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Matching in Networks with Bilateral Contracts

By JOHN WILLIAM HATFIELD AND SCOTT DUKE KOMINERS
∗

We introduce a model in which firms trade goods via bilateral con-
tracts which specify a buyer, a seller, and the terms of the exchange.
This setting subsumes (many-to-many) matching with contracts, as well
as supply chain matching. When firms’ relationships do not exhibit a
supply chain structure, stable allocations need not exist. By contrast,
in the presence of supply chain structure, a natural substitutability con-
dition characterizes the maximal domain of firm preferences for which
stable allocations always exist. Furthermore, the classical lattice struc-
ture, rural hospitals theorem, and one-sided strategy-proofness results
all generalize to this setting.

The theoretical literature on two-sided matching began with the simple one-to-one

(marriage) model of Gale and Shapley (1962), in which agents on opposite sides of a

market (men and women) seek to match into pairs. The central solution concept in this

literature is stability, the requirement that, if two agents are not matched to each other, at

least one of them prefers his or her assigned partner to the other agent. Gale and Shapley

(1962) showed that stable one-to-one matches exist in general, and obtained conditions

under which this existence result is preserved even if agents on one side of the market are

allowed to match to multiple partners, that is, when the matching is many-to-one (as in

college admissions and doctor-hospital matching). Following high-profile applications

of matching in labor markets and school choice programs,1 the foundational work on

matching has been extensively generalized.2 Recently, Ostrovsky (2008) illustrated that
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audiences at Chicago, Harvard, Northwestern, Stanford, the Duke ERID Conference on Roth and Sotomayor, and the
11th ACM Conference on Electronic Commerce. Hatfield appreciates the hospitality of Harvard Business School, which
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M. Considine Fellowship in Law and Economics funded by the John M. Olin Center at Harvard Law School, and the
Danielan Fund.

1Roth and Sotomayor (1990) provide a survey of the pre-1990 theory of matching. Roth (2008) gives an updated
account, as well as references for historical and recent applications of matching. For examples of specific applications,
see the work of Roth and Peranson (1999) (National Resident Matching Program) and Abdulkadiroǧlu et al. (2005);
Abdulkadiroǧlu, Pathak and Roth (2005, 2009) (school choice).

2Kelso and Crawford (1982) extended many-to-one matching to a setting in which matches are supplemented by
wage negotiations; Hatfield and Milgrom (2005) generalized this framework still further, by allowing agents to negotiate
contracts which fully specify both a matching and the conditions of the match; the possibility of such a generalization
was first noted by remarks of Crawford and Knoer (1981) and Kelso and Crawford (1982).

Meanwhile, a host of work has studied the existence of stable matchings in many-to-many matching settings, two-sided
markets in which all agents may match to multiple partners (as in the matching of consultants to firms). Many-to-many
matching has been studied, for example, in the work of Sotomayor (1999, 2004), Echenique and Oviedo (2006), and
Konishi and Ünver (2006). Recently, Klaus and Walzl (2009) and Hatfield and Kominers (2010) merged this line of
research with that of Hatfield and Milgrom (2005), introducing a theory of many-to-many matching with contracts.

1
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matching markets need not be two-sided—they may instead consist of a market of firms

organized into supply chains. Earlier matching models easily embed into the Ostrovsky

(2008) supply chain framework: for example, the many-to-one matching market between

doctors and hospitals may be thought of as a “one-step supply-chain” in which doctors

sell their services to hospitals.

Although the expanding work on matching has eliminated nearly all the theoretical re-

strictions imposed in the early literature, two assumptions have been maintained through-

out, either implicitly or explicitly:

• acyclicity – no agent may both buy from and sell to another agent, even through

intermediaries, and

• full substitutability – upon being endowed with an additional item, an agent’s de-

mand for other items is lower, both in the sense of a reduced desire to buy addi-

tional items and an increased desire to sell items he currently owns.3

The acyclicity condition is implicit in all studies of two-sided matching, as the “two

sides” may be identifed as the set of buyers and sellers, and so each agent acts only

as a buyer or only as a seller. Furthermore, acyclicity corresponds to the supply chain

structure imposed by Ostrovsky (2008).

Full substitutability generalizes a heavily-studied notion of preference (gross) sub-

stitutability first introduced by Kelso and Crawford (1982). Substitutability, in turn,

generalizes the responsive preference condition introduced by Roth (1985). These suc-

cessively more-general substitutability conditions have been shown to be essential for

the existence of stable allocations in a variety of matching contexts.4

Moreover, both acyclicity and full substitutability are natural in most previously-studied

matching settings, such as the matching of residents to hospitals (Roth and Peranson

(1999)), the assignment of students to schools (Abdulkadiroǧlu et al. (2005); Abdulka-

diroǧlu, Pathak and Roth (2005, 2009)), and the supply-chain production of steel (Os-

trovsky (2008)). Acyclicity may not hold, however, in electricity markets, where an

individual firm may buy power from a neighboring firm in one region and sell power

to that same firm in another region. Full substitutability is unlikely to apply in settings

such as the matching of auto-parts suppliers and assemblers, where different parts are

complementary in the production of the final good.5

3Full substitutability is a condition on firms’ preferences familiar from auction theory. Indeed, full substitutability is
an ordinal analogue of the conventional notion of substitutability from auction theory (see, for instance, Milgrom (2004))
and we prove more formally that it is equivalent to quasisubmodularity of the associated indirect utility function.

4The sufficiency and necessity of substititutability for the guaranteed existence of stable allocations holds in the
settings of many-to-one matching (Roth (1984) proves sufficiency; Hatfield and Kojima (2008) prove necessity), many-
to-many matching (Roth (1984) and Echenique and Oviedo (2006) prove sufficiency; necessity follows from the results of
Hatfield and Kojima (2008)), many-to-many matching with contracts (Klaus and Walzl (2009) and Hatfield and Kominers
(2010) prove sufficiency; Hatfield and Kominers (2010) prove necessity). Substitutable preferences are sufficient for the
existence of a stable outcome in the setting of many-to-one matching with contracts (Hatfield and Milgrom (2005)) but
are not necessary (Hatfield and Kojima (2008, 2010)).

5In an econometric study of many-to-many matching with transferable utility, Fox (2010) identifies substantial com-
plementarity between inputs into automobile production.
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In this paper, we introduce a matching model in which firms trade via bilateral con-

tracts which specify a buyer, a seller, and the terms of the exchange. This model sub-

sumes all classical matching models, and its generality allows us to make two novel

theoretical contributions.

First, we show that both acyclicity and full substitutability are necessary for classical

matching theory. If either condition is violated, then stable allocations cannot be guaran-

teed.6 Intuitively, if a contracting relationship contains a cycle, and if a firm in the cycle

has an outside option which the firm prefers to one contract in the cycle, then both the

outside option and the complete trading cycle are unstable; the necessity of acyclicity

follows. The necessity of full substitutability is more technical to illustrate, but follows

closely upon prior results of Hatfield and Kominers (2010).

Second, in the presence of acyclicity and fully substitutable preferences, we fully gen-

eralize the key results of classical matching theory. We prove that, in the presence

of acyclicity and full substitutability, stable allocations correspond bijectively to fixed

points of an isotone operator; Tarski’s fixed point theorem then guarantees the existence

of a lattice of stable allocations. We also prove a generalization of the classical rural hos-

pitals theorem of Roth (1986) and the strategy-proofness results of Hatfield and Milgrom

(2005) and Hatfield and Kojima (2009). These latter results display a surprising structure

which can only be elicited within a framework as general as ours: in particular, we show

that for each agent the difference between the numbers of buy- and sell-contracts held

by that agent, rather than the absolute number of contracts held, is invariant across stable

allocations.7

In light of our necessity results, our work establishes a frontier of matching theory.

Without acyclicity and fully substitutable preferences, stable allocations are not guaran-

teed to exist in general, and hence the results of classical matching theory fail. Up to the

failure of these conditions, however, all of the results of classical matching theory hold.

Thus, our work in some sense characterizes the set of applications to which classical

matching theory applies without imposition of additional structure: Settings where both

acyclicity and full substitutability hold—such as labor markets, school choice, and steel

production—are directly approachable via classical matching theory; settings where ei-

ther acyclicity or full substitutability fails—such as electricity and auto-parts markets—

are not.

The remainder of this paper is organized as follows. We formalize our model, re-

strictions on preferences, and solution concepts in Section I. In Section II, we prove the

sufficiency and necessity of fully substitutable preferences for the existence of stable con-

6Note that we use a notion of stability which is distinct from the concept of chain stability introduced by Ostrovsky
(2008). Our stability concept is more stringent than chain stability, although these two notions coincide on acyclic contract
domains over which firm preferences are fully substitutable (Theorem 7). As we detail in Section I.B, for domains where
these conditions do not hold, chain stability has some unappealing properties.

7The Roth (1986) rural hospitals theorem and its subsequent generalizations by Hatfield and Milgrom (2005) and
Hatfield and Kominers (2010) all show that, under certain conditions, the number of contracts signed by each agent is
invariant across stable allocations. The natural conjecture that this exact result would extend to our setting is false, as we
demonstrate in Section III.A. We instead find that the proper invariant for each firm in our framework is the difference
between the numbers of buy- and sell-contracts held by that firm. This result implies the previous rural hospitals results
because, in a two-sided market, no firm can be both a buyer and a seller.
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tract allocations. In Section III, we discuss the structure of the set of stable allocations,

proving our rural hospitals and strategy-proofness results. We conclude in Section IV.

All proofs are deferred to the Appendix.

I. Model

There is finite set F of of firms, and a finite set X of contracts. Each contract x ∈ X is

associated with both a buyer xB ∈ F and a seller xS ∈ F ; there may be several contracts

with the same buyer and the same seller.8

For concreteness, one may suppose each contract x ∈ X denotes the exchange of a

single unit of a good from xS to xB .9 However, contracts need not use a constant unit.

For example, labor markets might allow both full- and part-time job contracts.10

Let xF ≡ {xB, xS} be the set of the firms associated with contract x. For a set of

contracts Y , we denote

YB ≡
⋃

y∈Y

{yB}, YS ≡
⋃

y∈Y

{yS}, YF ≡ YB ∪ YS .

