mathematics, alluded to in Section 1. Let G = 

(V, E )  be an arbitrary graph of order n and let S, denote the 
standard simplex of R" (see Fig. 3): 

S,, = {x t lRn : e'x= 1 andzi 2 0 , i  = l . . .n } ,  

where e is the vector whose components equal 1 and a 
prime denotes transposition. Given a subset of vertices C of 
G, we will denote by x" its characteristic vector which is the 
point in St, defined as 

z. = { ;i'C'. if ut E C 
otherwise, 

where IC1 denotes the cardinality of C. 
Now, consider the following quadratic function 

f(x) = x'Ax, (1) 

where A = (ai j )  is the adjacency matrix of G, i.e., the n x n 

symmetric matrix defined as 

if U, - y 
= { k: otherwise. 

A point x' t Sn is said to be a global maximizer of f in Sn if 
, f (x*)  2 f(x), for all x E S,. It is said to be a local maximizer 
if there exists an c > 0 such that J(x*) 2 , f ( x )  for all x E Sn 
whose distance from x* is less than t and if f(x*) = , f ( x )  
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implies zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx* = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx, then x* is said to be a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAstrict local maximizer. 
Note that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf ( x )  5 1 for all x E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS,. 

The Motzkin-Straus theorem [401 establishes a remark- 
able connection between global (local) maximizers of the 
function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf in S, and maximum (maximal) cliques of G. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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a one-to-one correspondence exists between maximal 
cliques and local maximizers of f in S, on the one hand 
and maximum cliques and global maximizers on the other 
hand. 

Specifically, it states that a subset of vertices C of a graph G 
is a maximum clique if and only if its characteristic vector 
x' is a global maximizer of f on S,,. A similar relationship 
holds between (strict) local maximizers and maximal 
cliques [19], [50]. This result has an intriguing computa- 
tional significance in that it allows us to shift from the 
discrete to the continuous domain. Such a reformulation is 
attractive for several reasons: It suggests how to exploit the 
full arsenal of continuous optimization techniques, thereby 
leading to the development of new algorithms, and may 
also reveal unexpected theoretical properties. Additionally, 
continuous optimization methods are often described in 
terms of sets of differential equations and are, therefore, 

4 
We now turn our attention to a class of dynamical systems 
that we use for solving our quadratic optimization problem. 
Let W be a nonnegative real-valued n x n matrix and 
consider the following dynamical system: 

REPLICATOR EQUATIONS AND TREE MATCHING 

&(t )  = ~ ~ ( t ) [ ( W x ( t ) ) , - x ( t ) ' W x ( t ) ] ,  z =  I . . . % ,  (3) 

where a dot signifies derivative w.r.t. time t, and its 
discrete-time counterpart 

potentially implementable in analog circuitry. The Motzkin- 
straus theorem has served as the basis of several clique- 
finding procedures [lo], [18], [45], [46] and has also been 
used to determine theoretical bounds on the cardinality of 
the maximum cliaue 1451. 1641. 

It iS readily seen that the simplex S, is invariant under these 
dynamics, which means that every trajectory starting in S,, 

will remain in S, for all future times. Moreover, it turns out 
that their stationary points, i.e., the points satisfying ?i(t) = 0 

" 
Straus formulation relates to the existence of spurious 
solutions, i.e., maximizers of f which are not in the form of 
characteristic vectors. This was observed empirically by 
Pardalos and Phillips [45] and more recently formalized by 
Pelillo and Jagota [50]. In principle, spurious solutions 
represent a problem since, while providing information 
about the cardinality of the maximum clique, they do not 
allow us to easily extract its vertices. Fortunately, there is a 
solution to this problem which has recently been introduced 
and studied by Bomze [7]. Consider the following regular- 
ized version of f :  

(2) 
1 
2 

f ( x )  = x'Ax + -x'x, 

which is obtained from (1) by substituting the adjacency 
matrix A of G with 

1 
2 

A = A + -I,, 

where I ,  is the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn x n identity matrix. The following is the 
spurious-free counterpart of the original Motzkin-Straus 
theorem (see [7] for a proof). 

