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Abstract 

 
Much research in the social sciences attempts to estimate the effect of some 
intervention or “treatment” such as a school dropout prevention program or 
television watching. However, particularly in the social sciences, it is generally not 
possible to randomly assign units to receive the treatment condition or the control 
condition, and thus the resulting data are observational, where we simply observe 
that some units received the treatment and others did not. In such cases, there is a 
need to control for differences in the covariate distributions between the treatment 
and control groups. Matching methods, such as propensity score matching, effect 
this control by selecting subsets of the treatment and control groups with similar 
covariate distributions. The overall theme is of replicating a randomized 
experiment in two ways: first, by comparing treated and control units who look as 
if they could have been randomly assigned to treatment or control status; and 
second, by forming the comparison groups without the use of the outcome, thus 
preventing intentional or unintentional bias in selecting a particular sample to 
achieve a desired result. This chapter focuses on how to design observational 
studies using matching methods and the related ideas of subclassification and 
weighting. We present practical guidance regarding the use of matching methods, 
as well as examples of their use and evidence of their improved performance 
relative to other methods of controlling for bias due to observed covariates. 
 
Key words: matching methods, causal inference, observational study, propensity 
scores, subclassification  



1  Introduction 
Many studies in social science that aim to estimate the effect of an intervention suffer from selection 
bias, where the units who receive the treatment may have different characteristics from those in the 
control condition. These pre-existing differences between the groups must be controlled to obtain 
approximately unbiased estimates of the effects of interest. For example, in a study estimating the effect 
of bullying on high school graduation, students who were bullied are likely to be very different from 
students who were not bullied on a wide range of characteristics, such as socioeconomic status and 
academic performance, even before the bullying began. It is crucial to try to separate out the causal 
effect of the bullying from the effect of these pre-existing differences between the “treated” and 
“control” groups. Matching methods provide a way to do so. 
 
Random assignment of units to receive (or not receive) the treatment of interest ensures that there are no 
systematic differences between the treatment and control groups before treatment assignment. However, 
random assignment is often infeasible in social science research, due to either ethical or practical 
concerns. Matching methods constitute a growing collection of techniques that attempts to replicate, as 
closely as possible, the ideal of randomized experiments when using observational data. 
 
There are two key ways in which the matching methods we discuss replicate a randomized experiment. 
First, matching aims to select subsamples of the treated and control groups that are only randomly 
different from one another on all observed covariates. In other words, matching seeks to identify 
subsamples of treated and control units that are “balanced” with respect to observed covariates: that is, 
the observed covariate distributions are the same in the treatment and control groups. The methods 
described in this paper examine how best to choose sub-samples from the original treated and control 
groups such that the distributions of covariates in the matched groups are substantially more similar than 
in the original groups, when this is possible. A second crucial similarity is that the study has two clear 
stages. The first stage is design, in which the units to be compared are selected, without use of the values 
of the outcome variables. Like the design of a randomized experiment, the matches are chosen without 
access to any of the outcome data, thereby preventing intentional or unintentional bias in selecting a 
particular matched sample to achieve a desired result. Only after the design is set does the second stage 
begin, which involves the analyses of the outcome, estimating treatment effects using the matched 
sample. We only discuss propensity score methods that are applicable at the design stage in the sense 
that they do not involve any outcome data.  Some methods that use propensity scores, including some 
weighting techniques, can involve outcome data, and such methods are not discussed here. 
 
This chapter reviews the diverse literature on matching methods, with particular attention paid to 
providing practical guidance based on applied and simulation results that indicate the potential of 
matching methods for bias reduction in observational studies. We first provide an introduction to the 
goal of matching and the history of these methods (Section 1). Section  
2 presents the theory and motivation behind propensity scores, discussing how they are a crucial tool in 
the use of matching methods. We then discuss other methods of controlling for covariates in 
observational studies, such as regression analysis, and why matching methods (particularly when 
combined with regression) are more effective (Section  
3). Sections 5 through 7 discuss the implementation of matching methods, including challenges and 
evaluations of their performance, concluding with recommendations for researchers and a discussion of 
software available for doing matching (Section 8). Throughout the chapter we motivate the methods 



using data from the National Supported Work Demonstration (LaLonde, 1986; Dehejia and Wahba, 
1999). 

1.1  Designing observational studies 
The methods described here are relevant for two types of situations. The first, which is arguably more 
common in social science research, is a situation where all covariate and outcome data are already 
available on a large set of units, and a subset of those units will be chosen for use in the analysis. This 
subsetting (or “matching”) is done with the aim of selecting subsets of the treated and control groups 
with similar observed covariate distributions, thereby increasing robustness in observational studies by 
reducing reliance on modeling assumptions. The main objective of the matching is to reduce bias. But 
what about variance?  Although discarding units in the matching process will result in smaller sample 
sizes and thus might appear to lead to increases in sampling variance, this is not always the case, because 
improved balance in the covariate distributions will decrease the variance of estimators (Snedecor & 
Cochran, 1980). Smith (1997) gives an empirical example where estimates from one-to-one matching 
have lower estimated standard deviations than estimates from a linear regression, even though thousands 
of observations were discarded in the one-to-one matching. 
 
