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Abstract In the context of Parallel Evolutionary Algo-

rithms, it has been shown that different population struc-

tures induce different search performances. Nevertheless,

no work has shown a clear cut evidence that there is a

correlation between the solver’s population structure and

the problem’s network structure. In this work, we verify

this correlation performing a clear and systematic analysis

of a large set of population structures (based on the well

known b-graphs and NK-landscape problems. Furthermore,

we go beyond our findings in these idealised experiments

by analysing the performance of variable-topology EAs on

a dynamic real-world problem, the Multi-Skills Call

Centre.

Keywords Parallel Evolutionary Algorithm �

Island model � Problem structure

1 Introduction

Network-based approaches are a powerful tool for under-

standing the properties of complex systems (including

optimisation dynamics by means of metaheuristic methods)

and represent a useful data structure for capturing infor-

mation of processes taking place at multiple temporal or

spatial scales. The paper by Michell (1904) is widely

regarded as one of the earliest industrial papers to recog-

nise the crucial role that ‘‘topology’’ plays when solving a

specific problem. Since then, of course, many other studies

have emerged that profoundly changed our understanding

of the role of networks in complex systems. Indeed, the

crucial work by Watts and Strogatz (1998) on small-world

(SW) networks launched the field of networks science

in earnest and was followed by rapid advances by, e.g.

Barthelemy and Amaral (1999), Barabási and Albert (1999),

Newman et al. (2000), Wang and Chen (2003), Barrat and

Weigt (2000) among others.

The small-world networks described by Watts and

Strogatz (1998) raised a great deal of interest in different

research areas as they postulated that, apparently different

networks arising in biological, social or technological

systems had, at their core, some common characteristics

that helped to organise the universe of possible networks

into well-defined classes with well-defined features. For

example, some naturally occurring small-world networks

present a high-clustering coefficient and yet a small char-

acteristic path length that enables the rapid percolation of

information across the network. Later, Barabási and Albert

(1999) suggested that the distribution of highly connected

vertices in networks such as the WWW or the citation of

scientific publications is far from being random. In fact, in

the so-called scale-free networks, vertex connectivities

follow a scale-free power-law distribution, meaning that a
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reduced set of vertices dominate the connectivity of the

network. This feature is a consequence of two generic

mechanisms: networks expand continuously by the addi-

tion of new vertices, and new vertices attach preferentially

to nodes that are already well connected.

Advances in network science resonated well with evo-

lutionary algorithm research, specifically with work on

parallel and cellular evolutionary algorithms were structured

populations were introduced that modified the dynamics of

information exchange (e.g., through genetic recombination,

solution migration policies or memetic transmission) within

a population. It is currently accepted that, contrary to pan-

mitic populations, the use of decentralised populations

confers the evolutionary algorithm the opportunity for a

better exploration of the search space and can improve both

the numerical and runtime behaviour of the algorithm. For

example, in Cantú-Paz (1999), a relation was established

between the network topology, the deme size, the migration

rate, and the efficacy of a given algorithm for some idealised

problems. Moreover, Cantú-Paz (1999), showed that the

choice of migration and replacement strategies affected the

takeover time within multi-population Genetic Algorithms

(e.g. choosing migrants or replacements according to fitness

increases global selection pressure and causes faster con-

vergence; in turn, shortened convergence times, although

desirable, may also constitute a potential source of failure

due to the premature loss of diversity).

Evolutionary algorithms that embraced a refined popu-

lation structure can be roughly classified into two main

families, namely, the Cellular Evolutionary Algorithm

(CEA) in which genetic interactions may only take place in

a small neighbourhood that is defined around each individ-

ual and Parallel Evolutionary Algorithms (PEA), also known

as Distributed Evolutionary Algorithms, in which a single

population is partitioned into several subpopulations or

‘‘islands’’ that exchange individuals according to a given

migration policy. The concept of migration policy was fur-

ther formalised in Alba and Tomassini (2002) as a tuple of

five values indicating the migration rate, the frequency of

migration, the policy for selecting migrants, the replacement

policy, and whether or not the migration is synchronous. The

authors showed that the balance between exploration and

exploitation and hence, the probability of success of a given

algorithm, was directly affected by the migration policy.

In Giacobini et al. (2006), the properties of CEAs with

populations structured as Watts–Strogatz small-world

graphs and Albert–Barabási scale-free graphs were inves-

tigated using as benchmarks problems of different diffi-

culty. Their results showed that small-world topologies

allow for a trade-off between robustness and speed of the

search. In terms of success rate, these topologies behaved

often better than the panmitic case but with slower con-

vergence rates. On the other hand, scale-free topologies did

not seem to be appropriate for the given benchmarks,

probably due to premature convergence problems.

Lattice topologies were also explored for memetic

algorithms where a cellular memetic algorithm was used to

successfully solve a range of standard continuous optimi-

sation benchmark problems (Quang et al. 2009) while

Woolley et al. (2011) tailored the approach for a real-world

optimisation of parameters for scanning probe microscopy.

The work presented in Wang et al. (2011) provides a

systematic study of the performance of a PEA under a

number of simple topologies including a single population

(effectively a panmitic EA), a set of distributed populations

but without links between them, paired populations, two-

layered lattice connections and a fully connected topology.

Upon these topologies they run the 0–1 Knapsack and the

Weierstrass Function minimisation problems. The results

showed that the two-layered lattice connections and a fully

connected topology outperform the others as the com-

plexity of the considered problems increased.

A different approach was taken by Whitacre et al.

(2008) who, rather than fixing the population topology,

they allowed it to co-evolve with the solutions being sought

for the target problem.

