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DONALD K. LEWIS. Matching In Epidemiologic Studies: Validity and
Efficiency Considerations. (Under the direction of LAWRENCE L. KUPPER.)

ABSTRACT

Matching is a popular method for choosing referent or control sub-~
jects in epidemiologic studies. Although matching for many years was
considered primarily as a method to control confounding, recent work
has suggested that the main advantage of matching over random sampling
obtains from frequent increases in efficiency which can result from
analyses of matched data. There nevertheless remains a controversy
regarding the mertis of matching and the appropriate circumstances in
which matching should be implemented for subject selection.

The primary intent of this work is to extend the methodology of
Kupper, et al. (1980) to the case of several potential confounding
variables. In this context conditions for no confounding are derived,
and issue relating to the presence and control of confounding are dis-
cussed.

Evaluation of the relative efficiency of (frequency-) matching and
random sampling is conducted by constructing ratios of "expected"
Mantel-Haenszel X2 statistics involving parameters from probabilistic
population models. For local alternatives these ratios are shown to be
asymptotically equivalent to the Pitman (relative) efficiency (Gibbons,
1971). Attention is restricted to dichotomous disease, exposure, and
extraneous variables. Particular issues which are addressed include:
(a) the relationship between the relative efficiency and the nature of

the underlying confounding; (b) whether there is a loss in efficiency



from matching on non-confounders; (c) the effect of loss of sample
size in the process of matéhing on the relative efficiency; (d) the
dynamics of matching on two potential confounders which themselves

may be correlated; and (c) the relative merits of pair- and frequency-

matching under the circumstances of categorical matching variables.



CHAPTER 1

INTRODUCTION AND REVIEW OF THE LITERATURE

1.1 Introduction

The past thirty years has been a period of increasing interest in
and utilization of observational studies, both in the health and
social sciences. In the field of epidemiology this method of inquiry

has indeed emerged as the modus operandi by which the relationship

between a particular health effect and its hypothesized determinants
is examined.

The observational study is usually characterized by the violation
of one of the necessary conditions for a controlled experiment outlined
by Wold (1956), in particular, the presence of uncontrolled variation
due to the failure to randomize. Cochran (1965) extended this distinc-
tion by adding that the comparison groups in the observational study
are subject to different "treatments' which are preassigned in a non-
random manner. In the absence of randomization the greatest concern to
the researcher employing the observational study method is the extri-
cation of the effects of the disease determinant from those of disturb-
ing extraneous variables, known as ''confounders.' As McKinlay (1975a)
has recognized, the outstanding technique among those available to

remove this type of bias has been matching.



It should be of no surprise that matching has gained widespread ‘
use in observational studies as the principal tool for bias reduction.
Matching originated as a method to reduce variation in experimental
studies, where homogeneity of comparison groups were ensured by random
subject allocation.< As observational studies and controlled experi-
ments are similar with respect to principles of investigation, the use
of matching to ensure the comparability between subgroups in observa-
tional studies spilled over naturally from the experimental setting.
While the utility of matching as a method of bias control is widely
recognized, more recently it has been considered relative to other
sampling methods from the point of view of efficiency, as well.
Although much attention has been directed to the study of the issues
surrounding this choice of subject selection in observational studies, .
disagreement and misunderstaﬁding still prevail about its merits.

The purpose of this portion of the chapter is a review of the
development of matching in observational studies, as it pertains to
the control of tias and efficiency. The focus is restricted to the
case of a single matching variable, a disease variable, and an exposure
variable, all of which are dichotomous. The case of continuous match-
ing, disease or exposure variables will not be considered in this work.
For a recent treatment of continuous-variable matching see Raynor and
Kupper (1977). Before proceeding to a review of the pertinent litera-

ture, terminology and notation are developed in the following sectionms.



1.2 Terminologz
1.2.1 Matching

Matching is a method of selecting a referent (comparison) group
(unexposed subjects in a follow-up study, non-diseased subjects in a
case-control study) such that the referent groups 1s "similar'" to the
index group (exposed group in the follow-up study, diseased group in
the case-control study) with respect to the matching variables. The
nature of the similarity depends upon the type of matching utilized,
pair-matching or frequency-matching. Billewicz (1965) describes the
proper distinction between the two. In pair-matched samples each
index subject is paired with a referent subject who exhibits identical
values of the matching variables. Each pair can be regarded as a dis-
tinct observational unit deéfining a categoryor stratum of the joint
distribution of the matching or confounding variables.

Frequency-matching involves manipulation of the selection of
referent subjects in such a way that the distribution of the confound-
ing variables in that group is identical to the distribution in the
index group. Pairing may or may not be employed to accomplish this
but if so, the identify of the pairs is not preserved. Both methods
accomplish the task of equating the distributions of the confounding
variables in the referent and index samples; pair-matching simply con-
tinues by forming pairs of individuals subjects within the strata
defined by the confounding or matching variables. In the case of
categorical matching variables McKinlay (1977) has observed the arbi-
trariness of this scheme. Issues raised by this phenomenon will be

considered in Chapter 2.



1.2.2 Confounding

Confounding is a particular type of bias which resﬁlts from the
failure to isolate the effect of extraneous variables from the effect
. of the exposure variable. Miettinen (1975) describes confounding as
the ”mixfure of the effect at issue and the effect - possibly spurious -
of another factor associated with the one being studied." A confounder
is a variable which exhibits such properties if not properly controlled
for in the study design or the statistical analysis. In brief, a con-
founder must be related to both disease and exposure. Miettinen (1974,
1975) lists more specific properties a variable must possess before it
can be labelled a confounding variable. A particular objective of this
paper is the specification of the conditions for no confounding when
two or more potential confounders are considered simultaneously. As
matching has been regarded as a primary methéd for control of confound-
ing, the effectiveness of matching in this regard will be examined vis-

a-vis other effective methods of control, in particular, stratification.

1.2.3 Stratification

An alternative to matching is independent random sampling of index
and referent series followed by adjustment for the effects of extraneous
variables in the analysis. In their classic paper on statistical analy-
sis of retrospective study data, Mantel and Haenszel (1959) outlined the
approach, which has been subsequently.referred toas stratification.

While matching is essentially a design method, usually a constraint

on the selection of the referent series, stratification is strictly an



analytical method and is data-dependent. It involves the subclassifi-
cation of subjects into strata based upon levels of the extraneous vari-
ables, performing the analysis within each stratum, and providing an
overall summary measure of effect and/or test of significance. How
the summarization is accomplished presents a dilemma. Summary measures
involve weighted combinations of the stratum-specific measures, and the
choice of weights is often arbitrary although rarely inconsequential.
Miettinen (1972) considered various choices of weights for standard-
jzation of absolute and relative measures of effect, which is a form
of stratification where the weights represent functions of the distri-
bution (among the index group, or referent group, or both) of the con-
founding variables. Another choice for the weights are the inverse-
variances, which are optimal for minimizing the variance of the summary
statistic.

A disadvantage of standardization (stratification) is that the
data may ''thin out' as the number of subclassifications grows larger.
A result of over-stratification may be essentially empty strata or
non-overlapping strata, where there is a gross imbalance between the
number of referent and index subjects. In practice one is limited by
this phenomenon to relatively small numbers of variables on which to
stratify. However, matching is limited in the same manner since the
number of matched pairs (sample sizes) can dwindle rapidly as the num-

ber of matching variables increases,



1.3 Notation and Probabilistic Models

The underlying probabilistic framework is developed in this sec-
tion. The most convenient manner in which to introduce the parameters
of the models to be considered is to deal with the follow-up study and
case-control study separately. For both models D will represent the
disease outcome (D,D), E the'exnosuré status (E,E), and F the
extraneous variable (FI’FO)’ which will represent a potential con-
founder. For the purposes of developing the models only one confounder
will be involved, although the definitions can be easily extended to
two or more.

The effect measures of interest in these discussions are the two
most common risk indicators: risk ratio or relative risk (RR) and
risk difference (RD). In situations where neither of these para-
meters can be estimated; the odds ratio (OR), a surrogate measure
for RR, will be considered. For a discussion and comparison of the
many effect measures proposed for the 2x 2 table, see a recent
article by Hamilton (1979).

The general layout for either of these two study designs can be
described by a 23 contingency table. Although the proper distribu-
tional characterizations for such models are described by independent
multinomials, the parameters will be defined somewhat differently than

the usual multinomial parameters.

1.3.1 Foilow-qp Study

In this setting subjects are selected from each of two exposure

groups, E and E. The following parameters will be used to describe



this population. For i = 0,1:

o, = P(D/EF;) , B, = p(D/EFi)
6, = P(F;/E) , ¢, = P(Fi/Ej (1.3.1)
Y = P(E)

A typical 2x2 table from the ith stratum representing the con-
ditional cell frequencies is given below, assuming equal sample sizes

of referent and index subjects.

TABLE 1.1

Expected Stratum-Specific Cell Frequencies:
Follow-up Study

F. E E
1
D Naiei NBicbi
D N(1.-ai)ei N(l—Bi)¢i
NBi N¢i

All of the appropriate measures of association between D and E can
be defined in terms of these parameters. For the ith stratum as

described above, the risk ratio (RRi) and risk difference (RDi) are

defined by
P(D/EFi) a;

RD.
i

P(D/EF;) - P(D/Eri) = o.-B, .



The corresponding crude measures of effect, which are functions of the

cell frequencies of the 2x2 table collapsing over the strata, are

P(D/E) _ ®191*%80
P(D/E)  B;9;*Byog

cRR =

cRD

P(D/E) - P(D/E) = alel + aoeo - Bl¢1 - BO¢0 .

Two standardized measures for the risk ratio introduced by
Miettinen (1972b) are denoted the '"internally si;ndardized" risk ratio
(sRR) and the "externally standardized'" risk ratio (s'RR). Both of
these measures can be written in terms of ratios of standardized risks,

the standards being the distribution of the exposed for sRR and the

distribution of the unexposed for s'RR. Hence,

g(Nei)ai a,8.+a .0

SRR = _ 1’1707
B.0. +B 0
gcnei)si 1'1° 700
Z(N¢.)a.
SR S 04 S "

L(No.)8, B9y *Byeg
i

Each of these measures can be considered ratios of ''observed to expected"
cell frequencies or conditional risks (sRR) or '"expected to observed"
cell frequencies or conditional risks (s'RR), as well as weighted
averages of the stratum-specific risk ratios.

In a similar fashion the two corresponding standardized risk dif-

ferences (sRD and s'RD) are defined by:

sRD

%181 % %08 - 1% - B8

= el(al-el) + eo(ao'Bo)



g

= ay0) +agby - Bioy - Byt

= ¢l(a1-81) = ¢0(a0—60)

1.3.2 Case-Control Study

This design is characterized by sampling from diseased and non-

diseased populations, D and D. The following parameters, analogous

to those of the follow-up study, are defined by

e; = P(E/DF)) , 6. = P(E/ﬁri)
v, =P(F/MD) , w, = P(Fi/ﬁj
§ = P(D)

"Expected" cell frequencies from the ith stratum based upon sampling

from these populations are given below

TABLE 1.2

Expected Stratum-Specific Cell Frequences:
Case-Control Study

F. E E

D | Ne.v. N(l-g.)v. Nv
i i’ i

=1

NS .w. N{1-8.)w. Nw
i’7i

Since RR and RD are not directly estimable from case-control study

data, the (exposure-) odds ratio, OR, 1is used to measure the disease-
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exposure association. For the ith stratum the odds ratio is defined by

P(E/DFi) -p(EyﬁFi) ei(l-si)

OR. =
i

P(E/DF,) « P(E/DF,) ) 5,(1-¢,) '

The crude odds ratio, a function of the data from the collapsed table
is
P(E/D) « P(E/D)

cOR = = =
P(E/D) - P(E/L)

(slv1+eOV0)((1-61)w1+(1-60)w0)
(61w1+60w0)((l-el)v1+(1-eo)v0)

Miettinen (1972b) also introduced two possible methods of standardizing
the odds ratio, the procedures for which closely follow the methods for
standardizing the risk ratio. Both measures can be interpreted as
weighted averages of the stratum-specific OR's or as ratios of
observed and expeéted cell frequencies. Let the table below represent

data from a case-control study.

TABLE 1.3

Observed Stratum-Specific Cell Frequencies

F. E E
i
D a b. M. .
i i 1i
Djcy |dy | My
N11 N2i Nl

In particular, Miettinen defined as the "internally standardized' odds

ratio
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Ta.

1
1

SOR = =
Ibjci/d;
1

This measure is the ratio of the observed number of exposed among the
diseased group to the expected number of the same under the conditions
of '"no association" (OR1 = OR0 = 1). An alternative measure was also
proposed by Miettinen, the '"externally standardized" OR, defined by

Zaid./c.
s'OR = i——;;i-—i
155
i

which can be considered as the ratio of the expected number of non-
exposed among the diseased group to the observed number in that cate-
gory under the same assumption of ''mo association.'

To write these parameters in terms of the notation from Section

1.2 note that

) €1V
sOR 1

(l—ei)viﬁi
1-68.
i

(l—Gi)eivi
. S,
i i

g(l-ei)vi

s'OR

Certainly, other methods of standardization of the odds ratio can
be derived; however, only the above methods will be considered in this
paper. The choice of standard is arbitrary although not without conse-
quence unless there is reasonable uniformity of the stratum-specific
odds ratio over the strata. One can argue that when there is substan-

tial non-uniformity of effect, any standardization or stratification
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procedure has limited appeal. Therefore, the choice of standard is .
not of overriding importance and will not be discussed further in this

work.

1.4 Review of the Literature
\

1.4.1 Earlz Work

The first major attempt to acknowledge the problem of confounding
in observational studies was made by Cochran (1953) and Greenberg (1953)
in companion papers published in the Journal of the American Public
Health Association. In the context of continuous response variables,
Cochran considered the comparison between pair-matched samples and ran-
dom samples with covariance adjustment. The comparison focused on
efficiency considerations, or the expected variances of the estimators ‘
of mean difference appropriate to the two designs. Although no analy-
tical treatment was attempted, the issue that matching might be as
effective as random sampling in controlling the effects of disturbing vari-
ables was raised. Cochran did not make any formal conclusions regard-
ing the issue. Greenberg contrasted analysis of covariance to the
method of '"balancing" (a method of subject selection similar to frequency- *
matching) in terms of loss of sensitivity of the F-test. He opted for
covariance analysis over balancing in mosf situations. While not
directly applicable to the case of dichotomous data, these papers set
the stage for similar work in the categorical data framework.
The smoking-lung cancer controversy stimulated two relevant papers ?
from the same journal of the National Cancer Institute, the more well- ‘

known by Mantel and Haenszel (1959) concerning analysis of data from
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retrospective studies. They recognized the importance of avoiding
spurious associations in epidemiologic studies and discussed pair-
matching and stratification as appropriate procedures for controlling
confounding factors. No comparison of the two methods was made although
some of the relative advantages and disadvantages of each were outlined.
Without any further discussion the authors noted that confounding fac-
tors are related to disease, the antecedent factor or 'cause,'" in the
retrospective study.

The important contribution of the paper was the overall stratified
test of association, the well-known Mantel-Haenszel X2 test. Briefly,
the test assumes a consistent association over the strata, defined by
the confounding variables, and that the marginals of each stratum (2x2
table) are fixed; hence, the hypergeometric model holds. The test sta-

tistic can be expressed as

2
[g(ai—E(ai){]
T =

, (1.4.1)
z Var(ai)
i
where a; = the number of D's who exhibit E in the ith statum
and,
E(ai) = hypergeometric mean
Var(ai) = hypergeometric variance

Under the hypothesis of no (consistent, uni-directional) association,

T follows asymptotically the X2 distribution with 1 degree of freedom.
Mantel and Haenszel gave thought to the logical consequence of an

overall significance test — a summary measure of association (anadjusted

overall odds ratio). The problem of weighting was approached, and two
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criteria by which weights can be chosen were suggested. The first
method would weight on the basis of the precision of the estimate for
each stratum; the second method would produce weights proportional to
the "importance' of the increased risk in the stratum (the larger the
absolute increase in risk, the more '"important" the relative risk/odds
ratio). As a compromise to these two criteria the authors suggested
the overall estimator
ORMH = Eiifiifi (1.4.2)

Ibse;/N;

i
which, they argued, produces weights favorable to both methods. An
interesting property of the ORMH is that it reduces to the pair-
matched odds ratio estimate proposed by Kraus (1958). Though not
resolved by this work, Miettinen and others resumed the development

of stratified overall estimators of effect at this juncture.

1.4.2 Conditions for No Confounding

The second paper from the same issue of the NCI Journal made per-
haps the first attempt at quantifying the conditions for (no) confound-
ing. While advocating the use of a ratio measure of effect over a
difference measure, Cornfield, et al. (1959) listed as one of its
merits the ability to appraise the ''possible non-causal nature of an
agent having an apparent effect.'" They showed that if an agent E
exhibited a sizeable cRR combining over levels of F, an extraneous
variable related to E, then the relative 'risk" of F with respect

to E would have to exceed cRR if E indeed had no effect. This is
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shown easily below. The assumptions are, using the notation of
Section 1.3.1:
(a) no association between D and E conditional on
F(a1 =
(b) a sizable crude relative risk (cRR >>1); and

(c) a positive association between F and E(e1 >¢1).

By definition

%1% ,% %
rr - 1017%0% P14 Bt
And thus,
B a0 8
070 00 1
¢RR + cRR =—— = RR_. + , where RR__ = -—.
81¢1 FE 81¢1 FE ¢1
Hence,
RR_.. = cRR+ 1 (B¢ cRR-0,.6.)
FE Bl¢1 070 0°0
But
BO¢OCRR- aoeo >0, since ¢0 > 60 , cRR>1, and ao = 80 .
Therefore,
RRFE > cRR .

By this result Cornfield, et al. essentially outlined the condi-
tions for (no) confounding bias away from the null, a special case of
general confounding. Implicit in the result, however, was the con-
text of the follow-up study. From this work and the parallel paper by
Mantel and Haenszel, possibly conflicting notions regarding the nature
of the interrelationships of true confounding variables might have been

supported. However, an implication of this work was that the
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conditions for no confounding were at least in part a function of the
study design, a point not‘well-un&erstood until recently.

In a pair of related papers Bross (1966, 1967) laid down the
principle that Cornfield, et al. described implicitly. He stated
that "as the size of an apparent effect increases, the changes that
the effect is spurious decreases.'" Bross's work attempted to relate
an observed (but spurious) association between E and D to the pro-
perties of an extraneous variable F. In the second paper he presented
a table of minimum values of the relative risk of D due to F (RRF),
which would be necessary to explain away a spurious relationship
between E and D, depending on the strength of the association
between E and I’(ORREF). He found that when the relative risk due to
E exceeds 3.0, only extreme combinations of values of RRF and
OREF can explain away the observed association. While Bross con-
sidered only confounding away from the null, it is clear from his work
that he understood that the spurious nature of a D-E association is
a function of both the E-F and D-F relationships.

Siegel and Greenhouse (1975) generalized Bross's work to the set-
ting where the underlying D-E association is positive. Assuming no
effect modification (uniformity of the stratum-specific risk ratio),

they showed that cRR could be factored by

o o B.6.+B.6
CRR = RR - Bias , where RR = Ts'l‘ - éfl and , Bias = EL%O—&Q (1.4.3)
1 o 1°1*%0%

Schlesselman (1978) reported the same result and described the bias as
the "spurious effect of F on the observed relative risk.'" Both of
these results are formulations of Miettinen's (1972) factorization of

the cRR. He described the factorization by
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cRR = 55-5* (1.4.4)
where
53 = standardized morbidity (mortality) ratio with the
distribution of the exposed group as the standard
p* = the component attributable to confounding

sum of "expected" number of D's among the E's
observed sum of D's among the E's

Clearly, when 8* = 1, there is no confounding bias. The measure s'RR
might also be substituted for 55, in which case the conditions for
8* = 1 change.

Kupper, et al. (1980) laid down explicit conditions for no con-
founding in follow-up studies by noting that when (1.4.3) equals 1,
it follows that (Bl- so)(el-¢1) = 0. Therefore, therée is confounding
when extraneous variable F is associated unconditionally with E,
and with D conditional on E. When Bs = s'RR, p* =1 if (o, -ap)
(61 —¢1) = 0. The same conditions for no confounding result except
that the F-D association must be conditional on E. The authors
emphasize that when the risk ratio is not uniform over the strata, a
standardized measure may not be useful. The lack of uniformity makes
any assessment of confounding somewhat academic. If, however, the
assumption of uniformity is tenable, then either choice of standardized
measure will result in equivalent conditions for no confounding.

The authors note that if the risk difference is the effect measure
of interest, the same conditions must hold. However, uniformity of the

risk ratio does not imply uniformity of the risk difference; hence, the
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problem of measuring confounding must be considered only in the con-
text of a particular effect measure of interest.

The conditions for no confounding in retrospective studies are
not so clearly delineated in the literature. Schlesselman (1978) tried
to apply (1.4.3) to case-control data without observing that the bias
is a function of parameters which are not estimable in case-control
studies. Siegel and Greenhouse (1975) also attempted to write cOR in
terms of follow-up parameters. Both results are invalid.

Miettinen (1972a) extended the logic behind (1.4.4) to the case-
control setting by observing that a similar factorization could describe

cCOR. Miettinen proposed that the components of the factorization would

be
Ta.
A il
Pe = sOR =
Zb.c./d
L1711
i
and,
. Zbici/di
Iy B4 (12,
i i i
where

(1.4.5)

Kupper, et al. (1980) utilized this expression to develop explicit
conditions for confounding in retrospective studies. From (1.4.5) there
is no confounding if p* = 1. If 55 = sOR, then (using the notation

of Section 1.3.2) this condition can be reduced to:

[(l-eo)vo(l—dl)wl— (l-el)vl(l-so)wo](S -60) =0 . (1.4.6)

1
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There is no confounding if: -

6, (1-8,)
(a) 61=50 or OREF/b-:W:l
of
(1-e.)v,(1-8 )w
®) (1-51)w1(1- e = R = 1
1°¥14 7%’V

Hence, there is no confounding if F is independent of E conditional

on D or if F is independent of D conditional on E. If 55 is

chosen to be s'OR, then (1.4.6) becomes
[elv1 -50w0-eovo °61w1](61-60) =0 . (1.4.7)

The conditions for no confounding are then:

(a) 8, =8, or ORyz-=1
or,
e.v,0, . w
(b) 61w1€0V0 = ORpp/p =1 -
1*1%0%0

The conditions .or no confounding are essentially the same except that
D and F must be independent conditional on E instead of E.

While the above conditions are dependent upon the choice of stan-
dardized measure, if there is uniformity (OR1 = OR0 = 1), then it
follows directly that ORDF/E = ORDF/E“ Hence, the choice of standard
is arbitrary if there is uniformity — the conditions for no confounding

are equivalent.
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1.4.3 Control of COnfOUndingg Matchiqg

Although matching has long been valued as one of the most effective
methods for controlling bias in observational studies, only recently
has the effectiveness of matching in this regard been evaluéted, espe-
cially in the context of completely categorical data.

The earliest paper dealing with the control of confounding via
matching for the case of categorical data was by Mathen (1963), who dis-
cussed the "'reduction'" in bias accomplished by matching. The context of
the paper is a follow-up design with the risk difference as the measure
of effect.

In an empirical consideration of matching in case-control studies,
Bross (1969) emphasized that the principal role of matching techniques
was the minimization of troublesome artifacts or sampling biases
encountered in these studies. The author suggested the need to match
on factors strongly related to disease, but only for the purposes of
"design efficiency;"

This paper stimulated a response from Miettinen (1970), who con-
sidered in detail the implications of matching in case-control studies.
He claimed that validity (the control of confounding) was served by
matching only under the following circumstances: when the matching
variable F 1is related to E unconditionally and to D conditional
on E. No analytical derivation was made as a basis of this claim.

One should note that he essentially identified the conditions for con-
founding, albeit for follow-up studies.

Siegel and Greenhouse (1975) observed the effect of matching on

the control of confounding in follow-up studies. Although they
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presumed pair-matching, they recognized that the general effect of match-
ing is to restructure the referent group ’ distribution
of the extraneous variable is equivalent to that of the E's. Hence,
they replaced the ¢i's_ in Table 1.1 and (1.4.3) with the corresponding

ei's. As a result the new stratum-specific table and the bias are

given by
TABLE 1.4
Expected Stratum-Specific Cell Frequencies:
Matching, Follow-up Study
F. E E
1
D | Naydy NBi%5 8.0 +B 0
. 1'1 "0°0
— blas:_—88+86=1
D | N(1-a.)6. N(1-B.)e. 1'1 "0°0
1 1 1 1
N6 . N8,
i i

Matching is seen to control confounding in a follow-up study. One
should note that although the matching involved pairing, the pairing
was dropped in the analysis. The authors suggested a matched-pairs
estimate of RR, the Kraus estimate for case-control studies (Kraus,
1958), which is invalid for estimating RR in follow-up studies. They
also attempted a treatment of relative risk estimation from a case-
control matched design by using the same follow-up parameters, which
invalidates their results.

Whether matching will control confounding in case-control studies
was examined by Kupper, et al. (1980). Since the result of matching is

to arrange the distribution of F in the D's to be equivalent to
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that of the D's, they noted that this amounts to replacing the wi's
with the vi's in Table 1.2. Table 1.5 below represents the expected cell

frequencies in the ith stratum after frequency-matching.

TABLE 1.5

Expected Stratum-Specific Cell Frequencies:
Matching, Case-Control Study

F. E E

D | Ne.v, N(1l-€.)v. Nv,
i il i

ol

N6.v. N(1-8.)v, Nv.
i i’ i

The authors observed that the crude odds ratio resulting from matched
selection of non-diseased subjects would not generally correspond to
sOR or s'OR. In particular if cORm represents the crude matched

odds ratio, then

[geiviJ[Z(l-Gi)vi]

cORm = Z ] # sOR,s'OR .

[gdivi](g(l-ei)vi

Consequently, matched sampling does not provide a valid estimator

solely from the matching itself. In Chapter 2 the properties of cORm
will be further evaluated with respect to control of confounding in case-

control studies.

1.4.4 Efficiency of Matching

Because matching gained widespread use in experimental studies

before emerging in observational studies, much of the focus on the
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effectiveness of matching vis-a-vis other designs has been given to
efficiency, or the control of random error. The attention given to
efficiency has often superseded consideration of the problems of
validity inherent in observational studies. However, Miettinen (1970)
correctly observed that "...the validity objective so dominates the
consideration of efficiency...that relative efficiency can be defined
meaningfully only when both designs are valid." This is an important
point that seems to have escaped many who have worked on the problem
of the efficiency of matching.

