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ABSTRACT Various time-frequency analysis methods have been employed for the vibration signal process-

ing of rotating machinery under time-varying speeds. However, most methods suffer from time-frequency

blurriness, particularly for signals experiencing fast changes of instantaneous frequencies. Synchroextracting

Transform is a powerful post-processing tool of time-frequency analysis; its results, nevertheless, greatly

depend on the original time-frequency representation. This paper proposes a matching linear chirplet based

synchroextracting transform to address the problem. Chirp-rate matching strategy is firstly developed to

alleviate smearing problems of time-frequency representations, where the chirp-rates adaptively match true

ones of signals with the guidance of kurtosis. Thematching strategy is then integrated with synchroextracting

transform to further sharpen the time-frequency representation. With enhanced energy concentration level

and sharpened instantaneous frequency ridges, the readability of time-frequency representation can be

improved, which is also echoed by more accurate extracted instantaneous frequency ridges. Rotating

machinery fault diagnosis can then be realized based on the extracted time-frequency ridges.

INDEX TERMS Fault diagnosis, instantaneous frequency estimation, synchroextracting transform, time-

frequency analysis, time-varying speed.

I. INTRODUCTION

Rotating machines are extensively used in industry. Bearings

and gears are their key components; therefore, their mainte-

nance is crucial for the normal operation of rotating machin-

ery [1]. To minimize unscheduled downtime and economic

losses, fault detection and diagnosis in key components of

machinery are of great importance. It is clear from previous

studies that vibration signal analysis is an effective method

for the fault diagnosis of rotating machinery and has been

widely employed in industry [2]–[6]. However, when rotat-

ing machines are operated under time-varying speed condi-

tions, traditional techniques—which have been devised for

constant-speed conditions—may be ineffective [7].

In light of this, order analysis is an effective method

for rotating machinery fault diagnosis at varying speeds.

Wang et al. conducted order analysis for bearing-fault diag-

nosis using the resampling strategy [8]. To successfully apply
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order analysis for use in fault diagnosis, the instantaneous fre-

quency (IF) must be pre-extracted to map the non-stationary

signal in the time domain to a stationary signal in the fault-

phase angle domain. The crucial step of the method used

in [8] is to obtain IF. However, the direct measurement of IF

is often impossible when a tachometer cannot be used, which

limits the applicability of this technique [9].

Time-frequency analysis (TFA) has also been widely

applied for processing rotational machinery vibration signals

under variable-speed conditions, as this type of analysis can

simultaneously reveal detailed information in both the time

and frequency domain [10]. The IF information can then

be extracted from the time–frequency representation (TFR).

However, vibration signals of rotating machinery are often

affected by background noise, and fault-related IF ridges

are suppressed by noise and interference, particularly for

weak faults. To facilitate the extraction of IF ridges that con-

tain rich information regarding the condition of the machin-

ery [11]–[13], various TFA methods have been developed to

enhance the readability of TFR.
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To solve the potential time-frequency (TF) diffusion,

methods such as iterative generalized demodulation and

the iterative generalized synchrosqueezing transform have

been proposed and have proven to be effective [14], [15].

Using these methods, more accurate IF estimations from

the improved TFR can be extracted, which leads to more

reliable fault diagnosis. Further, demodulation is used for

enhancing the TF energy concentration levels. An iterative

operation is designed to effectively tackle vibration signals of

rotatingmachinery, which usually contain multiple frequency

components. For instance, a vibration signal usually con-

tains the shaft IF-related component, fault characteristic fre-

quency component, their harmonics, and background noise.

To further mitigate this problem, Ma et al. proposed gen-

eralized demodulation in combination with adaptive chirp-

mode decomposition to decompose the signal [16]. The

aforementioned synchrosqueezing transform (SST) is used

to redistribute the TFR alongside the frequency components

of interest, which acts as a post-processing technique to

reassign the TF distributions [17]–[20]. Relying on a high-

order estimation of IF, Tu et al. proposed the demodulated

high-order synchrosqueezing method to overcome the TF

diffusion caused by the rapidly varying IF [21]. Similar to

the idea of demodulation, the linear chirplet transform (LCT)

can also be adopted to enhance the TFR [22]. However,

when dealing with non-stationary signals with frequencies

experiencing rapid changes, an individual LCT usually fails

to improve the TFR readability, particularly for cases where

the IF of the analyzed signal exhibits non-linearly changing

patterns. By advancing the LCT, generalized linear chirplet

transforms (GLCTs) are proposed by iteratively employ-

ing a string of chirp rates to better match the frequency

changes [23]. Nevertheless, when the TFR is enhanced using

the appropriate chirp rate, the side effects—such as extra

cross-terms caused by inappropriate chirp rates—cannot be

neglected in the TFR.

In terms of post-processing of the TFR, the synchroex-

tracting transform (SET)—developed based on the SST men-

tioned above—has also proven to be a powerful tool [24]. The

main advantage of the SET is that it can retain the TF distri-

butions around the true IFs with several frequency bins at a

given instant in time, which greatly sharpens the TF ridges on

the TFR. However, the SET suffers from heavy TF blurriness

caused by background noise, which constrains the applicabil-

ity of this method in the industry [25], [26]. In addition to the

original SET, several variants have also been developed. One

of these is the synchroextracting chirplet transform, proposed

to acquire more accurate IF estimation [27]. The shortcoming

of this method is that it is based on GLCT; hence, the cross-

term interferences and additional TF blurriness inherently

induced by GLCT cannot be avoided. To alleviate the cross-

term interferences and simultaneously take advantage of the

capability of sharpening the IF ridges of the SET, a potential

solution is to obtain an enhanced TFR without cross-term

interference and blurriness to facilitate the implementation of

the SET, which is the motivation of the proposed method.