Network-centric perspectives have benefitted other

metaheuristics too. For example, Kennedy and Mendes

(2002) analysed the effect of different topologies on par-

ticle swarm optimisation. They showed that for PSO, some

random networks achieve outstanding results while the

commonly used structures (Fully Connected and Ring)

correspond to sub-optimal solutions. In fact, the evolu-

tionary search process might benefit from some topological

properties of these random structures, resulting in a good

balance between exploration and exploitation. The paper

by Li et al. (2009) shows an extensive study of the topol-

ogy space, in which the effect of 1,200 different network

topologies is analysed in the context of self-assembling

programs. The cited work studies a wide range of graph

topologies, covering simple reticular structures, small-

world networks and fully random networks. It is shown that

different topologies and average interconnection distances

within the network have an influence on the software self-

assembly process, along with resulting complexity and

diversity of the generated programs.

The above summary, albeit by necessity only partial,

reflects the variety of works that have been undertaken into

the amalgamation of Evolutionary Algorithms and Net-

work Science. Notably, and notwithstanding (a) the

diversity and quality of the work done in the past and

(b) that is currently beyond doubt that different network

structures induce different search performance, no work

has shown a clear cut evidence that there is a correlation

between the solver’s population structure and the prob-

lem’s network structure. It is this correlation that we seek
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to verify by a set of idealised, simple and clear experiments

based on the well-known b-graphs (as the solvers’ popu-

lation structure) and the NK-landscapes as the problem

network structure. Furthermore, we go beyond our findings

in these idealised experiments by analysing the perfor-

mance of variable-topology EAs on a real-world problem.

The rest of the paper is structured as follows: Sect. 2

explains the methodology of the experiments. Experimen-

tal results are detailed on Sect. 3 together with the dis-

cussion. Section 4 concludes the paper.

2 Methodology

In this section we describe the benchmarks used to ascer-

tain whether there are correlations between problem

structures and the topologies used to interconnect a set of

population islands. We describe first the problems used to

benchmark the different topologies and the evolutionary

algorithms employed.

2.1 Benchmarks

We have used three different problems to ascertain whether

correlations exists between problem structures and popu-

lation topologies. The first two types of benchmarks are

idealised problems, OneMax and NK-landscapes, that allow

for a precise control of the problem structure. The last

benchmark is a real-world, dynamic and stochastic problem

that is used to evaluate whether the findings uncovered

with the idealised problems scale-up to more realistic

scenarios. We describe in details each of these benchmarks

next.

2.2 OneMax benchmark

The One-Max problem is a simple and well-known prob-

lem that consists in maximising the number of ones in a

bitstring. Usually, it can be located in studies that evaluate

the performance of different methods or algorithms (see

Goeffon and Lardeux 2011; Fialho et al. 2008). Formally,

this problem can be described as finding a string x ¼

fx1; x2; . . .; xNg; with xi 2 f0; 1g; that maximises the fol-

lowing function:

FðxÞ ¼
X

N

i¼1

xi ð1Þ

2.3 NK-landscape benchmark

NK-landscapes have been widely used as a test case in the

field of evolutionary search Verel et al. 2011. These

problems represent a rich problem domain as it is possible

to obtain problem instances of adjustable difficulty from a

simple model. Each instance is characterised by a number

of genes N, and a number of interactions between genes K

such that, 0\N,0 B K B N - 1. The epistatic interac-

tions or neighbourhood of a given bit i can be chosen at

random or in a regular manner, selecting the K nearest bits

to i. The result is a N 9 2K?1 matrix E that represents the

epistatic interactions of K bits. A solution S to the problem

is a binary string of length N, and its fitness is computed as

follows:

Fitness ðSÞ ¼

PN
i¼1 fiðSi; Si1 ; . . .; SiK Þ

N
ð2Þ

where fi(.) is an entry into E, Si the value of string S at

position i and Sij is the value of string S at the jth neighbour

of bit i.

It has been shown that the neighbourhood structure

determines the complexity of the problem. In fact, if the

structure used is that of adjacent neighbours then the

problem can be solved in polynomial time. On the other

hand, if the neighbours are chosen at random the problem

can be NP-Hard (Weinberger 1996). Furthermore, the

landscapes can be tuned from smooth to rugged by

increasing the value of the parameter K. Krasnogor and

Gustafson (2004) and Krasnogor (2004) showed that it was

possible to evolve local searchers for Memetic Algorithms

that would match the structure of the problem being solved,

in particular, NK-landscape instances. In this paper we

would like to evaluate whether one could match different

island topologies to different instances of the NK-land-

scape. Thus, we study four different scenarios: low epis-

tasis and poly-time solvable, high epistasis and poly-time

solvable, low epistasis and NP-hard and high epistasis and

NP-hard instances of the NK-landscape problem as done by

Krasnogor and Gustafson (2004).

2.4 Systematic topologies via b-graphs for idealised

problems

In order to simply and clearly assess whether different

island topologies could better serve different problem

structures (i.e. different N and K in the NK-landscape

benchmark) we use a family of graph models, b-graphs,

which were proposed to analyse small world phenomena

(Watts and Strogatz 1998), as a systematic source of island

topologies. The question Watts tries to answer can be

briefly explained as: What are the most general conditions

under which the elements of a large, sparsely connected

network will be close to each other. The closeness of

vertices is determined by the length property of the graph,

which has been an active research area and has been

studied on different problem classes, for example, the

performance of computer networks, telecommunication
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network and, more recently, we showed that these graphs

topologies greatly impact the diversity of generated pro-

grams in a ‘‘GP-like’’ setting (Li et al. 2006, 2009).

b-Graphs capture a variety of network topologies from a

highly ordered to a completely random graph. Three

parameters are used to define the properties of graphs

generated under the b-graph model, namely, n representing

the number of vertex in the graph, k determining how many

initial nearest neighbours each vertex has and—finally—b

that defines the rewiring rate.

