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Abstract

In this paper we address the problem of matching two

images with two different resolutions: a high-resolution im-

age and a low-resolution one. On the premise that changes

in resolution act as a smoothing equivalent to changes in

scale, a scale-space representation of the high-resolution

image is produced. Hence the one-to-one classical image

matching paradigm becomes one-to-many because the low-

resolution image is compared with all the scale-space repre-

sentations of the high-resolution one. Key to the success of

such a process is the proper representation of the features to

be matched in scale-space. We show how to extract interest

points at variable scales and we devise a method allowing

the comparison of two images at two different resolutions.

The method comprises the use of photometric- and rotation-

invariant descriptors, a geometric model mapping the high-

resolution image onto a low-resolution image region, and

an image matching strategy based on the robust estimation

of this geometric model. Extensive experiments show that

our matching method can be used for scale changes up to a

factor 6.

1 Introduction

The problem of matching two images has been an ac-

tive topic of research in computer vision for the last two

decades. The vast majority of existing methods consider

two views of the same scene where the viewpoints differ by

small offsets in position, orientation and viewing parame-

ters such as focal length. Under such conditions, the im-

ages associated with the two views have comparative reso-✁
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Figure 1. An example of matching a low­

resolution image with a high­resolution one.

lutions and hence they encapsulate scene features at approx-

imatively the same scale. In this paper we address a some-

how different problem that has only little been addressed in

the past. We consider for matching two images with very

different resolutions.

More precisely, if we denote by
✂

the approximate dis-

tance from an observed scene object to a viewpoint and by✄
the focal length associated with the viewing parameters,

the image resolution may be defined as ☎✝✆ ✄✟✞ ✂
or more

generally as a function of ☎ . Therefore we are interested in

developing a matching technique which takes as input a low

resolution image, image #1, and a high resolution image,

image #2, such that their associated resolutions ☎✡✠ and ☎☞☛
satisfy the constraint ☎ ✠✍✌✎✌ ☎ ☛ . In practice it will be shown

that, using the approach advocated below, it is possible to

match two images such that ☎ ☛ ✞ ☎ ✠ ✆✑✏ .
As an example we consider the image pair in Figure 1.

Both images were taken with a camera placed at 11 kilo-

meters (6.9 miles) away from the top of the mountain. For

the first image (left) we used a focal length equal to 12mm

while for the second one (right) we used a focal length

equal to 72mm. Notice that the high-resolution image cor-

responds to a small region of the low-resolution one and it



is quite difficult to find the exact position and size of this

region. Clearly, a scene object and/or texture may appear at

different sizes and positions in the two images.

Therefore, the search space associated with the feature-

to-feature matching of two such images is larger and more

complex than the one associated with the classical stereo

matching paradigm. The classical approach to image

matching extracts interesting point-features from each im-

age, matches them based on cross-correlation, computes the

epipolar geometry through the robust estimation of the fun-

damental matrix, and establishes many other matches once

this matrix is known. For a number of reasons, this method

cannot be applied anymore:

1. Point-feature extraction and matching are resolution

dependent processes.

2. The high-resolution image corresponds to a small re-

gion of the low-resolution one and hence the latter con-

tains many features which do not have a match in the

former.

3. It may be difficult to estimate the epipolar geometry

because there is not enough depth associated with the

high resolution image.

The solution suggested in this paper consists of consider-

ing a scale-space representation of the high-resolution im-

age and of matching the low-resolution image against the

scale-space description of the high-resolution one. A scale-

space representation may be obtained by smoothing an im-

age with Gaussian kernels of increasing standard deviations.

Therefore, the high-resolution image will be described by a

discrete set of images at various scales. On the premise that

decreasing the resolution can be modeled as a smoothing

equivalent to a scale change, the one-to-one image match-

ing problem at hand becomes a one-to-many image match-

ing problem.

In this paper we describe such a matching method. Key

to its success are the following features:✒ The scale-space representation of interest points to-

gether with their associated descriptors.✒ A geometric model describing the mapping from the

high-resolution image to the low-resolution one.✒
An image-matching strategy which combines point-to-

point assignments with a robust estimation of the geo-

metric mapping.

Several authors addressed the problem of matching two

images gathered from two very different points of view

[3, 15, 19] but they did not consider a change in resolution.