Theorem 2. Let C be a subset of vertices of a graph G, and let xc 
be its characteristic vector. Then the following statements hold: 

C i s  a maximum clique of G ifand only i fxc is a global 
maximizer of the function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf in S,. In this case, 

C is a maximal clique of G ifand only ifx" is a local 
maximizer o f f  in S,. 
All local (and, hence,global) maximizers of f in S, are 
strict. 

Unlike the original Motzkin-Straus formulation, the 
previous result guarantees that all maximizers of f on S,, 
are strict, and are characteristic vectors of maximal/ 
maximum cliques in the graph. In a formal sense, therefore, 

1. 

IC1 = 1/2(1- f(x"). 
2. 

3. 

solutions of the equations: 

z,[(Wx),-x'Wx]=O, i =  l . . . n  

A stationary point x is said to be asymptotically stable if every 
solution to (3) or (4) which starts close enough to x 
converges to x as t - 00. 

Both (3) and (4) are called replicator equations in 
theoretical biology since they are used to model evolution 
over time of relative frequencies of interacting, self- 
replicating entities [23]. The discrete-time dynamical equa- 
tions turn out to be a special case of a general class of 
dynamical systems introduced by Baum and Eagon [5] in 
the context of the theory of Markov chains. They also 
represent an instance of the original Rosenfeld-Hummel- 
Zucker relaxation labeling algorithm [56], whose dynamical 
properties have recently been clarified [47] (specifically, it 
corresponds to the 1-object, n-label case). 

We are now interested in the dynamical properties of 
replicator equations; it is these properties that will allow us 
to solve our original tree matching problem. 

Theorem 3. IfW = W', then thefunction x(t)'Wx(t) is strictly 
increasing with increasing t along any nonstationary trajec- 
tory x( t )  under both continuous-time (3) and discrete-time (4) 
replicator dynamics. Furthermore, any suck trajectory con- 
verges to a stationary point. Finally, a vector x E S, is 
asymptotically stable under (3) and (4) if and only if x is a 
strict local maximizer of x'Wx on S,. 

The previous result is known in mathematical biology as 
the fundamental theorem of natural selection [13], [23], [63] 
and, in its original form, traces back to Fisher [15]. As far as 
the discrete-time model is concerned, it can be regarded as a 
straightforward implication of the more general Baum- 
Eagon theorem [5]. The fact that all trajectories of the 
replicator dynamics converge to a stationary point has been 
proven more recently [33], [35]. 
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Fig. 4. A coloring of shocks into four types zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[28]. A I-shock derives from a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAprotrusion and traces out a curve segment of adjacent I-shocks, along 
which the radius function varies monotonically. A 2-shock arises at a neck, where the radius function attains a strict local minimum, and is 
immediately followed by two 1-shocks flowing away from it in opposite directions. 3-shocks correspond to an annihilation into a curve segment due to 
a bend, along which the radius function is constant, and a 4-shock is an annihilation into a point or a seed, where the radius function attains a strict 
local maximum. The loci of these shocks gives Blum's medial axis. 

In light of their dynamical properties, replicator equa- 
tions naturally suggest themselves zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas a simple heuristic for 
solving the maximal subtree isomorphism problem. Let 
TI = (K, El) and Tz = (K, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE2) be two rooted trees and let A 
denote the N-node adjacency matrix of the corresponding 
TAG. By letting 

1 

2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW =  A+-I,-q, 

where I," is the N zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx N identity matrix, we know that the 
replicator dynamical systems (3) and (4), starting from an 
arbitrary initial state, will iteratively maximize the function 
f defined in (2) over zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASN and will eventually converge with 
probability 1 to a strict local maximizer which, by virtue of 
Theorem 2, will then correspond to the characteristic vector 
of a maximal clique in the association graph. As stated in 
Theorem 1, this will in turn induce a maximal subtree 
isomorphism between TI and T2. 

Clearly, in theory, there is no guarantee that the 
converged solution will be a global maximizer of f and, 
therefore, that it will induce a maximum isomorphism 
between the two original trees. Previous experimental work 
done on the maximum clique problem [lo], 1461, and also 
the results presented in this paper, however, suggest that 
the basins of attraction of optimal or near-optimal solutions 
are quite large and, very frequently, the algorithm con- 
verges to one of them, despite its inherent inability to 
escape from local optima. 