The second situation is one in which outcome data are not yet collected on the units, and cost constraints 
prohibit measuring the outcome variables on all units. In that situation, matching methods can help 
choose for follow-up the control units most similar to those in the treated group. The matching identifies 
those control units who are most similar to the treated units so that rather than random samples of units 
being discarded, the units discarded are those most irrelevant as points of comparison with the treated 
units. This second situation motivated much of the early work in matching methods (Althauser and 
Rubin, 1970; Rubin, 1973a,b), which compared the benefits of choosing matched versus random samples 
for follow-up. 
 
Matching methods can be considered as one method for designing an observational study, in the sense of 
selecting the most appropriate data for reliable estimation of causal effects, as discussed in Cochran and 
Rubin (1973), Rubin (1977, 1997, 2004), Rosenbaum (1999, 2002), and Heckman et al. (1997). These 
papers stress the importance of carefully designing an observational study by making appropriate choices 
when it is impossible to have full control (e.g., randomization). The careful design of an observational 
study must involve making careful choices about the data used in making comparisons of outcomes in 
treatment and control conditions. 
 
Other approaches that attempt to control for covariate differences between treated and control units 
include regression analysis or selection models, which estimate parameters of a model of the outcome of 
interest conditional on the covariates (and a treatment/control indicator). Matching methods are 
preferable to these model-based adjustments for two key reasons. First, matching methods do not use the 
outcome values in the design of the study and thus preclude the selection of a particular design to yield a 
desired result. As stated in (Rubin, 2001), Page 169: 
 

Arguably, the most important feature of experiments is that we must decide on the way data 
will be collected before observing the outcome data. If we could try hundreds of designs and 
for each see the resultant answer, we could capitalize on random variation in answers and 
choose the design that generated the answer we wanted!  The lack of availability of outcome 
data when designing experiments is a tremendous stimulus for ‘honesty’ in experiments and 
can be in well-designed observational studies as well.  



 
Second, when there are large differences in the covariate distributions between the groups, standard 
model-based adjustments rely heavily on extrapolation and model-based assumptions. Matching methods 
highlight these differences and also provide a way to limit reliance on the inherently untestable model 
assumptions, and the consequential sensitivity to those assumptions. 
 
Matching methods and regression-based model adjustments should also not be seen as competing 
methods but rather as complementary, which is a decades old message. In fact, as discussed in Section  
4.5, much research (Cochran and Rubin, 1973; Rubin, 1973b, 1979; Rubin and Thomas, 2000; Ho et al., 
2007) has shown that the best approach is to combine the two methods by, for example, doing regression 
adjustment on matched samples. Selecting matched samples reduces bias due to covariate differences, 
and regression analysis on those matched samples can adjust for small remaining differences and 
increase efficiency of estimates. These approaches are similar in spirit to the recent “doubly robust” 
procedures of Robins and Rotnitzky (2001), which provide consistent estimation of causal effects if 
either the model of treatment assignment (e.g., the propensity scores) or the model of the outcome are 
correct, although these later methods are more sensitive to a correctly specified model used for weighting 
and generally do not have the clear separation of design and analysis that we advocate here. 

 

1.2  The National Supported Work Demonstration 
The National Supported Work (NSW) Demonstration was a federally and privately funded randomized 
experiment done in the 1970’s to estimate the effects of a job training program for disadvantaged 
workers. Since a series of analyses beginning in the 1980’s (LaLonde, 1986; Dehejia and Wahba, 1999, 
2002; Smith and Todd, 2005), the data set from this study has become a canonical example in the 
literature on matching methods. 
 
In the National Supported Work Demonstration, eligible individuals were randomly selected to 
participate in the training program. Treatment group members and control group members (those not 
selected to participate) were followed up to estimate the effect of the program on later earnings. Because 
the NSW was a randomized experiment, the difference in means in the outcomes between the 
randomized treated and control groups is an unbiased estimate of the treatment effect for the subjects in 
the randomized experiment. Results from the randomized experiment indicated that, on average, among 
all male participants the program raised earnings in the year following training (1978) by approximately 
$800. 
 
To investigate whether non-experimental methods yielded a result similar to that from the randomized 
experiment, LaLonde (1986) attempted to use non-experimental methods to estimate the treatment effect, 
with the experimental estimate of the treatment effect as a benchmark. Lalonde used, in analogy with 
current econometric practice, two sources of comparison units, both large national databases: the Panel 
Survey of Income Dynamics (PSID) and the Current Population Survey (CPS). Lalonde found that the 
non-experimental methods gave a wide range of impact estimates, ranging from approximately -$16,000 
to $700, and concluded that it was difficult to replicate the experimental results with any of the non-
experimental methods available at that time. 
 
In the 1990’s, Dehejia and Wahba (1999) used propensity score matching methods to estimate the effect 
of the NSW program, using comparison groups similar to those used by Lalonde. They found that most 



of the comparison group members used by Lalonde were in fact very dissimilar to the treated group 
members, and that by restricting the analysis to the comparison group members who looked the most 
similar to the treated group they were able to replicate the results found in the NSW experimental data. 
Using the CPS, which had a larger pool of individuals comparable to those in the treated group, for the 
sample of men with two years of pre-treatment earnings data available, Dehejia and Wahba (1999) 
obtained a range of treatment effect estimates of $1,559 to $1,681, quite close to the experimental 
estimate of approximately $1,800 for the same sample. Although there is still debate regarding the use of 
non-experimental data to estimate the effects of the NSW program (see, e.g., Smith & Todd, 2005, and 
Dehejia, 2005), this example has nonetheless remained an important example of the use of matching 
methods in practice. 
 