The use of scale-space in conjunction with stereo match-

ing has been restricted to hierarchical matching: correspon-

dences obtained at low resolution constrain the search space

at higher resolutions [4, 16, 10]. Scale-space properties are

thoroughly studied in [11] and the same author attempted

to characterize the best scale at which an image feature

should be represented [12]. A similar idea is presented

in [13] to detect stable points in scale space. Our work is

closely related with [5] which attempts to match two im-

ages of the same object gathered with two different zoom

settings. Point-to-point correspondences are characterized

in scale space by correlation traces. The method is able to

recover the scale factor for which two image points are the

most similar but it cannot deal with camera rotations.

Image descriptors that are invariant with respect to lo-

cal affine greyvalue changes, image rotations, and image

translations were studied theoretical in [9] and an efficient

implementation was proposed in [17]. These descriptors

are based on convolutions with Gaussian kernels and their

derivatives. They are therefore consistent with scale-space

representations. They are best applied to interest points

and a recent study showed that the Harris corner detector

is the most reliable one [18]. However, they are not scale-

invariant and, in spite of good theoretical models for such

invariants [11, 8], it is more judicious from a practical point

of view to compute local descriptors at various scales in a

discrete scale-space [17].

Paper organization. The remainder of this paper is orga-

nized as follows. Section 2 briefly outlines the geometric

model associated with the image pair. Section 3 suggests

a framework for adapting the detection of interest points to

scale changes. Section 4 describes the high-resolution to

low-resolution matching and section 5 presents results.

2 Geometric modeling

One of the key observations enabling the matching of

two images at two different resolutions is that the high-

resolution image corresponds to a small region of the low-

resolution one. Hence, one reasonable assumption is to con-

sider that the mapping between the high resolution image

and the corresponding low-resolution region is a plane pro-

jective transformation, i.e., the scene corresponding to this

region is planar. Such a homography may well be repre-

sented by a 3 ✓ 3 homogeneous full rank matrix H. Let ✔
be a point in the first image (low resolution) and ✕ be a

point in the second image (high resolution). One can char-

acterize a region in the low-resolution image such that the



points within this region verify:✔✗✖✙✘✛✚ H ✕ (1)

Similarly, points outside this region, say ✔✢✜✤✣☞✥ do not ver-

ify this equation. In the general case it is quite tedious to

find a parameterization of H. Moreover, image descriptors

which are invariant to such a general plane-to-plane projec-

tive transformation are difficult to compute and therefore it

is difficult to properly select potential candidate points sat-

isfying eq. (1).

We can further simplify the geometric model and con-

sider a restricted class of homographies, namely a rotation

about the optical axis, a translation, and a scale factor:✔✑✖✦✘✛✆ ✧★✪✩✬✫✮✭✰✯✲✱ ✳✬✩✴✯✶✵✦✷✸✱ ✹✩✬✯✤✵✺✷✸✱ ✩✬✫✮✭✻✯✼✱ ✽✾ ✾ ✿ ❀❁ ✕ (2)

Notice that the projective equality in eq. (1) is replaced by

an equality and two point-to-point correspondences are suf-

ficient to linearly estimate such a similarity transformation.

In practice it will be useful to replace the 3-vectors ✕ and✔ used above by 2-vectors ❂ and ❂❄❃ such that:✕✗✆❆❅❇❉❈❊ ✿ ❋● ✆■❍ ❂ ✿✗❏ and ✔❑✆▲❅❇▼❈ ❃❊ ❃✿ ❋● ✆◆❍ ❂❖❃✿P❏
With this notation, eq. (2) becomes ❂❄❃◗✆ ✩ R ❂❙❘❯❚ where R

is the 2 ✓ 2 rotation matrix and ❚ is the translation associated

with the image transformation.

Ideally, one would like to characterize image points

by descriptors invariant to image rotation, translation and

scale. Unfortunately, as already outlined, scale-invariant

image descriptors are hard to compute in practice. There-

fore, the matching strategy will build a discrete scale space

on top of the high-resolution image thus by-passing the

scale-invariance problem.