Characteristic path length (abbreviated as CPL in the

remaining of this paper) is one of the most important sta-

tistics used to measure the shortest distance between each

vertex (i, j) in a graph. The formal definition of CPL is

given by Watts and Strogatz (1998) as ‘‘The characteristic

path length (CPL) of a graph (G) is the median of the

means of the shortest path lengths connecting each vertex

v 2 VðGÞ to all other vertices. That is, calculate

dðv; vjÞ 8 vj 2 VðGÞ and find dv for each v. Then define L

as the median of fdvg:’’ Furthermore, for each graph one

can also define the clustering coefficient (abbreviated as

CC in the remaining of this paper) as the degree to which a

vertex neighbours are also neighbours of each other:

CCv ¼
EðvÞ
kv
2ð Þ

; where E(v) is the number of edges incident in

v and kv the maximum number of possible edges.

We have chosen NK-landscapes and b-graphs as, given

that their internal structure bear a remarkable similarity (see

Figs. 1, 2), if we do not find correlations between b-graphs

induced island topologies and NK-landscapes structures,

then it will be very difficult to justify that specific island

topologies are better for specific problem structures. On the

other hand, if a clear evidence that these two types of

structures can be functionally linked, then a new research

avenue for improved optimisation will be open.

In Fig. 2, for reference, we show the CPL and CC for

the b-graphs we used later on our experiments.

2.5 A real-world benchmark problem: dynamic

optimisation in a Multi-Skill Call Centre

The two idealised benchmarks described above, together

with a systematic topology generation through b-graphs,

must be complemented with a real-world problem for

which, a priori, one has no possibility of predetermining an

optimal population structure. We will use the problem

Fig. 1 Pictorial representation of NK-landscapes and b-graphs. The

top panel shows three b-graphs examples with n = 8 and with

b = 0, 0.5, 1. In the bottom panel, three instances of the NK-

landscape problem are shown. All the instances have N = 16 and

k = 2, with the landscape to the left having a regular nearest

neighbours epistatic structure, while the other two have a random set

of epistatic interactions
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described below to investigate (later in the paper) whether

it is, in principle, possible to let the optimisation algorithm

(in our case a Genetic Algorithm) choose the best topology

as the dynamic problem unfolds. Thus, this benchmark will

be used to ascertain whether different topologies are better

at different stages of the search process under a dynamic

optimisation scenario.

In a Multi-Skill Call Centre (MSCC), there are n incoming

customer calls C ¼ fc1; c2; . . .; cng grouped in k call groups

CG ¼ fcg1; cg2; . . .; cgkg according to the call type, and m

agents A ¼ fa1; a2; . . .; amg that have a subset of all the

possible skills (S ¼ fs1; s2; . . .; skg) to attend the corre-

sponding call groups (having the skill si enables you to attend

the call group cgi). Not all the agents have the same skill set

and the number of skills per agent is different. Agents can

only attend the call groups they have been trained for. This

implies that each agent can attend different call types and,

given a call type, it can be answered by several agents who

have the associated skill. Note that agents cannot attend any

kind of customer calls as they are usually specialised in

concrete tasks (they do not have the complete skill set) or

sometimes limited by the law regulations. Although agents

may have multiple skills, each agent can only process one

call at the same time. Furthermore, given a call, it requires an

unknown amount of time to be accomplished. Besides, each

agent must orderly process each call during an uninterrupted

period of time; in other words, the call cannot be divided or

postponed once it has been started.

Figure 3 illustrates the relationship among client calls,

queues and agents. This figure describes an example for

nine client calls grouped in four CGs, five agents having

different real skills and seven different profiles.

The main objective of this real-world problem is to get,

for each time-frame (t), an automatic allocation of agents

and call groups ({ai, cgj}t when ai is related to sj) that

maximises the service level [see Millán-Ruiz and Hidalgo

(2010)]. It stands to reason that we want to devote more

agents to those call groups with greater traffic volume or to

those with higher priority or relevance.

The problem of workforce distribution inMSCCs is a very

complex and dynamic real-world problem. Usually, the

number of incoming calls (n) is much larger than the number

of agents (m) and the flow of calls is very dynamic over time,

making this problem really hard. Intuitively, this problem is

much more complicated than having a simple pool of

incoming calls where agents take work from, since it requires

the assignment of customer incoming calls to the agents

having the right skills, satisfying a given set of additional

constraints and respecting the dependencies among individ-

ual tasks and differences in the execution skills of the agents

[see Millán-Ruiz and Hidalgo (2010) for getting further

information about this problem]. This problem is somehow

related to other classic changing scenarios where staffing

requirements are identified to insure that the organisation has

the right number of agents at the right time. This is a highly

difficult problem because we are not only dealing with an

NP-hard problem like the job assignment problem (Brucker

2007), but the problem also considers rapidly varying con-

ditions, massive incoming calls and a large number of agents

having hard constraints to process certain tasks. Reviewing

the state-of-the-art, we can find a number of strategies and

algorithms to solve this problem (see Millán-Ruiz and

Hidalgo 2010a, b and c) where Parallel Genetic Algorithms

(PGA) have proved to be the most competitive approach.

2.6 Algorithms and experimental setup for the OneMax

and NK-landscape problems

We systematically generated 20 b-graphs per topology.