The contract set X is acyclic if there does not exist a cycle, i.e. a set of contracts

{

x1, . . . , xN
}

⊆ X

such that x1B = x2S , x
2
B = x3S , . . . , x

N−1
B = xNS , x

N
B = x1S (as pictured in Figure 1).11

This condition is equivalent to the condition that there is an ordering ⊲ on F such that

for all x ∈ X , xS ⊳ xB; for an acyclic contract set X , if f ⊳ f ′, we will say that f is

upstream of f ′ and that f ′ is downstream of f .

We say that X is exhaustive if there is a contract between any two firms, that is, if for

all f 6= f ′, f, f ′ ∈ F there exists a contract x such that xF = {f, f ′}.

Each f ∈ F has a strict preference relation P f over sets of contracts involving f . Let

Y |f ≡ {y ∈ Y : f ∈ yF } be the set of contracts in Y associated with firm f .

For any Y ⊆ X , we first define the choice set of f as the set of contracts f chooses

from Y :12

Cf (Y ) ≡ maxP f {Z ⊆ Y : x ∈ Z ⇒ f ∈ xF }.

8Note that since X is finite, we may interpret X as a subset of the set F × F × T , for some finite set T of possible
contract terms. With this notation, a contract x ∈ X is a 3-tuple: x = (xB , xS , t) with xB , xS ∈ F and t ∈ T .

9In this case, an exchange of 17 units from xS to xB would technically occur through 17 different contracts. While
in practice the actual sale would not transact in this fashion—a single contractual document would cover the sale of
all 17 units—use of primitive contract units helps us interpret the numerical implications of our results. For example,
when primitive units are used, our Theorem 8 characterizes the excess stock of goods held by each firm at every stable
allocation.

10As we point out in Section III.A, the practical implications of our results which involve numerical contract counts
are unclear if contracts are not denoted in a fixed unit. Hatfield and Kominers (2010) present an in-depth discussion of
these issues.

11In our diagrams, an arrow f1
z

−→ f2 between two firms denotes a contract z with seller zS = f1 and buyer
zB = f2.

12Here, we use the notation maxPf to indicate that the maximization is taken with respect to the preferences of firm
f .
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x1B
x2

// . . . xN
// xNB

x1

hh

FIGURE 1. A CONTRACT CYCLE.

It will also be convenient to define the choice function for f as a buyer when f has

access to the contracts in Y ⊆ X for which f is a buyer and has access to the contracts

in Z ⊆ X for which f is a seller. Hence we define

Cf
B(Y |Z) ≡

{

x ∈ Cf ({y ∈ Y : yB = f} ∪ {z ∈ Z : zS = f}) : xB = f
}

.

Analogously, we define

Cf
S(Z|Y ) ≡

{

x ∈ Cf ({y ∈ Y : yB = f} ∪ {z ∈ Z : zS = f}) : xS = f
}

.

We also define the buyer- and seller-rejected sets as

Rf
B(Y |Z) ≡ Y − Cf

B(Y |Z),

Rf
S(Z|Y ) ≡ Z − Cf

S(Z|Y ).

Let CB(Y |Z) ≡
⋃

f∈F C
f
B(Y |Z) be the set of contracts chosen from Y by some firm

as a buyer, and CS(Z|Y ) ≡
⋃

f∈F C
f
S(Z|Y ) be the set of contracts chosen from Z by

some firm as a seller. Let RB(Y |Z) ≡ Y − CB(Y |Z) and RS(Z|Y ) ≡ Z − CS(Z|Y ).
An allocation is a set of contracts A ⊆ X . Preference relations are extended to

allocations in a natural way; for two allocations W,V ⊆ X , we write W ≻f V to mean

W |f ≻f V |f .

A. Conditions on Preferences

FULL SUBSTITUTABILITY. — The primary condition on preferences studied in matching

theory is substitutability. Intuitively, contracts x and y are (same-side) substitutes for f
if they are the same type of contract for f and they are not complements. For example,

if xB = yB = f , and f rejects the contract y from Y as a buyer while having access to

Z as a seller, f will not choose y from the larger set {x} ∪ Y while still having access to

Z as a seller. The formal definition of same-side substitutability is given below.

DEFINITION 1: The preferences of f ∈ F are same-side substitutable if for all Y ′ ⊆
Y ⊆ X and Z ′ ⊆ Z ⊆ X ,
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1) Rf
B(Y

′|Z) ⊆ Rf
B(Y |Z) and

2) Rf
S(Z

′|Y ) ⊆ Rf
S(Z|Y ).

Note that this condition is over offer sets; it states that any contract that is rejected

from a smaller offer set is also rejected from a larger one.

However, for models where firms can be both buyers and sellers, we must consider

how additional offers on one side of the market changes firms’ choices on the other

side of the market. The key condition here, introduced by Ostrovsky (2008), is cross-

side complementarity. Intuitively, contracts y and z, where yB = f = zS , are cross-

side complements for f if whenever f chooses y from Y as a buyer when the set Z of

contracts is available to f as a seller, f still chooses y from Y when {z} ∪Z is available

to f as a seller.

DEFINITION 2: The preferences of f ∈ F are cross-side complementary if for all

Y ′ ⊆ Y ⊆ X and Z ′ ⊆ Z ⊆ X ,

1) Rf
B(Y |Z) ⊆ Rf

B(Y |Z ′) and

2) Rf
S(Z|Y ) ⊆ Rf

S(Z|Y
′).

Same-side substitutability and cross-side complementarity are closely linked. For il-

lustration, suppose that each contract delineates the transfer of an object from the seller

to the buyer. If a firm’s preferences are both same-side substitutable and cross-side com-

plementary, then that firm has “substitutable” preferences over objects: The firm is more

willing to buy an object if either there are fewer other objects available to buy (same-side

substitutes), or there are more opportunities for the firm to sell objects the firm already

possesses (cross-side complements). Similarly, the firm is more willing to sell an ob-

ject if either there are fewer other opportunities to sell objects the firm already possesses

(same-side substitutes), or more opportunities to buy an object to replace the one the firm

is losing (cross-side complements). In other words, the more objects the firm currently

holds, the less willing the firm is to buy/keep new objects. Hence we shall call fully

substitutable any preference relation that is both same-side substitutable and cross-side

complementary.

We can characterize the set of preferences which are fully substitutable. We describe

the set of contracts that f may choose to sign by the offer vector q
f =

(

q
f
x

)

x∈X|f
defined by

q
f
x(Y ) =



















0 xB = f and x ∈ Y

−1 xB = f and x /∈ Y

0 xS = f and x ∈ Y

1 xS = f and x /∈ Y.

Intuitivively, q
f
x(Y ) refers to the “object” associated with contract x. A value of 1 is

given if the firm currently owns the object but cannot sell it. A value of 0 is given if
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either the firm does not currently own the object but may choose to buy it, or the firm

currently owns the object but may choose to sell it. Finally, a value of −1 is given if the

firm does not currently own the object and can not buy it. Thus q
f
x(Y ) ≤ q

f
x(Y ′) if and

only if f has weakly more buying opportunities, and weakly fewer selling opportunities,

in Y than in Y ′.

Using the above notation, we can represent preferences over offer sets with an indi-

rect utility function u over offer vectors.13 An indirect utility function u represents a

preference relation P f if for all Y, Y ′ ⊆ X ,

u
(

q
f (Y )

)

> u
(

q
f (Y ′)

)

⇔ Cf (Y ) ≻f C
f (Y ′) under P f .

Of particular interest are preferences that induce a quasisubmodular indirect utility func-

tion.14

THEOREM 1: The preferences P f of f ∈ F are fully substitutable if and only if every

indirect utility function representing P f is quasisubmodular.

Submodularity of the indirect utility function is the key condition in demand theory

for preferences to be demand-theory substitutable (Ausubel and Milgrom (2002)). How-

ever, in the absence of transferable utility it is impossible to quantify the increase in

utility from a newly available contract and therefore we can only characterize the utility

functions in terms of the ordinal notion of quasisubmodularity.15

THE LAWS OF AGGREGATE DEMAND AND SUPPLY. — A number of important results in

two-sided matching theory rely on the Law of Aggregate Demand, which was first intro-

duced by Hatfield and Milgrom (2005).16 We generalize this concept to the matching in

networks framework with the following definitions.

DEFINITION 3: The preferences of f satisfy the Law of Aggregate Demand if for all

Y, Z ⊆ X and Y ′ ⊆ Y ,

∣

∣

∣
Cf
B(Y |Z)

∣

∣

∣
−
∣

∣

∣
Cf
B(Y

′|Z)
∣

∣

∣
≥

∣

∣

∣
Cf
S(Z|Y )

∣

∣

∣
−
∣

∣

∣
Cf
S(Z|Y

′)
∣

∣

∣
,

13The utility function is indirect, as it is a function of the contracts available to the firm, as opposed to what contracts
the firm actually chooses.

14Recall that u is quasisubmodular if for all q ≤ r and s ≥ 0 we have that

u(r+ s)− u(r) > 0 ⇒ u(q+ s)− u(q) > 0,

u(q+ s)− u(q) < 0 ⇒ u(r+ s)− u(r) < 0.

15For firms who are either only buyers or only sellers, Hatfield and Kominers (2010) show that if preferences are
(same-side) substitutable, then not only is every function that represents these preferences quasisubmodular, but one can
always find a submodular function that represents these preferences. This second result relies on a technique introduced
by Chambers and Echenique (2009), who show that for any monotone quasisubmodular function there exists a monotonic
transformation that transforms that function into a submodular utility function. A similar technique can not be any applied
to the current setting, as the indirect utility function is not monotonic in the offer vector.

16Alkan and Gale (2003) introduced a related condition called “size monotonocity.”
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and satisfy the Law of Aggregate Supply if for all Y, Z ⊆ X and Z ′ ⊆ Z,

∣

∣

∣
Cf
S(Z|Y )

∣

∣

∣
−
∣

∣

∣
Cf
S(Z

′|Y )
∣

∣

∣
≥

∣

∣

∣
Cf
B(Y |Z)

∣

∣

∣
−
∣

∣

∣
Cf
B(Y |Z ′)

∣

∣

∣
.