We will use a subset of this data as an illustrative example throughout this paper. The “full” data set that 
we use has 185 treated males who had two years of pre-program earnings data (1974 and 1975) as well 
as 429 comparison males from the CPS who were under age 55, unemployed in 1976, and had income 
below the poverty line in 1975. The goal of matching will be to select the comparison males who look 
the most similar to the treated group on other covariates. The covariates available in this data set include 
age, education level, high school degree, marital status, race, ethnicity, and income levels in 1974 and 
1975. In this paper we do not attempt to obtain a reliable estimate of the effect of the NSW but rather use 
the data only to illustrate matching methods.1  

 

1.3  Notation and background 
As first formalized in Rubin (1974), the estimation of causal effects, whether from data in a randomized 
experiment or an observational study, is inherently a comparison of potential outcomes on individual 
units, where a unit is a physical object (e.g., a person or a school) at a particular point in time. In 
particular, the causal effect for unit i is the comparison of unit i’s outcome if unit i receives the treatment 
(unit i’s potential outcome under treatment), Y

i
(1) , and unit i’s outcome if unit i receives the control 

(unit i’s potential outcome under control), Y
i
(0) . The “fundamental problem of causal inference” 

(Rubin, 1978; Holland, 1986) is that, for each unit, we can observe only one of these potential outcomes, 
because each unit will receive either treatment or control, not both. The estimation of causal effects can 
thus be thought of as a missing data problem, where at least half of the values of interest (the unobserved 
potential outcomes) are missing (Rubin, 1976a). We are interested in predicting the unobserved potential 
outcomes, thus enabling the comparison of the potential outcomes under treatment and control. 
 
For efficient causal inference and good estimation of the unobserved potential outcomes, we would like 
to compare groups of treated and control units that are as similar as possible. If the groups are very 
different, the prediction of Y(1) for the control group will be made using information from treated units, 
who look very different from those in the control group, and likewise, the prediction of Y(0) for the 
treated units will be made using information from control units, who look very different from the treated 
units. 
 
Randomized experiments use a known randomized assignment mechanism to ensure “balance” of the 
covariates between the treated and control groups: The groups will be only randomly different from one 

                                                        
1The data for this example is available at http://www.columbia.edu/~rd247/nswdata.html and is available in the 
MatchIt matching package for R, available at http://gking.harvard.edu/matchit. 



another on all background covariates, observed and unobserved. In observational studies, we must posit 
an assignment mechanism, which determines which units receive treatment and which receive control. A 
key initial assumption in observational studies is that of strongly ignorable treatment assignment 
(Rosenbaum and Rubin, 1983b) which implies that (1) treatment assignment (W) is unconfounded, i.e., 
independent of the potential outcomes (Y(0),Y(1)) given the covariates (X): W (Y(0),Y(1))|X, and (2) 

there is a positive probability of receiving each treatment for all values of X: 0<P(W=1|X)<1 for all X. 
Imbens (2004) discusses the plausibility of this assumption in economics, and this issue is discussed 
further in Section  
5.3, including tests for sensitivity to the assumption of unconfounded treatment assignment. This 
assumption is sometimes called “selection on observables" or “no hidden bias.” 
 
A second assumption that is made in nearly all studies estimating causal effects (including randomized 
experiments) is the “Stable Unit Treatment Value Assumption” (SUTVA; Rubin, 1974). There are two 
components to this assumption. The first is that, within each treatment group, there is only one version of 
each treatment possible for each unit. The second component is that of no interference: that the treatment 
assignment of one unit does not affect the potential outcomes of any other units. This is also sometimes 
referred to as the assumption of “no spill-over.” Some recent work has discussed relaxing this SUTVA 
assumption, in the context of school (Hong and Raudenbush, 2006) and neighborhood (Sobel, 2006) 
effects.  

 

1.4  History of matching methods 
Matching methods have been in use since the first half of the 20th Century, with much of the early work 
in sociology (Althauser & Rubin, 1970; Chapin, 1947; Greenwood, 1945).  However, a theoretical basis 
for these methods was not developed until the late 1960’s and early 1970’s. This development began 
with a paper by Cochran (1968), which particularly examined subclassification but had clear connections 
with matching, even through Cochran’s occasional use of the term “stratified matching” to refer to 
subclassification. Cochran and Rubin (1973) and Rubin (1973a,b) continued this development for 
situations with one covariate, and Cochran and Rubin (1973) and Rubin (1976b,c) extended the results to 
multivariate settings. 
 
Dealing with multiple covariates was a challenge due to both computational and data problems. With 
more than just a few covariates it becomes very difficult to find matches with close or exact values of all 
covariates. An important advance was made in 1983 with the introduction of the propensity score by 
Rosenbaum and Rubin (1983b), a generalization of discriminant matching (Cochran & Rubin, 1973; 
Rubin, 1976b,c). Rather than requiring close or exact matches on all covariates, matching on the scalar 
propensity score enables the construction of matched sets with similar distributions of covariates. 
 