Since the process cannot leave the boundary of SN,  it is 
customary to start out the relaxation process from some 
interior point, a common choice being the barycenter of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS,, 
i.e., the vector (k,. . . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA, & ) I .  This prevents the search from 
being initially biased in favor of any particular solution. 

5 AN EXAMPLE: MATCHING SHOCK TREES 

pattern recognition, we use a class of example trees derived 
from a real system. Our representation for shape is based on 
an abstraction of the shocks (or singularities) of a curve 
evolution process, acting on a simple closed curve in the 
plane, into a shock tree. We begin by providing some 
background on the representation (for details see [28], [62]) 
and then present experimental results on matching shock 
trees. In Section 6, we extend the framework to incorporate 
attributes associated with shock tree nodes. 

5.1 The Shock Tree 
In 1271, 1281, the following evolution equation was proposed 
for visual shape analysis: 

Ct = (1 + a.)N 
( 5 )  

C ( P ,  0) = CU(P). 

Here, C ( p ,  t )  is the vector of curve coordinates, N(p, t )  is the 
inward normal, p is the curve parameter, and t is the 
evolutionary time of the deformation. The constant a 2 0 
controls the regularizing effects of curvature K ,  When a is 
large, the equation becomes a geometric heat equation; 
When a = 0, the equation is hyperbolic and shocks 1301, or 
entropy-satisfying singularities, can form. In the latter case 
the locus of points through which the shocks migrate is 
related to Blum's grassfire transformation 1121, 1281, 
although significantly more information is available via a 
"coloring" of these positions. Four types can arise, accord- 
ing to the local variation of the radius function along the 
medial axis (Fig. 4 ) .  Intuitively, the radius function varies 
monotonically at a type 1, reaches a strict local minimum at 
a type 2, is constant at a type 3, and reaches a strict local 
maximum at a type 4. The classification of shock positions 
according to their colors and an enumeration of the possible 
local neighborhoods around each shock type is at the heart 
of the representation. 

We now illustrate our framework for matching hierarchical 
structures with numerical examples of shape matching. 
Because of the subtleties associated with generating random 
trees of relevance to applications in computer vision and 

Shocks of the same type that form a connected 
component are grouped together to comprise the nodes of 
a shock graph, with the I-shock groups separated at branch- 
points of the skeleton. Directed edges in the graph are 
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Fig. 5. Two illustrative examples of the shocks obtained from c u m  evolution (from [62]). Left The notation associated with the locus of shockpoints 
is of the form shockktype-identifier. Right The corresponding trees have the shocktype on each node, with the identifier adjacent. The last shocks 
to form during the c u m  evolution process appear under a root node labeled #. 

placed between shock groups that touch one another such 
that each parent node contains no shocks that formed prior 
to any shocks in a child node. This corresponds to a 
"reversal" in time of the curve evolution process to obtain a 
hierarchy of connected components. The graph is rooted at 
a unique vertex #, the children of which are the last shock 
groups to form, e.g., the palms of the hand silhouettes in 
Fig. 5. (The letters "a" and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA"b" denote different sides of the 
same shock group). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA key property of the shock graph is 
that its topological strucbre is highly constrained because 
the events that govern the birth, combination, and death of 
shock groups are completely characterized by a shock 
grammar, with a small number of rewrite rules zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[62]. In 
particular, each shock graph can be reduced to a unique 
rooted shock tree. 