Although these conditions are technical to state, their interpetations are straightfor-

ward. The Law of Aggregate Demand states that when a firm receives more options as

a buyer (while retaining the same options as a seller), its excess stock increases—the

number of contracts the firm chooses as a seller does not increase more than the number

of contracts the firm chooses as a buyer does. The intuition of the the Law of Aggregate

Supply is analogous: under this condition, when a firm receives more options as a seller

(while retaining the same options as a buyer), its excess stock decreases.

Note that the Laws of Aggregate Demand and Supply generalize the analogous defini-

tions from two-sided matching. In two-sided matching, if a firm is a buyer, then that firm

does not choose any contracts as a seller, and so the right-hand side of the Law of Ag-

gregate Demand vanishes, and hence the Law of Aggregate Demand reduces to its usual

statement, that a firm, upon recieving additional offers, chooses at least as many offers

as it did before. However, when a firm can be both a buyer and a seller of contracts, the

condition is more subtle. The Law of Aggregate Demand now imposes that when a firm

obtains additional offers as a buyer, that firm takes on at least as many new contracts as

a buyer as the firm takes on as a seller. Intuitively, the condition states that when a firm

recieves and accepts a new offer where the firm is a buyer, while holding onto its other

buy offers, that firm will then sell at most one new item. Similarly, the Law of Aggregate

Supply can be interpeted to say that when the firm receives a new offer to sell that the

firm accepts while holding onto its other sell offers, the firm will choose to buy at most

one new item.

B. Solution Concepts

STABILITY. — The key question in matching theory is whether an allocation A is stable,

that is, whether there exists a blocking set of contracts Z such that all firms in ZF will

choose their contracts in Z from Z ∪A (and possibly drop contracts in A).

DEFINITION 4: An allocation A is stable if it is

1) Individually rational: for all f ∈ F , Cf (A) = A|f ;

2) Unblocked: There does not exist a nonempty blocking setZ ⊆ X such thatZ 6⊆ A
and for all f ∈ ZF , Z|f ⊆ Cf (A ∪ Z).

Stability is inherently a price-theoretic notion. For an allocation A to be stable, we

must be able to find offer sets (that is, sets of contracts offered to each firm) such that

• each contract in X is offered to some firm and



VOL. VOL NO. ISSUE MATCHING IN NETWORKS 9

• each contract not part of the allocation A is rejected by every firm to which it is

offered.17

These offer sets are similar to price-theoretic budget sets, in which prices define for

each agent the set of bundles that are available to that agent. In the context of matching

theory, market clearing means that a contract is chosen by its buyer if and only if it is

also chosen by its seller. As in price theory, then, a matching-theoretic equilibrium (i.e.

a stable allocation) is a set of bundles chosen by each agent (from its offer set) such that

the market clears. This is similar to the idea of competitive equilibrium in price theory,

where the demand for each item, given the prices, exactly equals the supply.18

Our stability notion is the natural generalization of the prior notions of stability in the

one-to-one and many-to-one matching literatures.19 As we discuss in the next section,

this definition of stability is more stringent than the chain stability and tree stability

concepts introduced by Ostrovsky (2008).

Stronger notions of stability (which we do not explore) allow for firms to play “strate-

gically,” that is, to take on a set of contracts Z from which they obtain a better overall al-

location, even though a particular contract z ∈ Z may not be part of Cf (Z∪A) for some

f . However, allocations satisfying these stronger notions of stability, such as setwise sta-

bility (Sotomayor (1999), Westkamp (2010)) or strong pairwise stability (Echenique and

Oviedo (2006)) often do not exist even for reasonable preferences.20

CHAIN STABILITY. — Ostrovsky (2008) introduced the following notions of chains and

chain stability.

DEFINITION 5: A set of contracts
{

x1, . . . , xN
}

is a chain if

1) xnB = xn+1
S for all n = 1, . . . , N − 1,

2) xnS = xmS implies that n = m, and

3) xNB 6= x1S .

DEFINITION 6: An allocation A is chain stable if it is individually rational and there

is no chain that is a blocking set.

Intuitively, contracts form a chain if each firm holding a contract in the chain sells to

the next firm in the chain (Condition 1 of Definition 5), the chain never doubles back on

17Here, we use the terminology “offer set” instead of “choice set” since firms are typically allowed to choose only
one option (or point, or bundle) from a choice set. (See the definition given on the first page of Chapter 1 of Mas-Colell,
Whinston and Green (1995) for instance.) Here the firms may choose any subset of contracts offered. Formally the choice
set is the power set of the offer set.

18Hatfield et al. (2011) further develop this idea.
19Roth and Sotomayor (1990) and Hatfield and Milgrom (2005) define stability in the one-to-one and many-to-one

contexts, respectively. Hatfield and Kominers (2010) discuss the relationship between these concepts.
20Additionally, we do not explore the solution concept of the core here, as it is known from an example of Blair (1988)

that the core and the set of stable allocations are distinct even in the more restrictive setting of many-to-many matching
(without contracts).
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FIGURE 2. A CONTRACT STRUCTURE FOR WHICH CHAIN STABILITY NEED NOT IMPLY STABILITY.

itself (Condition 2 of Definition 5), and the chain is not a loop, i.e. the buyer of the last

contract is not the seller of the first (Condition 3 of Definition 5). An allocation is chain

stable if it is not blocked by chains of contracts.

Chain stability is not equivalent to the standard notions of stability used in the match-

ing literature, which are special cases of our stability notion (see Roth and Sotomayor

(1990)). Rather, chain stability is equivalent to pairwise stability, a much weaker con-

cept. We later show (in Theorem 7) that chain stability is equivalent to stability in the

presence of fully substitutable preferences and an acyclic contract set. However, the

equivalence only holds when the contract set is acyclic and preferences are fully substi-

tutable. If either condition fails, then the set of stable allocations may be a strict subset of

the set of chain stable allocations and, furthermore, chain stability may be an intuitively

unappealing solution concept.

For instance, consider the example where F = {f1, f2, f3, f4} and

X = {(i, j) : fi, fj ∈ F and i ≤ 2 < j},

as depicted in Figure 2, and suppose firms have the following preferences:

P f1 : {(1, 3)} ≻ {(1, 4)} ≻ ∅,

P f2 : {(2, 4)} ≻ {(2, 3)} ≻ ∅,

P f3 : {(1, 3), (2, 3)} ≻ ∅,

P f4 : {(1, 4)} ≻ {(2, 4)} ≻ ∅.

Note that the preferences of firm f3 are not same-side substitutable. There does not

exist a stable allocation; however, {(1, 4)} is chain stable, as the only blocking set is

{(1, 3), (2, 3)}, which—although seemingly a very natural deviation—is not a chain.

Similarly, when the contract set is not acyclic, it is also easy to construct examples

where chain stability is strictly weaker than stability. For instance, consider the following

example, where xS = yB = f , and xB = yS = g:

P f : {x, y} ≻ ∅,

P g : {x, y} ≻ ∅.
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These preferences are fully substitutable; however, the contract set X is not acyclic, as

it admits the cycle {x, y}. For this example, the set {x, y} is the only stable allocation,

while both {x, y} and ∅ are chain stable. The ∅ allocation is an unappealing solution

to this problem on both normative and positive grounds: {x, y} is Pareto preferred to ∅,

and it seems unreasonable to consider a solution concept which does not allow f and g
to take part in a joint deviation from ∅ to {x, y}.

STRATEGY-PROOFNESS. — We also consider strategic properties of matching mecha-

nisms. A matching mechanism ψ is a mapping from the set of preference profiles to the

set of allocations. In particular, we examine whether certain matching mechanisms are

strategy-proof for some firms; that is, whether or not it is a weakly dominant strategy for

firms to truthfully reveal their preferences.

DEFINITION 7: A matching mechanism ψ is strategy-proof forG ⊆ F if, for all g ∈ G
and any preference profile P , there is no preference profile P̄ g such that ψ(P̄ g, P−g) is

strictly preferred to ψ(P ) by g.21

Similarly, we can consider the incentives of groups of firms under a given matching

mechanism.

DEFINITION 8: A matching mechanism ψ is group strategy-proof for G ⊆ F if, for

all H ⊆ G and any preference profile P , there is no preference profile P̄H such that

ψ
(

P̄H , P−H
)

is strictly preferred to ψ(P ) for all h ∈ H .

As is standard in the matching literature, for a matching mechanism to not be group

strategy-proof, the deviation from truth-telling must make all firms in the coalition strictly

better off.22

II. Existence of Stable Allocations

A. Sufficient Conditions for Stability

In this section, we demonstrate that fully substitutable preferences are sufficient to

guarantee the existence of a lattice of stable allocations when the contract set is acyclic,

and for the standard opposition of interest results to hold. We give direct proofs of all the

results in this section. In Section II.C, we show that these results may be alternatively

derived in an indirect fashion: we show (in Theorem 7) that when preferences are fully

substitutable and the contract set is acyclic, chain stability and stability are equivalent,

hence our existence and opposition results can be derived from the corresponding results

of Ostrovsky (2008) for chain stable allocations.

21Here by P−g we mean the preference profile of all firms excluding g. Similarly, P−G is the preference profile of
all firms except those in G ⊆ F .

22Note that this definition is strictly weaker than the definition used in the theory of the allocation of indivisible goods,
which allows for deviations for which some members of the coalition are indifferent (Pápai (2000)). Hatfield and Kojima
(2009) provide a discussion of the motivation behind this definition.
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To prove the existence of a stable allocation, we introduce the operator

ΦB

(

XB, XS
)

≡ X −RS

(

XS |XB
)

ΦS

(

XB, XS
)

≡ X −RB

(

XB|XS
)

Φ
(

XB, XS
)

≡
(

ΦB

(

XB, XS
)

,ΦS

(

XB, XS
))

,

which generalizes the deferred acceptance algorithm of Gale and Shapley (1962). The

inputsXB andXS are sets of contracts which, respectively, contain the options available

to the firms as buyers, and the options available to the firms as sellers. At each iteration

of Φ, we obtain a new set of seller options which includes all ofX exceptRB

(

XB|XS
)

,

the set of contracts currently available to firms as buyers that they are rejecting. Similarly,

the new set of buyer options is all of X except RS

(

XS |XB
)

.