Developments were also made regarding the theory behind matching methods, particularly in the context 
of affinely invariant matching methods (such as most implementations of propensity score matching) 
with ellipsoidally symmetric covariate distributions (Rubin & Thomas, 1992a,b, 1996; Rubin & Stuart, 
2006). Affinely invariant matching methods are those that yield the same matches following an affine 
(e.g., linear) transformation of the data (Rubin and Thomas 1992a). This theoretical development grew 
out of initial discussion of Equal Percent Bias Reducing (EPBR) matching methods in Rubin (1976a,c).  
EPBR methods reduce bias in all covariate directions by the same amount, thus ensuring that if close 
matches are obtained in some direction (such as the discriminant), then the matching is also reducing 



bias in all other directions and so cannot be increasing bias in an outcome that is a linear combination of 
the covariates. Methods that are not EPBR may infinitely increase bias for some linear combinations of 
the covariates. 
 
Since the initial work in matching methods, which was primarily in sociology and statistics, matching 
methods have been growing in popularity, with developments and applications in a variety of fields, 
including economics (Imbens, 2004), medicine (D’Agostino, Jr., 1998), public health (Christakis and 
Iwashyna, 2003), political science (Ho et al., 2007), and sociology (Winship and Morgan, 1999; Morgan 
and Harding, 2006). A review of the older work and more recent applications can also be found in Rubin 
(2006).  

 

2  Propensity Scores 
In applications, it is often very difficult to find close matches on each covariate. Rather than attempting 
to match on all of the covariates individually, propensity score matching matches on the scalar 
propensity score, which is the most important scalar summary of the covariates on which to obtain good 
balance of all of the covariates. Propensity scores, first introduced in Rosenbaum and Rubin (1983b), 
provided a key step in the continual development of matching methods by enabling the formation of 
matched sets that have balance on a large number of covariates. 
 
The propensity score for unit i is defined as the probability of receiving the treatment given the observed 
covariates: ei(X) = P(Wi =1 | X) . There are two key theorems relating to their use (Rosenbaum and 

Rubin 1983b). The first is that propensity scores are balancing scores: At each value of the propensity 
score, the distribution of the covariates X defining the propensity score is the same in the treated and 
control groups. In other words, within a small range of propensity scores, the treated and control groups’ 
observed covariate distributions are only randomly different from each other, thus replicating a mini-
randomized experiment, at least with respect to these covariates. Second, if treatment assignment is 
strongly ignorable given the observed covariates (i.e., does not depend on the potential outcomes), then 
treatment assignment is also ignorable given only the propensity score. This justifies matching or 
forming subclasses based on the propensity score rather than on the full multivariate set of covariates. 
Thus, when treatment assignment is ignorable, for a specific value of the propensity score, the difference 
in means in the outcome between the treated and control units with that propensity score value is an 
unbiased estimate of the mean treatment effect at that propensity score value. 
 
Abadie and Imbens (2006) present theoretical results that provide additional justification for matching on 
the propensity score, showing that creating estimates based on matching on one continuous covariate 

(such as the propensity score) without discarding any units is N1/2 consistent, but attempting to match on 
more than one covariate is not. Thus, in this particular case, using the propensity score enables consistent  
estimation of treatment effects. 

 

2.1  Propensity score estimation 
In practice, the true propensity scores are rarely known outside of randomized experiments and thus must 
be estimated. Propensity scores are often estimated using logistic regression, although other methods 
such as Classification And Regression Trees (CART; Breiman et al., 1984) discriminant analysis, or 



generalized boosted models (McCaffrey et al., 2004) can also be used. Matching or subclassification is 
then done using the estimated propensity score (e.g., the fitted values from the logistic regression). 
 
In the matching literature, there has been some discussion of the effects of matching using estimated 
rather than true propensity scores, especially regarding the variance of estimates. Theoretical and 
analytic work has shown that, although more bias reduction can be obtained using true propensity scores, 
matching on estimated propensity scores can control variance orthogonal to the discriminant and thus 
can lead to more precise estimates of the treatment effect (Rubin & Thomas, 1992b, 1996). Analytic 
expressions for the bias and variance reduction possible for these situations are given in Rubin and 
Thomas (1992b). Specifically, Rubin and Thomas (1992b) states that “...with large pools of controls, 
matching using estimated linear propensity scores results in approximately half the variance for the 
difference in the matched sample means as in corresponding random samples for all covariates 
uncorrelated with the population discriminant.” This finding is confirmed in simulation work in Rubin 
and Thomas (1996) and an empirical example in Hill et al. (1999). Thus, when it is possible to obtain 
100% or nearly 100% bias reduction by matching on true or estimated propensity scores, using the 
estimated propensity scores will result in more precise estimates of the average treatment effect. 
 

2.1.1  Model specification 

The model specification and diagnostics when estimating propensity scores are not the standard model 
diagnostics for logistic regression or CART, as discussed by Rubin (2004). With propensity score 
estimation, concern is not with the parameter estimates of the model, but rather with the quality of the 
matches and sometimes in the accuracy of the predictions of treatment assignment (the propensity scores 
themselves). When the propensity scores will be utilized in matching or subclassification, as discussed in 
Sections 4.3.1 and 4.3.4, the key diagnostic is covariate balance in the resulting matched samples or 
subclasses. When propensity scores are used directly in weighting adjustments, as discussed in Section 
4.3.6, more attention should be paid to the accuracy of the model predictions since the estimates of the 
treatment effect may be very sensitive to the accuracy of the propensity scores themselves. 
 