To overcome the cross-term interference caused by GLCT,

especially when the frequency components are located close

to one another and the signal is contaminated by heavy noise,

the chirp-rate matching strategy is proposed, where proper

chirp rates can be adaptively selected through the guidance

of the kurtosis index and the iteration operations required for

processing multi-component signals can be avoided. In order

to further sharpen the IF ridges, the matching strategy is com-

bined with the SET to form the proposed method, referred

to as matching linear chirplet synchroextracting transform

(MLCSET). Then, TFRs with improved readability can be

obtained for rotating machinery abnormality detection and

diagnosis.

The remainder of this paper is organized as follows.

In section II, a detailed presentation of the proposed method

is given. Next, the proposed TFA method is tested through

simulations in section III. In section IV, a simulated bearing

fault signal is first used to illustrate the effectiveness of the

proposed method in obtaining more accurate time-varying

features. Then, two experimental signals are used to further

validate the effectiveness of the proposed method in dealing

with non-stationary vibration signals in section IV. The con-

clusions of the study are drawn in section V.

II. PROPOSED MLCSET

A. MATCHING LINEAR CHIRPLET STRATEGY TO

ENHANCE THE TFR

Based on the TFR enhancement strategy used in LCT,

the matching linear chirplet transform (MLCT) is proposed.

For a signal s(t), the enhanced TFR can be formulated as

Sα (u, ω) =

∫ +∞

−∞

s (t) g (t − u)

× e−jω
(

(t−u)+0.5 tanα(u)(t−u)2
)

dt (1)

where s(t) is the analyzed signal, g(t) is the window function,

and α(u) represents the inclination angle of an IF trajectory

of a windowed signal centered at the time instant t = u. This

can be done because the IF of a signal segment in a short

window can be considered to be a straight line. Therefore,

the angle α(u) can be considered as an indicator to measure

the slope of IF of the windowed signal at time instant t = u,

as well as the modified angle of the linear transforming ker-

nel. In comparison to the original linear transforming kernel

used in short-time Fourier transforms (STFTs), it can be seen

that (1) degrades to the STFT when α(u) = 0. Although

the STFT can reveal changes in frequency with time, it is

more suitable for processing signals with slowly time-varying

features. In other words, the linear transforming kernel with

an angle α(u) = 0 is more suitable for processing signals

with slowly varying frequencies. The angle α(u) in (1) has a

profound influence on the TFR of the signal analyzed. Gen-

erally, the closer the angle to the true angles of the windowed

signal, the more concentrated the energy level is. The highest

energy concentration level is achieved when the selected α(u)

is identical to the true inclination angle of the truncated signal.
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The detailed proof is given as follows:

|Sα (u, ω)|

=

∣

∣

∣

∣

∫ +∞

−∞

x (t) g (t − u) e−jω(t−u)e−0.5jω tanα(u)(t−u)2dt

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ +∞

−∞

ej
(

ω(t−u)+0.5ω′(u)(t−u)2
)

g (t − u)

× e−jω(t−u)e−0.5jω tanα(u)(t−u)2dt

∣

∣

∣

=

∣

∣

∣

∣

∫ +∞

−∞

e0.5j(ω
′(u)−ω tanα(u))(t−u)2g (t − u) dt

∣

∣

∣

∣

≤

∫ +∞

−∞

∣

∣

∣
e0.5j(ω

′(u)−ω tanα(u))(t−u)2
∣

∣

∣
· |g (t − u)| dt

=

∫ +∞

−∞

|g (t − u)| dt

=

∣

∣

∣

∣

∫ +∞

−∞

g (t − u) dt

∣

∣

∣

∣

(2)

whereω′ denotes the first derivative of the IF and the physical

interpretation of ω′ is the slope of the IF. The window g(t)

used here is a real symmetric function. To ensure indepen-

dence from any prior knowledge regarding IFs, a series of

discrete angles α are used, helping to find the matching

frequency of windowed signals. The physical interpretation

of this equation is that when the selected chirp rate of the

signal (defined here as ω × tanα) reflects the actual value

(ω′), the TFR will achieve the most energy concentrated level

of the TFR slice.

To adaptively select the angle that matches the frequency

of the windowed signal from the string of discrete angles α,

the index kurtosis—which can measure the energy concen-

tration level at a given instant in time—is proposed for use.

The discrete angles are defined as [23]

ai = −
π

2
+

i

N + 1
π, i = 1, 2, . . . ,N (3)

where N is the number of discrete angles and the range of

the inclination angle α is (−π/2, π/). It is worth mentioning

that, theoretically, the larger the value ofN , the more accurate

the selected angles should be. However, a large value of

N will increase computational complexity. Therefore, it is

recommended to reach a compromise between increasing the

value ofN and the computing time when improving accuracy.

When N = 1 and α = 0, the kernel in (1) is identical to

the one of the STFT, indicating that the STFT is a special

case of the proposed MLCT. Among the N discrete angles,

the one that can correctly reflect the actual frequency of

the windowed signal can be selected with the guidance of

kurtosis, expressed as

α̂ = argmax
αi,i=1,2,...,N

(

kurt
(

Sαi (u, ω)
))

(4)

where kurt( ) denotes the operation of calculating the kurtosis

of the TFR slice obtained by the ith angle. For a signal

segment within a short window, the frequency that can be also

represented by an inclination angle is adaptively determined

using (4). As stated previously, the true inclination angle

corresponds to the highest level of energy concentration; thus,

the selected angle corresponds to the maximum kurtosis.

Sliding the window until the entire signal is involved, the

final TFR of the signal is a combination of the TFR slices

corresponding to each maximum value of kurtosis, recorded

as Sα̂ (u, ω). Using the proposed matching linear chirplet

strategy, the TFR of the signal can be enhanced without pre-

estimation of the IF.