The image matching problem at hand becomes the prob-

lem of (i) extracting sets of points from the two images,❱ ❂❲✠❨❳❬❩❭❩❬❩✮❳✶❂❄❪❴❫ and
❱ ❂❄❃✠ ❳❭❩❬❩❭❩❬❳✶❂❵❃❛❜❫ , (ii) properly characteriz-

ing these points such that point-to-point correspondences

are allowed, and (iii) determining the largest set of such cor-

respondences compatible with a homography between the

high-resolution image and a low-resolution region.

3 Scale-space interest point detection

In order to match two images one has to define a measure

of similarity. One possible definition is correlation. In our

case, this can be written as:❝❞❢❡✰❣✢❤ ✐ ❃ ❱ ✩ R
❱ ❂ ✳ ❞ ❫✶❫ ✳ ✐ ❱ ❂ ✳ ❞ ❫❦❥ ☛

where ❧ is a window around ❂ . Therefore, one must find a

scale factor
✩

and a rotation matrix R for which the expres-

sion above is minimized. The search space associated with

such a technique is very large and the associated non-linear

minimization procedure has problems.

Alternatively, one may use interest points which are

detected by a rotation-invariant operator and characterize

these points by rotation-invariant descriptors.

Such an interest point detector was proposed in [6].

More precisely, consider an image point ❂ and the asso-

ciated image greyvalue ✐ ❱ ❂❲❫ . Interest points are detected

by:

1. Compute the image derivatives in the ❈ and ❊ direc-

tions, ✐ ✣ , and ✐❭♠ . These computations are carried out

by convolution with the differential of a Gaussian ker-

nel of standard deviation ♥ .

2. Form the auto-correlation matrix. This matrix

C
❱ ❂♦❳♣♥q❳✡r♥s❫ averages derivatives in a window around a

point ❂ . A Gaussian t ❱ r♥s❫ is used for weighting :

C
❱ ❂♦❳✶♥q❳✻r♥s❫❖✆✉t ❱ r♥s❫✼✈①✇ ✐ ☛✣ ❱ ❂♦❳♣♥②❫ ✐ ✣ ✐❬♠ ❱ ❂♦❳✶♥②❫✐ ✣ ✐ ♠ ❱ ❂♦❳✶♥②❫ ✐ ☛♠ ❱ ❂♦❳♣♥②❫④③

(3)

3. ❂ is an interest point if the matrix C has two significant

eigenvalues, that is if the determinant and trace of this

matrix verify:⑤✲⑥❬⑦ ❱
C ❫ ✳❯⑧ trace

☛ ❱
C ❫❢⑨❶⑩ (4)

where ⑩ is a fixed threshold and
⑧

a parameter.

Notice that the interest point detector defined above is

rotation-invariant – this is due to the symmetry of matrix

C. However, IT IS NOT invariant to a change in the im-

age size
✩

or image resolution. Without loss of generality

we can therefore omit the image-plane rotation at interest

points detected by the operator described above. Under the

assumption that the greyvalues are properly normalized, the

similarity condition that must be satisfied is ✐ ❃ ❱ ❂❖❃✺❫♦✆ ✐ ❱ ❂❲❫
where, as before, ✐ is the high-resolution image and ✐ ❃ is

the low resolution one. Since the rotation is omitted we

have ❂❖❃s✆ ✩ ❂❷❘❶❚ . Taking the derivatives of the above ex-

pression with respect to the image coordinates ❈ and ❊ , we

obtain
✩ ✐ ❃✣ ✆ ✐ ✣ and

✩ ✐ ❃♠ ✆ ✐ ♠ .
Therefore, the relationship between the interest point de-

tector applied to the high-resolution image and the interest

point detector applied to the low-resolution image is:

C ❃ ❱ ❂ ❃ ❳ ✩ ♥q❳ ✩ r♥②❫❄✆ ✿✩ ☛ C
❱ ❂♦❳✶♥q❳✻r♥s❫



We consider now the scale-space associated with the

high resolution image. The scale-space is obtained by con-

volving the initial image with a Gaussian kernel who’s stan-

dard deviation is increasing monotonically, say ❸☞♥ with❸❹⑨ ✿
. At some scale ❸ in this space the high resolution

image ✐ is given by:✐ ❱ ❂♦❳♣❸☞♥②❫❖✆ ✐ ❱ ❂❲❫❺✈❻t ❱ ❂♦❳❼❸❬♥②❫
At this scale, the image’s first order derivatives write:✐ ✣ ❱ ❂♦❳♣❸☞♥②❫❄✆ ✐ ❱ ❂❲❫✼✈❻t ✣ ❱ ❂♦❳❼❸❬♥②❫✐ ♠ ❱ ❂♦❳♣❸☞♥②❫❄✆ ✐ ❱ ❂❲❫✼✈❻t ♠ ❱ ❂♦❳❼❸❬♥②❫
Therefore, one can detect interest points at any scale ❸ by

simply replacing ♥ with ❸☞♥ in eqs. (3) and (4). If the task

consists of matching the high-resolution image ✐ with the

low-resolution one ✐ ❃ , it is crucial to select the scale of ✐ at

which this matching has to be performed. The scale ❸ must

“absorb” the size ratio
✩

, therefore one may write
✩ ✆ ✠❽

.

The interest point detector at scale ❸ is defined by:

C
❱ ❂♦❳♣❸☞♥q❳❼❸✼r♥❾❫❖✆✑❸ ☛ t ❱ ❸✼r♥s❫❺✈ ✇ ✐ ☛✣ ❱ ❂♦❳♣❸☞♥②❫ ✐ ✣ ✐ ♠ ❱ ❂♦❳❼❸☞♥②❫✐ ✣ ✐ ♠ ❱ ❂♦❳♣❸☞♥②❫ ✐ ☛♠ ❱ ❂♦❳♣❸☞♥②❫ ③

(5)

In order to illustrate the results obtained with this scale-

space interest point detector, we applied it to the high-

resolution image of Figure 1 (right) at 4 scales, i.e. 1,3,5

and 8. Figure 2 shows these results where ♥❿✆ ✿
and r♥❜✆✉➀ .

4 Robust image matching

The scale-space extraction and representation of inter-

est points that are rotation-invariant will enable us to devise

the one-to-many image matching technique described be-

low. The main idea is to compare the low-resolution image

at one scale with the high-resolution image at many scales.

Hence, the scale at which this matching process provides

the best results, provides the correct one-to-one assignments

between interest points. Because the matching is supported

by the robust estimation of a homography between the two

images, the estimated parameters will provide – among oth-

ers – the resolution ratio between the two images.

Without loss of generality, we assume that the high-

resolution image, image #2, is represented at 8 different

scales ♥ , 2 ♥ , . . . , 8 ♥ with ♥➁✆ ✿
. At each scale ❸ ✖ , inter-

est points are extracted using eq. (5). Furthermore, a num-

ber of differential invariants are extracted at each scale as

well. These descriptors are photometric-, image rotation-

, and image translation-invariant. Likewise, interest points

and their descriptors are computed and associated with the

low-resolution image, image #1, at only one scale, ♥ .

s=1

s=3

s=5

s=8

Figure 2. Interest points detected at 4 scales.



We then consider one-by-one the scale-space represen-

tations of image #2 and attempt to find which one of these

images best matches a region in image #1. Since there is a

strong relationship between scale and resolution, one may

assume that the scale of the best match corresponds to the

resolution ratio between images #1 and #2.

At each scale ❸ ✖ one-to-one correspondences are deter-

mined by direct comparison of the descriptors associated

with the interest points. In practice there are 7 such descrip-

tors limited to third-order derivatives of the intensity sig-

nal. These descriptors are invariant to image rotation as well

as local affine changes of illumination. Two such 7-vector

descriptors are compared using the Mahalanobis distance.

This distance requires the covariance matrix ➂ associated

with each descriptor. This 7 ✓ 7 matrix encapsulates signal

noise, variations in photometry, inaccuracy of interest point

location, and so forth. ➂ is estimated statistically over a

large set of image samples. In order to solve as many am-

biguities as possible, each one-to-one assignment thus es-

tablished is checked for local coherence. Namely, for each

one of the two points in an assignment we consider their

neighbors and check whether the two groups of points in

the two neighborhoods are mutually compatible. This local

compatibility check based on local geometric distribution

has a cost [7] but it is worth the effort because it allows to

eliminate spurious matches.