Note that each topology is defined with a tuple (n; k; b) in

the following ranges:

Fig. 2 Clustering coefficient (CC) and characteristic path length

(CPL) as a function of b for b-graphs with n = 16 and k = 4

Fig. 3 Inbound traffic scheme in MSCCs
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n 2 ½1; 2; 4; 8; 16; 20�

k 2 ½0; . . .;N � 1�

b 2 ½0:05; 0:10; 0:15; . . .; 0:90; 0:95; 1:00�:

With the above parameters and deleting the redundant

combinations, we reach a total of 851 topologies. Each of

these topologies were evaluated into two batches for the

NK-landscape problems:

– Batch 1: N = 50 and K 2 ½2; 4; 8; 14�

– Batch 2: N = 100 and K 2 ½2; 4; 8; 14; 28; 56�:

In both cases, random epistatic interactions and contiguous

epistatic interactions were tried out.

For the OneMax problem we used one instance of 5,000

bits (preliminary experiments with smaller instances were

easily solvable by our GA).

Both problems were solved with a simple Parallel GA

that was executed 20 times per topology. The topology of

island connectivities was given by the b-graph topologies

as defined above and was kept fixed throughout the

evolutionary process. The main parameters of the PGA

are:

1. Initialisation The algorithm starting population is

initialised randomly.

2. Selection A classical binary Tournament Selection has

been implemented to select the parents of the off-

spring. A fitness-based match is used where the

selected parents survive until the next generation.

3. Crossover The offspring is generated by a single point

crossover (SPX). The probability of crossover is 0.9;

4. Mutation In order to avoid another variable, no

mutation was used.

5. Migration policy It is fixed to a simple replacement

policy with a bandwith of 10 % of an island popula-

tion. This means that the best individuals, 10 % of

each emitting island, replaces randomly a part of the

population of the receiving island (always preserving

the elitism).

2.6.1 Algorithms and experimental setup for the

Multi-Skill Call Centres

It is not always straightforward to control the internal

dynamics of a PGA based on the island model, especially

while seeking to ensure a fair balance between exploration

and exploitation in a dynamic real-world environment. In

real production environments, engineers do not always

have enough time to test out and compute all the possible

combinations to determine the optimal island connectivity

configuration as there are many factors that may have an

effect on the overall performance and accuracy (number of

islands, topology, migration and replacement policies,

amount of migrants, frequency of migrations, number of

individuals in each island, type of synchronism, etc). This

problem is even more severe when dealing with dynamic

optimisation under uncertainty such as in the Multi-Skills

Call Centre problem. To select the optimal configuration,

we have developed a Meta-PGA that automatically deter-

mines a sufficiently competent configuration for a second,

‘‘internal’’, PGA is the one that actually solves the MSCC

problem.

Some authors have already developed Meta-GAs in the

past. Wright (1991) was one of the pioneers in using GAs

to optimise problems over several real parameters. Lee and

Takagi (1993) proposed an automatic fuzzy system design

method that used a GA and integrated three design stages.

Their method determined membership functions, the

number of fuzzy rules and the rule-consequent parameters

at the same time. Clune et al. (2005) used a Meta-GA to

investigate the evolution of parameter settings (genetic

operators) for genetic and evolutionary algorithms in the

hope of creating a self-adaptive algorithm. Nannen and

Eiben (2006) presented and evaluated a method for esti-

mating the relevance and calibrating the values of the

parameters of an evolutionary algorithm. The method

provided an information theoretic measure on how sensi-

tive a parameter was to the choice of its value. In Nannen

and Eiben (2007), the same authors proposed an advanced

method that helped to calibrate the parameters of an evo-

lutionary algorithm in a systematic and semi-automated

manner. The method for relevance estimation and value

calibration of evolutionary algorithm parameters was

empirically evaluated in two different ways. More recently,

Brain and Addicoat (2010) made use of a Meta-GA to

optimise the parameters of a simple GA through an evo-

lutionary process. They addressed the problem of deter-

mining the electronic structure of long chain molecules.

The same year, Shahsavar et al. (2011) proposed a meth-

odology for both optimal pattern selection and tuning. They

employed a robust GA to solve a project scheduling

problem.

All these algorithms were focused on classical GA, but

we now propose a Meta-PGA for parameter calibration that

automatically tests out different islands and migration

configurations. It entails a number of independently

evolving populations to determine the right setting-up of an

internal PGA.

The chromosome of our Meta-PGA, which has six

genes, follows an integer encoding scheme. These genes

refer to diverse parameters that affect the final performance

of the internal PGA (see Fig. 4).

Let us present the pseudo-code before going on with the

explanation (see below) .
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In our Meta-PGA, we encode each solution as an array

of integers whose indexes represent each parameter and the

array contents refer to the values that these parameters can

take. These genes can take the following values:

1. Number of islands (from 1 to 12 populations).

2. Topology (star, bidirectional ring, all-to-all).

3. Population size (from 4 to 100 individuals per island).

4. Migration and replacement policies Best-Fitted Indi-

viduals by Worst-Fitted Individuals (BFI-WFI), Best-

Fitted Individuals by Random Individuals (BFI-RI),

Best-Fitted Individuals by Best-Fitted Individuals

(BFI-BFI), Best-Fitted Individuals by Most Different

Individuals (BFI-MDI), Best-Fitted Individual ?

‘‘Annealing’’ by Worst-Fitted Individuals (BFIA-

WFI).

5. Migration frequency (30 or 60 s).

6. Amount of migrants (percentage from 10 to 30 %).

The evolutionary operators of the Meta-PGA has been

set up as follows:

1. Fitness functionWe measure the service level resulting

from each configuration (see Millán-Ruiz and Hidalgo

2010).

2. Population size The population contains 20 different

individuals encoded as hinted above.

3. Initialisation The initial population is randomly

generated.

4. Selection We have applied a binary tournament

selection to select individuals from the population.

5. Crossover The offspring inherits the common points in

their parents and randomly receives the rest of genes

from them.

6. Mutation We apply a perturbation over each gene of

the chromosome with a probability of 0.1.