Rosenbaum and Rubin (1984), Perkins et al. (2000), Dehejia and Wahba (2002), and Michalopoulos 
et al. (2004) described propensity score model-fitting strategies that involve examining the resulting 
covariate balance in blocks defined by the propensity score. If covariates (or their squares or cross-
products) are found to be unbalanced, those terms are then included in the propensity score specification, 
which should improve their balance, subject to sample size limitations. 
 
Drake (1993) stated that treatment effect estimates are more sensitive to mis-specification of the model 
of the outcome than to mis-specification of the propensity score model. Dehejia and Wahba (1999, 2002) 
and Zhao (2004) also provided evidence that treatment effect estimates may not be sensitive to the 
propensity score specification. However, these evaluations are fairly limited; for example, Drake (1993) 
considered only two covariates.  

 

3  When is Regression Analysis Trustworthy?  
It has been known for many years that regression analysis can lead to misleading results when the 
covariate distributions in the groups are very different (e.g., Cochran, 1957; Cochran and Rubin, 1973; 



Rubin, 1973b). Rubin (2001, p 174) stated the three basic conditions that must generally be met for 
regression analyses to be trustworthy, in the case of approximately normally distributed covariates:2   

1. The difference in the means of the propensity scores in the two groups being compared must 
be small (e.g., the means must be less than half a standard deviation apart), unless the 
situation is benign in the sense that:  

(a) the distributions of the covariates in both groups are nearly symmetric,  
(b) the distributions of the covariates in both groups have nearly the same variances, 

and  
(c) the sample sizes are approximately the same. 

2. The ratio of the variances of the propensity score in the two groups must be close to one 
(e.g., 1/2 or 2 are far too extreme). 

3. The ratio of the variances of the residuals of the covariates after adjusting for the propensity 
score must be close to one (e.g., 1/2 or 2 are far too extreme). 

 
These guidelines arise from results on the bias resulting from regression analysis in samples with large 
initial covariate bias that show that linear regression adjustment can grossly overcorrect or undercorrect 
for bias when these conditions are not met (Cochran & Rubin, 1973; Rubin, 2001). For example, when 
the propensity score means are one quarter of a standard deviation apart in the two groups, the ratio of 
the treated to control group variance is 1/2, and the model of the outcome is moderately non-linear 

(y=ex/2), linear regression adjustment can lead to 300% reduction in bias. In other words, an increase in 
the original bias, but in the opposite direction!  Results are even more striking for larger initial bias 
between the groups, where the amount of bias remaining can be substantial even if most of the initial 
bias has been removed (see Table 1 of Rubin, 2001). 
 
Despite these striking results, regression adjustment on unmatched data is still a common method for 
estimating causal effects. Matching methods provide a way to avoid extrapolation and reliance on the 
modeling assumptions, by ensuring the comparison of treated and control units with similar covariate 
distributions, if this is possible, and warning of the inherent extrapolation in regression models when 
there is little overlap in distributions. 

 

4  Implementation of Matching Methods 
We now turn to the implementation of matching methods. There are five key steps in using matching 
methods to estimate causal effects. These are: (1) choosing the covariates to be used in the matching 
process, (2) defining a distance measure, used to assess whether units are “similar,” (3) choosing a 
specific matching algorithm to form matched sets, (4) diagnosing the matches obtained (and iterate with 
(2) and (3)), and finally, (5) estimating the effect of the treatment on the outcome, using the matched sets 
found in (4), and possibly other adjustments. The following sections provide further information on each 
of these steps. 

 

4.1  Choosing the Covariates 
The first step is to choose the covariates on which close matches are desired. As discussed in Section  

                                                        
2With non-normally distributed covariates the conditions are even more complex. 



1.3, an underlying assumption when estimating causal effects using non-experimental data is that 
treatment assignment is ignorable (Rubin, 1976a; Little & Rubin, 2002) given the covariates used in the 
matching process. To make this assumption reasonable, it is important to include in the matching 
procedure any covariates that may be related to treatment assignment and the outcome; the most 
important covariates to include are those that are related to treatment assignment because the matching 
will typically be done for many outcomes. Theoretical and empirical research has shown the importance 
of including a large set of covariates in the matching procedure (Rubin & Thomas, 1996; Hill et al., 
2004; Lunceford & Davidian, 2004). Greevy et al. (2004) provides an example where the power of the 
subsequent analysis in a randomized experiment is increased by matching on fourteen covariates, even 
when only two of those covariates are directly related to the outcome. 
 
A second consideration is that the covariates included in the matching must be “proper” covariates in the 
sense of not being affected by treatment assignment. It is well known that matching or subclassifying on 
a variable affected by treatment assignment can lead to substantial bias in the estimated treatment effect 
(Frangakis & Rubin, 2002; Greenland, 2003; Imbens, 2004). All variables should thus be carefully 
considered as to whether they are “proper” covariates. This is especially important in fields such as 
epidemiology and political science, where the treatment assignment date is often somewhat undefined. If 
it is deemed to be critical to control for a variable potentially affected by treatment assignment, it is 
better to exclude that variable in the matching procedure and include it in the analysis model for the 
outcome, and hope for balance on it, or use principal stratification methods (Frangakis & Rubin, 2002) to 
deal with it. 