Many of the early studies compared matched designs with unmatched
designs, where no other form of control of bias was attempted. Stuart
(1957) compared analytically the crude Xz statistic with McNemar's
X2 statistic. Mathen (1963) considered the variance of the matched-
pairs risk difference compared to the variance of the cRD. Worcester
(1964) also compared the crude X2 statistic with McNemar's X2 sta-
tistic under the three conditions of uniform effect measures (RD, RR,
and OR), noti.g no appreciable difference in matched over random
sampling. Pike and Morrow (1970) derived essentially the same results,
concluding that the pair-matched X2 statistic will exceed the crude
X2 provided that the association between D and E in the two groups
is strong; i.e., large number of concordant pairs with regard to D.

Billewicz (1965) assessed empirically the relative efficiency of
pair-matched and simple random samples by using simulation techniques
to compare variances of the risk difference. The results were incon-
clusive, and Billewicz admitted that his analysis failed to take into

account the bias which remained uncontrolled in the analysis of the
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randomly sampled data. Chase (1968) investigated three types of effi-
ciency'with regard to testing the equality of the risk differences.
Here, the matching was assumed random. An interesting result of this
work was that pair-matching compared favorably with random sampling,
i.e., that efficiency could be served by pair-matching even if it were
not based upon a potential coﬁfounding variable. In practice, of
course, matching is rarely randomly-based, a proper criticism of this
work.

Miettinen (1968) investigated the relative efficiency of matching
in the context of the follow-up study, where he compared pair-matching
on an extraneous variable and two independent series randomly pair-
matched. Under the assumption of '"mo confounding," he defined rela-
tive efficiency as the ratio of inverse sample sizes which obtain equal
power against a specified alternative to the null (RD = 0). For both
cases the author derived the asymptotic distribution of the square root
of McNemar's X2 statistic, conditional on S; the number of discor-
dant pairs amon_ the matched pairs. The two sample sizes are approxi-
mated by expanding the conditional power functions in a Taylor series
about the expected value of S, dropping all but the first-order terms.
This work differs from earlier studies by cemparing directed matching
to random matching rather than to random sampling. In the final analy-
sis, these results pertain only to the case where validity is not an
issue. In addition, this work suffers from the same criticism as that
of Chase's work, the illogic of random matching in observational studies.

In his paper on efficiency in follow-up studies, Miettinen (1968,

1969) asserted without proof that matching can only hurt design
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efficiency in case-control studies. In a response to the former paper
Bross (1969) attempted to provide a counter-example to this assertion
and claimed that "by matching out a strong factor...it is possible to
improve the chances of detecting a real — but relatively weak — rela-
tionship in a secondary factor...matching can improve design efficiency."
In the counterexample Bross randomly repaired subjects who had been pre-
viously matched yith respect to a ''strong" variable and noted the loss
in efficiency from doing so. Whether this analysis related meaningfully
to the problem of efficiency is therefore questionable. Bross empha-
sized the need to incorporate the attainment of validity before the
question of efficiency is considered, but did not pursue the point in
this paper.

Little work has been devoted to the question of matching in case-
control studies. Miettinen (1970) presented intuitive arguments for
the belief that matching in case-control studies will result in a loss
in efficiency if unnecessary for the sake of validity. Matching will
influence effic*ency only if the matching variable is related to expo-
sure, and the influence will tend to be negative. Miettinen argues
that matching under these circumstances will only reduce the number of
discordant pairs, which tend to decrease in number with increasing
association between F and E, yielding a smaller McNemar's X2 sta-
tistic. While emphasizing that efficiency is a secondary goal, meaning-
ful only for valid designs, he did not consider the relative efficiency
of matching and another form of bias control, e.g., stratification,
when validity is the (primary) concern.

McKinlay (1975) recognized that the comparison of pair-matching

to independent random sampling is essentially between one method of
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bias elimination to no elimination at all. She advocated a comparison '
between pair-matching and random sampling followed by stratification
basing the efficiency considerations on the McNemar's X2 statistic
and the Mantel-Haenszel X2 statistic. Assuming a large enough sample
size her results imply that matching is more efficient only when the
number of discordant pairs exceeds the number of discordant pairs in
the majority of strata, a report which by appearance conflicts with
that of Miettinen. McKinlay continued with Monte Carlo studies to
investigate matching and stratification for a trichotomous response
variable, concluding that pair-matching is not.generally more efficient
than stratification;

McKinlay (1977) also noticedanother aspect of pair-matching which
conceivably affects efficiency, the inherent non-uniqueness of pairs ‘
within a given category of the matching variable. She hypothesized .
that the formation of arbitrary pairs in categories of large size might
affect precision and suggested as an alternative, frequency-matching
followed by the -isual stratified analysis for random samples.

In this regard Kupper, et al. (1980) followed these two suggestions
and compared the efficiency of frequency-matching to random sampling
followed by stratification for both the follow-up and case-control
designs. The comparisons hinged on large sample approximations of
""expected" confidence intervals for the particular effect measure of
interest. The authors proposed evaluating the variance of %, a
weighted linear combination of the logarithms of the stratum-specific
measures of effect, denoted by #i; The weights are chosen to minimize
the variance of £; therefore,v the inverse variance are the weights. .

By this method the variance of 2 is given by
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For both the follow-up and case-control studies large-sample Taylor
series approximations to ci were utilized.

The authors considered the relative efficiency from two points of
view: (a) examination of the difference between the theoretical vari-
ances (1.4.8) under the two designs, and (b) comparison of '"expected"
confidence intervals of the form exp(2 * Bl_a/zcz). The second
approach is based upon substituting into "expected" values of £ and
ci various numerical values of parameters of the underlying probabi-
listic models (e.g., Section 1.3) in order to identify conditions in
which matching and/or random sampling would produce intervals which
covered the null value. Results of the evaluations were compared to
the asymptotically exact procedure of Cornfield (1956) and were found
to be in good agreement.

The authors concluded that matching can yield more efficient analy-
ses in certain circumstances for both studies. In follow-up studies
the authors recommend matching over random sampling, as a gain in effi-
ciency is generally expected when matching on a counfounder, and no
loss in efficiency is expected when matching on a non-confounder. For
case-control studies the authors give a qualified recommendation to
matching, suggesting that it be used when there is confounding, small
to moderate samples, intermediate values of the OR, and small to
moderate exposure probabilities. They conclude that matching on a non-

confounder always leads to a loss in efficiency (Miettinen, 1975)
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although the loss is of no practical importance except in certain
'uncommon' situations. Although a qualified recommendation, they note
that the restricted conditions favoring matching are the circumstances
most often encountered in the implementation of case-control studies.
Using similar underlying population models Samuels (1979, 1980)
compared "expected'" Mantel-Haenszel X2 statistics rather than confi-
dence intervals. Ratios of "expected" M-H X2 statistics from match-
ing and random sampling were evaluated for the case of no confounding
in the former work, and the case of confounding in the latter work.
Both analytiéal and numerical results, limited to the case-control
study, were obtained. With a few minor exceptions they do not differ
with those of Kupper, et al. (1980). Samuels claims that matching
will lead to a gain in efficiency in follow-up studies when there is
no confounding (F is unrelated to exposure) and a loss in efficiency
in case-control studies when there is no confounding (F is unrelated
to disease). For matching to have substantial impact in case-control
studies, the expnsure probabilities must vary considerably over the

strata.

1.4.5 Multiple Confounding Variables

For the apparent purposes of simplicity and tractable mathematics,
most of the literature already cited treats the limited case of one
dichotomous confounding variable. Very little consideration has been
given to the efficiency and validity of matching in studies when more
than one confounding variables or a single variable which is polychoto-

mous in involved in the analysis.



29

Schlesselman (1978) and Bross (1966) suggest reducing the former
case into a single confounder by considering the joint hpresence” and
the joint "absence' of the multiple covariables as two levels of a
single confounder and proceed as before. A simplistic suggestion,
this procedure ignores the information provided by the interrelation-
ships among the confounders as well as the conditional and marginal
relationships of each to disease and exposure. Fisher and Patil (1974)
considered the problem of choosing matching variables in a case-
control study via numerical examples involving two dichotomous con-
founding variables. They posed the question: what is the correct defi-
nition of '"unrelatedness' between two factors, F and E, when the
factor F needs to be controlled for validity purposes? The definition
offered, when more than one factor is under consideration, is as follows:
a factor F and an exposure E are unrelated if F and E are sta-
tistically independent conditional upon the values of the other factors
(except disease). Similar remarks hold for the definition of related-
ness of F and D. The authors warn against deciding to choose match-
ing variables based on the unconditional relationships alone. While no
theoretical arguments were put forth, some pertinent examples were given

to illustrate their reasoning.

1.5 Summary and Outline of Subsequent Work

Whether matching remains a useful enterprise for subject selection
in observational studies is currently an open question. The primary con-
dern of the researcher conducting an observational study is the attain-

ment of validity. and matching may or may not accomplish the removal of
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confounding, depending on the study type. The control of confounding

can be assured at the analysis stage; therefore, it should not be the
overriding issue with respect to matching. As Kupper, et al. maintain,
the choice to match should be based for the most part on efficiency
considerations.

As noted earlier little attention has been devoted to the choice
of subject selection for epidemiologic studies in the context of an
analysis which is free of confounding bias. There is a need for a
fuller understanding of the efficiency of matching with respect to
random sampling in this context. A major portion of this research is
directed to evaluating the relative efficiency of matching and random
sampling after removing confounding as an issue. Efficiency assess-

ments are based on the asymptotic relative efficiency of '"expected"
2

Mantel-Haenszel X2 -statistics (M-H X° statistics which are func-
tions of expected cell frequencies) for both matching and random samp-
ling, which were used by Samuels (1979, 1980).
Some of the questions which are addressed in this dissertafion
include three which are germane to the issue of relative efficiency.
(1) 1Is there a definite relationship between the relative effi-
ciency of matching and random sampling and the (underlying
confounding), in particular, the direction of the confounding? -
{(2) When two extraneous variables are considered, how does the
relative efficiency depend upon their intercorrelation, as -
well as relationships to disease and exposure?

(3) What is the effect of loss of sample size due to matching on

the relative efficiency?
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In addition, the conditions for no confounding when two dichoto-
mous, poteﬁtially confounding variables are involved, are developed and
studied. Other topics which are given attention include the proper
variables, 'and the extent of the bias which remains after matching in

case-control studies.



CHAPTER 2

PAIR-MATCHING VS. FREQUENCY-MATCHING

2.1 Introduction

From an historical perspective matching has always signified pair-
matching. The distinction between pair- and frequency-matching was
drawn some time ago in the literature (Cochran, 1953 and Billewicz,
1964) ; nevertheless, frequency-matching has not been given much atten-
tion as a method of subject selection. However, as frequency-matching
is now being critically examined as a competitor to random sampling
(e.g., Kupper, et al., 1980),. it is also of interest to consider how
the more established method of pair-matching measures up to this rela-
tive newcomer under conditions where frequency-matching will be
utilized.

Pair-matching seeks to match an index subject with a referent sub-
ject on the basis of one or more confounding variables. This matched
pair then becomes the observational unit in the analysis, replacing
the two individual subjects. The matching process can be ignored, of
course, and the individual subjects retained as the observational units
in the analysis. In fact, a special case of frequency-matching (equal
index and referent sample sizes) can arise by performing pair-matching
and ignoring the identify of the pairs while retaining the strata.

Inthis chapter the analytical method of pair-matching will be

contrasted to the analytical method of frequency-matching. Hence,
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that which follows can be considered a comparison of retaining vs.
disregarding the identity of the pairs in the analysis of pair-matched
data. The matching variables will be considered categorical, the

levels of which may be real or representative. Representative levels
may result from the categorization of continuous variables, although
there are methods available to match on continuous variables without
having to categorize. Matching on the basis of the nearest-neighbor

or minimum-distance criterion is an alternative method in which to

pair subjects on continuous variables. However, it can be argued that
in practice, for reasons of convenience and simplicity, the common treat-

ment of continuous variables is to stratify them in the analysis.

2.2 Analysis of Pair-Matched Data

Consider a potential confounding variable F whose L levels are
denoted by Fk’ k =1,...,L. These levels can represent the joint
levels of multiple variables as well as those of a single variable.

For the case of dichotomous disease and exposure variables the random
variable which represents a pair of index and referent subjects is a
two-dimensional multinomial random variable. The four possible out-
comes of this random variable correspond to the joint presence or
absence of the outcome characteristics (disease in a follow-up study
and exposure in a case-control study) associated with the matched sub-
jects. Assuming that there is a total of n pairs, let (n

11° Mo’

nOl’ nOO) be the multinomial random variable with probability vector

(pll’ 10’ Por° DOO)’ where
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nij = # of matched pairs whose index subject exhibits. outcome
characteristic i and whose referent subject exhibits
outcome characteristic j

pij = P (outcome characteristic i conditional on index status,

outcome characteristic j conditional on referent status).

For either study-type if the matching is performed at each of the L
levels of F, then the above definitions accommodate this situation

with the addition of the subscript Kk.

2.2.1 Follow-up Study

In a follow-up study the data arising from matching within a

given stratum are arranged in the 2x2 table below

TABLE 2.1
Stratum-Specific Pair-Matching Data: Follow-up Study

Fk E _
D D
. Dl Mgk | Mok | M1ek
D1 M1k | Mook | Mo-k
mak Mok Mk
where
. . th
n = # of pairs (exposed) in k™ stratum
= nek .

Pooling over the L strata yields the table of data below.
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TABLE 2.2

. Pooled Pair-Matching Data: Follow-up Study
E
) D D
Dy My | Mo | M-
. E
D} mo1 | oo | "o-
n, mn, n

The multinomial probabilities, pijk can be expressed in terms of

the parameters of Section 1.3.1 as follows

P11k = kPxlx Prok = %k (1-B)0y

Pork = (1o dBy8  Poox = (-2 (1-B )8, .

. The stratum-specific risk ration, RRk is expressed as the following

function of these parameters

HB1O o (1B ) Oy Py1*Pygk

o}

K

R = e = = .
" By BB (12 )0 0y *P01k

(2.2.1)

It is easily shown that the maximum likelihood estimator (MLE) of RRk

under matching is given by

M1k M10k - M1ek

RR. = = . (2.2.2)
Rk Mik™Moik Mk
Consider the parameter
] 11710
STy
11+701
- E(°11k+°10k)

. E(pllkalk)



Corresponding to the stratum-specific estimator, the MLE of n

matching is

~ M1*Me
no= =

11101
the usual pain-matched estimate of RR.

leads to a valid estimate of RR

2.2.2 C(Case-Control Study

36

(2.2.3)

under

(2.2.4)

Hence, pair-matching always

in a follow-up study.

The multinomial probabilities associated with the case-control

design can be expressed in terms of the parameters of Section 1.3.2,

as follows:

P11k = k%K Prok = S (1-8 vy

Pork = (-5 8V Poox =

The effect measure of interest, the odds ratio, OR,

particular stratum of F by

Prok _ S8
o1k Sk (1-&)

ORk =

(l-ek)(l-Gk)Vk .

is defined for a

(2.2.5)

Data arising from a case-control study and pooled over the strata of

F are displayed in the table below:
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TABLE 2.3
Pooled Pair-Matching Data: Case-Control Study

5 ——
E E
Elny1 | Mo | Mo
D —
E 1 mp1 | oo | Po-
n.l n'o n

The well-known estimator for the odds ratio under matching

(Fleiss, 1973) is given by

which can also be shown to be the MLE of the parameter

Esk(l—ék)vk

p = = z w, OR ’ (2-2'6)
¥, (1-e,)v, Kk < K
AL S

where

Gk(l-ek)vk
Yk

i ESk(l—ek)vk

While (2.2.6) defines a weighted average of stratum-specific odds
ratios, it does not correspond to either sOR or s'OR. However, it
is equivalent to the Mantel-Haenszel odds ratio, referred to in Chapter
1. Note that this measure of effect provides a valid estimate of
effect. At first glance it would appear that any analysis of data

from Table 2.3 would be a crude analysis. However, the analysis
referenced by (2.2.6) represents implicit stratified analysis, since
the matching has not been ignored in the analysis. In fact, pair—'

matching is actually a type of stratification with the stratum size
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uniformly equal to 2. This is an important aspect regarding the analy-
sis of pair-matched data. Because of the simplicity of Table 2.3,
this fact may easily be overlooked.

This section has presented a review of generally well-known
aspects of the analysis of pair-matched data. The discussion now pro-

ceeds to a critical analysis of pair- and frequency-matching.

2.3 Superiority of Frequency-Matching to Pair-Matching

In the context of matching on categorical variables, one can
accomplish the process of matching in two ways: via pair- or frequency-
matching. It was noted that a frequency-matched sample, restricted to
equal index and referent sample sizes, can be generated by forming the
matched pairs and then dropping the identity of thelpairs. In this
section it will be demonstrated that the analysis of pair-matched data
is improved when the pairs are dropped rather than retained. In
particular, the pairing will be shown to be either wasteful or lead to
possibly erroneous estimation. In addition, the relative efficiency
of the analysis of paired data to the analysis of non-paired data will

be evaluated.
2.3.1 Estimation

In the follow-up study the estimates of RRk and RR, (2.2.2)
and (2.2.3), are both functions of the marginal frequencies of Tables
2.1 and 2.2, rather than the cell frequencies alone. The marginal

frequencies from those tables represent cell frequencies of Table 2.4

below:
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TABLE 2.4

Marginal Frequencies of Tables 2.1 and 2.2

TABLE 2.1 TABLE 2.2

E E E E
DMk | ™Mk D | m, | n,
D | mgug | ™ok D ng. | n

Ny My n, n n 2n

However, these cell frequencies represent the numbers of subjects
(not pairs) who are matched on Fk (Table 2.1) and pooled over F
(Table 2.2). Hence, these are tables of frequency-matched subjects
rather than pairs. The estimates (2.2.2) and (2.2.3) then are the
stratum-specific and pooled estimates of RR from freouency-matched
samples. The pairing has been dropped to do the analysis — it has
not been utilized.

As a result, the design has been restricted to an equal sample-
size, frequency-matched sampling scheme when perhaps a more general
index-to-referent sampling ratio is preferable. In a follow-up study
pairing is simply a wasteful exercise and can unnecessarily restrict
the design.

In the case-control study the estimates of the odds ratios are
functions of the matched bairs. However, McKinlay (1977) recognized
that the pairing within each stratum of F is arbitrary. The particu-
lar configuration of pairs for each stratum are not unique; in fact,
there are nk! possible pairing arrangements, and therefore, 2 nk!
possible combinations of pairs in total. Of course, not all of those

pairings will yield unique arrangements of cell frequencies in Tables

2.4 and 2.5. Assuming that the cell frequencies of Table 2.4
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are fixed subject to a frequency-matched sample or a pair-matched sample '

ignoring the pairing, there are (1 + min(nijk)) unique pairing arrange-
ij
ments for each stratum and [1 + min(Znijk)) unique pairing arrange- .
ij
ments for the total sample, where the nijk

of Table 2.4. As the sample size grows large, the number of potential

denote the cell frequencies

pairing arrangements increases, as do the possible values of the esti-
mates of effect, ORk and OR.

This property of pair-matching seriously undermines the validity
of pair-matched estimates of the odds ratio. If the pairing can be
suitably manipulated at the whim of an investigator, then the estimate
of effect can be so manipulated to his advantage. The pairing thus
introduces an artificial source of bias to the analysis and destroys
the correspondence between sampling and analysis which is required for .
validity in a case-control study. Note that the follow-up study does
not suffer from this property because the analysis does not utilize
the pairing.

The following example illustrates this thesis.

Example 1

A case-control study is performed and the subjects are selected by .
matching on F, a dichotomous variable. If the particular pairing
which gave rise to the data is ignored, the data can be arranged in

the 2x2 tables below.
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TABLE 2.5
‘ Hypothetical Pair-Matching Data: Pairing Dropped
F1 E E FO E E
D | 4 519 D | 6 9 | 15
; D| 2 719 D|3|12]15
6 12 9 21
OR; = 28/10 = 2.80 OR0 = 72/27 = 2.67

The odds ratios are nearly uniform across the two strata. All of the
possible pairing arrangements that could result from these data are

listed below (in the form of Table 2.3).

Stratum Pairing Arrangements
@ 1 2 3
: 044 113 2 12
F
1 213 1] 4 015
1 2 3 4
06 115 2 | 4 313
F0
. 316 2|7 1|8 019

Pooling these tables yields [1 + min(Znijk)] = (1 + min(10,14,5,19)) =6
ij k
unique configurations which can summarize the pairing. These tables

and the corresponding odds ratios are listed below in Table 2.6.
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TABLE 2.6
Summary of all Possible Pooled Tables

Pooled Table

Tables (Fl,FO) Frequency Configuration OR szcN
(1,1) 1 0,10 /5,9  12=2.0 1.67
2,1),(1,2) 2 1, 9 / 4,10 -% = 2.25 1.92
(3,1, (1.3),(2,2) 3 2,8 /3,11  3=2.67  2.27
(1,4),(2,3),(3,2) 3 3,7/2,12  £=35 2.78
(2,4),(3,3) 2 4, 6 / 1,13 -% = 6.0 3.57
(3,4) 1 5,5/0,14 2 (undef.) 5.0

There is considerable variation in the pair-matched odds ratios
about the ''true" odds ratio, which is between 2.67 and 2.80. Since
this variation is artificially introduced only through the pairing, it
is clear that the analysis of the paired data under such circumstances
can lead to completely erroneous estimates of the odds ratio.

In the same way the test of significance of the pair-matched odds
ratio can also he misleading. The usual test of significance for
matched-pair data is McNemar's Xi-statistic, defined as
2

(N = Mgy)

]
Mo * Bo1

2 _
XMeN ©

which has been shown to follow the X2 distribution with 1 degree of
freedom under the null hypothesis of no association. The test statis-
tics for each of the six configurations are given in the fifth column
of Table 2.6. The Mantel-Haenszel Xi-statistic based upon stratifi-
cation of F in terms of the data in Table 2.5 can be shown to be

2.32. Hence, an erroneous conclusion regarding the significance of

the association can result from the artificial pairing.
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2.3.2 Efficiency

Beyond these arguments, the analysis of pair-matched data retain-
ing the pairingusually results in a loss in efficiency over dropping
the identity of the pairs. Let us assume that the pairing is represen-
tative of the true joint probabilities of the outcome variable (disease
in a follow-up study, exposure in a case-control study) given an index

and a referent subject paired on F , k = 1,...,L. Then we might

k,

replace the n,., ~ of Table 2.4 with their expected values under multi-

ijk
nomial sampling. It is sufficient to consider only the follow-up study
in this regard, as the results are completely analogous for case-
control studies (due to the direct correspondence between the probabi-
listic model-based parameters of the two studies).

For the kth stratum of F, Table 2.4 becomes
TABLE 2.7

Expected Stratum-Specific Pair-Matching Data: Follow-up Study

E _
F D D

D nakBkek nak(l—Bk)Gk nakek

D an(l-ak)ek n(l-ak)(l-Bk)ek n(l—ak)ek

anek n(l-Bk)ek no

Pooling over F the overall expected values of the cell frequencies

of Table 2.4 are
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TABLE 2.8

Expected Pooled Pair-Matching Data: Follow-up Study

E
D D
D nEakBkek nja, (1-8,)8, n)a, 8,
D “Esk(l'“k)ek né(l—ak)(l—sk)ek nIZ((l-ak)ek
nZB 8 nE(l-B )8 n
LKk & kK’ k

Therefore, the expected McNemar Xf-statistic for this table is

2
(n]z(ak(l-sk)ek - nlz(Bk(l-ak)ek]

nlz(aku-sk)ek +n]§6k(1—ak)ek

2
= . (2.3.1)
Eek(ak+8k-2ak8k)

Assuming that the pairing is dropped and the data arranged for each
stratum as in Table 2.4, the expected cell frequencies can be found
from the marginals of Table 2.7 above. In this case we can consider
these expected cell frequencies fixed since all possible matched pairs

h

will emanate from these marginals. For the kt stratum of F, these

expected frequencies are arranged below.

TABLE 2.9

Expected Stratum-Specific Cell Frequencies:
Pairing Dropped, Follow-up Study

Fk . E E
D nakek anek nek(ak+8k)
D n(l-ak)ek n(l-Bk)ek nek(Z-ak-Bk)

nek nek : 2nek
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The Mantel-Haenszel Xi—statistic testing the departure of these

""data" from that of 'mo association' is expressed as

[% nakek-n(l-ek)ek-anek'n(l—ak)S%}
X 2no
2 k

= e - : (2.3.2)
nek nek nek(ak+8k) nek(2-ak—Bk)
K (2nek)3
2
= (2.3.3)
Eek(ak*'sk) (z—ak-sk)/z
Note that (2.3.2) assumes a large sample size (replacing 2nek -1
with 2n6k in the denominator). For small n we would expect X;H

to be slightly smaller than that of (2.3.2).
Comparing (2.3.1) and (2.3.3) we note that the numerators are
equal. Hence, X;H > xﬁcN only if the denominator of (2.3.3) is less

than that of (2.3.1); that is, only if
Eek(tk+sk)(1—(ak+sk)/2) < Eek(akwk-zcxksk)

2
- ]2( 6, (o +B /2 < - 2]Z(ekaksk

or,

2 2 2
Eek(ak-zakskwk) > 0 <=> Eek(ak-sk) >0 . (2.3.4)

Since ek(ak-Bk)z >0, ¥k, (2.3.4) is always true, and there-

fore, the expected X2 is always less than the expected XﬁH sta-

McN
tistic. The result (2.3.4) also holds for the case-control study,

where ek, A and Bk are replaced by Vi €0 and 6k respectively.
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(For small values of the measure of effect — near 1.0 — and small n, .
a more rigorous evaluation of the relative efficiency is presented in
Appendix 1.)

The relative efficiency of the two tests can be expressed as a

ratio of the two test statistics:

X2 %ekcakwk)(l-(akwk)/a

RE = 2 =
Xy Eek(akwk-zaksk)

and can be regarded as a measure of the loss in efficiency due to the
pairing. RE is defined above for the follow-up study and similarly
for the case-control study with the aforementioned substitutions.

In order to gauge the magnitude of the loss from pairing, evalua- .
tions of RE were made at various values of the model-based parameters .
that might be expected in practical situations. Table 2.10 gives a
general picture of the practical effects of pairing in the context of
a follow-up and case-control study where one dichotomous matching
variable is considered. In both tables the losses were averaged over
confounder distributions (61 =.1,...,.9; vy = .1,...,.9) since the
variation in the loss over these distributions was only slight.