We first consider fixed points of the operator, and show that these fixed points corre-

spond to stable allocations. Intuitively, at a fixed point we have that every contract is

either being accepted (and hence is in both XB and XS), being rejected by a buyer (and

hence is in XB but not XS) or being rejected by a seller (and hence is in XS but not

XB). Since every contract not inXB∩XS is being rejected by some firm, there does not

exist a blocking set of contracts Z such that each firm will desire all of those contracts,

so long as preferences are fully substitutable and the contract set is acyclic.

THEOREM 2: Suppose that the set of contracts X is acyclic and that all firms’ pref-

erences are fully substitutable. Then if Φ
(

XB, XS
)

=
(

XB, XS
)

, the allocation

XB ∩ XS is stable. Conversely, if A is a stable allocation, there exist XB, XS ⊆ X
such that Φ

(

XB, XS
)

=
(

XB, XS
)

and XB ∩XS = A.

To see that full substitutablity is necessary for stable allocations to generate fixed points,

consider an example where F = {f1, f2} and X = {x, y}, where xS = yS = f1 and

xB = yB = f2, as shown in Figure 3. Now, consider the following preferences:

P f1 : {x, y} ≻ ∅,

P f2 : {x} ≻ {y} ≻ ∅.

Note that the preferences of f1 are not fully substitutable. In this example, ∅ is the

unique stable allocation, and yet there do not exist
(

XB, XS
)

such that XB ∩XS = ∅
and Φ

(

XB, XS
)

=
(

XB, XS
)

. If either x or y is in XB , then one of these contracts

is not rejected by the buyer f2, and hence this contract is in XS = ΦS

(

XB, XS
)

=

X−RB

(

XB|XS
)

, contradicting the fact thatXB∩XS = ∅. If both x and y are inXS ,

then neither is rejected by the seller f1, and so both are also in XB = ΦB

(

XB, XS
)

=

X −RS

(

XS |XB
)

, again contradicting the fact that XB ∩XS = ∅.

To see that full substitutablity is necessary for fixed points to yield stable allocations,
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FIGURE 3. A SIMPLE CONTRACT STRUCTURE FOR WHICH THE FIXED-POINT CHARACTERIZATION FAILS IF FIRMS’

PREFERENCES ARE NOT FULLY SUBSTITUTABLE.

consider altering the example above so that preferences are given by

P f1 : {x, y} ≻ ∅,

P f2 : {x, y} ≻ ∅.

In this case, {x, y} is the unique stable allocation, but ({x}, {y}) is a fixed point and

corresponds to the allocation ∅.23

Furthermore, acyclicity is necessary for fixed points to induce stable allocations. Con-

sider the case where there are three firms, f1, f2, and g, and the contract structure is as

shown in Figure 4. When firms’ preferences are given by

P f1 :
{

y, x2
}

≻
{

x1, x2
}

≻ ∅,

P f2 :
{

x2, x1
}

≻ ∅,

P g : {y} ≻ ∅,

no stable allocation exists. However,
(

XB, XS
)

=
(

∅,
{

y, x1, x2
})

is a fixed point of

the operator Φ.24

Theorem 2 shows that when preferences are fully substitutable and the contract set is

acyclic, there is a bijective correspondence between the set of fixed points of Φ and the

set of stable allocations. We now define an order ⊑ on X ×X:

(

XB, XS
)

⊑
(

X̄B, X̄S
)

if XB ⊆ X̄B and XS ⊇ X̄S .

23Observe that ∅ is chain stable in this example. Thus, note that focusing on stable allocations rather than chain stable
allocations allows us to obtain a sharp fixed-point characterization: full substitutability is necessary for both directions of
Theorem 2.

24It may be the case, even when stable allocations do exist, that fixed points do not correspond to stable allocations.
Consider the case where F = {f1, f2} and X = {x, y}, where xS = yB = f1 and xB = yS = f2, and preferences
are given by:

P f1 : {x, y} ≻ ∅,

P f2 : {x, y} ≻ ∅,

which are fully substitutable. The allocation {x, y} is the unique stable allocation, but ({x, y},∅) is a fixed point of Φ
even though ∅ is not a stable allocation.
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FIGURE 4. A CONTRACT CYCLE WITH AN OUTSIDE OPTION.

It is clear that Φ is isotone with respect to this order if preferences are fully substi-

tutable.25 Hence, by Tarski’s theorem, there exists a lattice of fixed points of the operator

Φ. Furthermore, if the contract set is acyclic, then these fixed points correspond to stable

allocations.

THEOREM 3: Suppose that the set of contracts X is acyclic and that preferences are

fully substitutable. Then there exists a nonempty finite lattice of fixed points
(

XB, XS
)

of Φ which correspond to stable allocations A = XB ∩XS .

Furthermore, the lattice of fixed points has the same structure as in standard bilat-

eral matching contexts. An allocation Â is the buyer-optimal stable allocation if it is

preferred to any other stable allocation A by all firms who are exclusively buyers, that is

Â <g A for any stable allocationA and for all g ∈ {f ∈ F : ∄x ∈ X such that xS = f}.

Since the set of the fixed points is a lattice, there exists a highest fixed point with respect

to the order ⊑, which we denote by
(

X̂B, X̂S
)

. Since this fixed point has the largest set

of contracts for the buyers to choose from, it is the unanimously most preferred stable al-

location for all firms who are buyers but not sellers. Similarly, the lowest fixed point with

respect to ⊑, denoted
(

X̌B, X̌S
)

, is the unanimously most preferred stable allocation for

all firms who are sellers but not buyers.

THEOREM 4: Suppose that the set of contracts X is acyclic and that preferences are

fully substitutable. Then the highest fixed point
(

X̂B, X̂S
)

of Φ corresponds to the

buyer-optimal stable allocation X̂B ∩ X̂S , and the lowest fixed-point
(

X̌B, X̌S
)

of Φ

corresponds to the seller-optimal stable allocation X̌B ∩ X̌S .

Building upon machinery developed by Hatfield and Milgrom (2005), our proof of the

existence of stable allocations naturally generalizes the deferred acceptance approach

25This means that, when preferences are fully substitutable,

(

XB , XS
)

⊑
(

X̂B , X̂S
)

⇒ Φ
(

XB , XS
)

⊑ Φ
(

X̂B , X̂S
)

.
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of Gale and Shapley (1962) to the context of matching with networks. Consequently,

our existence (Theorem 3) and opposition of interest (Theorem 4) results naturally and

directly generalize those of Gale and Shapley (1962) (for one-to-one and many-to-one

matching), Roth (1984) (for many-to-many matching), Hatfield and Milgrom (2005) (for

many-to-one matching with contracts), and Hatfield and Kominers (2010) (for many-

to-many matching with contracts).26 Additionally, these results generalize the analogous

results due to Echenique and Oviedo (2006) (for many-to-many matching) and Ostrovsky

(2008) (for supply-chain matching).

B. Necessary Conditions for Stability

From the preceding analysis it is clear that, in order to ensure the existence of a stable

allocation, it is sufficient that all firms’ preferences are fully substitutable and that the

set of contracts is acyclic. In many-to-one matching with contracts, however, there ex-

ist weaker conditions on preferences that guarantee the existence of a stable allocation.

However, for the more general model of matching in networks, both conditions are nec-

essary: If acyclicity fails, then there are fully substitutable preferences for each firm such

that no stable allocation exists. For acyclic contract sets, if one firm has preferences that

are not fully substitutable, then there exist fully substitutable preferences for the other

firms such that no stable allocation exists.

THEOREM 5: If the set of contracts X admits a cycle L =
{

x1, . . . , xN
}

and there

exists a firm g /∈ LF and a contract between g and some firm in the cycle, then there

exist fully substitutable preferences such that no stable allocation exists.

An example of fully substitutable preferences where no stable match exists is given in

the discussion of acyclicity in Section II.A. Consider again the contract structure given

in Figure 4. Intuitively, if contracts form a cycle (such as that between f1 and f2), then it

is easy to construct fully substitutable preferences such that each firm wants to buy if and

only if it has an opportunity to sell, and wants to sell if and only if it has the opporutunity

to buy. With these preferences, the empty allocation is not stable, as all members of the

cycle agree that the contract cycle is better than nothing. However, if one member of the

cycle (f1) has an outside option as a buyer (y), then the cycle itself may not be stable as

that one member may most prefer to choose this outside option as a buyer while keeping

the contract where the firm is a seller (x2) from the cycle. This implies that the cycle

itself is unstable. However, any other allocation (such as
{

y, x2
}

) is also unstable, as it

is not individually rational for some firm. Hence, we see that even when preferences are

reasonable, contract sets containing cycles may not admit stable allocations.

Furthermore, it is also necessary that the preferences of each firm be fully substi-

tutable. Consider again the example from Section I.B (pictured in Figure 2), where

F = {f1, f2, f3, f4} and X = {(i, j) : fi, fj ∈ F and i ≤ 2 < j}. Here, firms f1 and

26Note that a stronger “polarization of interests” result (such as that of Theorem 2.13 of Roth and Sotomayor (1990))
is ruled out in our setting by an example of Konishi and Ünver (2006).
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f2 are sellers, and firms f3 and f4 are buyers. Suppose that preferences are given by:

P f1 : {(1, 3)} ≻ {(1, 4)} ≻ ∅,

P f2 : {(2, 4)} ≻ {(2, 3)} ≻ ∅,

P f3 : {(1, 3), (2, 3)} ≻ ∅,

P f4 : {(1, 4)} ≻ {(2, 4)} ≻ ∅.

It is not stable for both sellers f1 and f2 to sell to f3, as then f2 would like to deviate

and sell to f4, and f4 would like to buy from f2. That, however, is also not stable, as then

f3 would buy nothing, and so f1 would then sell to f4. This is also not stable, as then

both sellers would prefer to sell to f3. Hence, no allocation is individually rational and

unblocked. Generalizing this example, we obtain the following theorem.