B. BRIEF INTRODUCTION OF SET

It can be seen that, by matching the chirp rate of the ana-

lyzed signal under the guidance of kurtosis, the TFR obtained

in subsection II. A has been enhanced. However, further

improvements can be made.

SET is a powerful TFR post-processing tool that employs

a defined extracting operator similar to the impulse function.

The purpose of applying SET is to extract the TF distributions

around the target frequency [24], expressed as

SE (u, ω) =

∫ +∞

−∞

S (u, ω) · δ (ω − ω (u, ω)) dω (5)

where ω (u, ω) is the IF estimator [3], [17] and δ( ) is the

impulse function, which can be calculated by their defini-

tions, respectively formulated as

ω (u, ω) =
∂uS (u, ω)

S (u, ω)
= ω + i

Sg
′
(u, ω)

S (u, ω)
(6)

δ (ω − ω (u, ω)) =

{

1, ω = ω (u, ω)

0, ω 6= ω (u, ω)
(7)

It can be seen that SET has the same formulation as SST.

The main difference between these two post-processing tech-

niques is the implementation of the impulse function. SST has

been developed to redistribute the TFR along the frequency

axis through the guidance of the IF estimator. Similarly,

the final result of SET also depends on the same IF estimator

as that in (6); however, the reassignment operations in the SST

are replaced by extracting operations in SET.

With SET, only the TF distributions related to frequency

components of interest in the signal are restored and the oth-

ers are removed by the extracting operator. It is obvious that

SET can obtain sharper IF ridges than STFT. However, even

though SET can sharpen the IF ridges in the TFR, the energy

concentration level of the TFR after SET is unchanged, lim-

iting its applicability to incipient fault detection. Therefore,

the integration of the proposed matching linear chirplet strat-

egy and the extracting operation could address such prob-

lems, as the former can concentrate the energy level and the

latter is capable of further sharpening the TFR.

C. PROPOSED MLCSET

Supposing that the angle is accurately selected for increas-

ing the TF energy concentration level and the IF estimator

matches the true IF, the TFR of MLCSET can be defined as

SE
α̂ (u, ω) = Sα̂ (u, ω) · δ (ω − ω̃ (u, ω)) (8)
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where the ω̃ (u, ω) is the IF estimator. According to (6), it can

be formulated as

ω̃ (u, ω) =
∂uSα̂ (u, ω)

jSα̂ (u, ω)

= ω + j
S
g′

α̂
(u, ω)

Sα̂ (u, ω)
+ ω tan α̂ (u)

S
tg

α̂
(u, ω)

Sα̂ (u, ω)

+o
(

tan
(

α̂ (u)′
))

(9)

where α̂ (u) is constant and
(

α̂ (u)
)′
= 0. Note that

ω tan α̂ (u) = ω′ is determined by changes in the frequency

component and reflects the chirp-rate of the signal at time

instant t = u [22]. The TFRs S
g′

α̂
(u, ω) and S

tg

α̂
(u, ω) are

obtained with window g′(t) and tg(t), and satisfy [28]

t̃ (u, ω) = u−
S tg (u, ω)

S (u, ω)
(10)

where t̃ (u, ω) is the group delay estimator. Therefore, if no

group delay is taken into consideration, i.e., t̃ (u, ω) = u,

the IF estimator in (9) can be further simplified as

ω̃ (u, ω) = ω + j
S
g′

α̂
(u, ω)

Sα̂ (u, ω)
(11)

which is echoed with the IF estimator in (6).

Then, the implementation of the simplified IF estimator

in (11) can be derived as

δ (ω − ω̃ (u, ω)) =



















1, j
S
g′

α̂
(u, ω)

Sα̂ (u, ω)
= 0

0, j
S
g′

α̂
(u, ω)

Sα̂ (u, ω)
6= 0

(12)

However, considering the calculation error and that the real

part of the IF estimator should be used in practice, (12) is

rewritten as

δ (ω − ω̃ (u, ω)) =































1,

∣

∣

∣

∣

∣

∣

Re



j
S
g′

α̂
(u, ω)

Sα̂ (u, ω)





∣

∣

∣

∣

∣

∣

<
1ω

2

0,

∣

∣

∣

∣

∣

∣

Re



j
S
g′

α̂
(u, ω)

Sα̂ (u, ω)





∣

∣

∣

∣

∣

∣

≥
1ω

2

(13)

where 1ω is the frequency resolution and Re( ) denotes the

function that accepts only the real part.

As an important indicator to evaluate the TFA method,

the signal reconstruction of the proposed MLCSET is also

conducted
∫ +∞

−∞

SE
α̂ (u, ω) dω

=

∫ +∞

−∞

Sα̂ (u, ω)

∫ +∞

−∞

δ (η − ω̃ (u, ω)) dηdω

=

∫ +∞

−∞

Sα̂ (u, ω) dω

=

∫ +∞

−∞

s (t + u) g (t)

∫ +∞

−∞

e−jω
(

t+0.5 tan α̂(u)t2
)

dωdt

=

∫ +∞

−∞

s (t + u) g (t) 2πδ
(

t + 0.5 tan α̂ (u) t2
)

dt

= 2πg (0) s (u) (14)

where δ( ), as defined above, denotes the impulse function and

g(0) is a constant determined by the window function. It can

be found that when t = 0, the original signal waveform s(u) in

the time domain can be reconstructed from the TFR obtained

using the proposed method.