By inspection of these tables it is clear that for the most part
pairing does not drastically affect the efficiency of the analysis.
This is especially true for the follow-up study, in which the expected
loss in the most extreme case is only about 6%. In the case-control
study the magnitude of the expected loss is much greater although not
sizeable until the odds ratio exceeds 3.5. For situations in which .
only a moderate odds ratio is expected, pairing will not diminish the

test statistic noticeably.
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2.4 Summarx

While pair-matching has historically been the usual method of
matching in observational studies, if the matching variables from such
a study are categorical, there is no foundation for carrying out a
pair-matched analysis of the data. If matching is to be used as a
method of subject selection, whether pair- or frequency-matching, the
identity of the pairs should be dropped at the analysis stage when pos-
sible, and the data analyzed as if frequency-matching were performed.

In the case of the follow-up study it is shown that the measure
of effect does not utilize the pairing. 1In case-control studies pair-
ing can lead to a biased estimate of the odds ratio, and re-pairing of
the same subjects can result in completely varying estimates of the
odds ratio. For both studies pairing is less efficient than frequency-
matching, although only negligibly so.

Since pairing is a form of stratification, when the matching vari-
ables are categorical, retention of the pairs becomes unnecessary over-
stratification. As the number of matching categories grows larger and
approaches the number of matched pairs, the problem of over-stratifica-

tion diminishes as do the disadvantages of pairing summarized above.
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CHAPTER 3

THE RELATIVE EFFICIENCY OF MATCHING AND RANDOM SAMPLING:
ONE POTENTIAL CONFOUNDING VARIABLE

3.1 Introduction

In Chapter 1 a number of publications were cited in which the
efficiency of matching was considered. In almost all of these papers
matching was assumed to be pairwise, and the alternative procedure to
which matching was compared involved a crude analysis of data from a

. random sample. For the most part, incorporating potential confounding
variables into the comparisons was avoided, even though a critical ele-
ment of the design and analysis of an observational study is the iden-
tification and removal of confounding bias. A notable exception is the
work by McKinlav (1974), which compared pair-matching to random sampl-
ing accompanied by stratification. However, this effort stopped short
of making any definitive conclusions regarding pair-matching.

In Chapter 2 pair-matching was shown to be inferior to category-

. matching in the context of categorical matching variables. As noted
earlier, category-matching has not been studied seriously as an alter-

. native form of matching. The work of Kupper, et al. (1980). represents
a majbr attempt to study category-matching as a competitor to random
sampling, where the control of confounding is presupposed. A key

. point made in that paper is that the crux of the matching/random
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sampling issue pertains to the gain or loss in efficiency by matching,
as opposed to the attainment of validity. Since validity can be
assured by other processes, e.g., stratification, the choice of sub-
ject selection method should be based primarily on efficiency considera-
tions. A major thrust of this work is the evaluation of the relative

efficiency of matching as compared to random sampling.

3.2 Methods of Evaluation

The classical approach to the evaluation of the relative efficiency
of two estimators of a parameter u is the comparison (usually the
ratio) of their asymptotic variances. Alternatives to comparing asymp-
totic variances include comparisons of test statistics or variances of
functions of u, if the variance of 1 does not exist. Often these
approaches do not yield mathematically tractable solutions, and in that
case, the relative efficiency has to be studied using numerical techni-
ques. For themost part the limited study of the relative efficiency of
frequency-matching and random sampling has involved numerical approaches.

Kupper, et al. (1980) based relative efficiency comparisons on con-
fidence intervals for difference and ratio measures of effect. Expected
cell frequencies from matching and from random sampling were substituted
in expressions for the variances of the risk differences and log-risk
ratio in the follow-up study and the log-odds ratio in the case-control
study. Treating these measures as asymptotically normally distributed,
confidence intervals were constructed using Taylor-series appioximations

to the variances. After substituting the expected cell frequencies

implied by each of the sampling designs, the intervals were compared in
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terms of whether the null values of the effect measure were covered.
This procedure was repeated for various values of the population para-
meters which might be observed in practice. The results of these com-
parisons were contrasted to comparisons of confidence intervals con-
structed using Miettinen's test-based method (1976) and Cornfield's
approximate procedure (1956), which led to the same conclusions.

In much the same fashion Samuels (1979, 1980) chose to measure
the efficiency of matching by considering Mantel-Haenszel Xi statistics
based upon the substitution of expected cell frequencies for what would
be the observed values. The ratio of the 'expected'" test statistics
from the two sampling designs was evaluated as a measure of the relative
efficiency of matching to random sampling. One desirable attribute of
this measure is that it can be shown to be equivalent asymptotically to
the Pitman efficiency (Noether, 1950) for sequences of alternatives
converging to the null hypothesis. (A proof that this index is equiva-
lent to the Pitman efficiency is given in Appendix 3.)

In this rhapter the ratio of 'expected" Mantel-Haenszel
Xi will also be used to measure relative efficiency. This work
extends that of Kupper, et al. (1980) and Samuels (1980) to a more
thorough analysis of the relationship of the relative efficiency of
matching to the nature and extent of (the underlying) confounding. The
advantages of this approach over that of Kupper, et al. (1980) include
a more refined analysis of the relative efficiency over selected
regions of the population parameters. In addition, the expression of

the relative efficiency is made independently of sample size.
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3.3 Ratio of Expected Mantel-Haenszel Xi Statistics

The expected Mantel-Haenszel Xi statistics under matching and ran-
dom sampling can be formed by substituting the expected cell frequencies
from Tables 1.1 and 1.2, as done in Chapter 2. First, the follow-up

study will be considered.

3.3.1 Follow-up Study

If the data from each stratum defined by one or more (potentially)

confounding variables are arranged as in Table 1.3, then the Mantel-

Haenszel X2 statistic is written as:

1
[%(aidi-bici)/N;]
2 1
X

- . (3.3.1)
NpiNosMyMos

5 2
i Ni(Ni-l)

For large Ni’ X2 is adjusted slightly upward by substituting
3

Ni for Ni(Ni-l‘ in the denominator. However, it will be assumed
that the adjustment has only negligible effects on the relative effi-
ciency when the level of stratification in the analysis is the same

for both designs. If the expected cell frequencies of Table 1.1 are

substituted in (3.3.1), then for random sampling:

X2 = X2
TS

E (nyo;0,) (ny(1-8,)9,)-(n, (1-0,)8,) (nosi«pi)] ?
i

nlei+n0¢i

(ngo;6;+148;6,)1(n 0, +ny¢:)-(nja 8, +n B 0.7 Tn 6.n ¢

: 3
1 (n)8;+n49;)
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2
“1“0{§ei¢i(“i'Bi)/(“1ei+“o¢i{}

8.6, (no0.+n B 8. [(m 6, +ny6;)-(ny0,0,+n,8:¢;)]

E

3
(ny6;+n49;)

If one can also assume that there is uniformity in the measure of

effect and that a variable referent-to-index sample size ratio (p

no/nl) will be allowed, then the following restrictions will hold

R

1 o> =RR-B., V.
N 1 1

RR
Bl i

The expected Xis statistic can then be written as

2
on1[%Gi¢i(ai—8i)/(9i+o¢i{l

rs © 6.0, (a0, +pB 6,11 (8,+p9,)-(a;0,+pB,¢,)]

r 3
i (ei+9¢i)

2
2
pnl(RR-l) {éei¢iei/(ei+p¢i{l

) (3.3.2)
9i¢iBi(RRei+o¢i)[(9i+0¢i)-Bi(RRei+o¢i)]

: 3
If the matching is performed, the expected cell frequencies will
correspond to those of Table 1.2, and the expected matched X2 sta-
tistic is:

x2 - X2
m

nlei+n06i

- Z
(nlaiei+n08iei)[(n16i+noei) (nlai9i+n08iei)]n1noei

[% (nlaiei)(no(l-Bi)ei)—(nl(l-ai)ei)(nOBieiT]z
i

C 3
i (nlei+noei)
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2
nlp(1+p)(RR—1)2{%6.8jI
it

= : ' (3.3.3)
geisi(mup) [(1+0)-8, (RR+p)] -

Forbthe case of matching, the conditions regarding uniformity and the
sampling ratio are also incorporated. In addition, the consideration
of loss of subjects due to the matching process is an important issue
regarding efficiency that has often been ignored. The loss can be
expressed in terms of the proportion of subjects which remain after
the matching has been performed. Allowing different proportions of

loss for the index sample and the reference sample, let

= proportion of index sample which is matced,

r, = proportion of referent sample which is matched.

In (3.3.3) replace n, with TN, and n, with r,en, as well as

@, with RRBi. The expected matched X2 statistic is then expressed

as 2 2
nl(r1+r0p)r1r0p(RR-1) [geiﬁgl
Xi = . (3.3.4)
geiei(rlRR+roo)[(r1+roo)-Bi(r1RR+rOp)]
Let the relative efficiency (RE) be the ratio Xi to Xis. The

expression for RE is then given by:

p——

-2
. 8.9.B. (RRO.+p¢.)[(6.+pd.)~B. (RRE,+pd.)]
1 1 1 1 1 1 1 1 1 1
(ry+ryP)TyT, ZeiBi A 3
i i (6.+09.)
- U i1
RE = T2~
[§91¢18i/(6i+p¢i) : geisi(rlRR+rop)[(r1+rop) - Bi(rlRR+roo){}
ol =

(3.3.5)
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This index is asymptotically equivalent to the Pitman efficiency for

alternatives near the null (see Appendix 3).

3.3.2 Case-Control Study

For the case-control study, similar expressions are derived. The

uniformity assumption is given by:

e.(1-8.) §.0R
=_1_.__}.'.._=>€ 1 Y
Si(l-si)

OR i -8, (1-0R) * i~

The parameters ei,'¢i, Bi’ and RR are replaced by Vi W Si, and
OR respectively, and (3.3.2), (3.3.4), and (3.3.5) are expressed in

analogous fashion as

2
pnl{zviwiéi(fi-l)/(vi+pwi{]

2
2 = (3.3.6)
TS viwiSi(fi+pwi)[(vi+pwi)-ﬁi(fi+pwi)]
s 3
i (vi+pwi)
2
“1(r1+ro°)r1ro°[Evidi(fi“lil
xi = (3.3.7)
gviéi(rlf1+ro°)[(r1+ro°)'51(r1fi+r0°)]
where
- . -1
£, = OR- (1-8,(1-0R)) ™" .

In the same way the relative efficiency is expressed as the ratio of

(3.3.7) to (3.3.6).
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3.4 Results of Deterministic Evaluations

3.4.1 No Loss from the Matching

For both of the studies, suitable ranges of the values of the
parameters were chosen and substituted in the expressions for RE. In
keeping with the properties of the Pitman éfficiency, the values chosen
to represent the measure of effect (RR and OR) are both in the
neighborhood of the null (1.5 and 2.25). For these analyses, only one
dichotomous (potentially) confounding variable was considered. Nine
distributions of this variable conditioning on index or referent status
were included in the analyses. These distributions are represented by
el(vl) =.1,.2,...,.9 and ¢1(w1) = .1,.2,...,.9.

Additional parameters which were varied in the evaluations repre-
sent the degree of confounding in the population, the level of the
overall disease or exposure probabilities (represented by BO and 60,
respectively), and the referent/index sampling ratio, p. In this sec-
tion the loss of sample size due to matching will be assumed to be
zero. The results of evaluations based upon non-zero loss are pre-
sented in Section 3.4.3.

Some general conclusions can be reached from these evaluations.
First, matching will on the average lead to an expected gain in effi-
ciency over random sampling. Averaging over all levels of confounding
in the population and distributions of the extraneous variable, as well
as considering a range of values for the other parameters, the (geo-
metric) mean gain in efficiency is roughly 15 to 20 percent. This

result is not restricted to either type of study or measure of effect.
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Tables 3.5 through 3.8 summarize these conclusions in the column headed
by "Overall Gain.'" Average gains are calculated by the following for-

mula, representing the follow-up study,

1/81

.9 .9
GAIN = -1 + | [T T RE(8,,¢,)

8,=.1, ¢,=.1

Other average gains or losses reported in this chapter are calculated
in a similar fashion.

Second, there is an important relationship between relative effi-
ciency and the nature of confounding. Like any other bias, confounding
bias may be positive or negative; that is, the bias may result in a
measure of effect which is pushed upward or pulled downward away from
the true value. To distinguish between these two types of bias they
will be referred to as ''positive' and ''negative" confounding. In terms
of the population parameters; positive and negative confounding are
characterized by particular values of the odds ratios which describe
the association between F, the extraneous variable, and exposure and
disease, as defined in Chapter 1. Table 3.1 summarizes the correspon-
dence between these associations and the types of confounding.

The expected relative efficiency is markedly affected by the type
of confounding in the population. (Recall that the control of con-
founding is presumed in these evaluations. The reference to confound-
ing concerns those relationships among the variables which would lead
to confounding, were it not controlled for.) When there is positive
confounding in the population, matching is universally more efficient
than random sampling. This expected gain in efficiency from matching

is not insignificant and can be quite substantial, when there is
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TABLE 3.1 .

Confounding and Associations
Between F, Disease, and Exposure

Associations
Type of
Confounding Follow-up Case-Control -
Positive OREF >1 and ORDF/-E-> 1 OREF/T5> 1 and ORDF/E> 1
or or
OREF <1 and ORDF/-E—< 1 OREF/-D—< 1 and ORDF/E-< 1
i — — —_ <
Negative OREF>'1 and ORDF/E< 1 OREF/D> 1 and ORDF/E 1
or : or
OREF <1 and ORDF JE >1 OREF /ﬁ< 1 and ORDF JE >1
severe positive confounding. On the other hand, when there is negative ‘

confounding in the population, random sampling is generally more effi- -
cient, although to a lesser magnitude. In some cases, if there is severe
negative confounding in the population, matching can lead to a greater
expected efficiercy than random sampling. These distinctions were
noted by Kupper, et al. (1980) and are poftrayed in Figure 3.1.

A third conclusion can be made regarding the referent/index sample
size ratio, p. Contrasting Tables 3.5 and 3.7 to Tables 3.6 and 3.8,
respectively, it is evident that increasing this ratio causes the dis-
tinctions between matching and random sampling to be less pronounced.
In other words, the advantages of matching are more subdued but so are
the disadvantages. The effect of increasing the sampling ratio is
therefore dependent on the direction of confounding. While matching

usually leads to an expected loss in efficiency when there is negative .
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FIGURE 3.1

Regions of Confounding1

region for
NEGATIVE CONFOUNDING

OR..>1 (random sampling more
EF V////’efficientthannmxching)

6,0vy)

\ v

OREF< 1 region for severe

p) NEGATIVE CONFOUNDING
(matching more efficient

than random sampling)

¢1(w1)

region for POSITIVE CONFOUNDING
(matching more efficient than random sampling)

1Note the assumption that ORDF/E¢>1. Also, for a case-control study

OREF is replaced with ORDF and OR with OR

DF/E EF/D"

confounding, inc.easing p from one to three in the context of a case-
control study can turn that expected loss into an expected gain, or at
least a negligible expected loss (see Tables 3.7 and 3.8, column 5).

Fourth, relative efficiency is not a function of the rarity of

the disease in a follow-up study or the probability of exposure in a
case-control study. Although the decision to match may be dependent

on the probability of disease (or exposure), due to small expected cell
frequencies, if matching can indeed be accomplished, the expected gain
over random sampling is quite unrelated to this circumstance. These

results will now be considered in more detail for the follow-up and

case-control studies.



60

3.4.2 Follow-up Study

Deterministic analyses were performed after specifying the para-
meters listed in Table 3.2. The values chosen for these parameters
were considered representative of practical situations in which follow-

up studies would be conducted.

TABLE 3.2

Follow-up Study Parameters

Parameter Values
RR 1.5, 2.25
BO = P(D/EFO) 0.0001, 0.01
61(1-60)
ORDF/E=B—T-1'_B—)— 2.0, 5.0
0 1
%1%
OREF = T (see Table 3.2)
071
p = nl/nO 1 and 3

The summaries in Tables 3.5 and 3.6 average over the OREF values.
More complete results are given in Tables 3.9 to 3.11, which indicate
that the relative efficiency is a complex function of the parameters
listed above. The relationship between the relative efficiency and each
parameter will be considered separately.

Clearly, the most important determinant of RE is the degree of

confounding, as measured by OREF and OR Each of Tables 3.9 to

DF/E"
3.11 displays RE for values of OREF ranging from 1/81 to 81, as
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well as the vélues 2.0 and 5.0 for OR Table 3.3 lists each

DF/E"
of the values of OREF considered. (See alsé Figure 1. Note that
these values are sufficient to characterize conditions for both posi-
tive and negative confounding.) When OREF is moderate to high in
value, RE ranges from 1;5 to 2.0 and from 3.9 to 5.1 for more extreme

values. In addition, RE changes by as much as 10% to 25% by increas-

ing ORDF/E->from 2 to 5 (Tables 3.9 and 3.10).

TABLE 3.3

Values Specified for OREF in a

Follow-up Study and OR in a Case-Control Study

DF

3!
0.1 0.3 0.5 0.7 0.9

0.9 | 81.0 21.0 9.0 3.86 1.0

0.7 } 21.0 5.44 2.33 1.0 0.26
8. 0.5 9.0 2.33 1.0 0.43 0.11

0.3 3.86 1.0 0.43 0.18 0.05

0.1 1.0 0.26 0.11 0.05 0.01

Varying the levels of 80 and p, in general, yields results
which correspond to those reported earlier for both studies. If the
risks of disease increase and p 1is increased, RE decreases when
there is positive confounding and increases when there is negative
confounding. Under the conditions of severe confounding, the impact
of increasing p on RE can be substantial. It should be noted that
most of the influence on RE realized by increasing p occurs from

the increase of p =1 to 2.
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3.4.3 Case-Control Study

The overall results of the evaluations for this design are quite
similar to those of the foliow-up study. Actually RE is a function
of identical parameters, with the exception of the measure of effect
(odds ratio) and the measure of the exposure/confounder association

(0 Table 3.4 lists the parameters which were specified along

REF/EJ'

with the values that were considered

TABLE 3.4

Case-Control Study Parameters1

Parameter Values
OR 1.5, 2.25
60 = P(E/DFO) 0.01, 0.05
EF/D  §,.(1-6,) TEr v
0 1 :
V1%
ORDF =T (see Table 3.2)
071
p = nl/n0 1l and 3
1. The parameter used to measure the

association between F and disease
in a case-control study is

(1-e)v, (1-8 Jwg (1-8,(1-0R))
ORpE/E = TToe Iv. (1=5 Jw. - ORpp * {1-5. (1-0%))
0°°0 1771 1

The primary difference in these specifications relative to those

of the foliow-up study are the levels of the exposure probabilities,
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represented by 60. In practical situations, we should expect exposure
probabilities conditional on disease status to be much ﬁigher than con-
ditional probabilities of disease in follow-up studies.

Tables 3.7 and 3.8 summarize the results of the evaluations. Match-
ing provides a 15% to 25% average expected gain over random sampling
and a 25% to 65% average gain when there is positive confounding in the
population. Losses from matching under the conditions of negative con-
founding range up to 15%. Compared to the follow-up study, matching
seems more likely to result in a gain in efficiency over random sampling
although to a lesser extent.

Tables 3.12 and 3.13 give examples of RE for various values of
the parameters listed in Table 3.4. Most of the discussion in Section
3.4.1a pertains to the case-control study as well. A notable exception
is the parameter '60; Under strong confounding, where OREF/B =5, if
60 is relatively large, then the RE is less extreme than is other-
wise the case. That is, when the exposure probabilities are uniformly
large, the diffecences in efficiency between matching and random samp-
ling are less distinctive.

In summary, matching is a more efficient method of subject selec-
tion in a case-control study when the underlying confounding is positive

(OR >1) or severely negative (ORDF/E-<< 1), when the exposure pro-

DF/E
babilities are small, and when the samplimg ratio, p, is 1. Random
sampling is more efficient when there is moderate negative confounding

and the sampling ratio and exposure probabilities are relatively large.
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3.4.4 Loss Due to Matching

Up until now the results of the relative efficiency evaluations
have presumed that no loss of subjects from the matching process occurred.
For typical epidemiologic studies, however, there is indeed a loss of
subjects from the matching. McKinlay (1974) has documented studies in
which matching was performed and the losses which resulted ranged up to
80%. Since a loss in sample size from matching seems to be certain,
the question which arises is: how much is the loss and how can it be
measured?

Frequency-matching can actually be accomplished in three different
ways: (a) adjusting the index series to correspond to the distribution
of the matching variables in the referent series; (b) adjusting the
referent series to correspond to the index series; and (c) adjusting »
both series in such a way that there 'is correspondence with regard to
the variables of interest. The first method is rarely used since the
index series is usually small and expensive to construct. The second
method (Method B) is more likely to be used when there is a large pool
of referents available and large losses can be absorbed. The advantage
of this method is that the distribution of the matching variables in
the index series is maintained. The third method (Method €) is the
usual method when sample sizes are relatively small, although greater
losses of sample size can occur compared to Method B. In general,
however, this method yields smaller losses in efficiency.

Very little work has been done on the quantification of loss due
to matching. McKinlay (1974) suggested a mafhematical model which

involves the assumption of probability distributions on the matching
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categories of each population. The model leads to estimates of the
expected number of matches and the variance given fixed sample sizes
and a 1:1 matching ratio. Implied in this model is matching according
to Method C. Chase (1968) also derived a model for the number of
matches but a cfitical assumption is necessary regarding the distri-
bution of the outcome variable, rendering his approach less useful.

In this context the quantification of loss is not alone of pri-
mary concern but rather is of secondary concern to how loss relates
to relative efficiency. Therefore, the distributional approach taken
by McKinlay is not necessary in order to provide adequate measures of
loss. Instead, it is sufficient to write the loss in terms of the
population parameters describing the joint distributions of the match-

ing variables. This approach will be accomplished for Methods B and C.

3.4.5 Quantification of Loss

Let us assume with no loss in generality that in a follow-up study,

n, exposed subjects and pn, unexposed subjects will be selected by random

1 1
sampling and then matched. After random sampling the expected number
of exposed and unexposed subjects in the ith stratum of F is nlei
and pny ¢i, respectively. If Method B matching is performed, the
unexposed series will be adjusted to correspond in distribution of F
to the exposed series. Hence, the ratio of the number of exposed to
unexposed subjects will be constant across the strata of F. What

should the value of this ratio be? For the ith stratum of F the

ratio of unexposed subjects to exposed before matching is
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On1¢i ) D¢i

nlei ei

To adjust the unexposed to correspond properly to the exposed series
without sampling additional subjects, the ratio adopted must be the
minimum across the strata. Therefore; unexposed subjects from some
strata will be discarded to bring the ratio in that stratum to the
minimum, which occurs at m%n(¢i/ei). The proportion of referents

1
which are matched is then given by

%
Ty = m}n 7 - (3.4.1)
i i
Since there is no loss of exposed subjects, ry = 1. Note that o< 1

unless ei = ¢i’ Vi'

Under matching by Method C both the exposed and unexposed series
will be adjusted to some artificial distribution across F. The match-
ing process compares the number of exposed subjects and unexposed sub-
jects in each stratum, and discards subjects from the larger cell

until there are equal numbers in the two cells. The number of exposed

(and unexposed) subjects which are matched in the ith stratum is
mln(nlei,pn1¢i) = nl-mln(ei,p¢i)

Therefore, the total number of exposed (and unexposed) subjects matched

are

nl'g m1n(ei,p¢i) .

The proportions of exposed and unexposed subjects which are matched are

given by
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n L min(e.,00.)

T = = = 2 min(6,,p0.) - (3.4.2)
n i
1
n, g min(ei,p¢i) g min(ei’p¢i)
ry = = . (3.3.4)
pnl p

As p grows large, r, 1 and Ty 1/p. Hence, Method C matching
approximates Method B matching under the condition of‘a large sampling
ratio, but with the restriction that the matched samples are the same
size. Since the loss of referents is large under these conditions, it
is preferable to use Method B, which allows for a larger number of
referents to be matched. Under Method C matching, the distribution

of the matching variable, 6, is not maintained by the matching.
Rather, a new distribution, A4, is created which does not correspond

to 8 mnor to ¢, the distribution of the matching variables in the

unexposed. This new distribution is given by

—
min ( 1,p¢1)

A,
1

g min(e,,09.)

An important implication of these methods of quantifying loss is that
the loss of sample size increases with the disparity between ei and
¢i. In Section 3.4.1 where no loss of sample size was presumed, match-
ing was shown to be most advantageous precisely under these conditions.
A natural question to ask is whether the advantages of matching under
no loss are overcome by the substantial loss of sample size experienced
under the conditions described. In the following section results of

deterministic evaluations are presented which address this question.
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3.4.6 Loss of Sample Size and Relative Efficiency

Evaluations of RE under both Method B and Method C quantifica-

tion of loss were conducted substituting the same values of the para-

meters as previously (assuming no loss). Some general conclusions

can be drawn from this work:

(a)

(b)

(c)

Regardless of the choice of matching method (quantification
of loss), if there is confounding, matching is without
exception less efficient than random sampling. The average
and individual gains expected from matching, reported in
Section 3.4.1 are universally reversed when the loss involved
in the matching process is incorporated.

The loss in efficiency from matching increases as confounding
increases despite the fact that the gain in efficiency from
matching-(assuming no loss in sample size) increases with
increasing confounding.

Method B loss in sample size is less than Method C loss; how-
ever, the loss in efficiency is generally greater for Method
B matching (50% on the average) if the sampling ratio is 1.
This disparity almost disappears when the ratio is 3, as the

two methods of matching are essentially identical.

An example of the loss im efficiency which results from matching

when there is a loss in sample size is given in Table 3.14. The
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expected RE 1is given for a case-control study where OR = 1.5, 60 =
O.OS,OREF/E-= 2, p =1, and Method B matéhing is presumed. Corespond-
ing to these results are those of Table 3.12, where the same values of
the parameters are used, but no loss is presumed. A comparison of the
two tables reveals the drastic effect of the loss in sample size on
the relative efficiency. |

If no, loss in sample size is presumed, matching gains an average
of 18.4%. But when loss is incorporated, matching averages a 26.5%
loss in efficiency to random sampling. Note that the reversal is most
extreme where the gain from matching was greatest, at the outer corners
of the table where confounding is strong. This comparison typifies
the general result of incorporating loss of subjects in the study of
relative efficiency: that matching will not compare favorably to ran-

dom sampling.

3.5 Recommendations

Based on the results summarized in this chapter, the choice to
match or to forego matching should be easily made. Generally, regard-
less of the type of study design, matching should be employed if no
loss of sample size will occur. The typical gain in efficiency which
may obtain from the matched design and analysis is worth the risk of a
loss in efficiency. If one can determine a priori the nature of the
confounding (via specific associations involving F, the exposure, and

the disease), then the decision to match is even more clearcut.
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On the other hand, if one can expect to lose sample size from .
the matching, then matching should not be employed as the method of
subject selection.
These recommendations are made with the qualification that only
one variable measured at two levels is the basis of the matching.
Additional matching variables involving increased strata may modify
the considerations involved in choosing one method of subject selec-
‘tion over the other. The evaluation of relative efficiency in the

context of multiple matching variables is the subject of Chapter 5.