THEOREM 6: Suppose X is exhaustive and acyclic, and there exists a firm f whose

preferences are not fully substitutable, and there exist at least two firms upstream of f
and two firms downstream of f . Then there exist fully substitutable preferences for the

firms other than f such that no stable allocation exists.27

This result is suprising, as no analogous result holds in the Hatfield and Milgrom

(2005) setting of many-to-one matching with contracts (Hatfield and Kojima (2008)).28

Indeed, Hatfield and Kojima (2010) and Hatfield and Kominers (2010) have found condi-

tions on preferences weaker than substitutability that guarantee the existence of a stable

allocation in the setting of many-to-one matching with contracts. The key distinction

between our setting and that of Hatfield and Milgrom (2005) is that in our setting, all

firms may demand multiple contracts as both buyers and sellers; this fact is crucial to the

proof of Theorem 6.

C. The Relationship between Stability and Chain Stability

It is immediate that, regardless of restrictions on preferences or the contract set, any

stable allocation is chain stable.29 However, as we now show, stability and chain stability

coinicide on domains where X is acyclic and preferences are fully substitutable.

THEOREM 7: Suppose that the set of contracts X is acyclic and that all firms’ pref-

erences are fully substitutable. Then an allocation A is stable if and only if it is chain

stable.

Ostrovsky (2008) proved, under the assumption of fully substitutable preferences, that

chain stability is equivalent to an alternative solution concept called tree stability.30 Like

27Slightly weaker conditions on the number of firms other than f can be stated. However, these conditions are exceed-
ingly technical; see the proof of Theorem 6 for details.

28Confusingly, Hatfield and Milgrom (2005) claimed such a result, but this claim was later found to be in error (Hatfield
and Kojima (2008)).

29This follows as chain stability requires that blocking sets be chains, whereas our notion of stability puts no restric-
tions on the structure of the blocking set.

30See Theorem 4 of Ostrovsky (2008).
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chain stability, tree stability is weaker than stability, in general. However, stability and

tree stability are equivalent under fully substitutable preferences; this fact is a simple

corollary of Theorem 4 of Ostrovsky (2008) and our Theorem 7.

It follows from the preceding discussion that our Theorems 2–4 can be obtained indi-

rectly using Theorem 7 and the Ostrovsky (2008) fixed-point characterization, existence,

and opposition of interest results. However, there is no necessity result for chain stability

corresponding to our Theorem 6. To see this, consider a firm f with preferences of the

form

P f : {x, y} ≻ ∅

where xB = yB = f , which are not fully substitutable. A chain stable allocation exists

for any fully substitutable preferences for other firms so long as the contract set X is

acyclic. These chain stable allocations can be found by using the isotone operator Φ
introduced above on the set X − {x, y}; these allocations will be chain stable as there

are (by Theorem 2) no blocking sets not involving firm f , and the only blocking set

involving firm f possible is {x, y}, which is not a chain. However, as we discussed in

Section I.B, {x, y} may be a very natural block.

III. The Structure of the Set of Stable Allocations

A. The Rural Hospitals Theorem

In the celebrated rural hospitals theorem, Roth (1986) proved that in a many-to-one

(doctor–hospital) matching market with responsive preferences, any hospital that has un-

filled positions at some stable matching is assigned exactly the same set of doctors at

every stable matching.31 In the context of many-to-one (Hatfield and Milgrom (2005);

Hatfield and Kojima (2010)) and many-to-many matching with contracts (Hatfield and

Kominers (2010)), the rural hospitals theorem has been (partially) generalized to a state-

ment regarding the number of contracts: in a many-to-many matching market with con-

tracts, if preferences are substitutable and satisfy the Law of Aggregate Demand, then

every firm holds the same number of contracts in each stable allocation.32 However, this

statement is false in the context of matching in networks.

For example, consider the following simple set of preferences, where F = {f1, f2, f3}

31Recall that hospital preferences are called responsive if they are consistent with a complete strict order over indi-
vidual doctors.

32Generalizations of the Roth (1986) rural hospitals theorem to the theory of matching with contracts have focused
only upon the total number of contracts signed by each hospital h, since in general both the set of doctors with whom
h contracts and the contract terms to which h agrees may vary across stable allocations. Indeed, Hatfield and Kojima
(2010) give (in their Footnote 21) a many-to-one matching with contracts example in which there is a hospital h with
unfilled positions such that both

• the set of doctors h contracts with, and

• the contract terms h receives from doctors

vary across stable allocations. Hence, the invariance of the number of contracts per firm across stable allocations seems
to be the sharpest possible matching with contracts generalization of the Roth (1986) theorem.
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FIGURE 5. A CONTRACT STRUCTURE IN WHICH THE MOST IMMEDIATE (PUTATIVE) GENERALIZATION OF THE RU-

RAL HOSPITALS THEOREM NEED NOT HOLD.

and X = {(i, j) : fi, fj ∈ F and i < j}, as pictured in Figure 5:

P f1 : {(1, 2)} ≻ {(1, 3)} ≻ ∅,

P f2 : {(1, 2), (2, 3)} ≻ ∅,

P f3 : {(1, 3)} ≻ {(2, 3)} ≻ ∅.

Note that firm f2 has the simplest possible fully substitutable preferences where the set of

contracts that firm f2 signs as a buyer truly depends on the set of contracts she has access

to as a seller. Furthermore, these preferences satisfy the Laws of Aggregate Demand

and Supply. However, both {(1, 3)} and {(1, 2), (2, 3)} are stable allocations, and so we

see that the number of contracts signed may vary across stable allocations even when

preferences satisfy the Laws of Aggregate Demand and Supply. Rather, the difference

for each firm between the number of “buy” and “sell” contracts held is constant across

the two stable allocations; it turns out this “balancing” property holds in general.

THEOREM 8: Suppose that the set of contracts X is acyclic and that all firms’ pref-

erences are fully substitutable and satisfy the Laws of Aggregate Demand and Supply.

Then, for each firm, the difference between the number of contracts that firm buys and

the number of contracts that firm sells is invariant across stable allocations.

When all contracts are denoted in a fixed unit (as in exchange economies), Theorem 8

implies that each firm holds the same excess stock at every stable allocation. When

contracts do not use a constant unit (as, for example, in labor markets in which both full-

and part-time job contracts are available), the exact numerical implications of Theorem 8

are less clear, as Hatfield and Kominers (2010) discuss. However, even in this case, the

rural hospitals result is crucial for the strategy-proofness results of Section III.B.

Note that Theorem 8 does generalize the prior rural hospitals theorems: in previous

two-sided matching models, a firm f either only buys or only sells, hence Theorem 8

implies that f signs exactly the same number of contracts in every stable allocation. The
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net position in contracts of a firm which both buys and sells is invariant across stable

allocations, but the total number of contracts such a firm signs can vary across stable

allocations.

Furthermore, the Laws of Aggregate Demand and Supply are the weakest possible

conditions that ensure this additional structure on the set of stable allocations.

THEOREM 9: Suppose that the set of contracts X is acyclic and exhaustive. If the

preferences of some firm f fail to satisfy either the Law of Aggregate Demand or the

Law of Aggregate Supply but are fully substitutable, then there exist fully substitutable

preferences for the other firms satisfying the Laws of Aggregate Demand and Supply such

that there exist two stable allocations across which the difference between the number of

contracts f buys and the number of contracts f sells varies.

B. Strategy-Proofness

In many-to-one matching with contracts, substitutability and the Law of Aggregate

Demand are enough to ensure that the buyer-optimal stable mechanism is strategy-proof

for unit demand buyers, i.e. buyers who demand at most one contract. Unfortunately, in

many-to-many matching contexts, it is not a weakly dominant strategy for either side of

the market to reveal its preferences truthfully to any mechanism which chooses a stable

allocation. However, even in the matching in networks framework, if some subset of

firms acts only as buyers, and each of these buyers has unit demand, then the mecha-

nism which chooses the buyer-optimal stable allocation will be strategy-proof for these

buyers.33

THEOREM 10: Suppose that the set of contracts X is acyclic and that firms’ prefer-

ences are fully substitutable and satisfy the Laws of Aggregate Demand and Supply. If

additionally, for all g ∈ G ⊆ F , the preferences of g exhibit unit demand, then any mech-

anism that selects the buyer-optimal stable allocation is (group) strategy-proof for G.

Theorem 10 generalizes results of Dubins and Freedman (1981), Abdulkadiroǧlu (2005),

Hatfield and Milgrom (2005), and Hatfield and Kojima (2009); its proof follows exactly

as in that of Hatfield and Kojima (2009). This result can be used to show a common

corollary that the set of unit-demand buyers weakly prefers the buyer-optimal stable al-

location to all other individually rational allocations.

COROLLARY 1: Suppose that the set of contracts X is acyclic and that firms’ prefer-

ences are fully substitutable and satisfy the Laws of Aggregate Demand and Supply. If

additionally, for all g ∈ G ⊆ F , the preferences of g exhibit unit demand, then there

does not exist an individually rational allocation that every member of G strictly prefers

to the buyer-optimal stable allocation.34

33By symmetry, an analogous result applies to sellers.
34As with Theorem 10, the proof of Corollary 1 follows as in that of Hatfield and Kojima (2009).
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FIGURE 4. A CONTRACT CYCLE WITH AN OUTSIDE OPTION.

This result is commonly called “weak Pareto optimality” and was first shown by Roth

(1982) for one-to-one matching; the most general previous result of this form is for

many-to-one matching with contracts (Hatfield and Kojima (2009); Kojima (2007)).

IV. Conclusion

In this paper we have extended the model of classical matching theory to consider

networks of contracts. We have shown that, on the one hand, if the set of contracts is

acyclic, and preferences are fully substitutable, not only do stable allocations exist, but

they form a lattice. Moreover, classical results of matching theory, such as the rural

hospitals and strategy-proofness theorems, generalize to this setting. On the other hand,

Theorem 5 shows that, in the presence of fully substitutable preferences over contracts,

stability cannot be guaranteed if there is a single cycle in the set of contracts; furthermore,

Theorem 6 shows that if even one firm does not have fully substitutable preferences,

stability again cannot be guaranteed. Hence our work delineates a strict frontier for

classical matching theory, in the sense that both acyclity and full substitutability are both

sufficient and necessary for classical matching theory approaches.