The algorithm implementation of the discrete MLCSET is

illustrated as follows. The discrete data is denoted by x[l], l =

0, 1, . . ., L−1, where L is the length of samples. The data x[l]

corresponds to a uniform discretization of x(t) taken at time

tn = t0+lT, where T is the sampling interval. The discrete

TFR of the matching chirp-rate strategy can be calculated as

Sαi

[

nt , nf
]

=

L−1
∑

l=0

x [l] g [l − nt ] e
−j 2πN nf

(

[l−nt ]+
tanαi(nt )

2 [l−nt ]
2
)

,

i = 1, 2, . . . ,Nα (15)

where Nα is the number of the discrete angles used in the

matching strategy.

The selected TFR slice at time instant t = nt is recorded

as Sα̂

[

nt , nf
]

. Then the IF estimator is obtained as

ω̃
[

nt , nf
]

=



































Ro



nf + Re





j

2π
·
L

Lwin
·
S
g′

α̂

[

nt , nf
]

Sα̂

[

nt , nf
]







 ,

if Sα̂

[

nt , nf
]

6= 0

0,

if Sα̂

[

nt , nf
]

= 0

(16)

where Ro[ ] denotes using a round operation, making the

default resolution of the discrete IF estimator in (16) be

1ω = 1. S
g′

α̂

[

nt , nf
]

is the corresponding TFR obtained by

using the first derivative of window g’(), L is the length of

samples, and Lwin is the length of the window used to truncate

the discrete samples. L
/

Lwin can be considered to be the

coefficient to expand the frequency segment to satisfy the

requirement for a Fourier transform. The discrete MLCSET

can then be written as

SE
α̂ [nt , ξ ] =

L−1
∑

nf=0

Sα̂

[

nt , nf
]

δ
[

ξ − ω̃
[

nt , nf
]]

(17)

The pseudocode of the proposed method can be found in

Algorithm 1. A flowchart of the proposed method is also

shown in Figure 1.

III. SIMULATION STUDY

In this section, the proposed method is analyzed using numer-

ical data and comparisons made between different TFA

methods.
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FIGURE 1. Flowchart of the proposed method.

A multi-component signal s(t) with time-varying IFs can

be defined as

s (t) =

2
∑

i=1

sin

(

ki

∫ 4

0

2π f (t) dt

)

,

× f (t) = 20e−1.2(t−1.2)
2

+ 15 (18)

where ki is (1,2), respectively, for i = 1,2 and f (t) is the

IF. The noise-free and noisy versions of the multi-component

signals are analyzed. The sampling frequency of the simu-

lated signal is set to 200 Hz and the signal lasts for 4 s. The

noise-free signal waveform and the frequency trajectories are

shown in Figure 2 (a) and (b), respectively.

FIGURE 2. Noise-free simulation signal: (a) simulated noise-free
waveform, (b) frequency trajectories of the simulated signal, and (c) angle
(blue: true; red: estimated).

The selected angles, guided by the proposed chirp-rate

matching strategy, are shown in Figure 2 (c), where the true

angles and selected angles are plotted using solid blue and

red lines, respectively. It can be seen that the selected angles

match the true ones well. The improved TFR provided by the

proposedMLCT is shown in Figure 3 (b) and the STFT result

is plotted in Figure 3 (a), for comparison. It can be seen that

the TFR obtained by the proposed MLCT is more energy-

concentrated than the one obtained by STFT. In addition to

the traditional STFT, other TFA methods, such as wavelet

transform (WT), along with post-processing techniques like

SST are also used to analyze the simulated signal. The result-

ing TFRs are shown in Figure 3 (c) and (d). It can be observed

that the TFRs of the two methods suffer from TF blurriness,

Algorithm 1 Proposed MLCSET

Step 1: Initialization and calculation

Choose the window function g and the number of discrete

angles N ;

Calculate the discrete window g′;

Calculate the discrete angles αi, i = 1, 2, . . . ,N ;

Step 2: Enhance TFR by matching strategy

for i = 1: N

Calculate Sαi [u, ω] and S
g′

αi [u, ω];

end

Find Sα̂ [u, ω] ← argmax
αi

(

kurt
(

Sαi [u, ω]
))

according

to (4);

Step 3: Synchroextracting

Choose the threshold γ, 1ω;

IF [nt, nf ]← 0;

Calculate ω̃ (nt, nf ) according to (16);

for nt = 1: t bins

for nf = 1: f bins

if abs (Sα̂ [nt, nf ]) > γ

if abs (real (ω − ω̃ (nt, nf ))) < 1ω
/

2

IF [nt, nf ]← 1;

end if

end if

end for

end for

Step 4: Calculate MLCSET

SE
α̂

(u, ω) = Sα̂ (u, ω) · IF (u, ω) ;

Output SE
α̂

(u, ω);

particularly for signal segments with rapidly changing IFs.

The conventional STFT-based SET is also applied to the

simulated signal, as shown in Figure 3 (e).We can discern that

the IF ridges are sharpened; however, the IF ridge segments

from 0–1 s and 1.5–2.5 s still suffer from the blurriness

since the original TFR segments from the STFT experience

smearing and the SET is incapable of improving the energy

concentration level.

Then, the proposed method is used for simulated signal

processing. The TFR generated by the proposed MLCSET

is shown in Figure 3 (f). As mentioned before, applying the

SET can be regarded as extracting the TF distributions around

the true IF from the original TFR, leading to more sharpened

IF ridges and less TF diffusion. It can be clearly seen that the

TFR in Figure 3 (f) has sharper IF ridges and does not suffer

from smearing problems. The proposed MLCSET could fur-

ther increase the readability of the TFR by enhancing the orig-

inal TFR andmultiplying amore accurate extracting operator.