5.2 Experimental Results 
We now illustrate the power of the hierarchical structure 
matching algorithm on shock trees. Whereas each node has 
geometric attributes, related to properties of the shocks in 
each group, for now we shall consider only the shock tree 
topologies. (We shall consider the geometry shortly.) We 
selected 25 silhouettes representing eight different object 
classes (Table 1, first column); the tool shapes were taken 
from the Rutgers Tools database. Each shape was then 
matched against zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAall entries in the database. Fig. 6 shows the 
maximal subtree isomorphisms found by the algorithm for 
three examples. The top eight matches for each query shape, 
along with the associated scores, are shown in Table 1. The 
scores indicate the average of n/nl and n/nn, where n is the 
size of the maximal clique found, and nl and n2 are the 
number of nodes in each tree. We observed that, in all our 
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TABLE 1 

A Tabulation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the Top Eight Topological Matches for Each Query zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

The scores indicate the average of the fraction of nodes matched in each zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the two trees (see text). Note that only thO topology of the shock frees 
was used: the addition of geometric information permits finer discrimination (compare with Table 2). 

experiments, the maximal cliques found were also max- matches which appear to be counterintuitive, e.g., matches 
imum cliques, This is due to the property that global [(Row 1, Column zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3); (Row 2, Column 3); (Row 13, Column 
maximizers of the objective function typically have large 4); (Row 14, Column 4); (Row 21, Column 2) and (Row 21, 
basins of attraction, as also shown experimentally in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[46], , Column zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3)]. These correspond to shapes with similar shock- 
1491, [lo]. The matching algorithm generally takes only two tree topologies (hierarchies of parts), but drastically 
to three seconds to converge on a Sparc 10. different shock geometries (part shapes). In the following 

Note that, despite the fact that metric/label information section, we extend our framework to incorporate the latter 
associated with nodes in the shock trees was discounted geometric information contained in each shock sequence 
altogether, all exemplars in the same class as the query (the location, time of formation, speed, and direction of each 
shape are typically within the top five matches, illustrating shock) as attributes on the nodes. We show that this leads to 
the potential of a topological matching process for indexing better discrimination between shapes than that provided by 
into a database of shapes. Nevertheless, there exist a few shock tree topologies alone. 
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Fig. 6. Maximal subtree isomorphisms found for three illustrative 
examples. The shock-based descriptions of the hand silhouettes are 
shown in Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5; the shock-trees for the other silhouettes were computed 
in a similar fashion. 

6 A ~ R I B U T E D  TREE MATCHING AND WEIGHTED 
TAGS 

In many computer vision and pattern recognition applica- 
tions, the trees being matched have nodes with an 
associated vector of symbolic and/or numeric attributes. 
In this section, we show how the proposed framework can 
naturally be extended for solving attributed tree matching 
problems. 

6.1 

Formally, an zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAattributed tree is a triple T = (V, E,  a) ,  where 
(V ,  E )  is the "underlying" rooted tree and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU is a function 
which assigns an attribute vector a(.) to each node U zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE V .  It 
is clear that, in matching two attributed trees, our objective 

Attributed Tree Matching as Weighted Clique 
Search 

is to find an isomorphism which pairs nodes having 
"similar" attributes. To this end, let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu be any similarity 
measure on the attribute space, i.e., any (symmetric) 
function which assigns a positive number to any pair of 
attribute vectors. If [j~ : H I  --* H z  is a subtree isomorphism 
between two attributed trees TI = (V1,Elral) and 
T2 = (E, E2,aZ), the overall similarity between the induced 
subtrees T1[H1] and T2[Hz] can be defined as follows: 

The isomorphism 4 is called a maximal similarity subtree 

isomorphism if there is no other subtree isomorphism zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAqY : 

Hi i Hi such that H I  is a strict subset of Hi and 
S(4) i S(@'). It is called a maximum similarity subtree 

isomorphism if S(4) is largest among all subtree isomorph- 
isms between TI and T2. 

The weighted TAG of two attributed trees TI and T2 is the 
weighted graph G = (V, E,  U), where V and E are defined 
as in Definition 2 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw is a function which assigns a 
positive weight to each node (U, U) E V = Vi x as follows: 

4% 4 = +I(.), ad.)) 
Given a subset of nodes C of V ,  the total weight assigned to 
C is simply the sum of all the weights associated with its 
nodes. A maximal weight clique in G is one which is not 
contained in any other clique having larger total weight, 
while a maximum weight clique is a clique having largest 
total weight. The maximum weight clique problem is to find 
a maximum weight clique of G [9]. Note that the 
unweighted version of the maximum clique problem arises 
as a special case when all the nodes are assigned a constant 
weight. 