However, supplementing the set of contracts with a numeraire (over which utility is

quasilinear) may allow us to go further. Consider the simplest example where a cyclic

contract set confounds stability, drawn from the proof of Theorem 5. There are three

firms, f1, f2, g, and the contract structure is as shown in Figure 4, which we reproduce

here. When firms’ preferences are given by

P f1 :
{

y, x2
}

≻
{

x1, x2
}

≻ ∅,

P f2 :
{

x2, x1
}

≻ ∅,

P g : {y} ≻ ∅,

there exists no stable allocation. Indeed, firm f1 prefers its outside option y over x1, and

hence the trade cycle
{

x1, x2
}

always breaks down.

Problems of this form often arise in contracting relationships, and they have a well-
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known solution, albeit one outside the scope of classical matching theory. One resolution

to this dilemma dates back to ideas of Vickrey (1961) and Pigou: firm f1 should pay a

transfer to f2 equal to the value of the externality f1 causes by dropping contract x1 in

favor of y. Generalizing this intuition, Hatfield et al. (2011) find that transferable utility

promotes stability in some new settings.

Even with transferable utility, full substitutability is necessary in order to guarantee

the existence of stable allocations (Hatfield et al. (2011)). However, many problems

naturally generate complementarities; a hospital may open a new wing only if it acquires

doctors of multiple specialities, or a firm may be able to operate more efficiently with

more units.35 Much work remains to be done to understand the dynamics and equilibria

of matching markets with complementarities; we leave this topic for future research.

35Milgrom (2007) and Day and Milgrom (2008) discuss some of the issues that arise with complementary preferences
in package auctions. Klaus and Klijn (2005) discuss the “couples problem,” a type of complementary preferences that
commonly arises in bilateral matching contexts.
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Appendix

Proof of Theorem 1

PROOF OF THE “ONLY IF” DIRECTION. — First, note that it suffices to show the quasisub-

modularity conditions hold for the case of adding (or removing) a single contract to two

sets Y, Z ⊆ X , since if quasisubmodularity fails for some s ≥ 0, it must fail for some r

such that rw 6= 0 for only one contract.

Fix some firm f ∈ F , consider any two offer vectors q
f (Y ) and q

f (Z) such that

q
f (Y ) ≤ q

f (Z), and suppose that q
f
w(Y ) = q

f
w(Z) = −1 for some w such that

wB = f . Suppose that

u
(

q
f ({w} ∪ Z)

)

− u
(

q
f (Z)

)

> 0.

Then w ∈ Cf ({w} ∪ Z), so w ∈ Cf ({w} ∪ Y ) by full substitutability. Hence,

u
(

q
f ({w} ∪ Y )

)

− u
(

q
f (Y )

)

> 0.

and quasisubmodularity is satisfied. Hence, when we add any contract to the offer set as

a buyer, quasisubmodularity is satisfied.

Now suppose that q
f
w(Y ) = q

f
w(Z) = 0 for some w such that wS = f . Suppose that

u
(

q
f (Y − {w})

)

− u
(

q
f (Y )

)

< 0

then w ∈ Cf (Y ), so w ∈ Cf (Z) by full substitutability. Hence,

u
(

q
f (Z − {w})

)

− u
(

q
f (Z)

)

< 0

and quasisubmodularity is satisfied when we remove any contract to the offer set as a

seller.

Finally, note that it is enough to show it for adding (or removing) a single contract to

Y q and Y r, since if quasisubmodularity fails for some s ≥ 0, it must fail for s′ such that

s
′
w 6= 0 for only one contract.

PROOF OF THE “IF” DIRECTION. — Suppose that the preferences of f ∈ F violate the

first condition of same-side substitutability. Then, there exist contracts x,w ∈ X and

Y ⊆ X such that xB = wB = f and

w /∈ Cf (Y ∪ {w}) and w ∈ Cf ({x} ∪ Y ∪ {w}).
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It follows that for any indirect utility function u which represents these preferences, we

have

u
(

q
f (Y ∪ {w})

)

−u
(

q
f (Y )

)

= 0 < u
(

q
f ({x} ∪ Y ∪ {w})

)

−u
(

q
f ({x} ∪ Y )

)

.

Thus, u is not quasisubmodular.

Similarly, suppose that the preferences of f ∈ F violate the second condition of same-

side substitutability. Then there exist contracts x,w ∈ X and Y ⊆ X such that xS =
wS = f and

w /∈ Cf (Y ∪ {w}) and w ∈ Cf ({x} ∪ Y ∪ {w}).

It follows that for any indirect utility function u which represents these preferences, we

have

u
(

q
f (Y ∪ {w})

)

−u
(

q
f (Y )

)

= 0 < u
(

q
f ({x} ∪ Y ∪ {w})

)

−u
(

q
f ({x} ∪ Y )

)

.

Thus, u is not quasisubmodular.

Now suppose that the preferences of f ∈ F violate the first condition of cross-side

complementarity. Then there exist contracts x,w ∈ X and Y ⊆ X such that xS =
wB = f such that

w ∈ Cf (Y ∪ {w}) and w /∈ Cf ({x} ∪ Y ∪ {w})

It follows that for any indirect utility function u which represents these preferences, we

have

u
(

q
f ({x} ∪ Y ∪ {w})

)

−u
(

q
f ({x} ∪ Y )

)

= 0 < u
(

q
f (Y ∪ {w})

)

−u
(

q
f (Y )

)

.

Thus, u is not quasisubmodular.

Similarly, suppose that the preferences of f ∈ F violate the second condition of cross-

side complementarity. Then there exists contracts x,w ∈ X and Y ⊆ X such that

xB = wS = f such that

w ∈ Cf (Y ∪ {w}) and w /∈ Cf ({x} ∪ Y ∪ {w}).

It follows that for any indirect utility function u which represents these preferences, we

have

u
(

q
f ({x} ∪ Y ∪ {w})

)

−u
(

q
f ({x} ∪ Y )

)

= 0 < u
(

q
f (Y ∪ {w})

)

−u
(

q
f (Y )

)

.

Thus, u is not quasisubmodular.
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Proof of Theorem 2

Since the contractual set X is acyclic, there is an ordering ⊳ on firms such that xS ⊳

xB for all x ∈ X . Fix some labeling of firms f1, . . . , fN so that fn ⊳ fn+1 for all

n = 1, . . . , N − 1.

FIRST PART. — Suppose that XB ∩ XS ≡ A is a fixed point, but that A is not stable.

Then either A is not individually rational or A admits a blocking set Z.

If A is not individually rational, there must exist x ∈ A such that x ∈ Rf (A) for

some f ∈ F . Then either x ∈ Rf
B(A|A) and xB = f or x ∈ Rf

S(A|A) and xS = f .

Assume the former. (The latter case is symmetric.) Then x ∈ Rf
B

(

XB|A
)

by same-side

substitutability. However, every contract in the set XS − A is rejected by some firm as

a seller, and so Rf
B

(

XB|A
)

= Rf
B

(

XB|XS
)

. Hence x ∈ Rf
B

(

XB|XS
)

, and hence

x /∈ XS = ΦS

(

XB, XS
)

= X − RB

(

XB|XS
)

, and hence x /∈ XB ∩ XS = A, a

contradiction.

If there exists a blocking set Z for A, consider a contract z such that zS E yS for all

other y ∈ Z.36 By same-side substitutability, since z ∈ CzS
S (Z ∪ A|Z ∪ A), we have

that z ∈ CzS
S ({z} ∪ A|Z ∪ A) = CzS

S ({z} ∪ A|A) as there are no contracts in Z such

that zS is a buyer by assumption. Hence z ∈ CzS
S

(

{z} ∪XS |A
)

and then by cross-

side complementarity, z ∈ CzS
S

(

{z} ∪XS |XB
)

. Hence, if z ∈ XS , then z ∈ XB =

ΦB

(

XB, XS
)

= X−RS

(

XS |XB
)

. But z /∈ A = XB∩XS by assumption, andXB∪

XS = X , and so z ∈ XB . Now consider an arbitrary contract w ∈ Z, and suppose that

for all contracts y ∈ Z such that yS ⊳ wS , y ∈ XB . By same-side substitutability, since

w ∈ CwS

S (Z∪A|Z∪A), we have thatw ∈ CwS

S ({w}∪A|Z∪A). Now, by induction, for

any contract y ∈ Z such that yB = wS , y ∈ XB . Hence, {y ∈ Z : yB = wS} ⊆ XB ,

and A ⊆ XB , implying that {y ∈ Z : yB = wS} ∪ A ⊆ XB , and so by cross-side

complemenarity, w ∈ CwS

S

(

{w} ∪A|XB
)

. Therefore w ∈ CwS

S

(

{w} ∪XS |XB
)

.

Thus, if w ∈ XS , then w ∈ XB = ΦB

(

XB, XS
)

= X − RS

(

XS |XB
)

. But w /∈

A = XB ∩XS by assumption, and XB ∪XS = X , and so w ∈ XB . Using induction

then, we have that Z ⊆ XB . Working symmetrically for buyers, we have that Z ⊆ XS .

Hence, Z ⊆ XS ∩XB = A and hence Z is not a blocking set, a contradiction.

SECOND PART. — Suppose that A is a stable allocation. We construct XB and XS

iteratively over firms. Let XB(0) ≡ XS(0) ≡ A. Let

XB(n) ≡
{

x ∈
(

X −XS(n− 1)
)

: xB = fn
}

∪XB(n− 1)

XS(n) ≡
{

x ∈ X : x ∈ Rfn
S

(

{x} ∪A|XB(n)
)

}

∪XS(n− 1).

Finally, let XB = XB(N) and XS = XS(N).