For this simulated signal, the window length for analysis was

set as 0.8 s. By reaching a compromise between the TFR

readability and computing time, the number of angles N is

set 30. Further increasing the value of N did not lead to a

substantial TFR improvement, but did increase computational

complexity.
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FIGURE 3. Time-frequency representations when using different methods
for the noise-free simulation signal: (a) analyzing result using STFT,
(b) analyzing result using MLCT method, (c) analyzing result using WT,
(d) analyzing result using SST, (e) analyzing result using STFT-based SET,
and (f) analyzing result using MLCSET.

FIGURE 4. Spectrum slices of the noise-free signal at the time instant t =

2s using different methods.

To better illustrate the improvement in TFR energy con-

centration level by the proposed MLCSET method, the TFR

slice at time instant t = 2 s—which reflects the energy

concentration level at that time instant—is plotted in Figure 4

(red line). Similarly, the TFR slices at time instant t = 2 s of

other TFA methods mentioned in Figure 3 are also analyzed.

The comparison result is shown in Figure 4. It can be seen

that the proposed MLCT and MLCSET have the highest

TF amplitudes, indicating that the TFR energy concentration

level can be increased by the proposed chirp-rate matching

strategy. Figure 4 also shows that the amplitude of MLCT

and MLCSET at the time instant is identical, which means

that SET does not improve the energy concentration level but

extracts the original TF distributions around the true IFs (the

TFR slice ofMLCSET is much narrower than that ofMLCT),

i.e., theMLCSET only extracts several frequency bins around

the true IFs from the TFR by MLCT. The same is true for

STFT and SET.

FIGURE 5. Results obtained for differing values of 1ω with corresponding
local zooms on the right: (a) time–frequency representation when
1ω = 0.5, (b) local zoom of the result when 1ω = 0.5, (c) time–frequency
representation when 1ω = 1, (d) local zoom of the result when 1ω = 1,
(e) time-frequency representation when 1ω = 2, (f) local zoom of the
result when 1ω = 2.

The parameter 1ω, used in Algorithm 1, takes the fre-

quency resolution into account and can be considered to

be a threshold that determines the number of the extracted

frequency bins via SET. Usually, setting 1ω = 1 can satisfy

the requirements of extracting the TF distributions around the

true IF only if the window length is appropriately selected for

analysis. For demonstration purposes, in this study, the value

of parameter1ω is set as 0.5, 1, and 2, and the corresponding

results are shown in Figure 5 (a)–(f), with their local zooms

(marked in red rectangles) in the right column.

It can be seen from Figure 5 (a)–(b) that the IF trajectory is

sharper, but some TF distributions (0–1 frequency bin at time

instant t = 2 s) are missed for 1ω = 0.5. In comparison to

Figure 5 (e)–(f), where the parameter 1ω is set 2, TF distri-

butions in a wider frequency range (covering 2 or 3 frequency

bins) are retained, leading to wider IF trajectories. The results

for 1ω = 1 are given in Figure 5 (c)–(d). The corresponding

IF ridges occupy 1 or 2 frequency bins at the given time

instant, which are less than those when 1ω = 2. More

importantly, no TF details are missed. Considering that the

frequency resolution is constant and 1ω determines how

many frequency bins are retained, it is suggested that the

parameter1ω should be tuned to generate a satisfactory TFR

(locating only one frequency bin at a given time instant) that

does not lose detailed time-varying features.

To facilitate a more in-depth understanding, the amplitudes

of TFR slices within the frequency range of 20–55 Hz at

time instant t = 2 s are plotted in Figure 6. It can be seen
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FIGURE 6. Spectrum slices for different values of 1ω (black: 0.5; red: 1;
blue: 2).

FIGURE 7. Noisy simulated signal: (a) noisy signal waveform, (b) IF
trajectories of the simulated signal, (c) angles (blue: true; red: estimated).

that a value of 1ω = 0.5 fails to distinguish the target

frequency around 50 Hz. The value of 1ω = 1 occupies

a certain frequency bin for the lower frequency component

(between 24–25 Hz) and the value of 1ω = 2 covers more

frequency bins, as shown in the local zoom in Figure 6. The

detailed analyses further illustrate that a larger value of 1ω

will not omit any target TF details; however, it results in

wider frequency trajectories. A very small value of 1ω will

generate sharp IF trajectories, but it may omit some useful

details. Therefore, it is suggested that 1ω be set as 1. During

practical use, users can slightly vary this parameter to obtain

a satisfactory TFR, according their intended application.

The noisy signal, with a signal-to-noise ratio (SNR) of

0 dB, is then analyzed to further test the performance of the

proposed method. The noisy signal’s waveform is plotted

in Figure 7 (a). The frequency trajectories are shown in

Figure 7 (b).

The angle for the noisy signal is also estimated using

the guidance of kurtosis, as shown in Figure 7 (c). It can

be observed that, even though slight oscillations are present

because of noise, the selected angles and true ones match

well. The slight deviations between the selected angles and

true angles have a negligible effect on the TFR readability,

as shown in Figure 8 (b).

The TFRs obtained using STFT and the proposed MLCT

are shown in Figure 8 (a) and (b). The TFR in Figure 8 (a) suf-

fers from severe smearing. The TFR of MLCT can reveal

the IFs of signal components; however, the IF ridges are not

sharp enough and are blurry at some instances in time, such

as t = 2 s. The TFRs obtained from the WT, SST, and SET—

in Figure 8 (c)–(e)—all suffer from smearing; therefore, it is

difficult to accurately recognize the IF ridges, particularly

at 0–3 s. The result obtained using the proposed MLCSET

is presented in Figure 8 (f), where it can be seen that the

energy concentration level is improved and the IF ridges are

much sharper. Then, the IF can be accurately extracted from

this improved TFR and used for rotating machinery fault

diagnosis.

FIGURE 8. Noisy simulation signal analysis using different methods:
(a) analyzing result using STFT, (b) analyzing result using MLCT,
(c) analyzing result using WT, (d) analyzing result using SST, (e) analyzing
result using STFT-based SET, and (f) analyzing result using MLCSET.