The point matching process just described is applied at

8 scales. Next, we have to evaluate the quality of image-to-

image matchings based on these point matches in order to

select the scale associated with the best match. We therefore

estimate a mapping between the two images as defined by

eq. (1) and use robust statistics [2, 14].

Once an approximate scale has been selected using the

strategy just described, a robust estimator takes as input the

potential one-to-one point assignments, computes the best

homography between the two images, and splits the point

assignments into two sets: (1) inliers, i.e. points lying in the

small region corresponding to the homography mapping of

the high resolution image onto the low resolution one and

(2) outliers, i.e. points that are either outside this region or

mismatched points inside the region.

Commonly used robust estimators include M-estimators,

least-median-squares (LMedS), and RANdom SAmple

Consensus (RANSAC). In our case, the number of outliers

may be quite large. This occurs in particular when the two

images have very different resolutions and hence only 20%

or less of the low-resolution image corresponds to the high

resolution one. Therefore, we ruled out M-estimators be-

cause they tolerate only a few outliers. Among the two re-

maining techniques, we preferred RANSAC because it al-

lows the user to define in advance the number of potential

outliers through the selection of a threshold. Hence, this
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Figure 3. Point­to­point assignments ob­

tained at four scales.

threshold can be chosen as a function of the scale factor.

Details concerning threshold selection can be found in [1].

5 Experiments

The matching strategy just described was applied and

tested over a large number of image pairs where the resolu-

tion factor between the two images varied from 2 to 6. Here

we present three examples. The final result of applying the

matching to the pair of Figure 1 is shown in Figure 4.

Let us explain in detail how this type of result is obtained

for another example, e.g. Table 1 and Figures 3 and 5. Inter-

est points are first extracted from the low-resolution image

at one scale ( ❸➃✆ ✿ ) and from the high-resolution image at

8 different scales (1 to 8). Therefore, eight image match-

ings are performed. The result of point-to-point matching

is shown on Figure 3 at four different scales: 1, 3, 5, and 8.

Obviously scale 3 and scale 5 have the best matches associ-

ated with them and scale 5 is a better candidate. Therefore,
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Figure 4. The high­resolution image is mapped onto the low­resolution one using the homography

consistent with 13 point­to­point assignments.

Resolution factor No. of points No. of matches

Predicted Computed Initial guess Inliers Outliers (%)

1 1.3 329 8 - -

2 0.7 126 64 4 94 %

3 1.8 64 41 4 90 %

4 5 31 26 10 62 %

5 5 25 23 16 30 %

6 5 18 17 12 29 %

7 1.1 14 14 - -

8 0.4 5 5 - -

Table 1. This table shows, at each scale, the

computed resolution factor, the number of

points in the high­resolution image, the num­

ber of potential matches, the final number of

matches, and the percentage of outliers. No­

tice that scales 5 and 6 yield very similar re­

sults.

it would have been sufficient to run the robust matching al-

gorithm at scale 5 only. In practice we run the latter algo-

rithm at all the scales and displayed the results in Table 1.

Thus we can verify that the best match is, indeed, obtained

at ➄❴➅✗➆ . Out of 25 points detected at this scale, 23 of them

have a potential assignment in the low-resolution image and

16 of them are finally selected by the robust matching tech-

nique. The latter rejected 30% of the matches. Finally the

homography thus obtained was applied to the high resolu-

tion image and this image is reproduced on top of the low-

resolution one (cf. Figure 5). A third example is displayed

on Figure 6.

6 Conclusions

In this paper we presented a new method for matching

two images with two different resolutions. We showed that

it is enough to represent the high-resolution image in scale-

space and we described a one-to-many robust image match-

ing strategy. Key to the success of this method is the scale-

space representation of interest points.

In spite of a huge number of publications in the image-

matching domain, it seems to us that none of the existing

methods is able to deal with large changes in resolution.

Here we have been able to match images with a resolution

factor of 6. In practice the images shown in this paper were

gathered by varying the focal length using the zoom-lens

of a digital camcorder. The advent of digital photography

opens new fields of applications and we believe that our

matching technique will allow the simultaneous exploita-

tion of multiple viewpoints and variable resolution.
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Figure 6. An other example with ➈✍➉✗➊