The following result, which is the weighted counterpart 
of Theorem 1, establishes a one-to-one correspondence 
between the attributed tree matching problem and the 
maximum weight clique problem (the proof is essentially 
identical to that of Theorem 1). 

Theorem 4. Any  maximal (maximum) similarity subtree 

isomorphism between two attributed trees induces a maximal 

(maximumJ weight clique in the corresponding weighted TAG, 

and vice versa. 

6.2 Matching Attributed Trees 
Recently, the Motzkin-Straus formulation of the maximum 
clique problem has been extended to the weighted case [19]. 
Let G = (V ,  E,  w )  be an arbitrary weighted graph of order n. 

The (weighted) characteristic vector of any subset of nodes 
C zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC V,  denoted xc, is defined as follows: 

zr = { ;,(ui)/n(c), if U, C 
otherwise, 

where n(C) = Cu,,cw(u3) is the total weight on C. 

matrices: 
Now, consider the following class of n x n symmetric 
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b. .  - - 0.. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA32 > - b.. %, + b,ll zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAotherwise 

and the quadratic function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
g(x) = X'BX, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(6) 

where B t M(G). The following theorem, which is the 
weighted counterpart of Theorem 2, expands on a recent 
result by Gibbons et al. 1191, which in turn generalizes the 
Motzkin-Straus theorem to the weighted case (see [SI, [ l l ]  
for a proof). 

Theorem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5. Let G = (V ,  E , w )  be afl avbitrary weighted graph 
and let B t M ( G ) .  Then, the following hold: 

I .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA vectov x E S,, is a local minimizer of g on Svt zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAif 
and only if x = xc, where C is a maximal weight 
clique of G. 
A vector x t S7, is a global minimizer of g on S, if 
and only zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAif x = x", where C is a maximnm weight 
clique of G. 
All local (and hence global) minimizers of g on S7, are 
stvict. 

In contrast to the Gibbons et al. formulation 1191, which is 
plagued by the presence of spurious solutions, as is the 
original Motzkin-Straus problem [ll], the previous result 
guarantees that all minimizers of g on S,, are strict and are 
characteristic vectors of maximal/maximum weight cliques 
in the graph. Note that the class M(G) is isomorphic to the 
positive orthant in (3 - IEl dimensions, where IEl is the 
number of edges in G. This class is a polyhedral pointed 
cone with its apex given by the following matrix, which is 
the one used in the experiments described below: 

2. 

3. 

iw(lli) if i = j ,  {A+& W b )  otherwisc. 
(7) b, = 0 if i # j and ut - uj, 

Having formulated the maximum weight clique pro- 
blem as a quadratic program over the standard simplex, 
we can use the replicator equations to approximately 
solve it. However, note that replicator equations are 
maximization procedures, while ours is a minimization 
problem. It is straightforward to see that the problem of 
minimizing the quadratic form X'BX on the simplex is 
equivalent to that of maximizing x'(yee' - B)x, where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy 
is an arbitrary constant.' 

Now, let TI and T2 be two attributed trees, G = (V, E , w )  

be the corresponding weighted TAG, and define 

W = yee' ~ B, (8) 

where B =  (b,) is any matrix in the class M(G) and 
y = maxb,. From the fundamental theorem of natural 

1. Note that the conversion of the minimization problem to a 
maximization problem is driven by il purely algorithmic (as apposed to 
formulation) issue. One could minimize zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX'AX on the simplex using 
alternative optimization techniques [29], [53]. However, since we are 
matching trees and not graphs, we expect the difference in performance to 
be marginal. 

selection (Theorem 3) ,  we know that the replicator 

dynamical systems (3) and (4) will find local maximizers 

of the function x'Wx (and, hence, minimizers of x'Bx) over 

the standard simplex and, by virtue of Theorem 5, these will 

correspond to the characteristic vectors of maximal weight 

cliques in the weighted TAG. As stated in Theorem 4, these 

will in turn induce maximal similarity subtree isomorph- 

isms between TI and Tz. As in the unweighted case, there is 

no theoretical guarantee that the solutions found will be the 

globally optimal ones, but the experiments reported in [ll] 

on the maximum weight clique problem suggest that, here 

too, the attraction basins of global maximizers are quite 

large. This observation is also confirmed by the experiments 

reported below, each of which typically took 5 to 10 seconds 

to run on a Sparc 10. 