Now, we provide the details of the internal PGA (the

one that in fact solves the problem being analysed). Its

configuration is as the following:

1. Encoding We encode every solution as an array of

integers whose indexes represent the available agents

at a given instant and the array contents refer to the

profile assigned to each agent.

2. Fitness functionWe measure the service level resulting

from the configuration of agents and incoming calls

(see Millán-Ruiz and Hidalgo 2010).

3. Initialisation The initial population is randomly

generated.

4. Selection Individuals are selected, using a binary

tournament mechanism.

5. Crossover The offspring inherits the common points in

their parents and randomly receives the rest of genes

from them.

6. Mutation We apply a perturbation over each gene of

the chromosome with a probability of 0.03.

7. Replacement policy We consider elitism with a

probability of 0.93 to replace the worst-fitted individ-

uals of the population in next generation. And with a

probability of 0.07, a worse-fitted individual may be

captured. Note that our basic GA relies on a steady-

state scheme.

8. Parallel GA’s operators The PGA’s parameters and

evolutionary operators to play with are: number of

islands, topology, population size, migration and

replacement policies, migration frequency and amount

of migrants.

3 Results

In this section we provide the results we have obtained. We

focus first on analysing the idealised problems, OneMax

and NK-landscapes, and then we provide results for the

Multi-Skills Call Centre problem.

3.1 OneMax and NK-landscape

As mentioned in the previous section, we have conducted a

total of 357,420 experiments, i.e. 20 experiments per each

of the 851 different island topologies and each of the 21Fig. 4 Encoding of the Meta Genetic Algorithm
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tested problems. These experiments were organised in two

batches.

3.1.1 Batch 1

Batch 1 was a preliminary set up based on the NK-land-

scape with N = 50 and K 2 ½2; 4; 8; 14� in both a contig-

uous and random epistatic interaction structure and a 5,000

bits OneMax instance. For each of these problem instances

and topologies, 20 different random realisations of the

b-graph island model were used. The island topologies

were derived from b-graphs with topologies in the range

n 2 ½1; 2; 4; 8; 16; 20� � k 2 ½0; . . .;N � 1��
b 2 ½0; . . .; 1;þ0:05�).

From each run of the PGA with a given island topology,

we obtained the fitness of the best individual and we

averaged the fitness obtained from these 20 runs; the

average fitnesses so collected were used to calculate the

ranking of island topologies (i.e. from best performing to

worst performing in relative terms rather than through

absolute fitness values) and then assigned to a matrix of

pairs made up of the NK-landscape instances and the

b-graph island topologies where these were solved. To

analyse in a concise and clear way the data collected, we

performed a biclustering (Liaw 2006) of the resulting

matrix (composed of all such pairs). Figure 5 shows the

results, thus, obtained; please note that branches A, B and

C can be ‘‘rotated’’ without affecting the dendogram

branches lengths as to make a perfect cluster ordering the

problem families from low K to high K and hence, it is

possible to see that the biclustering correctly groups toge-

ther the easier instances (NK2, NK4, NK8, NK14) and the

harder, indeed NP-Hard for random epistatic connections,

ones (NK2R, NK4R, NK8R, NK14R) while separating the

large OneMax instance from the NK-landscapes ones. More

importantly, it clearly highlights island topology groups

that, with high confidence, perform poorly on several

NK-landscape instances (green cells) andgroups that,withhigh

confidence, perform well on several NK-landscape prob-

lems. Furthermore, for the two most difficult NK-landscape

instances, NK8R and NK14R, it is possible to see a more

distinct pattern of island topologies competency than for

the easier ones of this problem type for which a different

green-black-red pattern appears. Notably, the green-black-

red pattern for OneMax is tantalisingly different than for

the NK-landscapes, in particular those easier instances, e.g.

NK2 and NK4, that have only a few (2 or 4) contiguous

(thus, polynomially solvable) epistatic interaction, and

hence, one could have expected OneMax to share some of

the good/bad topologies with these problem. These com-

bined observations suggest that, as the problems become

more difficult, a better ‘‘signal-to-noise ratio’’ could be

obtained in what pertains to matching island topologies

to problem structure. A similar effect was identified by

Krasnogor and Gustafson (2004) and Krasnogor (2004)

when evolving specific local searchers for NK-landscape in

Memetic Algorithms (Krasnogor 2012). We thus performed

an extended set of experiments with harder instances that

are described next.

3.1.2 Batch 2

This experimental batch employs harder instances of the

NK-landscape by setting N = 100 and utilising a larger

range of K, in particular, K 2 ½2; 4; 8; 14; 28; 56�: As we did

before, we compute a biclustering of the topologies versus

Fig. 5 NK-landscape problems with N = 50 and OneMax with

stringsize of 5,000. We evaluate the 851 different b-graphs [tuples

(n, k, b)]. For each tuple we generate 20 replicas. The average fitness

for these 20 replicas is computed. All the different tuples are ranked

according to their score for the different problems. A biclustering is

performed with the computed ranks
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the problem instances according to the ranking obtained

from averaging 20 PGA runs. Figure 6 shows the results,

thus, obtained.

More clearly than Figs. 5, 6 show clusters where groups

of island topologies perform well (or bad) with high con-

fidence on groups of problems. To analyse in more details

which topologies are the more productive for different

problems we resort to group the topologies based on their

CC and CPL and re-apply the biclustering algorithm. To do

this we performed the following calculations

First, we compute the CC and the CPL for each of the

studied topologies. The resulting CC ranges from 0 to 1,

while to compare the CPL for graphs of different sizes, we

normalise CPL with respect to the maximum possible path

Fig. 7 The 851 b-graph topologies are distributed into 25 bins accordingly to their CC. For each bin, the average fitness was computed and then

the bins were ranked accordingly to this average. The labels in the x-axis have the format ðCC;CPLÞ

Fig. 6 NK-landscape problems with N = 100 and OneMax of size

5,000. We evaluate the 851 different b-graphs. For each tuple we

generate 20 replicas. The average fitness for these 20 replicas is

computed. All the different tuples are ranked according to their score

for the different problems. A biclustering is performed with the

computed ranks
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length, namely n - 1. The normalised CPL ranges between

0 and 1; a CPL = 0 means that the given graph is a com-

plete one, while a value of 1 means that the CPL = #nodes.