FIGURE 9. Spectrum slices of the noisy simulated signal at the time
instant t = 2s using different methods.

Similar to the noise-free simulated signal, the amplitudes

of the TFR slices at time instant t = 2 s for different TFA

methods are analyzed, as shown in Figure 9. Figure 9 clearly

shows the amplitudes of the TFR slices of MLCT and MLC-

SET. Moreover, the amplitude of the TFR slice of MLCSET

is further shifted towards the target frequency, in comparison

to the result from MLCT. These observations indicate that

the proposed methods can yield the TFR with the sharpest

IF ridge and highest energy concentration level. It is worth

noting that, in comparison to Figure 4, there are more fluctu-

ations present in Figure 9 owing to noise.

To evaluate the performance of the proposed method,

Rényi Entropy is used. For TFR S(u, ω), the Rényi Entropy

can be calculated as follows

RS =
1

1− α
log2

×

∫∫ (

S (u, ω) /

∫∫

S (u, ω) dudω

)α

dudω (19)
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FIGURE 10. Rényi entropy versus the signal to noise ratio of the input
signal.

TABLE 1. Rényi entropy of the analyzed signal by different methods.

where α denotes the rank, which is selected to be 3 here. It can

be seen from Table 1 that employing post-processing tech-

niques such as SET can further decrease the Rényi Entropy.

The proposed MLCSET has the lowest Rényi Entropy for

both noise-free and noisy cases. To further understanding the

capability of the different TFA methods to mitigate noise,

the Rényi Entropy versus SNRs of the input signals are ana-

lyzed. The SNR varies from 0–20 dB and the results are given

in Figure 10. It can be concluded that the proposed MLCSET

outperforms other TFA methods in terms of resilience to

noise.

IV. APPLICATION TO ROTATING MACHINERY FAULT

DIAGNOSIS UNDER VARIABLE SPEED CONDITIONS

In this section, a simulated bearing signal and two exper-

imental signals under time-varying speed conditions are

analyzed to validate the proposed method. In addition to

the improved TFR energy concentration level, the accuracies

of the detected IF ridges are also analyzed in this section

to evaluate the health condition of the rotating machinery.

For bearing-fault diagnosis, the ratios of the extracted fault-

related IF ridges to the extracted shaft-related IF ridges

should be calculated. Then, the fault type can be determined

according to the average ratios of the extracted IF ridges. In

gears, the main feature related to faults in vibration signals is

the modulation effect, i.e., the signal component of meshing

is modulated by the gear fault characteristic frequency. If the

sidebands of the meshing frequency can be observed on the

TFR, it then can be concluded that the gear is defective.

The fault-diagnosis strategy of rotating machinery can be

summarized as: (1) acquiring the TFR, (2) performing

IF-ridge extraction based on the obtained TFR, and (3)

diagnosing the fault type based on the extracted IF ridges.

A. SIMULATED BEARING SIGNAL ANALYSIS

To exam the effectiveness of the proposed MLCSET in diag-

nosing bearing faults, a simulated vibration signal is first

constructed. The sampling frequency is set to 8000Hz and the

FIGURE 11. Noisy simulated bearing signal: (a) noisy waveform of the
simulated bearing signal, (b) estimated angles and ture angles (blue: true;
red: estimated).

signal lasts for 1 s. The instantaneous shaft rotation frequency

fISRF first increases, then decreases, and finally stabilizes at a

constant value. The simulated signal x(t) is defined as

x (t) =

L
∑

i=1

Aie
−β(t−ti) sin(2π fr t)

+

3
∑

j=1

Rj cos
(

2πmfISRFt + ϕj
)

+ n (t)

fISRF = 40e−1.2(4t−1)
2

+ 30, β = 1000, fr = 3500,

R1 = 0.2,R2 = 0.15,R3 = 0.1; ϕ1 =
π

6
,

ϕ2 = −
π

3
, ϕ3 =

π

2
, (20)

where Ai and ti represent the time-varying amplitude and

occurrence time of the ith impulse, respectively. The length of

this simulated bearing signal is L. β is the damping parameter

and fr is the resonance frequency. The first term of (20) is a

series of impulses generated by a local defect in a bearing.

The second term denotes the components from the shaft,

where fISRF is the instantaneous shaft rotating frequency. Rj
and ϕj represent the amplitude and initial phase of the jth

harmonic (j = 1, 2, 3), respectively. The final term, n(t),

represents noise.

The ratio of the instantaneous fault characteristic frequency

fIFCF to the instantaneous shaft rotation frequency fISRF is

referred to as the fault characteristic coefficient (FCC), which

is time-invariant with the shaft rotating speed and can, there-

fore, be used for bearing-fault diagnosis. It is set as 2.7 for

the simulated signal, indicating that the instantaneous fault

characteristic frequency fIFCF = 2.7fISRF.

The SNR of this simulated bearing signal is set as 6 dB. The

noisy signal waveform and estimated angles selected using

maximal kurtosis are plotted in Figure 11 (a) and (b), respec-

tively. Even if the estimated angles slightly deviate from the

true ones at some time instants, in general, the estimated

anglesmatch the true ones well—as shown in Figure 11 (b)—

under the guidance of kurtosis. These estimated angles

enable the proposed method to enhance the TFR without IF

information.

The simulated signal is first processed using STFT and the

resulting TFR is shown in Figure 12 (a), which indicates the

presence of smearing problems. Figure 12 (b) shows the TFR

obtained using MLCT. The readability of the TFR generated
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FIGURE 12. TFRs of noisy simulated bearing signal: (a) analyzing result
using STFT, (b) analyzing result using MLCT, (c) analyzing result using
STFT-based SET, (d) analyzing result using MLCSET, (e) local zoom of
STFT-based SET, (f) local zoom of MLCSET.

by MLCT is much improved, in comparison to the result

of STFT. Five IF trajectories can be clearly distinguished

in Figure 12 (b), including fISRF, fIFCF, and their harmonics.