6.3 Experimental Results 
We now provide examples of weighted shock tree match- 

ing, using the geometric attributes associated with shock 

tree nodes. The vector of attributes assigned to each node 

U E V of the attributed shock tree T = (V, E ,  a)  is given by 

4.1 = (.1,~1,rl,vl,81 ~ . . . ; ~ ~ , Y , ~ , T ~ , v ~ , ~ , , ~ ) .  Here, m is the 

number of shocks in the group, and xi,yi,ri,vi,8< are, 

respectively, the z coordinate, the y coordinate, the radius 

(or time of formation), the speed, and the direction of each 

shock i in the sequence, obtained as outputs of the shock 

detection process [60], [61]. In order to apply our frame- 

work, we must define a similarity measure between the 

attributes of two nodes U and v. 
The similarity measure we use is a linear combination of 

four terms, incorporating the differences in lengths, radii, 

velocities, and curvature of the two shock sequences, 

respectively. Each term is normalized to provide a unitless 

quantity so that these different geometric properties can be 

combined. Let U contain m shocks and v contain n shocks 

and, without loss of generality, assume that m 2 n. The 

Euclidean length of each sequence of shocks is given by: 

T i & - 1  
2 2 U 4  = J(.i - &+l) + (Yi - ya.1-1) , 

L ( 4  = c Jb, - Y+d2 + ( Y j  - Y1+d2 

i=l 

*-I 

j=1 

Let <(i) : i ---t r21 be the many-to-one mapping of each 

index i E { 1, .. . , m} to an index j t { 1, ..., n}. The similarity 

measure between the two attribute vectors used in our 

experiments is defined as: 
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{ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 ( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.(i) - T ( < ( i ) )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA)Z}k & zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmaz(.(i),.(<(i))) 

{ 1 ( w ( i )  -v(<(i))  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA)Z}$ & maz(v(i),w(<(i))) 

(9) 

where pi, pt, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApu, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApao are nonnegative constants summing to 1 
and A0 is the change in orientation at each shock. The 
measure provides a number between 0 and 1, which 
represents the overall similarity between the geometric 
attributes of the two nodes being compared. The measure is 
designed to be invariant under rotations and translations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof 
two shapes and to satisfy the requirements of the weight 
function discussed in Section 6.1. 

We repeated the earlier experiments, but now with 
weights W(U, w) = .(.(U), cy(.)) placed on each node (U, w) of 
a weighted TAG. The weights were defined by (9), with 
Pl,pt, pu ,p~ , j  set to 0.25, 0.4, 0.2, and 0.15, respectively. We 
verified that the overall results were not sensitive to the 
precise choice of these parameters or to slight variations in 
the similarity measure such as the use of a different norm. 
We ranked the results using a score given by the quantity 
W x f { ~ ~ = l ( m ( ~ z ) / M l  + m(wt)/Mz)}, where n is the size of 
the maximal weight clique found, W its weight, MI and Mz 
the total mass associated with the nodes of each tree, and 
m(u),m(u) the masses of nodes U and w, respectively. The 
score represents the weight of the maximal clique scaled by 
the average of the total (relative) mass of nodes in each tree 
that participates in the match. As before, the top eight 
matches are shown for each query shape, in Table 2. It is 
evident that, for almost all queries, performance improves 
with the incorporation of geometric attributes, with better 
overall discrimination between the shapes (compare with 
Table 1). Nonetheless, there is an inherent trade-off between 
geometry and topology, e.g., observe that the short fat 
screwdriver in row 15 scores better with the fatter hand 
shapes than with the thin, elongated screwdrivers. 