36Recall that acyclicity guarantees there exists an order ⊳ on F such that xS ⊳ xB for all x ∈ X .
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We now show that
(

XB, XS
)

is a fixed point. We have

X −RS

(

XS |XB
)

= X −
(

XS − CS

(

XS |XB
))

= X −
⋃N

n=1R
fn
S

((

XS |fn
)

|
(

XB|fn
))

= X −
⋃N

n=1R
fn
S

((

XS(n)|fn
)

|
(

XB|fn
))

as XS(n)|fn = XS |fn

= X −
⋃N

n=1

(

XS(n)−A
)

|fn as fn has fully substitutable preferences

= X −
(

XS −A
)

by the definition of XS

= XB by the definition of XB.

Similarly, we have

X −RB

(

XB|XS
)

= X −
(

XB − CB

(

XB|XS
))

= X −
⋃N

n=1R
fn
B

((

XB|fn
)

|
(

XS |fn
))

= X −
⋃N

n=1R
fn
B

((

XB(n)|fn
)

|
(

XS |fn
))

as XB(n)|fn = XB|fn

= X −
⋃N

n=1

(

XB(n)−A
)

|fn as shown below

= X −
(

XB −A
)

by the definition of XB

= XS by the definition of XS .

To see the fourth equality, observe that

⋃N
n=1

(

XB(n)−A|fn
)

= XB −A = RB

(

XB(N)
)

.

Suppose that there exists a nonempty set of contracts

Y ⊆
⋃N

n=1

(

XB(n)−A|fn
)

−
⋃N

n=1R
fn
B

(

XB(n)|XS(n)
)

.

We also know that no contract Y is rejected by a seller (assuming sellers have access to

XB as buyers) as these are contracts XB . Hence, Y is a blocking set and hence A is not

stable, a contradiction. Finally, A|fn ∩ Rf
B

(

XB(n)|XS(n)
)

= ∅ as A is individually

rational.

Finally, we need to show that XB ∩ XS = A. First, since XB(0) ∩ XS(0) = A
and XB (n− 1) ⊆ XB(n) and XS(n − 1) ⊆ XS(n), A ⊆ XB(0) ∩XS(0). Suppose

that z ∈ XS − A. Then z /∈ XB , as it could only be added in the zB-th step and since

z ∈ XS , a ∈ XS (fzB − 1).
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Proof of Theorem 4

For any stable allocation
(

XB, XS
)

, we have that

XB ∩XS = XB ∩
(

X −RB

(

XB|XS
))

= XB ∩
(

X −
(

XB − CB

(

XB|XS
)))

= XB −
(

XB − CB

(

XB|XS
))

= CB

(

XB|XS
)

.

For each firm f who is only a buyer, Cf
B

(

XB|XS
)

= Cf
(

XB
)

, the firm f has a

strictly larger choice set under
(

X̂B, X̂S
)

than under any other stable allocation, and

hence (weakly) prefers
(

X̂B, X̂S
)

. The proof that
(

X̌B, X̌S
)

is the seller-optimal stable

allocation is symmetric.

Proof of Theorem 5

Let y be the contract between g and some member of the cycle. Without loss of

generality, we suppose that fn ≡ xnS , yS = f1, and yB = g. Then for n = 2, . . . , N , let

the preferences of firm fn be

P fn :
{

xn−1, xn
}

≻ ∅

which are fully substitutable. Let

P g : {y} ≻ ∅

P f1 :
{

xN , y
}

≻
{

xN , x1
}

≻ ∅;

these preferences are fully substitutable. Let all other firms desire no contracts. Any set

Y * L ∪ {y} is not stable, as it is not individually rational. Any Z ( L ∪ {y} is not

stable, as it not individually rational unless Z = ∅, in which case L is a blocking set, or

Z = L, in which case {y} is a blocking set. Finally, L ∪ {y} is not stable, as it is not

individually rational for f1.

Proof of Theorem 6

If the preferences of a firm f are not same-side substitutable, then there exist contracts

x, y, z ∈ X|f and sets of contracts Y, Z ⊆ X such that YB = {f} and ZS = {f} such
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that

y /∈ Cf
B(Y |Z) but y ∈ Cf

B({x} ∪ Y |Z) or

z /∈ Cf
S(Z|Y ) but z ∈ Cf

S({x} ∪ Z|Y )

Assume the former; the latter case is symmetric. There are two cases.

Case 1: xS 6= yS . By assumption, there must exist a firm g that is downstream of f and

hence downstream of both xS and yS . Furthermore, by exhaustivity, there must

exist contracts x̂ and ŷ with xS = x̂S , yS = ŷS and x̂B = ŷB = g. Let yS have

preferences such that

CyS (W ) =

{

(W ∩ (Y ∪ Z))|yS {y, ŷ} ⊆W

(W ∩ (Y ∪ Z ∪ {ŷ}))|yS otherwise
.

That is, yS is willing to accept any and all of the contracts the firm is associated

with in Y ∪ Z − {y}, and yS wants one of y and ŷ, preferring y, and rejects all

other contracts. Let xS have preferences such that

CxS (W ) =

{

(W ∩ (Y ∪ Z ∪ {x̂}))|xS
{x, x̂} ⊆W

(W ∩ ({x} ∪ Y ∪ Z ∪ {x̂}))|xS
otherwise

.

Let g have preferences such that

Cg(W ) =

{

(W ∩ (Y ∪ Z ∪ {ŷ}))|g {ŷ, x̂} ⊆W

(W ∩ (Y ∪ Z ∪ {ŷ, x̂}))|g otherwise
.

Let every firm f̃ ∈ F − {xS , yS , f, g} have preferences such that

C f̃ (W ) = (W ∩ (Y ∪ Z))|
f̃
.

Consider any allocation A; we will show A can not be stable.

1) Suppose A|f ≺f Cf (Y ∪ Z). If A is individually rational, then all other

firms want their contracts in Cf (Y ∪Z) irrespective of their other contracts,

so Cf (Y ∪ Z) blocks A.

2) Suppose A|f = Cf (Y ∪ Z). Then ŷ ∈ A, as otherwise {ŷ} blocks A. But

then Cf ({x} ∪ Y ∪ Z) blocks A.

3) Suppose Cf ({x} ∪ Y ∪ Z) ≻f A|f ≻f C
f (Y ∪ Z). In this case, if A is

individually rational, then A ⊆ {x, x̂, ŷ} ∪ Y ∪ Z; then x ∈ A as otherwise

we could not have A|f ≻f C
f (Y ∪ Z). But then, Cf ({x} ∪ Y ∪ Z) blocks

A.
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4) Suppose Cf ({x} ∪ Y ∪ Z) = A|f . Then if ŷ ∈ A, the allocation A is not

individually rational for yS , and if x̂ ∈ A, the allocationA is not individually

rational for xS ; but this implies that {x̂} blocks A.

Case 2: xS = yS ≡ d. By assumption, there are two firms, g and h, downstream of f ,

and one firm, e, upstream of f , and hence upstream of g and h. Now consider the

contracts v, v′, w and w′ such that vS = wS = d, v′S = w′
S = e, vB = v′B = g

and wB = w′
B = h (which exist as X is exhaustive). Let d have preferences such

that

Cd(W ) = (W ∩ ((Y − {y}) ∪ Z))|d ∪ C̃
d(W ∩ {x, y, w, v})

where C̃d(W̃ ) is the responsive choice function over {x, y, w, v} with quota 2 and

underlying preference order w ≻ y ≻ x ≻ v. Let e, g, h have preferences such

that

Ce(W ) =

{

(W ∩ (Y ∪ Z ∪ {v′}))|e {v′, w′} ⊆W

(W ∩ (Y ∪ Z ∪ {v′, w′}))|e otherwise

Cg(W ) =

{

(W ∩ (Y ∪ Z ∪ {v}))|g {v, v′} ⊆W

(W ∩ (Y ∪ Z ∪ {v, v′}))|g otherwise

Ch(W ) =

{

(W ∩ (Y ∪ Z ∪ {w′}))|h {w,w′} ⊆W

(W ∩ (Y ∪ Z ∪ {w,w′}))|h otherwise
.

Finally, let every firm f̃ ∈ F − {d, e, f, g, h} have preferences such that

C f̃ (W ) = (W ∩ (Y ∪ Z))|
f̃
.

Consider any allocation A; we will show A can not be stable.

1) Suppose A|f ≺f C
f (Y ∪ Z). Then Cf (Y ∪ Z) blocks A, as all the firms

want their contracts in Cf (Y ∪ Z), irrespective of other contracts.

2) Suppose A|f = Cf (Y ∪ Z). Since d does not obtain x or y, he desires both

v and w. If A is stable then, v ∈ A. Furthermore, since e does not obtain

v′, for A to be stable, then w′ ∈ A. Hence, if A is stable, {w′, v} ⊆ A and

w /∈ A. In that case, Cf ({x} ∪ Y ∪ Z) blocks A.

3) Suppose Cf (Y ∪ Z) ≺f A|f ≺ Cf ({x} ∪ Y ∪ Z). Then x ∈ A, so

Cf ({x} ∪ Y ∪ Z) − {x} blocks A, as d will always choose y and the other

firms in Y and Z will always accept offers of any and all contracts in Y .

4) Suppose Cf ({x}∪Y ∪Z) = A|f . If v′ /∈ A, then {v′} blocks A. (Note that

if v ∈ A, then {x, y, v} ⊆ A, and so A is not individually rational for d.)

But v′ ∈ A implies that w′ /∈ A. Hence {w} blocks A. (Note that w /∈ A, as

then {w, x, y} ⊆ A, and so A is not individually rational for d.)
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If the preferences of a firm f are not cross-side complementary, then there exists con-

tracts y, z ∈ X and sets of contracts Y, Z ⊆ X − {y, z} such that YB = {f} and

ZS = {f} such that

y ∈ Cf
B({y} ∪ Y |Z) but y /∈ Cf

B({y} ∪ Y |{z} ∪ Z) or

z ∈ Cf
S({z} ∪ Z|Y ) but z /∈ Cf

S({z} ∪ Z|{y} ∪ Y ).

Assume the latter; the former case is symmetric.

By exhaustivity, there must exist a contract w ∈ X such that wS = yS and wB = zB .