 

4.2  Selecting a Distance Measure 
The next step in using matching methods is to define the “distance” measure that will be used to decide 
whether units are “similar” in terms of their covariate values. “Distance” is in quotes because the 
measure will not necessarily be a proper “full-rank” distance in the mathematical sense. One extreme 
distance measure is that of exact matching, which groups units only if they have exactly the same values 
of all of the covariates. Because limited sample sizes (and large numbers of covariates) make it very 
difficult to obtain exact matches, distance measures that are not full-rank and that combine distances on 
individual covariates, such as propensity scores, are more commonly used in practice. 
 
Two measures of the distance between units on multiple covariates are the Mahalanobis distance and the 
propensity score distance. The Mahalanobis distance on covariates X between units i and j is 

(x
i
-x

j
)' -1(x

i
-x

j
), where  can be the true or estimated variance-covariance matrix in the treated group, the 

control group, or in a pooled sample; the control group variance-covariance matrix is generally used. The 
propensity score distance is defined as the absolute difference in (true or estimated) propensity scores 
between two units. See Section  
2.1 for more details on estimating propensity scores. Gu and Rosenbaum (1993) and Rubin and Thomas 
(2000) compare the performance of matching methods based on Mahalanobis metric matching and 
propensity score matching, and they find that the two distance measures perform similarly when there 
are a relatively small number of covariates, but that propensity score matching works better than 
Mahalanobis metric matching with large numbers of covariates (greater than 5). One reason for this is 
that the Mahalanobis metric is attempting to obtain balance on all possible interactions of the covariates 
(which is very difficult in multivariate space), treating all of the interactions as equally important, 
whereas propensity score matching allows the exclusion of terms from the propensity score model, and 



thereby the inclusion of only the important terms on which to obtain balance. 
 
As discussed below, these distance measures can be combined, or used in conjunction with exact 
matching on certain covariates. Combining these distance measures with exact matching on certain 
covariates sets the distance between two units equal to infinity if the units are not exactly matched on the 
certain covariates of interest. If they are exact matches, the distance defined by the Mahalanobis or 
propensity score distance for this component is zero. 

 

4.3  Selecting Matches 
Once the distance measure is defined, the next step is to choose the matched samples. This section 
provides a summary of some of the most common types of matching methods, given a particular distance 
measure. These methods include nearest neighbor matching and variations on that (such as caliper 
matching) and subclassification methods such as full matching. We provide an overview of each, as well 
as references for further information and examples. 
 

4.3.1  Nearest Neighbor Matching 

Nearest neighbor matching (Rubin, 1973a) generally selects k matched controls for each treated unit 
(often, k=1). The simplest nearest neighbor matching uses a “greedy” algorithm, which cycles through 
each treated unit one at a time, selecting the available control unit with the smallest distance to the 
treated unit. A more sophisticated algorithm, “optimal” matching, minimizes a global measure of 
balance (Rosenbaum, 2002). Rosenbaum argues that the collection of matches found using optimal 
matching can have substantially better balance than matches found using greedy matching, without much 
loss in computational speed. Generally, greedy matching performs poorly with respect to average pair 
differences when there is intense competition for controls, and performs well when there is little 
competition. In practical situations, when assessing the matched groups’ covariate balance, Gu and 
Rosenbaum (1993) find that optimal matching does not in general perform any better than greedy 
matching in terms of creating groups with good balance, but does do better at reducing the distance 
between pairs. As summarized by Gu and Rosenbaum (1993) (Page 413), “...optimal matching picks 
about the same controls [as greedy matching] but does a better job of assigning them to treated units.” 
 
Figure 1 illustrates the result of a 1:1 greedy nearest neighbor matching algorithm implemented using the 
NSW data described in Section 1.2. The propensity score was estimated using all covariates available in 
the data set. Of the 429 available comparison individuals, the 185 with propensity scores closest to those 
of the 185 treated individuals were selected as matches. We see that there is fairly good overlap 
throughout most of the range of propensity scores, and that most of the comparison individuals not used 
as matches had very low propensity scores. 



  
 

 

 
Figure 1:  Matches chosen using 1:1 nearest neighbor matching on propensity score. Black units were matched; 

grey units were unmatched. 185 treated units were matched to 185 control units; 244 control units were discarded. 

 

When there are large numbers of control units, it is sometimes possible to get multiple good matches for 
each treated unit, which can reduce variance in the treatment effect estimates. Although one-to-one (one 
treated matched to one control) matching is the most common, a larger number of matches for each 
treated unit is often possible with large pools of control units. Unless there are many units with exactly 
the same covariate values, using multiple controls for each treated unit will increase bias since the 2nd, 
3rd, 4th closest matches are, by definition, further away from the treated unit than the 1st closest match 
is, but utilizing multiple matches can decrease variance due to the larger matched sample size. Of course, 
in settings where the outcome data has yet to be collected and there are cost constraints, researchers must 
balance the benefit of obtaining multiple matches for each unit with the increased costs. Examples of 
using more than one control match for each treated unit include Smith (1997) and Rubin and Thomas 
(2000).  
 
Another key issue is whether controls can be used as matches for more than one treated unit; whether the 
matching should be done “with replacement” or “without replacement.” Matching with replacement can 
often yield better matches because controls that look similar to many treated units can be used multiple 
times. Additionally, like optimal matching, when matching with replacement the order in which the 
treated units are matched does not matter. However, a drawback of matching with replacement is that it 
may be that only a few unique control units will be selected as matches; the number of times each 
control is matched should be monitored. 
 