Next, the SET operation is performed. The STFT-based SET

and MLCSET results are given in Figure 12 (c) and (e), with

their local zooms shown in Figure 12 (d) and (f), respectively.

It is clear that the TFR in Figure 12 (e) better represents the

IF trajectories than the TFR in Figure 12 (c). More detailed

comparisons can be found in Figure 12 (d) and (f). Specif-

ically, the IF ridges in Figure 12 (f) are sharper and more

energy-concentrated.

The improved TFR obtained using the proposed method

can lead to a more accurate IF extraction. The extracted IF

ridges are shown in Figure 13, indicating that the IFs (red

solid lines) are accurately extracted from the TFR of the

proposed MLCSET. The IFs extracted from the TFR of the

STFT-based SET (blue dashed lines) cannot correctly reflect

the varying pattern of true IFs. It can then be concluded

that the proposed method improves the readability of TFRs

and facilitates the extraction of IF ridges for bearing-fault

diagnosis.

B. APPLICATION TO BEARING INNER RACE FAULT

DIAGNOSIS

In this subsection, the proposed MLCSET is applied to pro-

cess vibration signals collected from a bearing with an inner

race fault. Then, the detection of IF ridges is attempted from

the MLCSET-resulting TFR for diagnosing the bearing-fault

type under time-varying speed conditions.

FIGURE 13. Detected IF ridges of simulated noisy signal (black: true; red:
propsoed MLCSET; blue: STFT-based SET).

FIGURE 14. Bearing fault experimental set-up.

The vibration signal is collected using the experimental

setup shown in Figure 14. The experiments are conducted

using the SpectraQuest machinery fault simulator (MFS-

PK5M), which holds two ER16K ball bearings and the bear-

ing on the right side has an inner race fault. The shaft is

powered by an AC drive. An accelerometer is mounted to

record the vibration data and an encoder (EPC model 775)

is used to measure the instantaneous shaft rotating frequency

fISRF, which is obtained for validation purposes. The speci-

fications of the bearing with the inner race fault are given in

Table 2. The FCC is calculated to be 5.43, which means that

fIFCF = 5.43fISRF.

TABLE 2. Bearing parameters.

The signal waveform is illustrated in Figure 15 (a). The

shaft rotation frequency decreases from 25 Hz to 15 Hz and

then goes back to 20 Hz in Figure 15 (b). The selected angles

with the guidance of kurtosis are shown in Figure 15 (c),

which match the true angles, indicating that the angles are

accurately selected for the implementation of the proposed

MLCSET.

The TFRs obtained using different TFAmethods are shown

in Figure 16 (a)-(d), with the local zooms of TFR segments

marked by red rectangles. The rows in Figure 16 corre-

spond to the processing results of STFT, MLCT, STFT-

based SET, and MLCSET. The column in the left represents

the TFRs obtained using the four different TFA methods

and the columns in the middle and on the right display
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FIGURE 15. Experimental bearing vibration signal: (a) vibration signal
waveform, (b) shaft rotational frequency,(c) estimated angles (blue: true;
red estimated).

FIGURE 16. Analysis results of the experimental bearing signal and local
zooms on the right: (a) analyzing results using STFT, (b) analyzing results
using MLCT, (c) analyzing results using STFT-based SET, (d) analyzing
results using MLCSET.

the local zooms of the TFR segments, marked by red rect-

angles. It can be observed that rough IF sketches can be

revealed by all the mentioned TFA methods in this case.

However, through close observations using local zooms, one

can easily see that MLCT (Figure 16 (b)) can enhance the

energy concentration level on TFRs in comparison to STFT

(Figure 16 (a)). Subsequently, when integrated with the SET

operation, the IF ridges on the TFR can be further sharp-

ened, as shown in Figure 16 (d). Figure 16 (c) shows the

TFR and local zooms of the original SET (i.e., STFT-based

SET), where the IF ridges are not as concentrated as the ones

in Figure 16 (d). The comparisons show that the proposed

MLCSET can improve the TFR readability and yield the

TFRs with the sharpest IF trajectories.

The IFs extracted from the MLCSET-generating TFR are

shown in Figure 17. The true IFs and IFs extracted from the

original SET-resulting TFR are also shown in Figure 17 to

facilitate comparison. It is clear that the TFR of MLCSET

successfully reveals the IF ridges of the signal, fromwhich the

IFs can be accurately extracted. Nevertheless, IFs in the lower

frequency band cannot be extracted from the TFR of STFT.

To quantitatively evaluate the accuracy of the detected IF

ridges, the mean relative errors (MREs) of extracted IF ridges

FIGURE 17. Detected IF ridges of the experimental bearing signal (black:
true; red: proposed MLCSET; blue: SET).

TABLE 3. MREs of detected IF ridges and average ratios of the detected
(true) fIFCF and its harmonics to the detected (true) fISRF.

are calculated in Table 3. The average ratios of the extracted

fIFCF and its harmonics to the extracted fISRF are also calcu-

lated, as shown in Table 3, for the fault-type diagnosis. The

ratios of the actual fIFCF (= 5.43fISRF) and its harmonics to

the measured fISRF are also given in Table 3, for comparison.

The MREs of the extracted IF ridges of MLCSET are far less

than 5%; however, the MREs of extracted IF ridges of STFT-

based SET are much higher than the ones in MLCSET (as

high as 19.6%), indicating that the proposed method could

improve TFR readability and ensure that accurate IF ridges

are extracted.