We then ‘‘bin’’ all island topologies according to the (1)

CC, (2) CPL, and a joint (3) CC and CPL weighted aver-

age. To decide which island topologies belong to a given

bin we compute their euclidean distance based on the CC

and CPL of the compared topologies plus a penalisation for

dissimilar values. The distance between two b-Graphs g1
and g2 is computed as follows:

Dðg1; g2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jCCg2 � CCg1 j
2 þ jCPLg2 � CPLg1 j

2

q

þmaxfjCCg2 � CCg1 j; jCPLg2 � CPLg1 jg

ð3Þ

Each topology bin is then characterised with the average

clustering coefficient (CC) and average characteristic path

length (CPL) of the island connectivities it contains. As an

example, these values are shown for the obtained bins in

the case of joint CC and CPL clustering in Table 1.

In Fig. 7 we can see the bicluster obtained using bins

based on CC with clearly defined bins of high performing

island topologies for certain problem structures. Similarly,

Fig. 8 shows well-performing bins once these are clustered

based on CPL. More specifically, from Fig. 7 we can see

that island topologies with CC� 0:63 perform, generally,

poorly on most problems with the exception of NK56,

NK56R and OneMax. Good performing bins for most

problems (except of NK56, NK56R and OneMax) have

either a low CC (=0.0) or a relatively high CC if it is

accompanied by a very low CPL ð� 0:05Þ:
Looking at Fig. 8 we can observe that island topolo-

gies with 0:10�CPL� 0:18 produce good results for

NK-landscapes with up to K = 28. To better correlate both

topological measures simultaneously, we have computed a

biclustering using Eq (3). This is shown in Fig. 9 where the

top dendogram for the island topologies has clearly iden-

tified three distinct regions, to the left those topologies that

are, mostly, poorly performing (except for the most diffi-

cult problems), in the centre the topological families that

perform well up to and including problem NK14R and, to

the right, topologies for which there is no statistical sig-

nificance to their rankings (mostly in black).

3.2 Multi-Skill Call Centres

Up till now, we have presented the results of the two

idealised problems which illustrate the relationship

between island topologies and problem structure. For the

real-world problem, we have created a predefined set of

representative topology structures according to the findings

unveiled by the two aforementioned idealised problems.

The purpose is to delimit the topology space to analyse

how those discoveries uncovered by the idealised problems

scale-up to a real-world problem and study how other

parameters may have an impact on the relationship

between topologies and problem structure.

We now describe the problem instance of medium dif-

ficulty that we have created to test out our Meta-PGA in a

real environment. This problem instance is composed by

real data taken from an MSCC during a common day. The

size of the snapshot where each configuration has been

executed is 300 s (5 min). Note that around 800 incoming

calls (n) simultaneously arrive during a normal day in such

a time interval. The number of agents (m), for each time

interval, oscillates around 700, having 16 different skills

for each agent on average, grouped in skill profiles (sets of

skills) of 7 skills on average. The total number of call types

considered for this study is 167.

For a fair comparison, every configuration has been run

over the problem instance 30 times. Figure 10 presents

some numbers/figures to realise the magnitude and

Table 1 Shows the average clustering coefficient and the charac-

teristic path lenght of the 25 considered bins in the case of joint CC

and CPL clustering

Bin CC CPL

0 0.9445 0.0031

1 0.8986 0.0056

2 0.8381 0.0091

3 0.7932 0.0117

4 0.7491 0.0145

5 0.7014 0.0179

6 0.6618 0.0203

7 0.7203 0.0236

8 0.6638 0.0244

9 0.6022 0.0277

10 0.4439 0.0309

11 0.4598 0.0343

12 0.4183 0.0391

13 0.2671 0.0451

14 0.4727 0.0491

15 0.2037 0.0577

16 0.2902 0.0710

17 0.1733 0.0821

18 0.0914 0.1143

19 0.0548 0.1446

20 0.0227 0.2100

21 0.0014 0.2833

22 0.0005 0.4937

23 0.0000 0.7160

24 0.0000 0.8301
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dynamism of the MSCC being studied. This figure shows

the number of incoming calls at different levels of granu-

larity (on a monthly, daily, hourly and minutely basis).

Given the values for the 6 genes of the Meta-PGAs

chromosome, there are 6,480 possible combinations

(8 9 3 9 9 9 5 9 2 9 3 = 6,480). This may seem an

easy search space but every evaluation takes time, as we

have to re-execute the internal PGA each time, which is

unfeasible in a production environment that requires fast

adaptations. Of course, we can optimise this by avoiding

recalculations previously made by the Meta-PGA. The

challenge should now be to develop a fast and effective

Fig. 8 We distribute the 851 families in 25 bins according to their

characteristic path length. The average fitness for each bin is

computed. For each of the problems, the bins are ranked according

to the fitness. A biclustering is performed with these ranks. The labels

in the x-axis have the format ðCC;CPLÞ

Fig. 9 We distribute the 851 families in 25 bins according to their clustering coefficient and the characteristic path length. The average fitness

for each bin is computed. For each of the problems, the bins are ranked according to the fitness. A biclustering is performed with these ranks
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Meta-PGA that avoids performing too many iterations to

find the right configuration or, at least, a good enough

approximation (see the Meta-PGA previously described).