Using the NSW data, Dehejia and Wahba (2002) match with replacement from the PSID sample because 
there are few control individuals comparable to those in the treated group, making matching with 
replacement appealing. When matching is done without replacement, nearly half of the treated group 
members end up with matches that are quite far away. They conclude that matching with replacement 



can be useful when there are a limited number of control units with values similar to those in the treated 
group. 
 

4.3.2  Limited Exact Matching 

Rosenbaum and Rubin (1985a) illustrate the futility in attempting to find matches with exactly the same 
values of all the covariates and thus not being able to find matches for most units. However, it is often 
desirable (and possible) to obtain exact matches on a few key covariates, such as race or gender. 
Combining exact matching on key covariates with propensity score matching can lead to large reductions 
in bias, and is a design analogous to blocking in a randomized experiment. For example, in Rubin 
(2001), the analyses are done separately for males and females, with male smokers matched to male non-
smokers and female smokers matched to female non-smokers. Similarly, in Dehejia and Wahba (1999), 
the analysis is done separately for males and females. 
 

4.3.3  Mahalanobis Metric Matching on Key Covariates Within Propensity Score Calipers 

Caliper matching (Althauser & Rubin, 1970) selects matches within a specified range (caliper c) of a 
one-dimensional covariate X (which may actually be a combination of multiple covariates, such as the 
propensity score): |xtj-xcj| c for all matched pairs, indexed by j. Cochran and Rubin (1973) investigates 

various caliper sizes and show that with a normally distributed covariate, a caliper of 0.2 standard 
deviations can remove 98% of the bias due to that covariate, assuming all treated units are matched. 
Althauser and Rubin (1970) find that even a looser matching (1.0 standard deviations of X) can still 
remove approximately 75% of the initial bias due to X. Rosenbaum and Rubin (1985b) shows that if the 
caliper matching is done using the propensity score, the bias reduction is obtained on all of the covariates 
that went into the propensity score. They suggest a caliper of 0.25 standard deviations of the logit 
transformation of the propensity score can work well in general. 
 
For cases where there are some key continuous covariates on which particularly close matches are 
desired, Mahalanobis matching on the key covariates can be combined with propensity score matching, 
resulting in particularly good balance (Rosenbaum and Rubin, 1985b; Rubin and Thomas, 2000). The 
Mahalanobis distance is generally calculated on covariates that are believed to be particularly predictive 
of the outcome of interest or of treatment assignment. For example, in the National Supported Work 
Demonstration data, propensity score matching could be combined with Mahalanobis metric matching 
on the two years of pre-program earnings. 
 

4.3.4  Subclassification 

Rosenbaum and Rubin (1984) discusses reducing bias due to covariate imbalance in observational 
studies through subclassification on estimated propensity scores, which forms groups of units with 
similar propensity scores and thus similar covariate distributions. For example, subclasses may be 
defined by splitting the treated and control groups at the quintiles of the propensity score in the treated 
group, leading to five subclasses with approximately the same number of treated units in each. That 
work builds on the work by Cochran (1968) on subclassification using a single covariate; when the 
conditional expectation of the outcome variable is a monotone function of the propensity score, creating 
just five propensity score subclasses removes at least 90% of the bias in the estimated treatment effect 
due to each of the observed covariates. Thus, five subclasses are often used, although with large sample 
sizes more subclasses are often desirable. This method is clearly related to making an ordinal version of 
a continuous underlying covariate.  



 

Lunceford and Davidian (2004) assess subclassification on the propensity score and find that 
subclassification without subsequent within-strata model adjustment (as discussed in Section  
4.5) can lead to biased answers due to residual imbalance within the strata. They suggest a need for 
further research on the optimal number of subclasses, as also discussed in Du (1998). 
 
Subclassification is illustrated using the NSW data in Figure 2, where six propensity score subclasses 
were formed to have approximately equal numbers of treated units. All units are placed into one 
subclass. The comparison units within each subclass are given equal weight, proportional to the number 
of treated units in the subclass, such that the treated and comparison units in each subclass receive the 
same total weight. 

  
Figure 2:  Results from subclassification on propensity score. The weight given to each unit represented by its 

symbol size; larger symbols correspond to larger weight. 
 

If the balance in matched samples selected using nearest neighbor matching is not adequate, 
subclassification of the matches chosen using nearest neighbor matching can be done to yield improved 
balance. This is illustrated in Figure 3, where five subclasses have been formed to have approximately 
the same number of treated units in each subclass. This process is illustrated in Rubin (2001) and Rubin 
(2007).  



  
Figure 3:  1:1 Nearest neighbor matching on propensity score followed by subclassification. Black units were 

matched; grey units were unmatched. Subclasses indicated by vertical lines. 

 

4.3.5  Full Matching 

An extension of subclassification is “full matching” (Rosenbaum, 1991a, 2002), in which the matched 
sample is composed of matched sets, where each matched set contains either one treated unit and one or 
more controls, or one control unit and one or more treated units. Full matching is optimal in terms of 
minimizing a weighted average of the distances between each treated subject and each control subject 
within each matched set, or stratum. Hansen (2004) gives a practical evaluation of the method, 
estimating the effect of SAT coaching, illustrating that, although the original treated and control groups 
had propensity score differences of 1.1 standard deviations, the matched sets from full matching differed 
by only one or two percent of a standard deviation. To achieve efficiency gains, Hansen (2004) also 
describes a variation on full matching that restricts the ratio of the number of treated units to the number 
of control units in each matched set, also applied in Stuart and Green (2006). 
 