The average ratio of the extracted fIFCF to fISRF is 5.433,

as shown in Table 3, which is identical to the actual ratio

(5.43), calculated according to the bearing type and its spec-

ifications, listed in Table 2. The average ratios of the sec-

ond and third harmonics of extracted fIFCF—i.e., 2fIFCF and

3fIFCF− to fISRF are also given in Table 3, which respectively

equal to 2FCC (10.86) and 3FCC (16.29). In addition, there

are sidebands around the instantaneous fault characteristic

frequency. The average ratios of fIFCF-fISRF and fIFCF + fISRF
to fISRF coincide with the actual values as well. It can then

be concluded that there is an inner race fault on the bearing,

which is consistent with the test setup.

C. APPLICATION TO HEALTHY PLANETARY GEARBOX

To further analyze the proposed method, it is used to process

data collected from a healthy planetary gearbox. The experi-

mental setup is shown in Figure 18.

The specifications of the planetary gearbox used in this

experiment are given in Table 4. The experiment operates
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FIGURE 18. Planetary gearbox test rig (1: Motor; 2: Tachometer; 3:
Fixed-shaft gearbox; 4: Planetary gearbox stage 1; 5: Planetary gearbox
stage 2; 6: Accelerometer; 7: Brake).

FIGURE 19. The planetary gearbox signal: (a) planatery vibration signal
waveform, (b) shaft rotation speed, (c) estimated angles and true angles
(blue: true; red: estimated).

TABLE 4. Parameters of the planetary gearbox.

under time-varying speed conditions and all the gears are

healthy. The sampling frequency is set as 20 kHz and the

signal collection lasts for 30 s. The collected waveform is

shown in Figure 19 (a). The fISRF changes from 40 Hz to

60 Hz and then reverts to 40 Hz, as shown in Figure 19 (b).

The meshing frequency of the planetary gearbox stage 1 is

calculated as fmesh1 = 100/27fISRF. Once an unexpected

failure occurs, sidebands of the meshing frequency will be

created.

Then, the proposed method is applied to process the

vibration signal. The result for searching for the angle

using the proposed chirp-rate matching strategy is plotted

in Figure 19 (c), where the red line represents the estimated

angles and the blue one denotes the true angles calculated

by directly using the collected fISRF. It can be seen that

the estimated angles are consistent with the true angles,

demonstrating the effectiveness of the proposed matching

strategy.

Similarly, the signal is also processed using STFT, MLCT,

STFT-based SET, and MLCSET. The analysis results of dif-

ferent TFA methods are given in Figure 20 (a)–(d). The

local zooms are also plotted to reveal details of the TFR.

It can be seen from the local zooms that the proposed method

could generate a TFR with the sharpest IF ridges and high-

est energy concentration levels. Then, IF extraction is per-

formed, as illustrated in Figure 21, where the instantaneous

shaft rotation frequency fISRF, its harmonics, and the gear

meshing frequency fmesh1 are successfully extracted from the

FIGURE 20. Analyzing results of planetary gearbox signal and local zooms
on the right: (a) analyzing results using STFT, (b) analyzing results using
MLCT, (c) analyzing results using STFT-based SET, (d) analyzing results
using MLCSET.

FIGURE 21. The instantaneous frequency estimation results using
different methods (black: true; red: proposed MLCSET; blue: SET).

TFR obtained using the proposed MLCSET. However, the IF

ridges detected from the TFR of the original SET deviate from

the actual ones for the meshing frequency, and the fourth and

fifth instantaneous shaft rotation frequencies.

The MREs of the detected IF ridges are also calcu-

lated to quantitatively evaluate the performance of the

different methods, as shown in Table 5. According to

Table 5, distinct differences in the extraction of the instan-

taneous shaft rotation frequency and its second harmonic

do not exist between the proposed MLCSET and STFT-

based SET. However, the proposed method outperforms the

original SET for the extraction of the meshing frequency,

and the fourth and fifth instantaneous shaft rotation fre-

quency. The MREs of the meshing frequency, and the fourth

and fifth instantaneous shaft rotation frequency extracted

from the TFR of MLCSET, are much lower than those

of the STFT-based SET. By observing Figure 20 (d) and

Figure 21, no sidebands of meshing frequency can be iden-

tified, indicating that the planetary gearbox is in healthy

condition.
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TABLE 5. The mean relative errors of detected IF ridges to true IFs.

V. CONCLUSION

In this paper, a new TFAmethod calledMLCSET is proposed

to improve the readability of TFRs for rotating machinery

fault diagnosis under time-varying speed conditions. In com-

parison to the traditional SET, the main advantages of the

proposed method are reflected by the adaptive chirp-rate

matching strategy, which improves the energy concentration

level of the TFR and the integration with SET for further

sharpening the IF ridges. The matching linear chirplet strat-

egy is devised to address the TF blurriness when analyzing

signals with rapidly time-varying features and then boost the

readability of the original TFR. On one hand, more detailed

time-varying features with weak energies from the original

signal can be revealed; on the other hand, more accurate

extraction operators can be obtained for SETs. By embedding

the matching strategy into the SET to form the proposed

MLCSET, an improved TFR—with improved energy concen-

tration levels and sharper IF ridges—can then be generated,

paving the way for the use of IF ridge extraction for rotating

machinery fault diagnosis.

The major advantages of proposed method include: (a) an

adaptive chirp-rate matching strategy that enhances the TF

energy concentration level for multiple frequency compo-

nents; (b) the proposed strategy, embedded in the SET, further

boosts the TFR for sharper IF ridges and more accurate IF

extraction. The simulated and experimental signals reveal the

effectiveness of the proposedMLCSETmethod for TFR read-

ability improvement and rotating machinery health condition

monitoring.
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