Average Gains in Efficiency from Matching:

TABLE 3.5

Follow-up Study, p=1

OR(DF/E) = 2.0
Among Among Positive Negative
RR BO Overall GCains Losses Confounding Confounding
1.5 .0001 18.5% 32.4% - 2.7% 38.4% 5.9%
.01 18.5 32.4 -2 38.5 5.8
2.25 0.0001 18.4  35.5 - 3.6 40.9 3.8
.01 18.3 35.3 - 3.6 40.8 3.7
OR(DF/E) = 5.0
1.5 0.001 16.4% 54.7% -11.9% 57.6% -10.7%
.01 16.3 54.7 -12.1 57.7 -11.0
2.25 0.001 16.0 61.6 -15.0 63.6 -14.6
.01 15.8 60. -14.9 62.7 -14.5
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Average Gains in Efficiency from Matching: ‘

TABLE 3.6

Follow-up Study, o =3

OR(DF/E) = 2.0

72

Among  Among Positive Negative
RR BO Overall Gains Losses Confounding Confounding
1.5 .001 17.3% 24.2% -0.9% 29.3% 10.7%
0.01 17.2 2.1 -0.9 29.2 10.6
2.25 0.0001 20.2 29.0 -1.3 35.4 11.6
.01 20.0 28.8 -1.2 35.0 11.6
OR(DF/E) = 5.0
1.5 0.0001 15.3% 33.8% -4.4% 38.7% -0.6%
.01 15.1 33.4 -4.4 38.3 -0.7
2.25 0.0001 17.6 41.7 -6.1 47.5 -2.3
0.01 17.3 40.6 -5.9 46.2 -2.1




. TABLE 3.7

Average Gains in Efficiency from Matching:
. Case-Control Study, p=1

. OR(EF/D) = 2.0

Among Among . Positive Negative
OR 60 Overall Gains Losses Confounding Confounding
1.5 0.01 18.5% 31.6% -2.5% 38.5% 6.3%
0.05 18.5 29.9 -1.9 - 35.5
2.25 0.01 18.4 34.3 -3.2 39.8 4.6
0.05 18.4 29.7 -2.1 35.5 7.9
OR(EF/D) = 5.0
1.5 0.01 16.6% 51.6% -10.9% 55.6% - 9.3%
‘ 0.05 17.2  41.4 - 6.7 47.2 - 2.9
) 2.5 0.01 16.3 56.2 -13.0 59.4 -11.9
0.05 17.1 39.9 - 5.6 44 .4 - 1.3
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TABLE 3.8

Average Gains in Efficiency from Matching: ‘
Case-Control Study, p=3

OR(EF/D) = 2.0

Among Among Positive Negative
OR 60 Overall Gains Losses Confounding Confounding
1.5 0.01 17.2% 24.1% -0.8% 28.8% 10.9%
0.05 16.8 27.3  -0.6 26.8 11.9
2.25 0.01 19.9 28.1 -1.1 34.2 12.1
0.05 18.9 2.2  -0.7 29.8 13.8
OR(EF/D) = 5.0
1.5 0.01 15.3% 32.2% -3.8% 37.1% 0.5%
0.05 15.1 25.5 -2.0 30.8 4.9
2.25 0.01 17.4 37.6 -4.9 43.8 -0.2
0.05 16.5 25.8 -1.5 30.9 7.7




TABLE 3.9

Relative Efficiency of Matching and Random Sampiing:
Follow-up Study

(RR=1.5 , 80=0.0001, p=1, ORDF/E-=2)
¢1
0.1 0.3 0.5 0.7 0.9
0.9 3.71 1.87 1.35 1.12 1.0
0.7 2.15 1.39 1.12 1.0 0.97
61 0.5 1.55 1.14 1.0 0.96 ~1.0
0.3 1.21 1.0 0.96 ~1.0 1.14
0.1 1.0 ~1.0 1.12 1.36 1.93
Mean Gain (Positive Conf.) = 38.4%
Mean Gain (Negative Conf.) = 5.9%
Mean Overall Gain = 18.5%
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Relative Efficiency of Matching and Random Sampling:

TABLE 3.10

Follow-up Study

(RR=2.25 , BO=0.01 , p=1, ORDF/E=5)
41
0.1 0.3 0.5 0.7 0.9
0.9 5.04 2.16 1.47 1.17 1.0
0.7 3.21 1.65 1.20 1.0 0.89
61 0.5 2.23 1.29 1.0 0.87 0.81
0.3 1.53 1.0 0.84 0.79 0.76
0.1 1.0 0.85 0.86 0.92 1.02
Mean Gain (Positive Conf.) = 62.7%
Mean Gain (Negative Conf.) = -14.5%
Mean Overall Gain = 15.8%
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TABLE 3.11

Relative Efficiency of Marching and Random Sampling:
Follow-up Study

(RR=2.25 , BO=0.01 , =3, 0RDF/§= 5)
d>1
0.1 0.3 0.5 0.7 0.9
0.9 3.90 1.77 1.31 1.11 1.0
0.7 2.77 1.45 1.13 1.0 0.95
8, 0.5 1.99 1.20 1.0 0.93 0.93
0.3 1.40 1.0 0.92 0.92 0.99
0.1 1.0 0.94 ~1.0 1.15 1.50
Mean Gain (Positive Conf.) = 46.2%
Mean Gain (Negative Canf.) = -2.1%
Mean Overall Gain = 17.3%



TABLE 3.12

Relative Efficiency of Matching and Random Sampling:

Case-Control Study

(OR=1.5 , 60‘=O.05 », =1, OREF/—D-=2)
"1
0.1 0.3 0.5 0.7 0.9
0.9 3.84 1,96 1.39° 1.13 1.0
0.7 | 2.15 1.41 1.13 1.0 0.96
vy 0.5 1.55 1.14 1.0 0.95 0.97
0.3 1.21 1.0 0.95 0.98 1.08
0.1 1.0 ~1.0 1.11 1.36 1.85
Mean Gain (Positive Conf.) = 35.5%
Mean Gain (Negative Conf.) = 8.3%

Mean Overall Gain

18.5%
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TABLE 3.13

Relative Efficiency of Matching and Random Sampling:
Case-Control Study

(OR=2.25, 6.=0.01 , p=1, OREF/B=5)

0
1
0.1 0.3 0.5 0.7 0.9
0.9 4.86 2.13 1.46 1.16 1.0
0.7 3.05 1.62 1.19 1.0 0.90
vy 0.5 2.12 1.27 1.0 0.88 0.83
0.3 1.49 1.0 0.86 0.81 0.80
0.1 1.0 0.87 0.90 0.98 1.12
Mean Gain (Positive Conf.) = 59.4%
Mean Gain (Negative Conf.) = -11.9%
Mean Overall Gain = 16.3%
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TABLE 3.14

Relative Efficiency of Matching and Random Sampling:
Case-Control Study,

Loss of Sample Size from Matching: Method B

(OR=1.5, 8,=0.05, p=1, ORg&=2)
"1

0.1 0.3 0.5 0.7 0.9
0.9 0.57  0.68 0.77  0.88 1.0
0.7 0.62  0.72 0.85 1.0 0.86
v, 0.5 0.72  0.83 1.0 0.84 0.74
0.3 0.83 1.0 0.82  0.70 0.62
0.1 1.0 0.83 0.72  0.63 0.54

Mean Gain (Positive Conf.) -26.0%

Mean Gain (Negative Conf.) -27.8%

Mean Overall Gain = -26.5%



CHAPTER 4

VALIDITY AND MULTIPLE CONFOUNDING VARIABLES

4.1 Introduction

A large portion of the methodologic research on confounding and
matching in epidemiologic studies has concerned only the most elemen-
tary situation, that which involves asingle, potentially confounding
variable. Even so, the limits to which this situation can be
researched have not yet been reached. And, despite the elementary
nature of the case of one confounding variable, analytical solutions
to many of the problems under study do not exist. For these reasons,
among others, the consideration of multiple confounding variables has
mostly been ignored or limited to numerical studies.

However, the control of multiple confounding variables is an
important issue since most epidemiologic studies require the control
of from two to five potentially confounding variables (Billewicz,
1964). While the research concerning a single confounder is not
irrelevent to the question of multiple confounders, Miettinen (1974)
has correctly warned that the failure to find confounding or effect
modification from the study of the marginal relationships alone can
mask the presence of either or both phenomenon, when the joint rela-

tionships are considered. Kleinbaum, et al. (1979) show by example
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the results of the failure to adjust for multiple variables simultan-
eously, as well as the complexities involved in doing so. In addition,
Fisher and Patil (1974) attempt to convey this principle through some
artificial numerical examples.

The topic of validity in the context of a single confounding vari-
able has been quite thoroughly researched by Miettinen (1974) and
Kupper, et al. (1979). In this chapter the characterization of con-
founding is extended to multiple (potentially) confounding variables.
In particular, conditions for no confounding are developed involving
two extraneous variables. Two approaches are utilized: 1) comparisons
of crude and adjusted measures of effect, and 2) a regression formula-
tion of risk as a function of the extraneous variables and exposure.
These investigations suggest that the accepted definition of a con-
founding variable (Chapter 1) breaks down when there are multiple extra-
neous variables considered simultaneously.

The implications of matching on the control of confounding, espe-
cially with resrect to case-control studies are also considered in
this chapter. There remains controversy over the proper analysis of
matched data, for validity purposes, in a case-control study (see
Kupper, et al., 1980). The results in this chapter‘show that, in
practice, stratification need not follow matching when the matching
variables include all of the confounding variables. If there are con-
fouhders which have not been matched on, however, stratification will
usually be required on the matching variables as well as the other
confounders.

Finally, the mixture of the effects of confounding and effect

modification are investigated in this chapter. The apparent presence
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of effect modification, when there is in fact uniformity of effect,
can result from the failure to control for a confounding variable. An

example of this phenomenon is presented.

4.2 Validity and Multiple Confounding Variables

The concept of confounding grows more elusive as additional vari-
ables are introduced. Before studying the nature of confounding in
the context of multiple variables, it would be helpful to develop some
definitions.

First, if there is confounding due to two or more variables
simultaneously, this will be called igigﬁ_confounding. Marginal con-
founding will be described by confounding due to a single variable
based upon the marginal distributions of that variable, disease, and
exposure. The conditions for no confounding outlined by (1.3.2a) and
(1.3.2b) are those for no marginal confounding. A third type of con-
founding, which will be considered in more detail in a later section,
is residual confounding. An apt description of this type of confound-
ing is the "left-over" confounding due to a variable G after adjust-

ing for other variables.

4.2.1 Follow-up Study: Conditions for No Confounding

Consider a study which involves k (potentially) confounding
variables. The follow-up parameters defined in Chapter 1 represent
this extension, where i =1,...,L and L denotes the total number
of joint levels of the k confounders. The stratum-specific and

~expected cell frequencies do not change from those in Table 1.1.
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The conditions for no joint confounding in this context can be
derived directly from (1.3.2.3). If the joint distribution of the k
confounders among the exposed (6, i = 1,...,L) is the standard, then

there is no confounding if:

CRR = sRR <=>

which can be expressed as

L-1 L-1 L-1
g Bi(ei'¢i) + BL[]-‘ zei‘ [1- :}L:(I)l” = 0 ) or
L-1
g (B, - 88, -¢.) =0 . (4.2.1)

The number of solutions to (4.2.1) is infinite, however, there are

a few which are of special interest. There is no confounding if either:

(a) 8; = B

<
[
i

1,...,L-1
or

() 6, =¢., Vi=1,...,L1. (4.2.2)

These conditions are direct extensions of the conditions for no con-
founding for the single confounder case. Condition (a) can be inter-
preted as ''the risk of disease among all subcategories of the unexposed
is uniform." Condition (b) implies that the distribution of F is

independent of exposure status.
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By introducing additional levels to the confounding variable (or,
equivalently, additional variables) the conditions outlined by (4.2.2)
are now sufficient but not necessary for no confounding. An endless
variety of conditions that meet (4.2.1) could be imagined. From the
point of view of controlling confounding, however, the lack of the
necessity of (4.2.2) is unimportant. Matching on F (or the joint
distribution of multiple extraneous variables) will indeed control
confounding in a follow-up study by meeting (4.2.2b). Since the match-
ing replaces the ¢i's by the Gi's in the analysis, a crude analysis

yields the sRR.

4.2.2 Case-Control Study: Conditions for No Confounding

Extending the conditions for no confounding from one dichotomous
confounder to L levels proceeds in the same manner as the follow-up
study. For the case of L categories, there is no confounding if:

zeivi}(E(L'si)wi} [g Eivi]

cOR = sOR <=> [1 =

(ESiwi][g(l-ei)vi] ) (1-e;)v,8,; 7

or

i LTS,
(1-€.)v.8, [Z5iwi][z(l°ei)vi]
i77i0i 1 i
5. > OF
i z(l—ﬁi)wi

i
(l—si)viéi .
[E(I-Gi)wi][g ——Titszj——i = (§Giwil{§(l-ei)vi] , or

(l-ei)viSi (l—ai)viGi
% -5, (gﬁiwi} g 1-3. = {Zéiwi}(z(l'ai)vi] > Of

1 1 1
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(l—ei)viﬁi (1-€i)vi i
LTI, Pi:‘slwl] g{(l_ei)vi+ a5 }
25 1 (l—Ei)vi
= W
[i 1 1] i -5
Therefore,
(l—ei)v1
EI:—T-_S_].—- (ai - }ijsiwi] =0 . (4.2.3)

We can identify two conditions from this expression which will

imply no confounding:

or
(1-e.)v,
(b) (1_6'1)_w—1 = C, a constant, Vi= 1’ e ,L . (4.2_4)
i1

Note that these conditions carry over directly from the conditions for
no confounding in the single confounder setting (Chapter 1). Condi-
tion (a) is interpreted as 'the probability of exposure among all sub-
categories of the controls is uniform." Condition (b) implies that
"the ratio of the joint probability of non-exposure and the ith level
of F conditional on disease to the joint probability of the same
event conditional on non-disease is uniform across all strata of F."
In other words condition (b) states that the joint distributions of
exposure and F conditional on case status and control status are |
identical. These conditions will be considered in more detail for the

case of two dichotomous confounding variables.
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Again (4.2.4a) and (4.2.4b) are not necessary for (4.2.3) to/hold.
However, as discussed in the context of the follow-up study, such non-
necessity is irrelevent from the point of view of controlling confound-
ing. With regard to matching in case-control studies, it is clear that
neither of the conditions of (4.2.4) can be met by matching. Since

matching replaces the wi's with the vi's, (4.2.4b) reduces to

O T LA
W—C, 1=1,..., .

If uniformity of the odds ratio is assumed, then (b)' reduces to
(B (148, (1-0R) T =c, Vi=l,...L

which cannot hold unless (a) holds. Only if the Gi's and OR are

"small" will (b)'' be true, and then only in an approximate sense.

4.2.3 Two Confounding Variables

It is usefr"l to put the discussion in the preceding section into
the context of two dichotomous confounding variables, F and G. The
notation is altered by adding the subscript j to the parameters
defined in Chapter 1, for example, aij = P(D/EFiGj) and eij =

P(FiGj/E). Expression (4.3.2) is now written as:

(a) Bij =8 ¥(i,j); (b) eij=¢ij V(i,j) . (4.2.5)

Similarly, for the case-control study (4.3.3) is written as:

(@) §..=6 V(i,j); (b) — BT3¢ ovi,p) . 4.2.6)
j
(1-8 .)w.j
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Expressions (4.3.5) and (4.3.6) can be rewritten in terms of odds

ratios as follows:

(a)

(b)

(<)

and

(d)

where

B =8, V(i,3) =>

913 =¢ij’ V(i,j) => 1

§,.=6, V(i,j) => |

1)

(

\

=C

ORDF/EGJ. =

ORDG/E'Fi =

»

V(i,j) => OR

(1-€1j)v1j(1-60j)w0j

>

(1—51j)w1j(1-80j)voj

(1-€;7)v;, (18, 5)ws

(1-6;,)wy (-€.4)v4y

ro el.d)o.
Rer/cG 715%0;
o %i1%i0
REG/Fl ¢ile 0

{ Blo(l_Bo')
OR - = =1, j:O’]_
DF/EG. .(1-8..
/EG, "By (T8,
B.,(1-B.,)
OR = il i0 .
DG/EF. = =1, i=0,1
L i Bi(I-8;p)

=1, j=0,1
1, i=0,1
.)
01" -1, 5=0,1
1j)
i0) _

DF/ECj==0RDG/EFi= 1, ¥v(i,3)

j=0,1 .

i=0,1

(4.2.7)

(4.2.8)

(4.2.9)

(4.2.10)

Sufficient conditions for no (joint) confounding in the case of

two confounders are now apparent for both types of studies.

In a

follow-up study there is no confounding if disease is unrelated to
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both F and G conditional on non-exposure and Gj’ in the case of

F, and Fi’ in the case of G. Alternatively, if exposure is

unrelated to both F and G conditional on Gj and Fi’ respec-
tively, then there is no joint confounding. Each of these conditions
must obtain at both levels of the conditioning variables, F and G.
For the case-control study the same relationships must hold except
that the exposure association must be conditional further or non-
disease. Table 4.1 summarizes these results.

Note that no conclusions regarding confounding are made for the
case where one of F and G is (conditionally) unrelated to disease
and the other is unrelated to exposure but neither F nor G is
unrelated to both exposure and disease. In Section 4.3.5 this
case is further evaluated by a regression formulation of no
confounding.

The conditioning of the associations on particular levels of the
confounding variables is extremely important. The relationships (or
lack of) betweer disease and F, for example, and exposure and F
must be conditioned on particular levels of G, the other confounder,
as well as E or D, as the case may be. With the introduction of
a second extraneous variable G into the design, all of the previous
conditions for no confounding must now obtain at each of the particular
levels of G. This principle applies to both the exposure/confounder
and disease/confounder relationships, outlined by (4.2.7 - 4.2.10).
Hence, the former conditions for no confounding which, in effect,
measure relationships after pooling over the second extraneous variable
will not suffice and indeed may mislead concerning the actual nature of

confounding in the data.
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An example regarding the misleading conclusions which may be
reached when considering only the marginal associations-is given below.
Let the two tables in Example .1 represent the joint distributions of F

and G conditional on E and E in a follow-up study.

Example 1
%5 Fp Fy 55 Fi o Fo
G, | -05| .35 | .4 G, | .25 | .15 | .4
Gy | 25 | .35 | .6 Gy | 05 | .55 | .6
3 .7 3 7

In this case both marginal distributions agree but the joint distribu-
tions clearly do not, and there is potential confounding. In fact, if
the stratum-specific RR's and B8's are defined as below, then there

over a 20% bias due to confounding.

Bij F1 F0
G1 0.01 | 0.002 Let RRij = 2.5, V(i,j3)
GO 0.005 | 0.001 => sRR = 2.5
R
L. 1 i)
o i . 0.00286 -
cRR EZB sRR = 500360 (2.5) 1.986
( ij 13]
o i _ SRR - cRR _0.514 _ o
% bias = —RR x 100 = 55 = 20.6%

The principle of evaluating the confounding property of an extra-
neous variable by conditioning on other known or suspected confounders

has not been suggested in the literature, except by Fisher and Patil
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(1974), who, nevertheless, do not fully identify the extent of condition-
ing necessary. Miettinen (1974), in a companion paper to Fisher and
Patil's, argues that the marginal associations are sufficient to evalu-
ate confounding and that rarely will the conditional associations
reveal confounding when the margiﬂal associations do not. Whether or
not this is true in practice, Example 1 indicates the danger of follow-
ing this reasoning.

Fisher and Patil's work advocates that "relatedness' between F
and exposure in a case-control study be evaluated conditional on G
but not on non-disease. In that regard an implicit "rare disease"
assumption must be made in order that confounding be properly evaluated.
Also, the exposure F relationship in a case-control study is pre-
sumably measured by pooling over cases and controls. In fact, this
association cannot be properly measured unless the sampling ratio
(p = nl/no) and the prevalence, P(D), are known and taken into
account. Even if known, unless the disease is rare, a serious error
can be made by ~valuating this association. The example which follows

is an illustration of such an error.

In a case-control study the association between E and F condi- '

tional on Gj’ j = 0,1 can be measured by the odds ratio, OREF/G
j

defined below.
P(EFl/Gj)- P(EFO/Gj) P(EFIGj)- P(EFOGj)

OR = = —
EF/Gj P(EFO/Gj) 'P(EPI/Cj) P(EFOGj). P(EFIG;T

[(l-elj)vle+(1—61j)w1j(I-Y)][€OjV0jY+60jw0j(1_Y)I

(4.3.11)

where Yy = P(D)
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Consider the following example where there is no confounding (and no

effect modification).

Examgle 2

Stratum V.. W.. £.. §.. OR. .
ij ij ij ij ij

(1,1) '0.40  0.05

(1,0) 0.45 0.10
0.40 0.16 3.5

(0,1) 0.05 0.50

(0,0) 0.10 0.45

Also let vy = 0.20
Substituting into (4.2.11)

= 2.34 and OR =1.93

OR
EF/G1 EF/GO

But if conditioning on D as well, then

or — =070
EF/D6, ~ §,,(18,,)
and
ORgp /e - 200000
0" T 05,y "

On the basis of (4.2.11) one might have concluded wrongly that F was
a potential confounder and considered adjustment for F in the analy-

sis. (Indeed, F would have been classified a confounder since

ORDF/EC = ORD =, = 64). Other examples can be constructed in which
1 F/EGO

misleading notions regarding confounding are given by (4.2.11).
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Examination of this criterion more closely under the assumption
that the disease in question is rare reveals that (4.2.11) is not an
unreasonable measure for the exposure/confounder association. Note

that as Yy + 0, then

OREF/Gj M OREF/Bbj ,
and

OREG/Fi ” OREG/BFi

Fisher and Patil are correct in suggesting that 'relatedness"
between a variable and exposure or disease should be evaluated condi-
tional on other known or suspected confounders. Unfortunately, they

choose to measure OR by pooling cell frequencies over D and

EF/Gj
D. By doing so they not only fail to take into consideration the pre-
valence but also the sampling ratio. Only if the sample sizes are
equal and the prevalence is small will their suggested criterion for
confounding be valid. Rather than resurrecting a correct assessment

of OREF/G , etc., the expressions developed in this section should

be adopted instead.

4.2.4 No Interaction Between the ConfoundingﬁVariables

In a subsequent section of this chapter and in the next chapter,
it will be of interest to consider the implications of imposing the
restrictions of no interaction between F and G on exposure and
disease. In this section conditions for no interaction between F
and G are described in terms of equalities between odds ratios.

The particular odds ratios representing associations between the
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extraneous variables and exposure (or disease) are chosen primarily for

their convenient application in later analyses.

In a follow-up study no interaction between F and G on expo-

sure is expressed as ORFG/E = ORFG/E“ or

e-11600 _ ¢)11(1)00

- > (4
%1%0 ®10%01
which can also be expressed as OREF/Gl = OREF/GO’ or
®11%1 _ ®10%0 “
801211 %00%10
01711 00710
and as OREG/Fl = OREG/FO’ or
81,0 0,519
11710 _ 01700 (4

: 610¢11 600¢01
With regard to disease no interaction between‘ F and G can
expressed as OR _ = =0 =. , OT
®or/E6, = “FoF/EG,

Bi1(1-Bp1)  Bio(1-Byp)

= ) (4
Bor(1-B11) By (1-Byp)
which can also be expressed as ORDG/EFI = ORDG/EFQ’ or
B1(1-B19)  Bpy (1-85p) “

810(1'611) i 800(1'801)

In a case-control study no interaction between F and G on

exposure implies that OREF/BCI = OREF/BCO’ or

’11(1-0g))  919(1-85¢)
801119110 Spo1-91¢)

(4

.2.12)

.2.13)

.2.14)

be

.2.15)

.2.16)

.2.17)
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or, equivalently that OREG/BF = or
_ 1

OREG/BFO’

310-810) 851 (1840)

= . (4.2.18)
81018110 Spo(1-8¢y)
No interaction between F and G on disease is represented by
ORor/Ee, = Ror/EG,
(1-€19)vq; (1091 )Wy (1-€,0)V3¢(1-999)%gg (4.2.19)
(1-0; Wy (A-€gpdVor — (1-819)%10 (-840 Voo
or, equivalently by ORDG/EF1= ORDG/EFO
(1-e..)v_ . (1-3, Jw (1-e,,)v,, (1-6 . Jw
117 '11 107 710 01° 01 00" 00 (4.2.20)

(1-8; Jwy (T-e )V (-84 dwWg, (1-800)Veg

4.2.5 Regression Formulation of No Confounding

The conditions for no joint confounding can also be described by
a multiple regression model for the risk of disease. Miettinen and
Cook (1980) considered a model which expressed the risk of disease as
a linear functicn of exposure and a single extraneous (potentially con-
founding) variable. In this section a similar model involving two
potential confounding variables is developed. This model is not pre-
sented as the preferred model for describing the relationship between
the risk of disease and exposure while incorporating other risk fac-
tors, but rather as a useful tool in which to clarify the concept of
confounding as it involves multiple (potentially) confounding vari-
ables. The discussion is again limited in extent to dichotomous

disease (D), exposure (E), and extraneous variables (F and G).
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Let E, F, and G be indicator variables such that

1 if k=1 (exposure)

Ek =
0 if k=0 (non-exposure)
1 if i=1 1 if j=1
F.1 = G, = .
0 if i=0 J o if j=0

The conditional probability of exposure, p(El/FiGj) can be written as
P(El/FiGj) = a-+bF1-+ch (4.2.21)

where a, b, and c¢ are regression parameters, and p(El/FiGj) can
be considered the expected value of E conditional on Fi and Gj'

In addition, the expected value of D conditional on Fi’ Gj and

E P(D/EiGjE is formulated in terms of the following regression

k!

model

"

P(D/FiGjEk) = Y0-+Y1Fi-+Y2Gj-+BEk (4.2.22)
where YO’ Yl’ Y2’ and R are regression parameters.