In Fig. 11, we can see that the best-fitted individual in

the population of the Meta-PGA evolves very quickly.

We can even find the optimal configuration around gen-

eration-175. Best configuration found has been: eight

populations, bidirectional ring, 30 individuals per popu-

lation, BFIA-WFI scheme, migrations each 60 s, 20 % of

migrants.

In Fig. 12, we can observe that, in few iterations, we can

find a set of good candidates/individuals as the mean fitness

of the population on each generation is quite high in\30

generations. This reflects that our Meta-PGA does not only

Fig. 10 Dynamism of the MSCC being analysed at different levels of

granularity. Y-axis represents the number of incoming calls and the x-

axis denotes the time in terms of months, days, hours and minutes,

respectively. We see that, at minute level, the variability of the system

increases importantly

Fig. 11 Fitness value of the best-fitted individual in the population of

the Meta-PGA generation-by-generation. We perceive that there is

continuous evolution, especially at the beginning, and the fitness

value reaches appealing levels

Fig. 12 We show, for each generation, the mean fitness value of the

individuals that compose the population of the Meta-PGA. It reflects

the mean quality of the individuals as the algorithm evolves
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provide a single good solution, but also multiple high-

quality candidate solutions.

Our Meta-PGA also clearly outperforms its panmictic

version as Fig. 13 demonstrates. One of the main reasons

of this good performance lies in the capability of evolving

the topology and the migration and replacement policies

when needed. The topology has an imperative impact on

the migration and replacement policies, since we can per-

ceive a variation on the migration policies when the

topology evolves (e.g., in generation-60).

In Fig. 14, we show the number of individuals having

each topology in their genes, generation-by-generation. As

there are 20 individuals in the population of our Meta-

PGA, the sum-up of the three curves is always 20.

Bidirectional ring outperforms other more connected

topologies, especially when the number of islands

increases. When this happens, the population quickly

converges towards the same solution. Therefore, bidirec-

tional ring seems to be the most appropriate topology for

dynamic environments, most likely because this topology

allows for opportune convergence, while preserving the

desired diversity. It is important to highlight that, for this

problem, it is crucial to have a connected topology rather

than several isolated islands working in parallel (this

problem requires a collaborative scheme).

The star topology also entails high-quality outcomes but

quickly suffers premature convergence. The reason is that

the master island receives many migrants from the subor-

dinate islands after some migrations (and it is even worse

when there are many subordinate islands), implying that

populations eventually become very similar. This intui-

tively involves a lack of diversity so that the gain of fitness

gets fatally damaged. This phenomenon affects much more

strongly to the hub topology as, being all the islands

interconnected to each other, the diversity diminishes too

much after one or two migrations.

The two previous paragraphs confirm the results of the

previous section, reflecting that each problem structure

needs a different island topology configuration. Dynamic,

complex problems should be supported by medium-con-

nected topologies like the bidirectional ring to make the

PGA evolve properly.

In Fig. 15, we show the number of individuals having

each combination of migration-replacement policies in

their genes generation-by-generation. As there are 20

individuals in the population of our Meta-PGA, the sum-up

of the three curves is consequently 20.

The migration and replacement of individuals is another

important feature to set-up. In this manner, replacing the

worst-fitted individuals in the receiving population by the

best-fitted individuals of the source population does not

always behave better than taking the most different indi-

viduals. The process of analysing differences in the chro-

mosomes in contrast implies that the internal PGA can run

Fig. 14 Evolution of topology

in the population over time. We

can see the number of

individuals having each

topology in their genes

generation-by-generation. As

there are 20 individuals in the

population of the Meta-PGA,

the sum-up of the three curves is

always 20

Fig. 13 Fitness-based comparison between the panmictic algorithm

and our Meta-PGA. This figure shows the uplift of our Meta-PGA as

compared to the panmictic version of our PGA
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fewer generations (as it is a costly operation), but entails

better fitness values in the end. The underlying principle

may be that fitness-based comparisons can occasionally be

misleading or deceptive, leading to the situation in which

two close individuals in terms of genes in common may

have associated very different fitness values, whereas two

far chromosomes in terms of genes in common may have

assigned close fitness values. Another consequence of

measuring gene differences as compared to gauging fitness

values is that the lift of the fitness curve has a smoother

slope in the first generations. Naturally, replacing the best-

fitted individuals of the receiving population by the

best-fitted ones of the source population implies a slower

convergence in each processing node as we will find a

larger percentage of less-fitted individuals. This way, the

best migration policy has been sending the best fitted-

individual with some non-necessarily best-fitted individu-

als (annealing set) as it provides diversity.

Another finding has been that having many individuals

on each population makes the algorithm slower and fewer

generations are executed. Best values seem to range from

15 to 30 individuals per population.

The migration frequency is also important in the per-

formance. Migrations should not be done with too much

frequency, each population needs to evolve separately

enough time. Of course, the amount of migrants should not

be very big as the internal PGA may converge very fast to

the same solutions. The impact is higher when the number

of islands is rather large.

We have seen that PGAs can also deal with complex,

real-world application domains although they require spe-

cific tuning, depending on the nature of the problem being

faced. This way, we have presented a Meta-PGA for fine-

tuning PGAs based on the island model. Thanks to the

results uncovered by the exhaustive study of the idealised

problems, we have been able to effectively delimit the

island connectivity to scale-up those findings to a very

complex, real-world problem.