We note that the qualitative results, specifically, the 
partial ordering of matches in each row of Table 2, compare 
favorably with those obtained using an alternate approach 
described in [62]. The latter approach has been applied 
successfully to the same database of shapes used here and is 
a sequential (level by level) approach with backtracking. At 
each step, an eigenvalue labeling of the adjacency matrix of 
the subtrees rooted at the two nodes being matched is used. 
In other words, the cost of matching two nodes incorporates 
not only their geometries, but a measure of the similarity 
between their subtrees, which is global. Furthermore, the 
algorithm tolerates noise by allowing for jumps between 
levels. Hence, strictly speaking, it solves an approximation to 
the subtree isomorphism problem. For these reasons, a one- 
to-one comparison between the two algorithms is not 

possible; they solve different problems and the maximal 
clique formulation invokes much weaker constraints. In [4], 
we present an extension of the maximal clique formulation 
to the case of many-to-one correspondences, which is of 
particular interest in computer vision and pattern recogni- 
tion applications where the trees being matched are noisy, 
and vertices are deleted or added. 

7 CONCLUSIONS 
We have developed a formal approach for matching 
hierarchical structures by constructing an association graph 
whose maximal cliques are in one-to-one correspondence 
with maximal subtree isomorphisms. The framework is 
general and can be applied in a variety of computer vision 
and pattern recognition domains: We have demonstrated its 
potential for shape matching. The formulation allows us to 
cast the tree-matching problem as an indefinite quadratic 
program owing to the Motzkin-Straus theorem. The solu- 
tion is found by using a dynamical system, which makes it 
amenable to hardware implementation and offers the 
advantage of biological plausibility. In particular, these 
relaxation equations are related to putative neuronal 
implementations [38], [39]. We have also extended the 
framework to the problem of matching hierarchical struc- 
tures with attributes. The attributes result in weights being 
placed on the nodes of the association graph and a 
conversion of the maximum clique problem to a maximum 
weight clique problem. An extension of the proposed 
framework to problems involving many-to-one correspon- 
dences is presented in [4]. 

Characterizing the complexity of our approach appears 
to be difficult since it involves the simulation of a dynamical 
system. However, we have observed experimentally that 
the basins of attraction of the global maximizers are large, 
both in the unweighted and weighted cases, and that the 
system converges quickly when applied to shock-tree 
matching. Conversely, whereas polynomial time algorithms 
exist for the maximum common subtree problem [37], [54], 
[17], to our knowledge no such algorithm exists for the case 
of weighted tree matching. This provides further justifica- 
tion for our framework. 

APPENDIX 
PROOFOF  LEMMA^ 

Before presenting the proof of Lemma 1, we need some 
preliminary remarks and definitions. First, note that path- 
strings cannot be arbitrary strings of -1s and +Is. Since 
trees do not have cycles, in fact, once we go down one level 
along a path (i.e., we make a "+1" move), we cannot return 
to the parent. This is formally stated by saying that if 
str(u, w) = ~ 1 s ~ .  . , sn is the path-string between any two 
nodes U and w, then si = +1 implies sj = +1 for all j 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi .  

Now, we define the path-pair of any two nodes U and U in 
a tree as pair(u,w) = (n,p), where n is the number of 
negative components in str(u, w) and p is the number of 
positive components in str(u, w). It is clear from the previous 
observation that path-pairs and path-strings are equivalent 
concepts. In fact, we have: str(u, U) = str(w, z )  if and only if 
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TABLE 2 
A Tabulation of the Top Eight Attributed Toplogical Matches zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfor Each Query 
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atched (see text). 

pair(u, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw) = peir(w, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz ) .  Moreover, note that if a node w is on 
the path between any two nodes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU and w in a rooted tree, 

str(w,v). This implies that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALemma 1. Let ~ L ~ , W ~ , W ~ , Z I  t V, and u 2 , w 2 , w ~ , z 2  t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI4 be 

thenStr(u,4 canbeobtainedbyconcatenatingstr(u,w) and d i s t i n c t  n o d e s  o f  y o o t e d  = and 

peir(u,v) = pair(u, w) + pair(w,v),  

where "+" denotes the usual sum between vectors. In a 
sense, then, path-pairs allow us to do "arithmetic" on path- 
strings, a fact which will be technically useful in the sequel. 
(The full algebraic structure will not be needed here.) 

We are now in a position to prove Lemma 1. For 
convenience, we repeat its statement below. 