Both (4.2.21) and (4.2.22) assume that there is no interaction between

F and G with respect to exposure and disease (Section 4.3.4).
Attention is focused on B in (4.2.22), the regression parameter

which relates the risk of disease to exposure, in terms of the risk

difference. Note that

P(D/ElFiGj)-P(D/EOFiGj) Y0-+Y1Fi-+yzcj-+8

B, ¥(i,j)
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Hence, B represents the uniform stratum-specific risk difference,

RDij' There is no confounding if the expected cRD is equivalent to

B. The cRD 1is now examined with respect to parameters of (4.2.21)

and (4.2.22). First, let

nij = P(FiGj) , the unconditional joint distribution of F

and G .
Then

cRD

P(D/E;) - P(D/Ey)

P(DE,)  P(DEy)
- P(E) ~ P(E

o)

Now,

P(E, ) zz P(El/FiGj)-P(FiGj)
ij

(a+b+c)n11-+(a+b)ﬂ10-+(a+c)n01-+aﬂ00

a+b(m  +m ) +elm, +my)

P(DEl)

1]

= (Vg * ¥+ Y, + 8) (avbrc)T ) + (v, + v, + B) (a+D)T

and,

-1
[P(El)-P(EO)] {P(DEI)-P(EO)- P(DEO)°P(E1)} .

g% P(DElFiGj) = zz P(D/ElFiGj)-P(El/FiGj)-P(FiGj)

(4.2.23)



P(ED,) §§ P(DEOFiGj) = g% P(DEOFiGj)-P(EO/FiGj)-P(FiGj)

(YO-+Y1-+Y2)(1-a-b-C)v11-+(Y0-+Y1)(1-a-b)v10
+ (Y0-+Y2)(1-a—c)ﬂ01-+YO(1-a)ﬂ00 .
The term in brackets in (4.2.23) is now
[(rg*Y,*Y,+8) (a+b+e)m  + (v +y) +8) (asb)m o+ (Y +v,+B) (a+e) Ty,
+(vy+B)a-m,,1 (1-9)
-[0rg*Y *Y,) (T-a-b-c)m ; + (v +y ) (T-a-b)m o+ (Y +Y,) (1-a-c)my,
+Y(1-2)my 0
[Crg+B) (a+b(my  +m, o) +c (M +m ) ) +y, (a+D) (), +m, )
Y, (@re) (M +my ) +m (v e+y,0) ] (1-9)
~[=¥p(avb(m  +1) ()we(m +m01))=y; (a+b) () +m )=y (ave) (), +7)))
oYy (M) 1+ )Y (¥ ) =T g (Y evy D) IV
[Crg*BYp+y, (a+d) () +m () +y, (a+e) (my +my, )
+ (v e+y,b)m 1 (1-9)
-[vo (1-¥) +y, (1-a-b) () +m, () +y, (1-a-c) () +T0) )

- (Y1C+Y2b)ﬂ11]w

99
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=Bw(1-w)+Y1((a+b)(1—w)rw(1-a-b))(w11+ﬂ10)
+Y2((a+0)(1-w)-w(1-a-C))(ﬂ11+ﬂ01)
+(Y1C+Y2b)(Wll(l-W)-W11¢)

#Swfl-w)+¥1(a+b-w)(ﬂ11+ﬂ10)+Y2(a+c—W)(ﬂ11+ﬂ01)
RSP POLIES

And, since

a+b-y = a+b - (a+b(1r11+1r10) + c(n11+1r01))
= b(my1*Mge) = €(M11*Tg1)
and,
a+c-y = a+c - (a+b(1r11+1r10) + C(TT11+TT01))

= el 0" Moo) ~ P (M 1* o)

P(DE, ) +P (Eq) -P(DEQ) *P(E;) =BY (1-9)+v, (b (g, 7 0)-c My #m1)) (71 #1 )
#Y, (e (T 4*0g) =D (T *113) (1 * Moy
+ 1 (Y, C+Y,b)
= BY(1-9)+y, b () +1, ) (Mg +Tg )

Y, (M 147090 (T 9*Too)

+(y1c+yzb){1r11—(1r11+1r01) (n11+1r10)} (4.2.24)
The expression in brackets reduces to
m13"T117 017107 "M01™0 = "11™00 01 10 (4.2.25)

the cross-products difference, which can also be written as
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™™, T
1100
m_.m,  (OR,.-1) , where OF_ 6 = — .
01 10" FG FG T10™01

Therefore, dividing (4.2.24) by ¢(1-y) and substituting (4.2.25),

the expression (4.2.23) for the cRD becomes

Y DOy M ) (1= =Ty 0)  Ype(my g #mgy ) (1= -Tgy)

cRD TRy * Sa-p)

i

2 +

(v, €+Y,0) g, T o (ORpg-1)
y(1-y)

+

B+ £(Y,Y,,b,¢,0Rp,TLY) (4.2.26)

The regression parameters, b and c, represent measures of con-
ditional association between F and E, and G and E, respectively.
The condition: b =0, can be interpreted as ''mo association between F
and E conditional on G," and likewise for the condition: c¢=0. In
addition, Yl and YZ represent measures of conditional association
between F and D, and G and D, respectively. If Y, =0, then
there is '"no association between F and D conditional on E and
G," and likewise for Y2'=0-

The function, f(*), reveals the complex nature of joint confound-
ing when more than one extraneous variable is involved. There is no
confounding if £(°) = 0. No necessary and sufficient conditions for
no confounding are implied by f£(¢) = 0. Indeed, it is apparent that
the presence or absence of confounding is dependent not only on the
relationships of each extraneous variable to exposure and disease but

also on their intercorrelation.
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If one can assume that F and G are independent (O 1),

Rg =
then there is no confounding if one of the following cohditions is
met:
(a) b=0 and c=0 = OREF/G = OREG/F =1 (which agrees with
(4.2.8)),
(b) YT 0 and Yy = 0 = ORDF/EG = ORDG/EF =1 (which agrees
with (4.2.7)), or

(c) either y1=0 and ¢c=0 or y2=0 and b=0,

=> ORDF/EG= 1 and OREG/F==1, or ORDG/EF:=1 and OREF/G=

That is, if F and G are independent, then there is no confounding if
each variable is unrelated to either exposure or disease. This state-
ment of no confounding resembles the prevailing description of a non-
confounder. However, that description breaks down when a second con-
founder which is correlated to the first is introduced. In that cir-

cumstance there may still be confounding even though each variable

meets the individual requirements for no confounding.

As a result not only must the relationships between a potential
confounder and exposure and disease be evaluated but also relationships
between that variable and other known confounders must be evaluated, in
order to properly characterize the confounding potential of a variable.

Expression (4.2.26) provides additional insight into the nature of
confounding. The direction of confounding is determined by the 'direc-
tion" of the confounder as well as the direction of the F-G associa-
tion. A confounder can be called "positive'" if it is directly (or,
inversely) associated with both D and E. Otherwise, it can be

called a '"negative" confounder. If Yy 2 0 and b > 0, which implies

1
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Ylb > 0, then F is a '"positive'" confounder, and the confounding
associated with F is positive. If y, >0 and b< 0 or Yy, <0
and b > 0, then ylb < 0 and the confounding associated with F is
negative. Of course, the other factor G must be considered; they
cannot be treated in isolation unless they are independent.

Another factor which affects the strength of the confounding is
the marginal distributions of F and G (represented by (ﬂ11+ ﬂlo)
and (ﬂ11-+ﬂ01), respectively). When the marginal distribution of F
is skewed, the strength of the confounding due to that variable is
diminished. Confounding is maximized with respect to each marginal

distribution as p - 0.5, where p =T (or ﬂ11-+ﬂ01), or as

11" "0
the distribution becomes more uniform. An implication of this result
is that control for a variable which otherwise meets all of the

requirements for a confounder may not be necessary if that variable

is highly skewed in distribution.

4.3 Residual C.nfounding

The discussion leading up to this section has concerned the con-
cepts of "joint" and 'marginal" confounding. The addition of a second
extraneous variable to the scenario requires that the conditions for
no confounding (marginally) hold at each level of each of the other
confounders for there to be no (joint) confounding. However, even
these conditions may not be sufficient for no confounding. In certain
circumstances the extraneous variables may also have to be independent

for there to be no confounding.
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The developments of this chapter do not lead to a completely
satisfactory description of confounding on a variable-by-variable basis.
Only if the confounding effects of all other extraneous variables are
removed, can the confounding potential of a particular variable be stu-
died. In this regard a question which may arise is, as follows: if
adjustment for the confounding effects of F is made, what are the con-
ditions for no additional confounding due to G? In other words, what

are the conditions for no '"residual' confounding?

4.3.1 Follow-up Study

Let RR. be the risk ratio adjusted for F marginally and RR

F F,G
be the risk ratio adjusted for F and G. There is no residual con-
founding due to G if RRF = RRF G If the adjustments are internal

3
standardizations, then RRF G equals sRR and RRF is given by:

RRp, = [gaiei]/[§siei]

where
a..0..+a..6
_ il17il 7i0"i0 _
@ = 5.8, = P(D/EF,)
il 710
B.. 0. +8. b. 3
Bi - 11¢11+¢10 i0 - P(D/EFi) ,
i1 710
and
8; = 951 % %0 = P(F,/E)
11911*%0 101
Zz lJ ij E|-_0‘ B, +a, _{ +e )
RR -RR_ = 1] _i il 7i0
F.G~ T F B. 0. +B. 0. ’
1 22313 i Z[ 117i1° "i0 10](6 9. )
il 951950 i1 10

or
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. ¢ ¢ l (6..+40..)
- 119117 10 10 - il "i0
22Bl] ij Z +¢io (6i1+610) §§81j¢ij (¢11+¢i0)

i 11

which can be expressed as,

(911+e )
1835 \%5 15 T "
or
o 951910%51%0] I8 8:1010-011%50] _ .
i 65*50 10 65,4950 |
or . ]
0..6..-0. 6.
Y (B:1-B:n) il1710 307ilf _ o (4.3.1)
e NIRRT

\

An endless number of solutions to (4.3.1) can be derived; however,
the following solutions are of special interest and interpretation.

Expression (4.3.1) will hold if:

(a) 38 = BiO’ i =0,1 == OR = =1, i=0,1

il DG/EFi

ORI)G/'E'F1
Ree/r, ~*

ORe . /EF .
OR

(€) By =By and 85,800 = 8poP01 =>{

or

(d) 801 = 800 E.E 611¢10 = 610(1)11 =>{ 1 (4.3.2)
EG/F1 -

Hence, there is no residual confounding due to G in a follow-up

study if either:

(a) there is no association between G and disease conditional

on E and F (OR =1, i=0,1);

GD/EF,
1
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(b) there is no association between G and exposure conditional

on F (OR =1, i=0,1); or

GE/Fi

(c) at each level of F (conditional on F) there is either no

association between G and disease conditional on E or no

association between G and exposure (OR 1,

e = QR =
GD/EFi EG/Fk
i#k%k=0,1).

In other words there is no residual confounding due to a variable G

if, conditional on any other confounder, G 1is either unrelated to

disease (conditional on non-exposure) or unrelated to exposure.
Furthermore, if G is unrelated to either exposure or disease at each
level of F, then there is no residual confounding due to G. To be
concise if G if independent of either disease or exposure at every
level of F, then there will be no confounding due to G. The above
conditions are sufficient for no confounding but not necessary.

From earlier results in this chapter it is clear that conditions

for no residual confounding can but will not necessarily lead to condi-

tions for no joint confounding. Indeed, sufficient conditions for no
residual confounding due to F and also do to G may not lead to suf-
ficient conditions for no joint confounding. The empty cells in

Table 4.1 represent the unknown state of nature with regard to joint
confounding when there is no residual confounding. The following

example demonstrates this phenomenon.

Example 3
Let the parameters for a follow-up study Bij’ eij’ and ¢ij be

defined as below. The parameter aij is defined by aij = RR*Bij,
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. where RR is the uniform, stratum-specific risk ratio.
! Stratum Bij eij ¢ij
(1,1) 0.003 0.45 0.19
) (1,0) 0.003 0.15 0.26
(0,1) 0.0005 0.10 0.04
(0,0) 0.0005 0.30 0.51
Now,

118,
joij
-[—L——]--sRR = 0.002_ pR = (1.231) SRR ,

0.001625
[22613 13]

which implies a 23.1% upward bias due to confounding.

Note, however, that

0.95, j

It
[o—y

OF . .,= =1, i=0,1 and O =
DG/EF, Rer/G. 0.98, i

L]
—

There is no residual confounding due to F and to G; nevertheless,

there is (joint) confounding. (Recall that under this circumstance,

F and G must be independent. In fact, they are not since

=9 and OR = 9.32.)

ORee/E FG/E
’ Interestingly, confounding can be controlled by adjusting for
either F or G. Kleinbaum and Kupper (1980) refer to this phenomenon
in their discussion of a "sufficient-confounder-group,' which they
define to be aminimal set of potential confounders requiring adjustment
in the analysis to control confounding. In this instance both F and

. G individually would meet the requirements of sufficient-confounder-

groups.
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If there is no interaction between F and G, then necessary and
sufficient conditions exist for no residual confounding. Consider

expression (4.3.1), which can be written as:

7 Bi0%i0%1 211__1][911¢io 1] o,
i

9:1%%0 {0 %:0%1
.OI‘ as
! T +eSi?Ei-§ioiiig¢il =7 ORpg/Ep, ~ 1) ORggp -1 =0,
i (941%950) U-Pypli- RDG/EFi i i
since
8i0° ORDG/E'Fi
B., =
i1 (1'310(1'°RDG/EF1))
Therefore, by the assumption of no interaction,
. (1-B..)6. ¢.
(ORp /=1 (ORgg /e-1) | 73 +e81?21-21°11f8i11 5= 0.
_ i YYi1 710 io DG /EF

Since the summation term is always positive, then either:

(a) ORpe g = 1

or
(b) ORpg/p =1

for there to be no residual confounding due to G. These conditions,
which correspond to (4.3.2a) and (4.3.2b), are now necessary and suffi-
cient.

The sufficiency of the conditions for no residual confounding does

not change the nature of the relationship between no residual and no
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joint confounding, however. In the previous example F and G do
not interact on either exposure or disease, there is no'residual con-

founding, yet there remains joint confounding.

4.3.2 Case-Control Study

Analogous to the follow-up study, the conditions for no residual
confounding are derived by comparing the odds ratio adjusted for F to
that adjusted for F and G. Assuming that direct standardization is

the method of adjustment,

(. _ Si1Yi17%10%40
t Vii*io
(1-¢. )v 5 1" +5. W
sOR = [Ze v ]/2 1 , where{§, = 10 10
6711 6. i W, +W.
i i il "i0
~V1 = Vi1 Y Vio
2[?11 il E:10‘,1(-)"] Vs )
> sOR 710 -J
= s =
F 'i_€11 elovlo'l )["11 i1* %1%
) Vi a0 [T
i [_ %1"i1* %0"i6]
Wiitig
and
(1-ey;lv ijaij_[
F,G [2.813 13}/22. 1-8,. e
ij ij ]
There is no residual confounding if sORF = SORF G Since the numera-
tors of sOR_, and sOR are equal, then

F F,G
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) [(1-e;1)v+ (- 0)vy o] 155 1%; 1485 0W;50] -3 (1-€;50v; 58, ;] ]
- - . |
i [(1-8;)w; 1+ (1-8; w0 i3 -5 ]
> (e )v 1"11%%0"0  %u
10V1 T8, Jwy #(1-8, Jwy o " T8
\
[ 88 10M0 $10

+ (1-¢

v -
10 10L(1-511)w11+(1-510)w10 1-5104

.
r $51%01*%00%00 S01

v -
01 OlL(1—601)w01+(1-6007w00 1-601

+ (1-¢

/

\
$01%01*%00%00 %o

v -
00700 (1-501)w01+(1—(%0)w00 1-500J

+ (1-€ 0. (4.3.3)

The first term in (4.3.3) can be expressed as

(1'811)V11(311w11(1'611)+510w10(1‘511)'511w11(1'511)'511(l'Glo)wlﬁ}

-5 | (1-8;1 )W+ (-0 gy
e A ! (%107°110%10
1-59; (1-0) w1+ (=019)wpg

The remaining th—ee terms can be expressed in the same fashion. There-

fore, (4.3.3) leads to

(1-€47v11 690731110 (1-€10)v19(811-%100%11

(1-8,) [(1-3)1)wy 1 +(1-6) 5w ] ' (1-8,9) [(1-8;)vy + (18, 50wy 0]

L 3%010¥01 00190000 (1-E49)V09L00=801)%0: - 0
(184 [(1-8gydwy  +(1-8g5dwoa]  (1-80) [(1-8y Jwy, +(1-854)Wy]
or,
(1-€,7)vi _(1‘510)V161 Wi1%1008517%50) o 4.3.4)
$| (0050%5y (1-8300W50| (=05 0wy +(1-8; 00w )

Four conditions of particular interest can be established from

(4.3.4) and which imply no residual confounding:
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(@ 8y = 8 i =01 = OREG/BFi =1, 1i=0,1

(1-e; vy (A-€55)V4
(b) = == O — =
(@5, ow,, (-8, RDG/EFi

1, i =0,1

1

(1-e,,)v (1-e,.)v OR.. /= =
(c) 8..=86 and — 00700 _ 00~ 00 _ EG/DF1

117 %10 & T Jwo (1.5, )W T
00° 700 00”700 ORDG/EFO_ 1

eyvyy - U&30Mi0 _ [%Rec/Br,

d) 8. =6 and - ,
(1-6;40vy;  (A-6y5)wy, ORye/Ep. = L
1

These conditions are identical to those derived for the follow-up
study with the exception that the association between exposure and G
must be measured from the controls only. And, just as for the follow-up
study, these conditions are sufficient only for no residual confounding.
Should these conditions hold for both F and G, there still may be
(joint) confounding.

Imposing the restrictions implied by no interaction between F
and G will lead to necessary conditions for no residual confounding.

From (4.3.4) we have

610(1°€10)V10{tl'€il)vil(l—sio)vio 1 ¥i1%i0 [5i1 _1] o
f (1-00wy | (-85 )Wy (Bmeygdvyg [ (1-05p)wyp#(1=8;0)w59(359
Since
8517 OREG/ﬁFk' aio/(l_aio(l'OREG/ﬁFi))
L1 = (OR..,=. -1)(1-6,)

3. = (ORg( /B, i0) >

10 i
then

§..(1-.,)v., W,
i0 i0” "i0711
DTS, W, 7 T8 W] (OREG/BFi‘l)

N -
i1 6i0(1 OREG/BFi

(o =0 .

RDG/EFi)
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Therefore, by the assumption of no interaction,

(ORy 51 (O] = 1)) %301-850)Vi0%11 o
©Fgo/oF 6/BF 1) T8 TT-0Rs e TITA0, w7150 Jwg]

(4.3.5)
- The summation term is always positive; hence, either
(a) OREG/EF =1, or
(b) ORDG/EF =1 (4.3.6)

for (4.3.5) to hold. The necessary and sufficient conditions for no
residual confounding in a case-control study are that there is no
association between G and disease conditional on non-exposure and F
or no association between G and exposure conditional on non-disease
and F. If the disease can be considered rare, then conditioning on
non-disease is equivalent to no conditioning on disease whatsoever, and
the conditions for no residual confounding under these circumstances
are the same as those for the follow-up study.

Just as for the follow-up study the sufficiency of (4.3.6) for

no residual confounding will not guarantee no joint confounding. That

is, if neither F nor G are residual confounders, and if, in addition,
F and G do not interact on exposure and disease, there still may be
(joint) confounding. The size and direction of the confounding will

depend upon the nature of the association between F and G.

4.4 Validity and the Analysis of Matched Data

In epidemiology matching has long been considered the primary

method for controlling confounding. Until recently, however, the
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efficacy of matching with regard to the control of confounding had not
been studied analytically. Kupper, et al. (1980) showed that matching
could control confounding in follow-up studies but not in case-control
studies; that is, stratification or some other method of adjustment
would have to follow matching in the analysis in order to ensure the
control of confounding.

The fact that matching in and of itself fails to control con-
founding does not result from the case-control design but rather from
the measure of effect associated with the case-control design, the
odds ratio. Should the odds ratio be chosen for the measure of effect
in the follow-up study where matching is employed, then there would
still remain confounding as well. The crude matched odds ratio (cORm)
cannot be expressed in terms of a weighted average of stratum-specific
odds ratios and, therefore, is not free of confounding bias. Never-
theless, the question arises: how strong is the confounding bias
associated with this measure of effect? Is the cORm an improvement
over the cOR i1 terms of reducing confounding? And, more generally,
what is the appropriate method of analysis of matched data?

In this section the question is considered from two points of
view. From the first, the matching variable is the only confounder,
and the concern is whether analytical adjustment of the data is needed
in a practical sense. From the second, the matching variable is not the
only confounder; hence, which variables the analytical adjustment must

involve, only the unmatched confounder or both confounders, is studied.
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4.4.1 One Matching Variable and Confounder

In order to examine whether matching in and of itself controls
confounding in a practical sense, cORm was evaluated numerically
across a range of values, assuming uniformity of the stratum-specific
odds ratios. The distribution of the confounding variable conditional
on disease was allowed to range from (0.9, 0.1) to (0.1, 0.9) in
increments of 0.1. Exposure probabilities among the controls were
allowed to range from 0.01 to 0.36 and the odds ratio from 1.5 to

S. In addition, was allowed to range from 2 to 5.

ORER/D

The underlying value of the parameter ORDF/E' has no real con-
sequence on the value of cORm since the matching process forces the
parameter to assume a value slightly less than 1. Matching replaces
the wo by the v, in the analysis; hence, after matching

(1-e)(1-6) 1 +8;(0R-1)
0 —_— = =
RpE/E -5 (Tey) - 1+8;(OR-1)

IA

1, since OREF/E'Z 1 by assumption .

The value of ORDF/E
odds ratio. The underlying value of ORDF/E

the magnitude of cOR, however. In Tables 4.2 and 4.3 the range of

is now only a reflection of OREF/ﬁ' and the

has direct bearing on

possible cOR 1is given for each cORn. After fixing the other para-
meters, a particular value of cOR 1is determined by w = (wl,wo), the
distribution of F among the controls, which is not specified by a
given cORm. The minimum value of cOR occurs when Wy = 1, corre-
sponding to ORDF/§'= 0, and the maximum occurs when Wy = 1, corre-

sponding to an infinite ORDF/E"
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It can be shown analytically that cORm is always biased toward
the null. (See Appendix 3.) The results of the numerical evaluations
indicate that this bias is generally not severe. For small to moderate
odds ratios, cORm 1is almost free of confounding bias except when the
exposure probabilities are large; when the exposure probabilities are |
small (6i<<0.1), the bias does not exceed 2%. The bias increases

with increasing odds ratio, exposure probabilities, and OR At

EF/D"
large values of the odds ratio, high exposure probabilities, and large
OREF/ﬁ' (potentially large confounding bias), cORm can be quite mis-

leading. For example, if OR=5, & =0.1, and OR 5 (the

0 EF/D

exposure probabilities range up to 0.74), the bias can reach 19%
(see Table 4.3). Unless these contingencies occur simultaneously,
however, the bias will rarely exceed 6%.

In order the evaluate whether cORm effectively reduces confound-
ing, it must be compared to cOR wunder random sampling. The results
of a number of evaluations are summarized by Tables 4.2 and 4.3.
Contrasting cCxm to the range of possible cOR under a wide variety
of values of the population parameters indicates that cORm is indeed
effective in terms of reducing confounding. While cORm may be biased
toward the null by over 10% in extreme cases, the corresponding cOR
are biased over 200%. Other values of cOR can be biased beyond 300%
of the true OR. Of course, within the range of values for cOR
there is a value which equals the true (uniform) OR. For fhe circum-
stanes where c¢cOR = OR (i.e., no confounding), then matching actually
introduces confounding, since cORm < OR. However, in most situations
this bias is not large enough to obscure an accurate assessment of the

association between exposure and disease via a crude matched analysis.
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Under general circumstances then, matching can '"control" confound-
ing in case-control studies, although never remove it. " There is no
justification for using cORm over any stratified odds ratio since
the bias toward the null implies a less sensitive test of significance
based on a crude analysis relative to a stratified one. Indeed, the
expected M-H X2 statistic from a crude analysis is almost always less

than the expected M-H X2

statistic from a stratified analysis. (The
question of whether pooling or stratification should accompany matching
will be addressed in greater detail in Chapter 5.)

Nevertheless, it may be concluded from the above discussion that
matched studies which did not employ stratification should not be con-
demned as invalid because of probable confounding. While there may
remain confounding from variables which were not controlled by the
matching or in the analysis, confounding from the matching variables
should only be minimal, except for the particular circumstances noted
above. Indeed, because of the downward bias associated with the cORm,

any adjustment that is necessary will only strengthen positive conclu-

sions and lend support to claims of significant results.

4.4.2 One MatchingAYariable and Two Confounders

In the previous section the extent to which matching alone can
control confounding in follow-up and case-control studies where all of
the confounders are matching variables was examined. However, it is
not difficult to envisage circumstances in which matching may involve
only a few of the confounders which require control. In fact, one

might argue that this scenario is in practice quite likely — that
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additional variables beyond the matching variables require control in
the analysis. If that is the case, the proper analysis’ of data arising
from such a scenario needs to be understood.

Consider the situation where an additional variable beyond the
matching variable requires control. Assume that matching is performed
on F, a dichotomous extraneous variable, while a second extraneous
variable G remains to be controlled. Matching on F alone equates
the marginal distributions of F conditional on exposure and non-
exposure in a follow-up study (disease and non-disease in a case-
control study). Therefore, the expected number of exposed and non-
exposed in the ith stratum of F in a follow-up study are

E E

Fi N(Oil-beio) pN(Gil +610)

By stratifying on G each of the above expected marginal totals are
subdivided according to the distribution of G in that stratum. These

distributions ar~ given by

p(Gj/FiE) eij/(eil-+eio)

P(GJ./FiE) ¢ij/(¢i1*¢io)

Hence, the expected number of exposed and unexposed subjects in the
(i,j)th stratum defined by F and G after matching on the marginall

distribution of F are

E E
(6.,+6..)
1 7i0
F.,G. | Ne. Ng.. —=t LY
% | M | N o)
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The expected cell frequencies in the (i,j)th stratum are given below

in Table 4.4.
TABLE 4.4
F.,G, E E
i’7j
(6..+48..)
1 "i0
D No. .0, . NB. .0, =
%i571j g 813¢13(¢il+¢105
7 IN(1-a,.)8.. pN(l-B..)¢..(eil+eiO)
ij771] 15771506+, )
(8.,+6..)
: 1 7i0
N6. . N, e —
ij N3, 170, )

A question of interest is whether the analysis may involve data which
have been pooled over the matching variable F. It will be shown that
if F 1is associated with the outcome variable in the study, and
another variable remains to be controlled in the analysis, then strati-
fication must involve both the matching variable F and the additional
variable. In other words both variables will require control in the
analysis. Pooling over a matching variableis only allowed if there
are no other confounders that require control or if the matching vari-
able is unrelated to the outcome variable. Otherwise, validity will
not be preserved.