3.3 Discussion

The experiments performed on the OneMax and NK-land-

scapes using a series of b-graph based topologies for

configuring the island connectivity of the parallel GA have

clearly identified a direct correlation between problem

structure and islands connectivity structures as evidenced

by the various biclustering analysis we performed. The

results discovered through the idealised problems have

helped us to delimit the search space to scale-up those

findings to the real-world problem. The resulting correla-

tions are neither linear nor trivial (given the complex nat-

ure of evolutionary search) even for these kind of

‘‘perfectly known’’ problems and the situation is exacer-

bated with the Multi-Skill Call Centre Problem, a real-

world scenario.

To further analyse the ranking obtained by solvers using

different topologies operating on the OneMax and NK-

landscapes, we have used the clusters of topologies (bins as

defined in the previous sections, see Table 1) obtained

previously and ranked them accordingly to how many other

clusters are dominated by solvers within a given bin. A bin/

cluster dominates another one if the average fitness asso-

ciated to the topologies it contains is higher than that of

another bin/cluster. Figure 16 graphically depicts the

ranking obtained. The ranking was obtained through a

mixture between the Friedman test and Holm–Bonferroni.

The tests are a non-parametric tests that compare obser-

vations repeated on the same b-graphs families. Friedman

test is based on the null-hypothesis that all b-graphs fam-

ilies are equivalent and according to this assumption all

ranking must be equal. The statistic method for the

Friedman’s test is a Chi-square with N - 1 degrees of

Fig. 15 Evolution of

migration-replacement policy in

the population over time. We

can see the number of

individuals having each

combination of migration-

replacement policies in their

genes generation-by-generation.

As there are 20 individuals in

the population of the Meta-

PGA, the sum-up of the three

curves is consequently 20
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freedom, where N is the number of repeated measures.

When the p value for this test is small (usually\0.05) there

is evidence to reject the null hypothesis. Holm–Bonferroni

method is a simple sequentially rejective multiple test

procedure that we use for extracting information of the

ranking results of Friedman tests for all the clusters we

generated. Remarkably, for all problems, except NK2R,

only one (at most two) cluster of similar topologies are

ranked first indicating a clear preference for a problem-

dependent island topology. In Fig. 17 we show a histogram

with the number of times a given bin has been the top

ranked with statistical significance. Interestingly, bins with

Fig. 17 The histogram of

success for each cluster of

island topologies

Fig. 16 This figure shows the 25 different clusters for the 13

considered problems. The clusters that share the same rank are

represented together in a rectangular box. The high performing

clusters are placed in the left of the graph and an order is established

according to the scores obtained with the Friedman test plus Holm–

Bonferroni method. Thus, in the case of the one-max problem the

cluster 10 performs better than 24 other clusters with a 95 % percent

confidence. In the same problem the clusters 6 and 5 share the same

ranking as they both outperform 20 other clusters
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an average CPL B 0.0451 have never (with only a few

minor exceptions) been ranked top indicating that island

topologies that are fully connected (i.e. functionally close

to being panmictic) produce inferior performance. In the

figure, the overall dominant cluster, being the fittest for 6

out of the 13 problems (see Table 1) has CC ¼ 0:2902 and

CPL ¼ 0:0710, while the second dominant (4 out of 13)

cluster has 0.4727 and 0.0491, respectively.

4 Conclusion

In this paper we have performed a systematic analysis of

the correlation between island topologies and problem

structure. We have been able to clearly establish that dif-

ferent problem structures require different island topolo-

gies for a PGA both through an analysis of idealised

problems, OneMax and NK-landscapes, and a real-world

scenario, namely, the Multi-Skills Call Centre. The anal-

ysis performed, involving the execution of thousands of

simulations, the utilisation of biclustering and statistic

analysis, has shown that there is no single island topology

that is best across different problems and that the link

between island topologies and problem structures is highly

complex. Thus, the utilisation of adapting and self-adapting

solvers that can dynamically choose (perhaps even con-

struct) the interconnection scheme between islands seems

to be the preferred way forward.

Acknowledgments N. Krasnogor would like to acknowledge UK

EPSRC funding for project EP/H010432/1 and The Weizmann

Institute of Science for granting him a Morris Belkin Visiting Pro-

fessorship during which a part of this paper was executed. Iván

Contreras and Ignacio Arnaldo are supported by Spanish Government

Avanza Competitividad I?D?I: TSI-020100-2010-962 and Iyelmo

INNPACTO-IPT-2011-1198-430000 projects and the mobility Grant

‘‘Orden ECD /3628/2011, de 26 de diciembre, Dirección General de

Polı́tica Universitaria, Ministerio de Educación, Cultura y Deporte’’.

The work has also been supported by Spanish Government grants TIN

2008-00508 and MEC CONSOLIDER CSD00C-07-20811.

Open Access This article is distributed under the terms of the

Creative Commons Attribution License which permits any use, dis-

tribution, and reproduction in any medium, provided the original

author(s) and the source are credited.

References

Alba E, Tomassini M (2002) Parallelism and evolutionary algorithms.

Evol Comput IEEE Trans 6(5):443–462

Barabási AL, Albert R (1999) Emergence of scaling in random net-

works. Science 286:509–512. http://jmvidal.cse.sc.edu/library/

barabasi99a.pdf

Barrat A, Weigt M (2000) On the properties of small-world network

models. Eur Phys J B Condens Matter Complex Syst 13:

547–560. doi:10.1007/s100510050067

Barthelemy M, Amaral LAN (1999) Small-world networks: evidence

for a crossover picture. Phys Rev Lett 82(15):5. http://arxiv.org/

abs/cond-mat/9903108

Brain Z, Addicoat M (2010) Using meta-genetic algorithms to tune

parameters of genetic algorithms to find lowest energy molecular

conformers. In: Proc. of the Alife XII Conference

Brucker P (2007) Scheduling algorithms, 5th edn. Springer Publishing

Company, Berlin
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