T2 = (&,&),and suppose that the following conditions hold: 

1. 
2. str(u1.q) = &r(u2,wz) 
3. str(wl,v1) = str(w2, w2) 

4. str(uI,z1) = str(u2, z2) 

5. str(v1,zl) = str(v2,zz) 

Then, st r (w, ,z l )  = str(w2,zz). 

tul is on the ulal-path, and w2 is on the uzu2-path 
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(b) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Fig. 7. An illustration of the cases arising in the proof of Lemma 1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Proof. Pirst, note that, from conditions 1-3, we also have zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

6 .  str(u1,vl) = str(uz,v2). 

We shall prove that pair(w1, zl) = pair(w2, z2), which is, 
of course, equivalent to the thesis of the lemma. The 
proof consists of enumerating all possible cases and 
exploiting the previous observation that, when zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw is on a 
uv-path, then pair(u,v) = pair(u, w)  + pair(w, U). Before 
doing so, however, we need an auxiliary notation. Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu 

be a node of a rooted tree T = (V, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE). The set of nodes 
belonging to the subtree rooted at u will be denoted by 
V(U). This can be formally defined as follows: 

V(u) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
U E V : str(u,v) =?1 + 1;. . + ?, for somen 2 0 . 1 
We shall enumerate all the possible ways in which U,,  

Note that u E V(u). 

vl, wl, and z1 can relate to one another in TI ,  but it is clear 
from conditions 1-6 that each such configuration induces 
a perfectly symmetric situation in TZ and vice versa. 
Therefore, from now on, we shall use the index zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi = 1 , 2  to 

{ 

simplify the discussion. Technically, this means that we 
are assuming something about one tree and, because of 
our hypotheses, the same situation arises in the other. 

The enumeration of all possible cases starts from the 
observation that, given two different subtrees of a tree, 
either one is a strict subset of the other or they are 
disjoint (otherwise, in fact, there will be cycles in the 
graph). Therefore, considering the subtrees rooted at 
nodes ai and vi ( i  = 1, 2), only the following cases can 
arise: 

1. V(Ui) c V(Ui) 
2. V(Ui) c V(v*) 
3. V(ui) n V(vi) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 
The first two are symmetric and, therefore, we shall 

only consider Case 1. In this case, since wi is on the uivi- 
path, We have V(vi) c V(wi), i = 1,2.  Clearly, only four 
subcases are possible (cf. Fig. 7a), that is: 

1.1  ziEv(Ui) 
1.2 zi E V(Wi) \ V(Vi )  

1.3 zi E V(ui) \ V(wi) 
1.4 zi V(ui) 

where i = 1 , 2  
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Let us consider Case 1.1. In this case, the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAvcs are on the Here, Cases zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3.3.1,3.3.2, and 3.3.4 are similar to those seen 

before and, hence, we omit the corresponding proofs. As 
to Case zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3.3.3, we note that UJ~ must necessarily be either 
on the path joining zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAui and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAzb or on that joining and z, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(or on both), otherwise the graph would have a cycle. So, 
the proof in this case is analogous to the previous ones, 

0 and this conc’udes the proof Of the lemma. 

w,z,-paths and, therefore: 

pair(wi,z,) = pair(tu1,vl) +pair( i i l ,z~) 

= pair(tuz,vz) +pair(va,zz) 
= pair(wz,z2). 

In Case 1.2, we have that the wis are on the uiz,-paths 

a n d ,  h e n c e ,  pair(u,, y )  = pair(%, wi) + pair(?u,, z$) ,  

i = 1 , Z .  Therefore, we have: 

pair(ui1,zi) = pair(u1,zI) -pair(ul,wl) 

= pair(uz. zz) - pair(u2,w~) 

= pair(uz, tu2) + pair(w2, Z Z )  - pair(u2, iuz) 

= pair(iu~,zz). 

Case 1.3 is similar to Case 1.2. In this case, we have that 

w, is on the z,v,-path and, therefore 

pair(w1,zl) = pair(v1,zl) - pair(w1,wl) 

= pair(vz, Z Z )  - pair(v2, wz) 
= pair(wz,zz). 

Finally, Case 1.4 is similar to Case 1.1, since zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAuz is on the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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