Consider the analysis of data pooled over F. The expected cell
frequencies are those of Table 4.4 summed over the subscript i. In
a follow-up‘study there is no confounding after matching on F if
the standardized risk ratio controlling for G (sRRG) is equal to

the standardized risk ratio controlling for F and G (sRR where

F,G)



H
*
*{ .

sRR

and,

ZZ LT
ij
sRRF G = .
D ) < T
¢ 1374

* * *
The parameters aj, Bj’ and ej are defined below:

8

o = 213%15 " %503
j 61j+ 0 ’
6 [611+eio]
’3* 3 ¢* B ¢* h ¢* ij ¢i1+¢i0
= 3 .0.. .¢.. , where ¢.. =
j 1571 03703 ij 2 ¢..[6i1+eio]
b P | ————
SR UV T
and,
6. =0, +6
. = .+
j 13 03
Therefore,
o, .0, .+, .0,
Z 1j 13 OJOJ(e +9 )
: 8..+0 .. 17 0j
SRR, = ] 1j 9]
G * * 0 +0 )
§(81j¢1j+80j¢0j)( 15*00;
YYa @
B B
- *
Y (53;.0..)(}6..)
i 1371374713
Since the numerators of sRRG and sRRFG are equal, there is

no confounding if
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s+ Tt )

or

E{EBUGU 18; 59 13[2 13‘]}=° ’

or equivalently,

55y o1 - o7, 3osp))} - (441
A I TN . . = . 4.4.1
74 ij i) ijiei]
The term in brackets can be expressed as

* * .

* * .

- (61]¢0j -60_']¢1_]) , 1=0.
Hence, 4.5.1 reduces to
* *

Assuming that F is a risk factor, and F and G do not interact

on disease or exposure, then 4.5.2 reduces further to

* *
815905 = 803015 =0 3 =0.1
which can be expfessed as
*
8.0y
g_%:l:j:(),l,
0j71j :
or
[900+901]
1J¢Ql, ¢00+¢01 .
0 ) =1,J=0’1’
03 1j { 11 10]
11%%10
or
915%j _ (®11*910) ($91*9g) i=0,1

95015 (®01*%00) (911010
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Therefore,

OREF/Gj = OREF , J =0,1. . (4.4.3)

This result can be argued intuitively. There is no confounding
due to F if OREF/G. =1, j = 0,1. By matching on the marginal dis-
tribution of F, OREF is set to 1 in the data. If (4.4.3) holds,

then OR is also set to 1 in the data, and the conditions for

EF/Gj
no confounding are met. However, it does not matter whether OREF/G. =
1, j = 0,1 unless OREF =1 as well. If the two odds ratios are
not equivalent (and OREF/G. =1, j = 0,1) in the population, then
the matching process will only introduce an association between expo-
sure and F in the data, and confounding will remain uncontrolled.
Of course, if F is unrelated to the outcome variable, disease, (F 1is
not a risk factor), then the matching can not introduce confounding
and pooling over F is appropriate.

Since it is assumed that G is a confounder, one can demonstrate

that (4.4.3) will hold if and only if F and G are not associated.

It follows that if G is a confounder, then

OREG/F. =¢c, a congtant , i=0,1, where c#1 .

Hence,
1110
[ 4’10 C"Gw] (901*¢00)
[ —* c+b ](¢11+¢10)
%10
3, 1 c+10) (991*000)
800

5 (%01 " S*0go) (011%¢10)
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= OR . £(c,9)

EF/G0
If (4.4.3) holds, then f(c,9) =1, and
or
c11901 * <*11%0 * 10%01 * ?10%0
= 001911 * 01910 * 900%11 * P00%10
which can be expressed as

q)lld)oo(c"l) = ¢10¢01(C-1) >

or

Also, by the assumption of no interaction, ORFG/E = 1.

To summarize, if G is a confounder, then the marginal associa-
tion between F and exposure is equivalent to the conditional associa-
tion only if F and G are unrelated. If F and G are related,
then (4.4.3) cannot hold, and matching on F will not in and of
itself control confounding in a follow-up study.

Consider now the case-control study. Referring to Table 4.4
and replacing the follow-up parameters with the case-control parameters,
one can represent the problem in a similar fashion as the follow-up
study. In the case-control study where matching on F has been

employed, and the data are pooled over F, there is no confounding if

sOR, = sORF’

G G’

where
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) (1-gT)vist
SOR [28 V. ] Z‘—Tilgw%—l

and

- e )zz b
’ 3 1J lJ / (1'6ij)

* * *
The parameters ej, 6j, and vj are defined in a similar fashion as

* * *
aj, B., and Gj, respectively, from the context of a follow-up study.

Therefore,
e* i} eljvlifeQiYQi
J Yi5"V0j
[V11+Vio]
NS R A S R T
j i) ij 0j 0j ij zw [v11+v10]
i B350
*
V., = V.. +V
j 13 0j
It can be easily shown that the numerator of sORG and sORFG are

equal. Comparing .denominators, there is no confounding if

(1-e. .)v..6.. (1-eD)vis*
W ij’ ij 11] ] [__J__LJ_
L 1-6. . - 1-8§*
ij 1] J
[Tae vy [B533)
j [gcl-alj)w;j}

or if

or
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2[2(1 % ] [2 fé_é}lj__%'{ i] 1J[z( - J]

1Y)
*
- (1-68..) Zd..w..] = 0.(4.4.4)
1373 ijrij
The term in brackets can be reduced to

* *

zwi. -w.. )8

§..w. . LW,
1) 1) i J 1] i 1) 1)

I
[e—

* .
wiijj(slj—SOj) , 1=

*
"03%15 057015

i]
o

i

Therefore, (4.4.4) can be expressed as

-1 (1-e,.)v..
- * - RS s B 5 R *
E[E(I %) 16 GOj)((l-alj)wlj “15"0;

(1-€,..)v,.
- 0 )wo . wo.wI.]} =0 . (4.4.5)

Assuming no interaction between F and G on exposure and disease,

then (4.4.5) holds if either

j = 0,1 <=>0R =1, j=0,1, or

EF/G,
/ J

(l-elj)vIJ (1- 6 ) OJ

(b) — % =1, j=0,1.
(1 Glj)wl (1- e )v 0

. 3 * . -
Substituting for wij’ expression (b) can also be written as

(1-€) vy (16 0wp. (Vg +Vgo) (W +Wp4)

(-6, 0wy, (A-€dvgs  (Vyg*Vyq) (Wgp¥Woo)

-1
ORDF/Ecj * (ORyp) =
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These results are completely analogous to the follow-up study. If
matching has been performed on F and the data are pooied over F,
there is no confounding if (a) F 1is conditionally unrelated to the
outcome variable (exposure), or (b) the conditional association
between F and disease is equivalent to the unconditional association.
Whether F is a risk factor or not has no bearing on the presence or
absence of confounding in this context. In fact, if F 1is not a risk
factor, the act of matching may introduce an association between F
and disease in the data leaving confounding uncontrolled.

Assuming that the matching variables-are indeed risk factors, the
nature of confounding will hinge on the exposure/F association. In
a case-control study matching does not influence this association in
the data, and therefore, will not introduce confounding when there is

none (OR =1, j = 0,1). In the next chapter the potential loss

EF/Gj
in efficiency which may result when matching on a non-risk factor will
be considered in the context of an additional confounder requiring

control in the fnalysis.

4.5 Validity and Effect Modification

While confounding and effect modification are entirely distinct
concepts, the manifestation of one may be directly related to the pre-
sence of the other in the data under study. In particular, if the
conditions for residual confounding hold, there may be ''apparent'
effect modification when in fact there is none. Consider the follow-

ing example for a follow-up study.
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Example 4
Let RRij =2, V (i,j) => aij =2 .Bij
(1,1 0.001 0.1 0.4

(1,0) 0.00025 0.2 0.3
(0,1) 0.0004 0.4 0.2

(0,0) 0.0001 0.3 0.1

Yo 5855/ (851%050)
Failing to account for G , RR J

F Therefore,

i )8..../(,

3 ijrij 11+¢i0)

RRF =1.27 , and RRFO = 1.81 .

1
By appearance there is effect modification due to F. In fact,. there
is no effect modification since the stratum-specific RR's are uni-
form. Rather, there is confounding due to G which manifests itself
as effect modification.

In a follow-up study this circumstance arises in the following way.

The assumption of no effect modification requires that
a../B.. =RR, V(i,j) , where RR = the stratum-specific risk ratio.

However, let us assume that F 1is accounted for in the analysis while

G 1is not. Then there will be apparent effect modification if RRF #
- 1

RRF . This can be described by three scenarios:
0



(a) RR; < RR <RR. (or, RRg

1 0 0

RR £ RR RR =<

(b) F, Fy

(or,

(c) RRF < RRF < RR (or,
1 0 0
Now,

RR

129

< R R
R <R Fl)

RR

. < RRF )

0 1

RR)

11931*810%410] 4 R

# RR =>
i

F

“11911+“109161
%1%950 |

or
* *
RR8,,0;1+RRB; 40

% * # RR ,
Bi1911*Bi0%0

where

and

13

This implies that

ﬁ

%1750 |
*
%1

955

eij/(eil+eio)

035/ (051%;50)

a.. = RRBij » V(l’J)

* * * / *
B.1951* Bio%i0 # Pi1®i1* Bio®io0
and
* *
(Bil-BiO)(eil-¢il) #0, (4.5.1)
since
*_-* *=_*
051 = -850 » 957 = 17950 -
Therefore, RRF # RR if
i
(1) By # 859 = ORDG/Eri #1
and
.. * *_
(ii) eil # ¢i1 => OREG/Fi #1. (4.5.2)
When (i) and (ii) hold for either i=0 or i=1, then there is pro-

_bable residual confounding due to G.

Note that either of (b) or (c)



can result if (4.5.2) holds for one of
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i=0 or i=1l. If (b) and

(c) are strict inequalities, then there is indeed residual confound-

ing. Condition (a) describing apparent effect modification may not

relate to residual confounding depending upon the nature of the bias

at the two levels of F.

there is no interaction between F and G;

not occur.

The biases must be in the same direction if

hence, condition (a) can-

In summary, while there is not a one-to-one correspondence

between residual confounding and apparent effect modification, a very

strong link connects the two concepts.

The presence of effect modifi-

cation should lead an investigator to consider whether a potential con-

founder, which has not been evaluated, is the cause of the apparent

phenomenon before concluding that the variable in question is in fact

an effect modifier.

In the case-control study a similar connection between effect

modification and confounding can be shown.

fication, then ORij = OR, V(i,j).
yields the stratum-specific odds ratio

r

Vi1*Vio

Accounting for F

If there is no effect modi-

in the analysis

[%ilvil+€iovid][l 5

W.. tW

11w11+610wio}
il i0

OR

Fy [511“’11’”510”10“ )

wi1™io0

1

€.,V +E, V.
il1'i1 7i0'1i

.
Vi1t'Vio

* * * *
(€31V41€10vi0) (1 0351%51 %9 40%10))

(8:1%11*%50%50

+§. Wl )(l—(ei

1Vi1*€i0vi0))
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OR;; = OR V(i,j) = €= GijOR/(l_aij(l'OR))‘

l-Eij = (l-Gij)/(l—Gij(l-OR))

Therefore, ORF # OR implies that
i

]:ORS 11 ORS. :l
(-8, )w 1 (-8, )w 0
5., - “OR) © 1-8. 0(1 —OR) i0

*

# OR ,
5. w8 ) (1-8, vy . (1-8,5)Vi07
i1¥11%% 0% 10 8 (1-0R) " I8 (l—OR)_I
1
or, .
S.. v, §. V. )
11 il i0 i0 *
[1 5, (1-00) * 1-610(1-012):1(1'(511% i0 10))
*
y Vi ‘511" 1, vio-%i0'i0 5 v )
1-§, (1-0R) ~ 1-8&, (1-0R) i1"i1*%50%10)
* * *
81v11 $;0vi0 y Vi1 "io 5. w4 )
- 6 L (1-0R%) 1 5o (1-0R) (- OR) o100 | U111 i0¥i0)
and

* *
il * * i0
1-511(1-0115 (8;1-(851%;1*830%10)) +1-810(1-016 G0 (511 117 10%1 0)) #0.

*

o * = _
And, since Woq 1 LITY

v11w10 ) v10w11

1-8, (1-0R) O 1- =3, (1-0R) (B50831) # 0 -

Then,

v w¥ viowt
(5. -8 )I_ 1"l Vie"u | ‘0
il "io0 L} il(l -OR) 1- 510(1 OR{J '

Also, 1-6ij(1-OR)\= (I-Gij)OR/(l-eij), therefore,

(1-£..) v w (1 €. 5]
11 10 il
(dil_aio)l: (-5, 00R (1 s )OR 0.
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Hence, both

(@) ;) #9;p = OREG/DFi #1

™ 130 (1€5)  VigWi (1-e0)
®) VitYio't Tt . Vio%i1Y %10
(1-9..) 1-5..) ’
il 10

or

* %
or, o - (1-€;7)v;; (3-8 9)w5y .
G/EF; — (1-8; Jw;, (1-e; )viy

must hold for ORF # OR.
i

It is clear that the scenario regarding effect modification and
residual confounding described earlier for the follow-up study applies
equally to the case-control study. If effect modification is observed,
failing to take into account the variable G, then the phenomenon may

have resulted because G is actually a confounder.



CHAPTER 5

THE RELATIVE EFFICIENCY OF MATCHING AND RANDOM SAMPLING:
TWO POTENTIAL CONFOUNDING VARIABLES

5.1 Introduction

In this chapter the results of Chapter 3 will be extended to two
potential confounding variables. The introduction of a second extra-
neous variable into the analysis allows a number of issues concerning
the relative efficiency of matching and random sampling to be con-
sidered. For example, two particular concerns relative to the ques-
tion of the efficiency of matching are (a) whether 'overmatching,' or
matching on variables which are not confounders, will lead to a loss
in efficiency with respect to not matching on those variables; and
(b) whether matching on variables which are correlated might be less
efficient than matching on simply one of the variables or not matching
at all. These two issues are dealt with in Sections 5.4 and 5.5. Two
important questions which were raised in Chapter 3 and are addressed
again in this chapter are the characterization of the relationship
between the nature of the (underlying) confounding and the relative
efficiency of matching to random sampling, as well as the effect of
loss of sample size. Sections 5.5 and 5.6 are devoted to these consi-
derations. Another topic which is treated in this chapter is the optimal

analyses from the point of view of efficiency (in terms of the M-H X2
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statistic) of matched data and randomly sampled data when there is
no confounding.

Evaluation of the relative efficiency of matching to random sampling
is complicated by involving a second confounder. For this reason the
focus of attention of this chapter is somewhat restricted. Only one
value of a local alternative to the null measure of effect is considered
(RR, OR = 1.5). The analyses are restricted to the conditions of '"no
interaction" between the two confounders, F and G, on disease and
on exposure (Section 4.2.4). This restriction is followed for the sake
of simplifying the analyses, even though it does not necessarily repre-
sent what is found in practice. Also, the 'baseline'" disease and expo-
sure probabilities, denoted by BOO and 600, are restricted to 0.0001
and 0.05, respectively, in order to provide representative parameter
values for each of the follow-up and case-control studies. The value
500 = 0.05 implies large exposure probabilities for the case-control
study relative to the disease probabilities of the follow-up study, the
major contrast between the underlying models of the two studies.

The values for the relative efficiency reported in this chapter
are averages of individual asymptotic relative efficiences (ARE's),
defined in Chapter 3. Averaging is conducted over a spectrum of values
of 9 and ¢ in the follow-up study (v and w in the case-control
study) for which odds ratios representing the associations between each
confounder and disease and exposure, and the intercorrelation between
the confounders are specified (Section 4.2.3). In addition, the

restrictions Xzeij = 22¢i. = 1, and '"no interaction" (Section 4.2.4)

L LY
ij ij
are followed). The above restrictions, after introducing BOO and RR,
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determine all of the disease probabilities in a follow-up study (simi-
larly for the case-control study). Otherwise, the restrictions and
specifications allow two parameters, say 611 and 910 (v11 and
VIO)’ to vary. For the purposes of this study they were allowed to
vary between 0.05 and 0.85 in increments of 0.10, as long as all of
the other eij and ¢ij (vij and wij) also fall between 0.05 and
0.85. In this way a reasonable number of values for the relative effi-
ciency was generated for each unique set of specifications of the
aforementioned odds ratios. The usual number of individual values
generated was between 10 and 25, and the range of values was usually
less than 10%. Hence, the average ARE's displayed in this chapter
reflect the relative efficiency one would expect to find for specific
values of the odds ratios relating to the nature of the underlying,
potential confounding in the population under study. They should not

be interpreted as true ARE's but rather as indices of relative effi-

ciency.

5.2 Optimal Analyses of Matched Data

When matching is employed to choose the referents in either a
follow-up or case-control study, the decision to stratify the data in
constructing the M-H X2 statistic is not obvious. Birch (1964) has
shown that the M-H X2 statistic is a function of the stratum-specific
log odds ratios‘and is optimal when the odds ratio is uniform across
the strata. Since matching does not remove confounding when the odds
ratio is the measure of effect, it would seem that to attain validity,

stratification on the matching variables should always be employed.
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However, for many practical situations it has been shown that the nega-
tive bias resulting from a crude analysis of matched data is negligible.
(See the discussion in Chapter 4.) There may therefore be an advantage
with respect to efficiency to pool the data rather than stratify, while
tolerating a small bias in the estimated oddé ratio.

In order to test that hypothesis; M-H X2 statistics constructed
from expected cell frequencies (based on matching), which had been
pooled and stratified were contrasted. Let Xg and Xi represent the
"expected" M-H statistics under pooling and stratification, respec-
tively. In the context of the follow-up study, the expected stratum-
specific cell frequencies are given by Table 1.4, where pN, is sub-

1

stituted for NO’ Therefore,

_ 2
%Nlaiei] [gle (1-Bi)ei] - (glesiei} [gNl (l'ai)eiﬂ
N, (1+0) _l

N

P AT _Tn
NN [gNlei(ai+psi)][Nl(1+o) gNlei(ai+pBi)]

(N (1+9)) * (N, (1+0)-1)

-
1
) (5.2.1)

Eei (ai+oBi)] [(lw) —gei (ai+oBi):[

N, - (1+p) !

and
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2
[% (Nlaiei)(le(l-Bi)ei)-(pNIBiei)(Nl(l-ai)eij]
2 i Nl(l+p)ei ]

s Nlei leei(Nlei(ai+pBi)) (N1(1+p)ei-Nlei(ai+pBi))

i (Nl(1+p)ei)2(N1(1+p)Gi—l)

2
(1+0)p Z Bi(ai-si{]
1
- 5 . (5.2.2)
-ei(ai+pei)((1+o)-(ai+pBi))

-1

The two statistics have been expressed in such a way that the numerators

are equal. Let Dp and Ds be the denominators of X; and xi,

respectively. Then

2
[gei(ai+psi{]

n = (1+p) -
Dy-Dg == -7 18 (a;+08;) -1
Nl-(1+p) i Nl-(1+0)
2 2. 2
6. (a,+pB.) 8, (a.+pB.)
- )) A [ (5.2.3)
i Nj6.-(1+p) i N0, -(1+0)
1)’
.,
' 6.4
I ¢ L)) M iti
N, -(1ep) gAi N -(1+p) "1 () E N6, - (1+p) T
1 1 1°i
i
+ , where A, = 8.(a,+pB.)
i Nle.—(1+p)-1 i i1 i
1
(1+0)N, 8.-1 ] A.A.
= — EA.(l-NIAi) = —|-21 ) ———-l;l—ji-.
N (1) E N6, - (1+0) J i<j Ny-(1+0)

(5.2.4)

Note that the NlAi represent the expected number of diseased subjects

. .th
in the i stratum. Therefore, unless the data have been spread over

too many strata, NlAi should generally exceed 2. The first term of
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(5.2.4) is therefore positive, since ei <1, VY i. The second term of ‘
(5.2.4) is also positive; the sign of (5.2.4) is then undetermined.
Numerical evaluations of Ds/Dp were conducted at a variety of .
of values of the parameters for both studies in order to compare the
" size of Ds relative to D (and, therefore, the size of x; relative
to Xz); Table 5.1 displays a selection of averages of DS/Dp in the
context of two dichotomous confounders, F and G.
The results indicate that Ds/Dp is almost without exception less
than 1. When the average ratio exceeds 1, it does so by no more
than 0.003. However, when Ds/Dp is less than 1, espcially when F '
and G are strong potential confounders, the loss in efficiency due
to pooling can exceed 10%, particularly for the case-control study.
In most circumstances stratification should accompany matching in ‘
the analysis. While stratification is employed to preserve validity,
it is now clear that it also results in a more efficient analysis. A
possible explanation is that-a pooled M-H analysis corresponds to an
estiméied odds ratio, cORm, which is biased toward the null, How-
ever, a more likely answer is that controlling for a variable which is
associated with the response (disease in a follow-up study; exposure in
a case-control study) tends to increase the efficiency, which is the
same motivation for the analysis of covariance. -
For the case of no confounding the appropriate method of analysis
depends on the study type. If the matching variables are risk factors, -
one should stratify on the matching variables in a follow-up study.
Since matching controls confounding in a follow-up study, whether or

not there is underlying confounding has no bearing on the choice of .
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analysis. If the matching variables in a case-control study are also
risk factors for the disease, there is no confounding if Gij =34,
vV (i,j), or if OREF/DG. = OREG/DFi =1, Vi and j. If,inaddition,

uniformity of the odds ration is assumed, then eij =¢c, V (i,j),

Hence, (5.2.3) becomes (in terms of the case-control parameters):

2
(1+0) (e+pé)
D -0 = —%0) _ (cio8)v, - —(E200) _ 1y,
I I S TS bl o
2
V. Vi
- (1+p) (e+08) ] L (er08)?]
N v, -(1+p) i Njv, (1+o)

2
'
1 T

-1
_(1+p) i N V —(1+p) .J

l:(1+p) (e+p68)- (€+06):[

[(1+o)(s+o<5)-(6+06)2:[ ) Vi(N -(14p)"~ )‘[
= 1-
Nl-(1+p)'1 i Nyv, -(1+o) _l

The second term in brackets can also be written as

(N~ (1+0) ™)
1 -)v,

L, (e

which is always negative since N1 - (1+p)-1 > N1 - (vi(lw))-l , V¥V i.

The first term in brackets is always positive, as
(e+p8) < 1l+p, Ve, 8, and o .

Therefore, in a case-control study it is more efficient to pool
over matching variables which are non-confounders (independent of expo-
sure). For the case of two dichotomous matching variables, the gain in

efficiency is so small (about 1%) that the choice to pool or not is
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rather academic. Nevertheless, as the number of matching variables
increases (and the corresponding number of strata), the loss in effi-

ciency from stratifying may increase.

5.3 No Confounding

5.3.1 Follow-up Study

Assuming that variables for which matching is to be considered
are risk factors for the disease, the conditions for no confounding
=1 and OR

are given by OR =1, or by (4.2.2b):

EF/Gj EG/F.1

eij =¢ii'j s ¥V (3,3)

The process of matching replaces the ¢ij with eij so that the
tables of expected cell frequencies for matching and random sampling
are identical. Clearly, the relative efficiency of matching to ran-
dom sampling is 1, assuming that the same analysis is applied to the
data from each design. The results of Section 5.2 indicate that the
more efficient analysis involves stratification. Samuels (1980) claims
that matching under these conditions increases efficiency, but only
because stratification is not advocated for random sampling as it is
for matching. In reality, matching is a futile endeavor which neither

results in a gain or loss in efficiency (Kupper, et al., 1980).

5.3.2 Case-Control Study

The conditions for no confounding in a case-control study, where

the matching variables are assumed to be risk ractors, are given by
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(4.2.4a):
Gij =6, V (i,37) .

The expected M-H X2 statistic from matching after pooling over F

and G 1is given by (5.2.1), which can be written as

) 2
(1+p)p(e-6)“|] Zvij
ij

[?e+pc)2 Zvié}[31+o)-(e+pc)z Evii]/(Nl'(l+°)-1)
ij ij]

o (N, - (1+0) 1) (e-6)
. (5.3.1)

(e+08) [(1+p) - (+p8)]

Digressing temporarily from the issue of relative efficiency, the
question of whether randomly sampled data should be pooled or strati-
fied in the analysis, if there is no confounding, might be raised here.
The expected M-H X2 statistic based on pooled data, assuming no con-
founding and uniformity of the odds ratio, is given by:

[§§N1%jfij][leNfl-ﬁij>wij]‘[E?ﬁﬁl’eij>vij][22°Nfij”ij} 2

ij 1)
Nl (1+p)

x2= :

prNl[ggNﬁeijvij+p6ijwij)}[Nl(1+p)-§§N1(eijvij+961jwij)]

(N (1+02) (N (14p)-1)

(N - (1+0) 71 (e-6)

(e+p8) (1+p-(e+pé))

(5.3.2)
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The expected M-H X2 statistic based on stratification is taken

from (3.3.2), where

2
2 VW
o(e-8)"| 1] it
2 ij "ij g
X
s (eijvij+péijwij)(vij+pwij-(eijvij+p61jwij))

pp - 2
ij (vij+owij) N, (vij+owij)-1)
The expression X; - Xi has no analytic solution. Hence, the ratio
Xg/xi was evaluated at various levels of the parameters in order to
describe numerically the effect of pooling on thé efficiency. Table

5.2 summarizes the results for the set of values: OR = 1.5, OR 2,

FG/D ~
600 = 0.05, and p = 1. These conditions can be considered typical of
a wide range of situations in which a case-control study might be imple-
mented.

The failure to pool can clearly lead to a substantial loss in
efficiency if the extraneous variables are strong risk factors. As
opposed to the "ollow-up study, it is essential that the analysis of
randomly sampled data be applied to pooled rather than stratified data
in the case-control setting, under the conditions of no confounding.

Returning to the issue of relative efficiency, the two methods are
seen tovbe equally efficient. Following the admonition to pool, (5.3.2)
is equivalent to (5.3.1), and the relative efficiency is 1. In a case-
control study if the matching involves risk factors, and there is no

confounding, both matching and random sampling provide equal efficiency.

These results agreé in principle with those of Samuels (1979).
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5.4 Residual Confounding

In this context a particularly important issue regarding matching
arises: whether "overmatching," or matching on a non-confounder, will
lead to a loss in efficiency when there are additional confounding
variables which require control; In Section 5.3 the issue of over-
matching was studied under the assumption that matching involved all
of the potential confounding variables; The results indicated that
for both studies there was no loss in efficiency when matching on non-
confounders.

As discussed in Chapter 4, there is no reason to expect that in
practice all of the confounding variables will be included in the
matching process. After the subjects have been selected, new con-
founders may emerge from inspection of the data‘(assuming the data
include }nformatibn on these variables), and control for these variables
would be initiated at the analysis stage. The issue of overmatching
will be considered in this context.