Let yS have preferences such that

CyS (W ) =

{

(W ∩ (Y ∪ Z ∪ {w}))|yS {w, y} ⊆W

(W ∩ ({y} ∪ Y ∪ Z ∪ {w}))|yS otherwise
.

Let zB have preferences such that

CzB (W ) =

{

(W ∩ (Y ∪ Z ∪ {z}))|zB {z, w} ⊆W

(W ∩ (Y ∪ Z ∪ {z, w}))|zB otherwise
.

Finally, let every firm f̃ ∈ F − {f, yS , zB} have preferences such that

C f̃ (W ) = (W ∩ (Y ∪ Z))|
f̃
.

Consider any allocation A; we will show A can not be stable.

1) Suppose A|f ≺f C
f (Y ∪ {z} ∪ Z). If A is individually rational, all other firms

want their contracts in Cf (Y ∪ {z} ∪ Z) irrespective of their other contracts, so

Cf (Y ∪ {z} ∪ Z) blocks A.

2) Suppose A|f = Cf (Y ∪ {z} ∪ Z). Then, if A is individually rational, w /∈ A, as

z ∈ Cf (Y ∪ {z} ∪ Z). But then Cf ({y} ∪ Y ∪ {z} ∪ Z) blocks A.

3) Suppose Cf ({y} ∪ Y ∪ {z} ∪ Z) ≻f A|f ≻f C
f (Y ∪ {z} ∪ Z). In this case,

y ∈ A as otherwise A|f is available to f from Y ∪ {z} ∪ Z, so we could not have

A|f ≻f C
f (Y ∪ {z} ∪ Z). But then, Cf ({y} ∪ Y ∪ {z} ∪ Z) blocks A.

4) Suppose Cf ({y} ∪ Y ∪ {z} ∪ Z) = A|f . Then if w ∈ A, A is not individually

rational for zB; if w /∈ A, {w} blocks A.

Proof of Theorem 7

Consider an allocation A that is not stable. If A is not individually rational, then A
is not chain stable. Hence, suppose there is a blocking set Z for A. Since X is acyclic,
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there is an ordering of firms in ZF such that xB ⊲ xS for all x ∈ X . Consider a firm

f ∈ ZF such that f ⊲ g for all g ∈ ZF , and consider one contract y1 ∈ Z such that

y1B = f . Now consider y1S . By same-side substitutability, y1 ∈ C
y1B
B

({

y1
}

∪A|A
)

and y1 ∈ C
y1S
S

({

y1
}

∪A|A ∪ Z
)

. If y1 ∈ C
y1S
S

({

y1
}

∪A|A
)

, then the chain
{

y1
}

is

a blocking set and we are done. If not, then there exists a contract y2 ∈ Z such that

y1 ∈ C
y1S
S

({

y1
}

∪A|A ∪
{

y2
})

and y2 ∈ C
y1S
B

({

y2
}

∪A|A ∪
{

y1
})

, by same-side

substitutability. (If no such y2 exists, then preferences of y1S are not fully substitutable,

as there exists y2 /∈ C
y1S
B

({

y2
}

∪A|A ∪
{

y1
})

, but y2 ∈ C
y1S
B

(

Z ∪A|A ∪
{

y1
})

.) By

an argument analogous to that we provided for y1, we see that either the chain
{

y1, y2
}

is a blocking set, or there exists y3 ∈ Z such that y2, y3 ∈ Cy2S
({

y1, y2, y3
}

∪A
)

.

Iterating this argment, we find a chain
{

y1, y2, . . . , yn
}

blocking A, as Z is a finite set.

Proof of Theorem 8

Consider any stable allocation A associated with the fixed point
(

XS , XB
)

and the

seller-optimal stable allocation Â associated with the fixed point
(

X̂S , X̂B
)

. Consider

an arbitrary firm f . We have that

∣

∣

∣
Cf
S

(

X̂S |X̂B
)
∣

∣

∣
−
∣

∣

∣
Cf
B

(

X̂B|X̂S
)∣

∣

∣
≥

∣

∣

∣
Cf
S

(

XS |X̂B
)∣

∣

∣
−
∣

∣

∣
Cf
B

(

X̂B|XS
)∣

∣

∣

≥
∣

∣

∣
Cf
S

(

XS |XB
)

∣

∣

∣
−
∣

∣

∣
Cf
B

(

XB|XS
)

∣

∣

∣
,

where the first inequality follows by the Law of Aggregate Supply, as X̂S ⊇ XS , and the

second follows by the law of aggregate demand, as X̂B ⊆ XB . Hence, the difference

between the number of contracts f sells and the number f buys is weakly greater under
(

X̂S , X̂B
)

than
(

XS , XB
)

. However, the sum across all firms of the difference between

the number of contracts bought and the number of contracts sold equals 0. It follows that,

for each firm,

∣

∣

∣
Cf
S

(

X̂S |X̂B
)
∣

∣

∣
−
∣

∣

∣
Cf
B

(

X̂B|X̂S
)
∣

∣

∣
=

∣

∣

∣
Cf
S

(

XS |XB
)

∣

∣

∣
−
∣

∣

∣
Cf
B

(

XB|XS
)

∣

∣

∣
.

Proof of Theorem 9

Since the contractual set X is acyclic, there is an ordering ⊳ on firms such that xS ⊳

xB for all x ∈ X . By symmetry, we need only consider the following three possible

cases.

1) There exist contracts x, y, z ∈ X and sets Y, Z ⊆ X such that YB = {f} and

ZS = {f} such that

x, y ∈ Cf
S(Z|Y ) and x, y /∈ Cf

S({z} ∪ Z|Y ).
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Let every firm f̃ ∈ F − {xB, yB, zB, f} have preferences such that

C f̃ (W ) = (W ∩ (Y ∪ Z))|
f̃
.

There are two subcases to consider:

a) We have either f ⊳ xB ⊳ zB or f ⊳ yB ⊳ zB; assume the former (the latter

is symmetric). By exhaustivity of X , there exist contracts ŷ, ẑ ∈ X such that

ŷB = yB , ẑB = zB , and ŷS = ẑS = xB . Let xB, yB, zB have preferences

such that

CxB (W ) =

{

(W ∩ ({x} ∪ Y ∪ Z ∪ {ŷ}))|xB
{ŷ, ẑ} ⊆W

(W ∩ ({x} ∪ Y ∪ Z ∪ {ŷ, ẑ}))|xB
otherwise

CyB (W ) =

{

(W ∩ (Y ∪ Z ∪ {y}))|yB {y, ŷ} ⊆W

(W ∩ (Y ∪ Z ∪ {y, ŷ}))|yB otherwise

CzB (W ) =

{

(W ∩ (Y ∪ Z ∪ {ẑ}))|zB {ẑ, z} ⊆W

(W ∩ (Y ∪ Z ∪ {ẑ, z}))|zB otherwise
.

There are at least two stable allocations: Cf (Z ∪ Y ) ∪ {ẑ} and Cf ({z} ∪
Z ∪ Y ) ∪ {ŷ}. By the cross-side compelementarity of the preferences of

f , |Cf
B(Y |Z)| ≥ |Cf

B(Y |{z} ∪ Z)| and the same-side subsitutability of the

preferences of f , |Cf
S(Z|Y )| < |Cf

S({z} ∪ Z|Y )|, and hence the conclusion

of Theorem 8 fails for f .

b) We have f ⊳ zB ⊳ xB, yB . By exhaustivity of X , there exists a contract

x̂ ∈ X such that x̂S = zB and x̂B = xB . Let xB, yB, zB have preferences

such that

CxB (W ) =

{

(W ∩ (Y ∪ Z ∪ {x}))|xB
{x, x̂} ⊆W

(W ∩ (Y ∪ Z ∪ {x, x̂}))|xB
otherwise

CyB (W ) = (W ∩ (Y ∪ Z ∪ {y}))|yB

CzB (W ) =

{

(W ∩ (Y ∪ Z ∪ {x̂, z}))|zB {x̂, z} ⊆W

(W ∩ (Y ∪ Z))|zB otherwise
.

There are at least two stable allocations: Cf (Z ∪Y ) and Cf ({z}∪Z ∪Y )∪
{x̂}, and hence (again by the full substitutability of the preferences of f as

above) the conclusion of Theorem 8 fails for f .

2) There exist contracts x, y, z ∈ X and sets Y, Z ⊆ X such that YB = {f} and
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ZS = {f} such that

x ∈ Cf
S(Z|Y ), y /∈ Cf

B(Y |Z) and x /∈ Cf
S({z} ∪ Z|Y ), y ∈ Cf

B(Y |{z} ∪ Z)

By exhaustivity of X , there exists a contract ŷ such that ŷS = yS and ŷB = zB .

Let xB, yB, zB have preferences such that

CxB (W ) = (W ∩ ({x} ∪ Y ∪ Z))|xB

CyB (W ) =

{

(W ∩ (Y ∪ Z ∪ {y}))|yB {y, ŷ} ⊆W

(W ∩ (Y ∪ Z ∪ {y, ŷ}))|yB otherwise

CzB (W ) =

{

(W ∩ (Y ∪ Z ∪ {ŷ}))|zB {ŷ, z} ⊆W

(W ∩ (Y ∪ Z ∪ {ŷ, z}))|zB otherwise
.

Finally, let every firm f̃ ∈ F − {xB, yB, zB, f} have preferences such that

C f̃ (W ) = (W ∩ (Y ∪ Z))|
f̃
.

There are at least two stable allocations: Cf (Z ∪Y )∪{ŷ} and Cf ({z}∪Z ∪Y ),
and hence (again by the full substitutability of the preferences of f as above) the

conclusion of Theorem 8 fails for f .

3) There exist contracts x, y, z ∈ X and sets Y, Z ⊆ X such that YB = {f} and

ZS = {f} such that

x, y /∈ Cf
B(Y |Z) and x, y ∈ Cf

B(Y |{z} ∪ Z).

By exhaustivity of X , there exists a contract ŷ such that ŷS = yS and ŷB = zB .

The same preferences constructed in the previous case again render at least two

allocations stable: Cf (Z∪Y )∪{ŷ} andCf ({z}∪Z∪Y ), and hence the conclusion

of Theorem 8 fails for f .