Let us assume that of two potential confounding variables, F and
G, G is a confounder but F is not. There are four possible sampling
schemes which need to be evaluated under this assumption: (a) matching
on F and G, (b) matching on F only, (c) matching on G only, and
(d) random sampling. In Chapter 3 sampling schemes (c) and (d) were
evaluated relative to one another, and will not be discussed here.
Methods (a) and (b) represent overmatching on the non-confounder F.

In this section matching on F and G as well as matching on F only

will be evaluated relative to random sampling.
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5.4.1 Follow-up Study

The expected X2 statistic from matching on F when there is
residual confounding due to G can be expressed by substituting Aij

for ¢ij in (3.3.2), where

(e..+6.0)
A.. = ¢.. 11 1Y
1] ij (¢il+¢io)

In Chapter 4 it was demonstrated that validity generally cannot be
preserved unless the data are stratified on both F and G. The
expected M-H X2 statistic for matching on F and G is given by
(5.2.2), where the data are stratified on both F and G. The
expected M-H X2 statistic for random sampling (3.3.2) is based upon
stratification on G only.

Evaluations of each matching scheme vs. random sampling are dis-
played in Table 5.3. While limited to specific values of 800 and op,
these results are comparable to more general conditions where local
alternatives to the null are involved. As a reminder, the entries in
this table are averages of individual asymptotic relative efficiencies,
where averaging is conducted over a range of values of 8 and ¢ such
that certain restrictions and parameter specifications are met. (See
discussion in Section 5.1.) |

With respect to the potential loss in efficiency from overmatching
in a follow-up study, the results in Table 5.3 support the following
conclusion. If the confounder G is not included in the matching,
then matching on F has little effect on the efficiency relative to
random sampling. Only if G is a strong confounder, F 1is a strong

risk factor, and F and G are highly related will there be a
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substantial gain or loss by matching on the non-confounder F. 1In the
situation where there is a large loss in efficiency by matching on F,
G is a strong "negative" confounder and F is highly related to G,
or G is a strong "positive" confounder and there is a strong inverse
relationship between F and G. Hence, matching on a correlate of a
"mnegative' confounder seems to cause a loss in efficiency even though
the matching variable is itself a non-confounder. Matching on a non-
confounder is only useful if that variable is a strong risk factor and
is directly related to.a strong "positive' confounder (or inversely
related to a strong ''megative confounder). This point will be pursued

further in Section 5.5.

5.4.2 Case-Control Study

Matching on a non-confounder (OREF/ﬁh. =1, j = 0,1) in a case-
control study leads to quite similar resultg with respect to efficiency
as in the follow-up study. Table 5;4 summarizes the results of numeri-
cal evaluations of the relative efficiency for both matching on F only
and matching on F and G. These resu1t$ confirm the notion that
matching on a non-confounder may lead to a moderate gain in.efficiency
over random sampling if that variable is directly related to a con-
founder, especially if the relationship is strong. For the case-control
study this appears to bebtrue.regardless if the confounder is ''negative"
or ''positive."

Other conclusions outlined in Section 5.4.1 apply equally to the

context of the case-control study.
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5.5 Joint Confounding_ .

For the case of joint confounding two questions aré addressed in
this section. First, the manner in which the relative efficiency is
related to the strength and direction of the confounding potential of -
each variable, as well as their interdependence, is investigated.
Secondly, the question.of whether the relative efficiency is affected
by the failure to match on one of two confounders. is considered. This
work contrasts with that of the previous section, where the same ques-
tion was posed under the assumption that the matching involved a non-
confounder.

In this section matching on F only and matching on F and G,
where both F and G are confounders, are again compared to random
sampling. All three expected M-H )(2 statistics are stratified on .
both F and G. The results in this section are again limited to a
single value of the measure of effect, which represents a local alter-
native to the null. Other restrictions outlined in the introduction
to this chapter are also followed.

The results of numerical evaluation of averaged ARE's are
displayed in Table 5.5 to 5;16! Where there are no entries in the -
tables, no values of § or ¢ could be generated in which all of the
specifications and restrictions could be met.

The results of this section are difficult to summarize because the
nature and direction of confounding for multiple confounders is diffi-
cult to describe. Recall that in Chapter 4 the conditions for no joint -

confounding could not be written in terms of measures of association
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between the confounders and disease and exposure. For that reason

the direction of the joint confounding was studied nume?ically for each
entry of Tables 5.5 to 5.16. Each of these tables is structured in

the format of Figure 5.1.

Figure 5.1 represents the region which characterizes the associ-
ations between the confounders F and G and exposure in a follow-up
study (or disease in a case-control study). By arbitrarily choosing
the associations between each confounder and the outcome variable to
be direct (positive), all possible representations of confounding
involving two confounders can be described by the regions in Figure
5.1. Hence, Region I represents the case where F and G are both
"negative" confounders. Regions II and III represent the cases where
one variable is a 'negative" confounder, and the other is a 'positive'
confounder. And, in Region IV both variables are "positive' confounders.
Recall that "positive' confounding is an upward bias in the measure of
effect, and 'megative' confounding is a downward bias, or a bias toward
the null. A "positive' confounder, if left uncontrolled, causes ''posi-
tive" confounding, etc.

Numerical evaluations in this chapter imply that Regions I and
IV represent joint 'megative' and "positive' confounding, respectively,
although it is conceivable on the basis of (4.2.26) that there could
be exceptions to the rule. The direction of confounding in Regions II
and III can be either positive or negative or there can be no confound-
ing, which reveals the equivocal nature of confounding when multiple
variables are considered. The relative efficiency shall be discussed

with reference to the regions in Figure 5.1.
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5.5.1 Follow-up Study

The results for the follow-up study are displayed in Table 5.5 to
5.10. A number of general conclusions can be drawn regarding matching.

(a) Matching is likely to be more efficient than random sampling,
whether the matching incorporates all or only a few of the
confounding variables; This is true especially for situations
where the confounding is mild to moderate (Tables 5.5 and 5.8).

In addition, the expected gain from matching outweighs the
expected loss in efficiency; Only in Region I (joint '"nega-
tive'" confounding) can there be an appreciable loss in effi-
ciency from métching. These conclusions paréllel those of
.Chapter 3;

(b) There is a significant relationship between the direction .
of the confounding associated with a potential matching vari-
able, and the relative mefits of matching on that variable.
Generally, there is no gain in efficiency from matching on a
"nega*ive" confounder unless that variable is a strong con-
founder. Consider Regions II and IV of any of Tables 5.5 to
5.10. In each case matching on F and G is more effi-
cient than matching on F because G is a '"positive' con-
founder. In contrast are Regions I and III, where in many
instances matching on F only is at least as efficient as
matching on both F and G. (Note especially Tables 5.6 and
5.9.) In addition, the lack of contrast between Regions III
IV of Table 5;6 is revealing. As a group the relative effi-

ciencies in Region III are only slightly . lower than those of .
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Region IV even though in Region III G 1is a '"negative' con-
founder. The variable F is a strong positive confounder;
however, which seems to dominate the weaker variable G. The
key element to gaining efficiency by matching is to match on
strong "positive" confounders.

(c) It is generally more efficient to match on independent con-
founders (Tables 5;5, 5;6, 5.7) rather than correlated con-
founders (Tables 5.8, 5;9, 5.10). As F and G are increas-
ingly interdependent, the relative increase in efficiency of
matching over random sampling occurs only when both variables
are ''positive'" confounders (Region IV). Otherwise, the rela-
tive efficiency is not enhanced by matching on variables which
are highly related, especially if both are 'megative'' con-
founders. As an example consider the contrast of Tables 5.7
and 5.10; An implication of this conclusion is that unless
F and G are both "positive' confounders, one should expect
a.lesser'gainijlefficiency by matching on highly related con-

founders than by matching on independent confounders.

5.5.2 Case-Control Study

The results of numerical evaluations of the ARE's for the case-
control study are quite consistent with the findings of the follow-up
study and of the results of Chapter 3. Tables 5.11 to 5.16 display
the averaged relative efficiencies for OR = 1.5, § = 0.05, p = 1,
and specific levels of association between F and G, and exposure

and disease. Some major distinctions between the results of the two

studies include the following:
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(a) Matching in a case-control study has almost universal superi-
ority over random sampling in terms of efficiéncy: Inspec-
tion of Tables 5.10 to 5;16 reveals that regardless of the
nature of potential confounding associated with each match-
ing variable; the strength of dependence between F andv G,
or whether the matching has included both confounders or not,
matching is likely to yield a larger .M-H X2 statistic than
random sampling. At the same time matching does not yield as
sizable a gain in efficiency in a case-control study as in a
follow-up study. The conclusions confirm those in Chapter 3.

(b) Following from the comments in (a) matching on a ''negative"
confounder is less likely to result in a loss in efficiency.
In fact, matching leads to a gain in efficiency in some
areas of Region of every table presented in this section
(5.10 to 5.16). There still are losses in this region but
they are minimal in comparison to the gains which are achieved
there. For the case-control study the stronger the confound-
ing (regardless of direction), the greater the gain in effi-
ciency from matching over random sampling.

(c) The strength of the association between F and G 1is of
lesser importance with regard to the relative efficiency.
There can, however; be a substantial gain in efficiency (as
opposed to a loss in efficiency in a follow-up study) when
two highly related, ''megative'" confounders are the matching
variables. As an example of this phenomenon, see Region I

of Tables 5.14, 5.15, and 5.16.
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5.6 Loss of Sample Size and Relative Efficiency

In Chapter 3 it was demonstrated that the most damaging effect on
the efficiency of matching relative to random sampling is the loss in
sample size which can occur in the process of selecting subjects by
matching. If the matching process is assumed to discard subjects which
would otherwise be available in a non-matched study sample, then the
expected loss in efficiency was shown to be enough override any
advantage of matching;‘ The results of this section support that claim
as well.

Numerical evaluations were conductéd similar to those of Section
5.5 while incorporating Method B quantification of loss (3.4.1). The
results were overwhelmingly in favor of random sampling. Table 5.17
displays a typical set of circumstances from which a matched sample,
assuming loss of sample subjects; might arise. The entries in Table
5.17 are, again; averages of ARE's generated under that specific set
of circumstances. (One should note that the variation in individual
relative efficiencies was somewhat greater than the variations experi-
enced for the relative efficiencies in Section 5.5. A probable explana-
tion is the dependence of loss on m%n(¢i/9i), which can vary for a
given set of odds ratios measuring c;nfounding, etc.). Table5.17 should
be compared to Table 5.11, representing the relative efficiency without
incorporating loss of sample size and also Table 3.14 in Chapter 3.

Almost without exception the relative efficiency is likely to be
less than 0.50 unless the underlying confounding is mild. The nature

and strength of confounding are of relatively little consequence on
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the relative efficiency when loss of sample size is assumed. Comparing .
Table 5.17 to Table 3.14 suggests that the relative efficiency decreases

as additional confounding variables are included in the matching, per- -
haps because m%n(¢i/ei) decreases as the range of i increases.

Regardless, und;r no circumstances should matching be used as the

method of subject selection if there will be a loss of sample size from

matching, as modelled by the method used here and in Chapter 3.

5.7 Summarz

The results bf this chapter can be summarized by the following
statements. First, the most important concern with regard to matching
is whether there will be a loss of sample size from matching. If so,
matching should not be fhe method of subject selection. Second, the ‘
most important characteristic of a potential matching variable is
whether it is a '"positive'" or 'negative'" confounder, or if not a con-
founder, whether it is strongly related to another confounder. For the
follow-up study a matching variable which is either a 'megative" con-
fpunder or strongly related to one will not generally lead to an increase
in efficiency if selected for matching; On the other hand a '"positive" .
confounder (or a variable highly related to one), wili lead to a sizeable
gain in efficiency if incorporated in the matching. For the case-
control study matching on any type of confounder will quite likely lead
to a gaiﬁ in efficiency;

Third, matching on a non-confounder in general has no appreciable -
effect on the efficiency relative to random sampling unless it is highly

related to another confounder. That is, overmatching is not a problem
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with regard to the relative efficiency of matching with respect to
random sampling.

Fourth, from a general perspective matching is a useful method to
increase the efficiency of a test of association between disease and
exposure in an epidemiologic studyl The risk of losing efficiency by
matching is offset by the sizeable gains which may result; therefore,
matching should be recoﬁmended as a method of subject selection for epi-

demiologic studies.



FIGURE 5.1

Direction of Confounding® and Types of
Confounding Variables

2 3
ORee/r (ORpg/ER)
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<1 > 1
I II
F+G "Negative" F '"Negative"
Confounders Confounder
<1 Joint '"Negative" G "Positive"
Confounding Confounder
2 Nature of Confound-
OREF/G ing Undetermined
3
(ORDF/EC)' 111 v
F "Positive' F+G "Positive"
Confounder Confounder
>1 G "Negative" Joint "Positive"
Confounder Confounding
Nature of Confound-
ing Undetermined
1. The associations between each confounder and the ocutcome

variables are assumed to be direct (the corresponding odds
ratios are greater than 1) without loss of generality.

2. Follow-up Study

3. Case-Control Study
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Average Relative Efficiency of Pooling and °
Stratification for Random Sampling in Case-Control

TABLE 5.2

Studies: No Confounding
(OR=1.5, 60=0.05, ORFG/-[-)-=2, p =1)
ORpr/EG
ORDG/EF 0.0625 0.2 0.5 2 5 16
0.0625 2.25 1.84 1.59 1.48 1.55 .87
0.2 1.79 1.35 1.20 1.16 1.26 .58
0.5 1.61 1.19 1.06 1.05 1.16 .50
2 1.47 1.15 1.05 1.07 1.21 .58
5 1.51 1.24 1.16 1.20 1.36 .80
16 1.83 1.55 1.49 1.59 1.80 .29

156



157

8¢'T  2S'z | zs'T LT 12’1 $0°C 0°91

1T 8S'T | st sbUr o't 8T 0°S

90°T 8U'T | So'T sI°'T | $0°T  IU°X 0°z

96'0 88°0 | 960 £6°0 | 860 S6°0 s 0°S
16°0  6,°0 | 26°0 060 | 96°0  S6°0 2'0

68°0 4.0 | 68°0 zo'T | 960  SI'T $290°0

¢6°0 81'z | v6'0 81 86°0  £8°1 0°91

96°0 6v'T | 96°0 8z°T | 860  0s°T 0°S

66°0 ST'T | 86°0  L0°T 66°0  80°T 0°¢

20°'T  2z6'0 | zo'T  86°0 10'T  L6°0 g 0
€0'T 480 | v0'T  #0°T 20°'T  20°1 2°0

so'T  £6°0 | so't  sstT | vo'T  Lzd 52900

@ (2 @ (@ @@ (@ /98y 3794y,

(s°s) (s‘2) (z°2)
(1890 93/4%4) 30 enep

Atuo 4 (q) pue 9°d (e) uo Burydley

(1=9 ¢ 1000°0=29 ¢ g r=uw)

:nu\mmxov Apnig dn-morr0od ‘9 03 ong Surpunojuo) [ENpISAY
:8utrdueg wopuey pue Sutyojep jo ADSUSTIOTFFY SATIIRISY o8eIoAY

¢£°S JT4vVL



158

poleasuad oq prnod sOTISTIBIS _X Po3Idadxs ou 3eyj ajedtpur (-) sayseq

Z

¢S 1 96°¢ AN s¢°Z - —_ 86°0 y0°2 0°91

o1 9.°1 91°T SS°1 ¢6°0 Se°T 860 Iv'1 0°S

61T°1 12780 ¢ 80°T 0z't S6°0 80°1 86°0 IT°1 0°¢

S0°1 66°0 10°1 96°0 66°0 ¢6°0 66°0 $6°0 S0 0°5
. 10°1 v6°'0 00°T1 €60 10°1 €6°0 00°T ¢6°0 2’0

—_— — — —_— V01 o1°1 ¢0°1 SO0°1 SZ90°0

vy 1 vZ'¢ SC'1 20°¢ — -_ 86°0 9.7 1 0°91

1Z2°1 AR 11 8¢°1 S6°0 1A | 86°0 92°'1 0°s

eI’ 1 I¢°1 S0°'1 T°1 L6°0 SO0°1 66°0 90°1 0°¢

20°'T  66°0 00°'T  86°0 00°'T  86°0 00°'T  86°0 $°0 0°¢

b -— 00°'1 00°1 ¢0°'1 SO0°1 I0°T v0°'1 ¢°0

-— —_ o~ _— L0°1 eI ¢0°'1 8C°1 S290°0

@ (e @ (2 @ (@ @@ @ d8/90y,  40/98y,

o . 93/dGy, L _ 9By, o 98/dy , - 98/d0y

o.muc\wmmo . m.oun\wmmo

A1uo 4 (q) pue 94 (e) uo 3urydsleW

(1=0 mmo.ouoom ¢ §°1=40)

(1 uub.\mmxov Apnig 1oxjuo)-9se) ‘9 03 ang Surpunojuo) [VAPISIY
:8urrduweg wopuey pue Suiydiep JO ADUSTIOTFFY SATIR[3Y odexoay

v'S JT4VL



159

‘pojeIausad 9q pInNOd SOTISTIELIS

X Pe1dadxa ou 3Byl 931BOTPUT (—) SAYSeE(]

Z
(L8°1) (v6°'1) (¢6°1) (¥8°1)

— Ly 2 $1°2 981 S8° 1 —_ 0°91

(Lz'1) (zg'1) (ss°1) (ze-1) (62°1) (zz'1)

LS°C SL°T 9" 1 8Z°'1 82°1 ov°1 :0°S

(60°1) (60" 1) (60°1) (60°1) (80°1) (L0°1)

10°2 vy 1 61°1 SO0°'T L0°1 821 02

(s6°0) (96°0) (96°0) (L6°0) (t6°0) (L6°0)

LT SZ°'1 SO°'T ¥6°0 L6°0 8T°1 $°0

(¢6°0) (L6°0) (66°0) (00°1) (00°1) (66°0)

0.1 ST L0°1 L6°0 00°1 0Z°1 z°0
(11°1) (tz'1) (vz'1) (81°1)

— ST zs'1 61T 811 e $290°0
0°91 0°S 0°2 S0 Z°0 $290°0 (9/49)40
(4/93)¥0
(sesayjuaaed ut) Afuo 4 (q) pue 9‘4 () uo Burydlel
(2= « 9/, « [ APy ¢ 1900:0= ¢ s 1=ww)

Apnig dn-moytod ‘Surpunojuo) jurof
:8urydueg wopuey pue Suryoley FOo ASUSTOTIFIT 9ATIRISY 9FeIaAy

S'S 414Vl



160

‘polexousd 2q pInod SOTISTILIS _X Ppoldadxe ou eyl a3edTpur (—) sayseq

4
vy ) vy (Ls°2) (9z2°2)
— €z°¢ 89°C 82°'C L2°2 — 091
(s¥°1) (¢s 1) (ss'1) (zs'1) (v 1) (1¢71)
SL°T 20°2 69°1 91 IR A 0S°1 0°S
(81°1) (z1°1) (z1°1) (s1'1) (v1°1) (zt'1)
VA vS°1 L1 11°t 11 S¢'1 0°'2
(Lg80) (68°0) (16°0) (z6°0) (16°0) 16°0)
65°1 91°'1 86°0 88°0 16°0 IT°1 S°0
(82°0) (z8°0) (¢8°0) (sg-0) (98°0) $8°0)
Al | 90°1 06°0 28°0 980 v0°1 z°0
(18°0) (g8°0) (z6°0) (06°0)
— 90°'1 96°'0 68°0 06°0 — $290°0
0°91 0°S 0°C S0 Z°0 S290°0 (9/49)¥0
(4/99) 40

(sesayjuaxed ur) Afuo 4 (q) pue ¢9°g () uo Buryosjen

(z=98/0g ¢ g-9/d0y « -3y ¢ 1000:0=Pg ¢ g 1=wu)

Apnig dn-moy1od ‘Surpunojuo)y jurop
:8urjdues wopuey pue Surydoien Jo ADUSTOTIIFF SATIRISOY o8evIoay

9°S 4714Vl



161

(g =320y, « ¢ 08/d0y, {2/

‘pojeaausd aq prnoys SOTISTILIS X peo3oadxs ou jeyl aledIpur (—) sayseqd
(¢5°2) (8¥°2) (ve-2) (81°2)
— vL S 08°2 60°2 28°1 — 0°91
(ss°1) (Ls°1) (9s°1) (os 1) (zv 1) (sz'1)
1s°¢ o2 €81 S¢°1 61°1 80°1 0°S
(oz°1) (s1°1) (c1°1) (s1°1) (s1°1) (ot°1)
09°2 6L°1 9¢° 1 v0°1 S6°0 96°0 0°C
(s8-0) (88°0) (06°0) (z6°0) (£6°0) (£6°0)
08°'T 0g°1 0" 1 £€8°0 8L°0 €8°0 S0
(s,°0) (6L°0) (zs-0) (£8°0) (68°0) (16°0)
LS 1 911 S6°0 8L°0 SL'0 08°0 Z°0
(LL°0) (98°0) (s6°0) (s6°0)
— ST°T 66°0 S8°0 08°0 —_ S290°0
0°91 0°'S 0°2 S°0 2'0 $290°0 (9/743)¥0
(4/93)490

(sosoyjuoxed ur) ATuo 4 (q) pue {9°4 () uo BUTYO3IEW

b: (0] msoo.ouoom $ ST =YY

Apnig dn-moifod ‘Surpunojuo) 3jurof
:Sutrdues wopuey pue SuryoleW JO ADUSTOTIFT OATIR[SY d3vIdAY

L*S dT4VL



162

*pojexausald 9q pInod SOTISTIBIS X poioadxs ou 3eyz 93edTpUr (—) Ssayse(q
(19°2) (zs D)
— ve°s 0S°2 — — — 0°91
(66°1) (vo°1) (zs'1) (6z°1)
2 8 rA B4 S9°'1 szl — — 0°S
(8v°1) (8z°1) (L1°1) (90°1) (zo'1)
vy 2 19°1 921 €0°1 00°1I — 0°2
(vo°1)- (86°0) (96°0) (s6°0) (v6°0) (86°0)
081 AR | €0°'T 26°0 ¥6°0 P11 S0
(16°0) (¥6°0) (L6°0) 00°1 (60°1)
— ST'1 00°T ¥6°0 00°T s 1 2°0
(to°1) (61°1) (os°1)
— — 60°1 ST°1 sl — SZ90°0
0°91 0°S 0°¢ S°0 z2°0 G290°0 (9/43)40
(4/93)90

(sesoyjuaxed ut) Ljuo 4 (q)

(z

S d3/90y,  « , _93/d0y,

a/94

S= ¥o

pue 94 (®)

uo Juryojen

00 P

{1000°0=""9 ¢ S°'T=¥4)

Apmag dn-mor1o4 ‘Suipunojuo) Jutop

:Burrdues wopuey pue Suryojep Jo AJUSTIOTFFY SATIRISY 98eviany

8°S HTI4VL



163

‘pojerousd oq prnod sorisTiels _X poadadxas ou eyl

?1ed1putr (—) Ssayseq

z
(6£°¢) (s8°2)
- €'Y L0°S —_ — — 0°91
(1s'z) » (s6°1) (8L°1) (sv° 1)
L8°S 15°¢ Z6°1 8¢°1 — — 0°S
(sL°1) (v 1) (9z°1) (o1° 1) (s0°1)
6L°C 08°1 Ss°1 L0°T 10°1 — 0°2
(Lo'D) (£6°0) (z6°0) (88°0) (98°0) (98°0)
18°1 81°1 86°0 $8°0 S8°0 86°0 S0
(s8°0) (£8°0) (z8°0) (¢8°0) (s8°0)
— 201 88°0 6L°0 28°0 10°1 z°0
(LL70) (£870) (v6°0)
— — €8°0 ¥8°0 v6°0 — S290°0
0°91 0°S 0°Z S0 z°0 $290°0 9/49)¥0
(4/99)¥0
(sesayjuaxed ur) Afuo 4 (q) pue 94 (e) uo Surydlep
=Py « - 9/yy ¢« g 3Dy, ¢ 100070 = Qg ¢ 51 =uw)

Apnis dn-moytog ‘Sutpunojuo) utiop
:8ur1dweg wopuey pue Sutyoley FOo AJOUSTIOIIIFF SATIBRIIY sdeIoay

6°S 319Vl



164

-pojeisuad oq pInod SOTISTIBIS _X Ppaldadxs ou eyl 93edIpul (—) sayseq

4
(ve-) (00°¢%)
— ST'S s¢'¢ — — — 0°91
L2 (o1°2) (98°1) (sy°1)
v’y . 66°C 1§ G4 ps 1 — — . 0°'S
(s8°1) (1s°1) (62°1) (1t°1) (s0°1)
vz s €0°C A | Z0°1 68°0 — 0°2
(8o 1) (,£6°0) (16°0) (L8°0) (sg°0) (sg°0)
$0°T 9Z2°1 10°1 08°0 £L°0 vL°0 $°0
, (08°0) (08°0) (08°0) (zs-0) (s8'0)
— L0°T 88°0 vL 0 0L°0 9,0 Z°0
(zL°0) 28°0) (68°0)
— — 18°0 SL°0 9£°0 — $290°0
0°91 0°S 0°2 S0 Z°0 $290°0 (9/49) 40

(d4/49)40

(sesayjuaaed ut) Afuo 4 (q) pue 94 (e) uo Suryodiey

_d8/90, o o _98/dQy,

RPN V) NI 00, .

(s S £ 1000°0="9 ¢ S'T=¥Y)

Apnig dn-moyj04 “Burpunojuo) juror
:8ur1duwes wopuey pue Suryd3IBW FO ADUSTOTIFFY SATIRIAY S3exsay

Q1S 919vVL



165

‘pejeIsusd oq pInod SOTISTIBIS _X PpoIdadxe ou jeyl 931edIpur (—) sayseq

z
(b 1) (zg 1) (zg 1) (s2°1)
— £2°¢ L6°1 6L°1 v8°1 . 0°91
(s2°1) (9z2°1) (82°1) (s2°1) (92°1) (0z°1)
S1°¢ 19°1 8¢°1 9Z°'1 Ig°1 1S°1 0°S
(z0°1) (80°1) (go°1) (Lo°1) (Lo°1) (90°1)
881 9¢°1 ST°'1 90T It 8S°1 0°2
(L6°0) (86°0) (86°0) (86°0) (86°0) (86°0)
99°1 ZAR ! SO0°1 L6°0 201 LZ°1 S°0
(86°0) (zo'1) (g0°1) (vo°'1) (s0°1) (10°1)
L1 82°1 1Tt 20°1 L0°'T 0S°'1 4 Z°0
(tz'1) (og° 1) (o' 1) (sz°1)
— vS°1 ov'1 JXAR | 8Z°'1 — $290°0
0°91 0°S 0°2 S0 rAN\ §290°0  (93/40)¥0

(d43/90) 40

(sssoyjuaxed ut) Auo 4 (4) pue 94 (e) uo Burydiep

(z = pm\ummo A um\mmmo H

¢ ﬁ ".m—-\unmmo 1 o [4

r4 .m?ouo@ { S'1=40)

Apnig 10x3u0D-3se) ‘Surpunoyuo) Juror
:8urtdues wopuey pue Sutyolew Jo ASUSTOTFIF SATIR[IY adeaany

I1°S dT19VL



166

‘pojeraual aq pInOd SOTISTIBIS _X poidadxs ou eyl 23edTpur (—) sayseq

z
(66°1) (60°2) (80°2) (¢0°2)
— 9b°Z 12°2 60°2 vz e — 0°91
(e 1) (Lg°1) (ov°1) (o¥°1) (9¢ 1) (82°1)
S7°¢ 99°1 8b°1 ov°1 Lyl SL'T 0°S
(s1'1) (zt 1) (zt°1) (zt'1) (r1°1) (tT1°1)
L8° 1T LS°T 811 AR 0z°1 0S°T 0'C
(v6°0) S6°0) (96°0) (96°0) (96°0) (v6°0)
951 LT T 10°1 96°0 €01 L1 S°0
(16°0) (s6°0) (96°0) (96°0) (s6°0) (16°0)
vS*1 91°'T . 10°1 S6°0 10°1T €1 Z°0
(90°1) r1°1) (zr'n) (90°1)
— €e° 1 AR | I1°1 AR — $290°0
0°91 0°S 0°2 S0 z°0 sz90°0  (d3/40)¥0

(43/9a) 490

(sesayjuaxed ur) Afuo 4 (q) pue 94 (®) uo Juryoslel

o 44/98, ¢ o _90/ddy ¢ _0/9dy

4 S o ¢ mogvuoom ST =Y0)

Apn1g 10x3juU0)-3se) ‘Jurpunojuo) utror
:Sut1dueg wopuey pue Sutyoley JO ADUSTOITIFT SATIR[OY ofeiaAy

Z1°S 318Vl



167

‘pojexauald 9q pInOd SOTISTIBIS _X Ppo3dadxs ou ieyz ajedtpur (—) sayse(q

r4
(zs 1) (L8°1) (98°1)
— — v6°1 (81 £0°C — 0°91
(92°1) (62°1) (og°1) (gz'1) (sz°1)
— LS°T 8S°T 621 LS°1 S9°1 0°S
(Lo°1) (go°1) (go-"1) (80°1) (80°1) (80°1)
88°1 9¢°1 9I°1 L0°T €11 VAR 0°¢
(66°0) (66°0) (66°0) (86°0) (86°0) (96°0)
A L1 901 L6°0 10°1 811 S0
(10°1) (vo'1) (vo 1) (c0°1) (00°1) (96°0)
981 £e° 1 11 00°'T 101 91°1 2°0
wz 1) (ze'1) (vz'1) (o1°1)
— 69°1 Lyt 61°1 Pl 1 — SZ90°0
0°91 0°S 0°¢ S°0 z'0 Sz90°0  (93/40)¥o0

(4d/9a)¥0

(sosoyjuoxed ur) Afuo 4 (q) pue 9°4 (e) uo Suryolep

00

B (L N S N

S 1

Apnig 10xjU0)-3se) ‘Surpunojuo) UIOL
:Butrdwes wopuey pue Sutyojepl JOo AJUSTOTIFI SATIIR[SY o8rIoAy

€1°S dT14VL



168

‘poiexausd aq prnod sOTISTILIS _X Ppo31dadxs ou eyl 23edTpul (—) Sayseq

Z
(8£°2) (s1°2)
— 96°¢ 62°C — — — 0°91
(08°1) (rs 1) §2200) (vz°1)
1L°¢ 68T vS 1 €21 — — 0°S
(Lg°1) (zz'1) (v1°1) (so°1) (10°1) .
912 6v°1 121 v0° T v0° 1 — "z
(vo-1) (66°0) (86°0) (,6°0) (£6°0) (00°1)
VA 61°1T €0°1 96°0 00°1 21 S°0
(s6°0) (66°0) (¢0°1) (vo 1)
— JARE v0° T 10°T  80°T — z°0
(1It'n (og°1) (1v°1) :
— — 0z°1 821 Ly 1 — S290°0
0°91 0°S 0°2 S'0 A1 S290°0  (9d/40)¥0

(44/90)¥0

(sesayjuaaed ut) Atuo 4 (q) pue 9°4 () uo Surydlen

(2=39/98y « 7-90/d8y, ¢ ¢ 0y, ¢ 5-0=09 ¢ g 1=y0)

Apnig foxjuon-ase)y ‘Surpunojuo) utor
:3uridueg wopuey pue Surydlen Jo ADOUSTOTIIT SATIBR[IY d3ea02AY

Y1°S H19VL



169

-pojeasusd oq pInod sOTISTIBYS _X Ppo3Idadxs ou eyl 931edTIpUT (—) Sayseq

z
(vt 2)
- —_— 1S°2 —_ - —_ 0°91
(00°2) (L9°1) (8s°1) (¢g°1)
06°2 86°1 991 €S 1 — — 0°S
(s¥°1) (og°1) (61°1) (s0°1) (zo'1)
vz'z €S 1 ZAN | 80°1 601 — 0°C
(90°1) (66°0) (96°0) (v6°0) (¢6°0) (v6°0)
0L T LT°T 10°1 ¥6°0 86°0 12°1 S0
(z6°0) (£6°0) (s6°0) (s6°0)
— 011 86°0 ¥6°0 10°1 — z°0
(66°0) (¢1°1) (tz°1)
— — SO0°T A | L1 — $290°0
0°91 0°S 0°C S°0 0 §z90°0 (93/4m¥0
(43/90)¥0

(sasayjuaxed ut) Aquo g (q) pue (94 (e) uo Juryolep

40 mmo.ouooo ¢ 6 1 =3Y0)

(z =309y, _9a/d48, ¢ o 0/9d

Apnig 1oxjuo)-ose) ‘Surpunojuo) jutof
:3utrdures wopuey pue SuryoleW JO AJUSTIOTFIT OSATIRISY 93eIAAY

ST°S 14Vl



170

.voumnm:um 9q pInod soT3STIelS _X poidadxe ou eyl 93edTpul (—) sayse(q

rd
(Lz°2)
— — vz — — — 0°91
(6L£°1) (ss°1) (6%°1) (gz°1) (¢1°1)
1L°C v8 -1 6S°1 L1 LT°T — 0°S
(8¢°1) (¢z° 1) (s1°1) (Lo 1) (zo'1)
S1°C 18°1 221 S0°1 90°1 — 0°'¢
(so°1) (o0°1) (86°0) (96°0) (96°0) (L6°0)
081 ST SO0°1 S6°0 66°0 L1°1 S0
(96°0) (66°0) (zo'1) (00 1)
— vz 1 L0°T 66°0 20°1 —_ Z°0
(r1°1) (sz'1) (62°1) (og°1)
— —_ ZAR | 01 9z°1 sh°1 $290°0
0°91 0°S 0°C S°0 z°0 5290°0  (93/40)¥0

(44/90) 40
(sesoyjuaxed ur) ATuo 4 (g) pue ¢9°4 (e) uo 3urys3jen

mo\omm

(g =44 ‘ 9a/4d ¢ g0/, . 00, .

0 g==="""40 ¢ $650°0=""9 ¢ ST =¥0)

Apnig 10x3U0)-9se) ‘Jurpunojuo) Juror
:8uridues wopuey pue Suryoie Jo AJUSTOTIIH OATIR[SY oFerany

.

91°S H14Vl



171

‘pajerousd oq pInNoOd SOTISTIBIS _X Po3dadxe ou eyl 931edIpUr (—) Sayseq

4

— — 9t°0 A 9¢°0 — 0°91
— v 0 95°0 €5°0 o €70 0°S
90 ¥S°0 99°0 99°0 1S°0 85°0 0°2
A 6v°0 1S°0 £9°0 8v°0 1§20 S0
o S€°0 A 9t 0 9¢°0 vZ'0 z°0
— LE°0 0v°0 8¢°0 2z°0 — $290°0
0°91 0°S 0°¢ S0 z'0 §790°0  (93/4@)¥0

(43/90)¥0
(¢ = 40/0%y ¢ 7 -9/l op o Oy, £ go0=% ¢ go1=v0)

(4 poyaow) ozig ordwesg Jo ssoq Surjexodioouy 9 pue 4 uo SurydIey

Apnigs Toxjuo)-ase) ‘Surpunojuo) juror
:3ut1dueg wopuey pue Butydsiey Jo AJUSTIDTFFH SATIR[OY odvIOAY

LT°S H19VL



CHAPTER 6

SUMMARY AND SUGGESTIONS FOR FUTURE RESEARCH

6.1 Summary

The primary intent of this work has been to evaluate the effective-
ness of (frequency-) matching in providing a more efficient analysis of
the association between a disease variable and exposure agent with
respect to random sampling. Particular consideration was given to the
characterization of the relationship betweeen the relative efficiency
of matching vs. random sampling and the degree and direction of the
underlying confounding. Relative efficiency was considered in the con-
text of a single dichotomous matching variable and two dichotomous
matching variables. The results of the evaluation show that, in general,
there is an expe~ted increase in efficiency from matching on a confound-
ing variable. The increase is larger for the follow-up study but more
likely for the case-control study. No loss in efficiency results from
matching on non-confounders unless they are highly related to '"negative"
confounders.

Evaluation of the relative efficiency was based on analytical and
numerical studies of ratios of Mantel-Haenszel X2 statistics con-
structed from "expected" cell frequencies under the two designs. These
ratios, when evaluated near the null values of the measures of effect,
are shown to be equivalent to the asymptotic relative efficiency, or

Pitman efficiency (Gibbons, 1971).
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In order to incorporate loss of sample size from the matching into
the evaluation of the relative efficiency, algorithms were developed to
quantify the loss of sample size as functions of the joint distributions
of the matching variables. In that regard, the loss of sample size is
seen to vary with the strength of confounding. Regardless of the for-
mulation of the loss in sample size, matching is shown to lead to a con-
sistent, substantial loss in efficiency relative to random sampling.

In the context of categorical matching variables, the method of
pair-matching is compared to frequency-matching with respect to validity
and efficiency. It is demonstrated that the pair-matched odds ratio is
a function of the pairing, and due to. the arbitrary nature of the pair-
ing, can be grossly inaccurate with respect to the true value of the
odds ratio. In addition, pair-matching is seen to result in a less effi-
cient analysis. It follows that pairing is rejected as a method of
matching in this context.

In addition to efficiency considerations, conditions for no con-
founding are developed for each study type assuming two potential con-
founding variables. The concepts of '"joint" and "residual" confounding
are discussed in detail! Conditions are developed through comparisons
of crude and adjusted measures of effect as well as a regression formu-
lation. The concept of confounding as it pertains to two potential
confounders is seen to grow more elusive. In that regard the proper
identification of a (non-) confounder is drawn. Attention is also given
to the effectiveness of matching as a design technique to control con-
founding, and to the manifestation of apparent effect modification as
a form of confounding, which is demonstrated for the case of two confound-

ing variables.
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6.2 Suggestions for Future Research

Extensions and further developments of the present research which
might be warranted include the following:

(a) Further investigation of the relationships between the under-

lying confounding and the relative efficiency.

A key result of this dissertation is the identification of a relation-
ship between the underlying confounding and the efficiency of matching.
It would be of interest to continue the investigation concentrating on
the relationship between the size of the confounding bias and the rela-
tive efficiency. By focusiﬂg on the size of the bias rather than asso-
ciations between potential confounders and disease and exposure, some
of the restrictive assumptions that were required for the present work
can be dropped, in particular, the '"no interaction' restrictions.

(b) Strategies for choosing the 'best'" set of confounders to

control.

Kleinbaum and Kupper (1980) raise the possibility of a circum-
stance in which a confounding bias can be removed by adjusting for dif-
ferent sets of confounders: that is, unique sets of confounders may
be "responsible' for the same bias. Such a circumstance was presented
in Chapter 4: one of two extraneous variables, themselves correlated,
is independent of disease while the other is independent of exposure.
Controlling for either removes confounding; controlling for neither
leaves a confounding bias. With the possibility that the control
of confounding can by accomplished by adjusting for different sets of
confounders, it would be useful to develop a strategy to choose the
""best" set (or, minimal number) of confounders for which control is to

be accomplished. Such a strategy would necessarily involve efficiency
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considerations.

(c) Extension of the relative efficiency evaluations to con-
tinuous variables and continuous-variable matching methods.

The efficiency of various continuous-variable matching methods,
such a nearest-neighbor and caliper matching, has been studied rela-
tive to analytical methods (e.g., analysis of coyariance) by a number
of authors including Billewicz (1965), Rubin (1973), and Raynor and
Kupper (1977). None of the techniques has been applied to more than a
single matching variable and compared with respect to an analytical
method of control. Rubin (1976) and Miettinen (1976) have advocated
various multivariable methods which reduce a set of matching variables
via a linear function to a single "score" which is then used as the
matching variable. Raynor and Kupper (1977) emphasize that there
remains a need for a more refined understanding of the performance of
continuous-variable mat;hing techniques, both in terms of their effect-
iveness to control confounding as well as their efficiency vis-a-vis

methods suchas analysis of covariance.
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APPENDIX 1

The Relative Efficiency of x;cN and X;H .

When the Sample Size and the Measure of Effect are Small

In Chapter 2 pair;matching is shown to be less efficient than an
analysis which does not utilize the pairing. The expected Mantel-
Haenszel statistic, X;H’ is shown to be larger then the expected
McNemar statistic, xﬁcN’ when the sample size is assumed large
(2.3.4). However, when the sample size is not large, an evaluation of
the relative efficiency cannot involve the substitution in (2.3.2) of
2nek-1 with 2n6k. The impact of this substitution on the relative
efficiency is now studied for small sample sizes and measures of effect
which approach the null value.

Without this substitution the relative efficiency (2.3.5) is

expressed as
2
nEek(ak+ek)(2-(ak+3k))/(2nek-1)
RE = . (1)
Eek(ak+sk'2ak8k)

For pair-matching to be more efficient, RE <1, or
2
Eek(ak+sk-2ak3k) > ngek(ak+ek)(2-ak-8k)/(2n9k-1) ,

2 2 2
 2n] Bk(ak+6k) . ek(ak+8k)
¢ 2ng -1 £ 7 7ne -1

or equivalently,
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2né 8
k K 2 @
Z ek(ak+6k)[l"iﬁ5;tTJ > z E;E;:T-{zaksk(znek-l) —nek(ak+sk) } s
or A
8, (a, +8.) 6
KUk Tk ) k { 2 2 }
- > -nd, (o, -2a, B, +8.) - 20, B
X 2n6k-1 ¥ 2n6k-1 k 'k k"k "k k"k .
)
k 2
> - L omg 3 {nek(ak+sk) +2"‘1<Bk} ’
k k
which can also be written as
o 2
Z 6 T {nek(ak-Bk) - (ak+6k-2ak8k)} >0 . (2)
k "k )

For the follow-up study, assuming uniformity of the risk ratio,

o, = RR°Bk, for Vk, (2) can be expressed as

Bk 2 | ®
) {nekBk(RR-l) - (RR+1-28kRR)} >0 . (3)

X 2n6k-1

k

Consider the term in brackets. This term must be positive in a large

number of strata for (3) to hold. For the kth term to be positive,

2
nekBk(RR-l) > RR+1 - ZBkRR
or

By > (RR+1)/(n6k(RR-1)2+2RR) .' (4)

A table of minimum values of B which will yield a positive term

k

in (3) are given below for various values of RR, n, and ek. .
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TABLE 1
RR = 2.0 RR = 1.5
n 6k: 0.05 0.10 0.20 0.30 Ok: 0.05 - 0.10 0.20 0.30
100 0.333 0.214 0.125 0.088 0.588 0.455 0.313 0.238
200 0.214 0.125 0.068 0.047 6.455 0.313 0.192 0.139
500 0.103 0.055 0.029 0.019 0.270 0.161 0.089 0.061
1000 0.055 0.029 0.015 0.010 0.161 0.089 0.047 0.032

Clearly, these values for Bk are unrealistically large for
follow-up studies involving rare diseases. Only when the sample size
is large do the minimum values of Bk approach levels which might be
expected in practice. Therefore, the large-sample assumption accom-
panying the relative efficiency results in Chapter 2 as regards the
follow-up study can be expected to hold in practice for small samples.

For the case-control study the properties of the relative effi-
ciency under small measures of effect and sample size can be evaluated
in much the same manner. Consider (2) expressed in terms of the case-

control parameters as follows.

v
k 2
z—n-v—k:i- {nvkék(ek-cSk) - (€k+5k-2€k5k) >0 . (5)

= ~1

Substituting € = Gk-OR/(1+6k(OR-1)), (5) is expressed as

; S [ w7 oo, ZOR& )
L 2y -1\ oy ) T TSR D T T TR, (ORI,
or, 2 2
V.8, (0R-1)2(1-6,)%  (OR+1) (1-§,)
e ik X - (T+5. (OR 1])()} > 0
k k (1+<Sk(OR-l)) ko
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or,

2
v, 8, (1-8)) {nvkdk(l-dk)(OR-l)

E (2nvk—1)(1+6k(0R-1)) 1+5k(0R_1) - (0R+1)} >0 . (6)

Consider again the term in brackets. For (6) to hold this term
must be positive in a majority of strata. If this is true for the
kth strata, then

2
nvkﬁk(l—dk)(OR-l)

T+5, (OR-1) > OR + 1
or,
S S .
(OR—l)-1-+6k (OR-l)nvk
Equivalently,
2 -1
Gk-dk > cék-fc(OR-l)
- 824 (1-0)6, -c(OrR-1)"1 > 0 )
k k :
2 -1 . .
Let f(6k) = -Gk + (l-c)dk - ¢(OR-1) °. The function f£f(+) is a

quadratic function of ¢ and is negative for extreme values of ék

k’
(near 0 or 1). For f(Gk) >0

and,

R (8)
where

A = 1-2c+c-4c/(OR-1)

The term A must be positive for there to exist values of Gk which

will allow £(-) > 0. Now
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1-2¢+c? - 4c/(OR-1)

P
i

2(OR+1) (OR+1) 2 4 (OR+1)

- ‘ + -
(OR-I)m’k (OR-1) 2nzvi (OR-1) 2nv

=1

k

Consider values of A for OR = 2.0 and OR = 1.5.

For OR = 2.0,

>
1

=1- 6/nvk + S)/nzv2

k-—12/nvk

2 2
1- 18/nvk + 9/n Vi
. 2
A>0 if (nvk) - 18nvk +9>0 or,

= 17.5 .

nv

, 18 + v324-36
k 2

2

For OR =1.5, A=1- 10/nvk+ 25/n2vk

_ 2.2
-’40/nvk =1 -50/nvk-+25/n vy -

A>0 if (nvk)z-SOnv +25 >0 or,

k
50 + v2500-100
nvk > > = 49.5 .

Hence, for the ¢xistence of a Gk which satisfies (7), the number of
cases in each strata must exceed 18 for OR = 2.0 and S0 for OR = 1.5.

And, for a range of &, to satisfy (7), the stratum-specific number of

k

cases must be even larger. Note that the midpoint of such a range is

given by (8),

_l-c _, _ OR+1
=7 =% [1 _——-_(OR-I)nvk]
r0.5 - 3/2nv, , OR = 2.0
10.5 - 5/2nvk, OR = 1.5,

which varies between 0.40 and 0.45. These would be rather high
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probabilities of exposure among controls for most practical situations. .
The range of Gk considered in Chapter 2 had an upward limit of 0.36.

All things considered, there is no apparent advantage in terms of
efficiency to pair-matching over frequency-matching in case-control .

studies when both the sample size and the odds ratio are small.
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APPENDIX 2

In this appendix to Chapter 3 the index of relative efficiency,

RE (3.3.5), 1is proven to be equivalent asymptotically to the Pitman

.efficiency (Noether, 1950).

2.% 2
)%, the root of the observed M-H X1

statistic (3.3.1). Let Z be expressed by dividing both numerator and

Consider Z, where Z = (X

. v
denominator by N?. Therefore,

45 (o 2iPiCids
N [Z N, ]
Z= 1 1 r-
[ NpiNaiMyiMpi) %

2
N N (N,-1) )

Assuming that the marginal frequencies of each stratum (Nli’NZi’Mli’

MZ') are fixed, then
1
a.d.-b.c N,.M .y
-k i i_ -k 1i1i
N ==V [2(ai- N, ]]
i i i i
- N% 7 - 2 NliMli
- L N N,
i i
where a = Zai/N .
i
Also,
N,.M. .
11 11 -1 wry o
I ww N MEG@) = E@ =,
i i i
and

—

N,.N_.M,.M_.\% L L
[z 1i 51 11 21] = {l ZVar(a.)] = [%-Var(i)] =g .,
i NN{(N;-1) ny 1

l ——
Therefore, Z = N*(a - u)/o.
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Conditional on (Nli’NZi’Mli’MZi)’ the a; are independent. Therefore,
by application of the Central Limit Theorem, Z - N(0,1) as N > =,

Let Z and Z* represent the test statistics for random sampling
and matching, respectively. Both Z and Z* are asymptotically stan-
dard normal, where

L _
Z* = N*(a - n*)/o* .

Assume without loss of generality that the context of this proof is

the follow-up study. Under HO,

E(Z) = E(Z*) = 0 .

Also,
W= ut o= ey,
i
Under HA
Nli
E(Z) = < (E(alHy) - w)
1/2 [
N
= o (L(@;0;+B:0,)0./(0:+¢.) - 2“16{1
L?_L 1
L [ -
o - B.+¢, ?
L i i'i
2
! 85 (a.-B.)
NZ
E(Z*)=F*_ z - 2; — - ;8
Bt i i
1 » —
Ny 8; (o Bii]
Too* |7 L 2
L1
Now, let
=1

and



where

Since 6. > 0
i

and
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E(Z*)

[ 2918161/2:[ ;

N, =—=-1=RR, - 1.
i B. i

e

, where ci is fixed. Then, replace s with

¢+ vy, , where Xyi =0
i

, V¥i , then c, > 0 and ¢ > 0. Therefore,

Gi = 6C + Gyi ,

B $.8.
E(Z) ’% - 2 el+1<1>1 (6“6”1):1
- 1_ _ 2 61¢131 5 z 1¢181Y1
o 1(9 0§ 8tey |

Note that 6§

can be considered an '"average'' alternative to the null,

§ = 0. Assuming there is only minor inter-stratum variability in Gi,

then the Yy

can be considered ''small.'" And, because Zyi = 0, the
i

second term in brackets above can be considered negligible, and

Similarly,

Hence, Z and

E(Z) » - £ °i%1% = u($)
; (8;%6,)

E(Z*) % - g% Jo.8./2 = u*(s) .
i R

Z* are implicitly expressed as



188

_ t-u(s8) x - t-u*(8)
Z = NON and Z* = EEIORE
where
v2(8) = Var(Z)/N = 1/N
v*2(8) = Var(z*)/N = 1/N .

Consider a sequence of alternatives {Gk} which converge to the
null, &8=0, and sequences of test statistics {Zk} and {Zi} for

testing HO § = 0. The efficacies of Z and Z* are given by

Fue  _
e(Z) = /'NV=2(:;= = - C/O §91¢i8i/(ei+¢i) ’

and

dd—su*(d) L
e(Z*) =W= - c/o* geisilz .

The asymptotic relative efficiency (Pitman efficiency), denoted by

ARE, of matching to random sampling is therefore,

Z2
[Xeisi/z} /o*
2 2 i
- ez ¥/e(@)? = - —
(geﬁ»isi/( -+ i)] /o

2

""expected' M-H Xf statistic for matching

"expected" M-H Xf statistic for random sampling

for Pitman alternatives to the null.

The regularity conditions (Gibbons, 1971) are checked below.

d
1. HE'U(G) = -

Qjo

Zei¢i8i/(6i+¢i) , which is non-zero and continuous

for 8§ = 0 (recall ¢ > 0)
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d ey . & . ) .
oY (8) = - = Eeisi/z , which is also non-zero and continuous
for 6§ =0
GO N o
2 lim /Q==?T===== = - 5—26i¢isi/(ei+¢i), which is constant for all N .
N3+ ° Nv (8) i
d
& @)

lim fF—m——= - % 26181/2 , constant for all N .
N+ = Nv*"(8) i

d = 4 -
35 W@®e=8) g5 Wr(8)[8=8)
3. lim 3 = 1lim 3 =1.

Noeo (u(s) | 6=0) Nwd—G(u*(a)|s=0)

ds

Cve)e=s,  ve(@)|e=s, |y
4 MU Te= 0 T M S Te0 SN T

2-E(2) .4 Z*-E(Z%)

5 o both follow 1limiting standard normal dis-

tributions under the null hypothesis and Pitman alternatives.

Therefore, the regularity conditions are satisfied, and the proof

is complete.
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APPENDIX '3 .

uniform, stratum-specific odds

Proposition: cORm < OR, where OR
ratio, and OR > 1

cORm = crude matched odds ratio .

€.(1-3.)
Proof: By the assumption of uniformity OR = EiTngiT’ Vi. This
i i

-implies that

m
n

GiOR/(1+Gi(0R—1)) R

i
and
l-ei = (I-Gi)/(1+di(OR-1)) .
Now,
[geivi][l- dlvl]
cORm =

BORGiVi/(hGi(OR-l))] [1-§aivi]

- E(l“si)"i“mi(OR'l)) Gdivi)
@aivi/fi] [1-gsivi

@(1-ai)vi/fi] Q:‘Si"i

= 0R -

, where f. = 146, (0R-1)
] i i

OR * g(y, §, OR)

It is now demonstrated that g(+) < 1. Assume g(+) > 1. Then

B RN AN R 0V g
el el

[}i:divi/fi] > @‘Si"i] [gvi/fi] . .

a



Therefore,

Now

1
o
O
<
u

]

And, by substituting into (3.1
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]] .0 . ' GB.1)

Ef—l[Z(a a)v] 0,

J
or
22——1(5 -6 > 0. (3.2)
ij 1
By summing over j only up to i, then (3.2) can be expressed as
INRAZ -7 5, -85 > 0. ' (3.3)
f f.
i>j j
11 5N (oren)
And ?i--??-.' f = "FF (Gj-Si). Therefore (3.3) is written as
] i) 1)
Z 2 ; LQELLL (5 =S, )
J
which holds only if OR< 1. Since OR * 1 by assumption, (3.4) is

false, g(°)

then cORm 2 OR.

OR, and there is no confounding.

<1, and the proof is complete. Note also that if OR<1,

In both cases, if the Gi are uniform, then cORm =