The output from full matching is illustrated using the NSW data in Figure 4. Because it is not feasible to 
show the individual subclasses formed (in this data, 103 subclasses are created), the units are represented 
by their relative weights. All treated units receive a weight of 1 (and thus the symbols are all the same 
size). Comparison units in subclasses with many comparison units and few treated units receive small 
weight (e.g., the units with propensity scores close to 0), whereas comparison units in subclasses with 
few comparison units and many treated units (e.g., the units with propensity scores close to 0.8) receive 
large weight. The weighted treated and comparison group covariate distributions will look very similar. 
As in subclassification, all control units within a subclass receive equal weight. However, because there 
are many more subclasses than with simple subclassification, the variation in the weights is much larger 
across subclasses. 



  
Figure 4:  Results from full matching on propensity score. The weight given to each unit represented by its size; 

larger symbols correspond to higher weight. 

 

Because subclassification and full matching place all available units into one of the subclasses, these 
methods may have particular appeal for researchers who are reluctant to discard some of the control 
units. However, these methods are not relevant for situations where the matching is being used to select 
units for follow-up. 
 

4.3.6  Weighting Adjustments 

Another method that utilizes all units is weighting, where observations are weighted by their inverse 
propensity score (Czajka et al., 1992; Lunceford and Davidian, 2004; McCaffrey et al., 2004). 
Weighting can also be thought of as the limit of subclassification as the number of observations and 
subclasses go to infinity. Weighting methods are based on Horvitz-Thompson estimation (Horvitz & 
Thompson, 1952), used frequently in sample surveys. A drawback of weighting adjustments is that, as 
with Horvitz-Thompson estimation, the variance can be very large if the weights are extreme (if the 
propensity scores are close to 0 or 1). Thus, the subclassification or full matching approaches, which also 
utilize all units, may be more appealing since the resulting weights are less variable. 
 
Another type of weighting procedure is that of kernel weighting adjustments, which average over 
multiple persons in the control group for each treated unit, with weights defined by their distance from 
the treated unit. Heckman et al. (1998a); Heckman et al. (1998b) describe a local linear matching 
estimator that requires specifying a bandwidth parameter. Generally, larger bandwidths increase bias but 
reduce variance by putting weight on units that are further away from the treated unit of interest. A 
complication with these methods is this need to define a bandwidth or smoothing parameter that does not 
generally have an intuitive meaning; Imbens (2004) provides some guidance on that choice.  
 
With all of these weighting approaches it is still important to clearly separate the design and analysis 
stages. The propensity score should be carefully estimated, using approaches such as those described in 
Section 2.1.1, and the weights set before any use of those weights in models of the outcomes.  



 

4.4  Diagnostics of Matching Methods 
Diagnosing the quality of the matches obtained from a matching method is of primary importance. 
Extensive diagnostics and propensity score model specification checks are required for each data set, as 
discussed by Dehejia (2005). Matching methods have a variety of simple diagnostic procedures that can 
be utilized, most based on the idea of assessing balance between the treated and control groups. 
Although we would ideally compare the multivariate covariate distributions in the two groups, that is 
difficult when there are many covariates, and so generally comparisons are done for each univariate 
covariate separately, for two-way interactions of covariates, and for the propensity score, as the most 
important multivariate summary of the covariates. 
 
At a minimum, the balance diagnostics should involve comparing the mean covariate values in the 
groups, sometimes standardized by the standard deviation in the full sample–ideally other characteristics 
of the distributions, such as variances, correlations, and interactions between covariates, should also be 
compared. Common diagnostics include t-tests of the covariates, Kolmogorov-Smirnov tests, and other 
comparisons of distributions (e.g., Austin & Mamdani, 2006). Ho et al. (2007) provides a summary of 
numerical and graphical summaries of balance, including empirical quantile-quantile plots to examine 
the empirical distribution of each covariate in the matched samples. Rosenbaum and Rubin (1984) 
examines F-ratios from a two-way analysis of variance performed for each covariate, where the factors 
are treatment/control and propensity score subclasses. Rubin (2001) presents diagnostics that relate to 
the conditions given in Section 3 that indicate when regression analyses are trustworthy. These 
diagnostics include assessing the standardized difference in means of the propensity scores between the 
two treatment groups, the ratio of the variances of the propensity scores in the two groups, and for each 
covariate, the ratio of the variance of the residuals orthogonal to the propensity score in the two groups. 
The standardized differences in means should generally be less than 0.25 and the variance ratios should 
be close to one, certainly between 0.5 and 2, as discussed in Section 3. 
 

4.5  Analysis of Outcome Data After Matching 
The analysis of the outcome should proceed only after the observational study design has been set in that 
the matched samples have been chosen, and it has been determined that the matched samples have 
adequate balance. In keeping with the idea of replicating a randomized experiment, the same methods 
that would be used in an experiment can be used in the matched data. In particular, matching methods 
are not designed to “compete” with modeling adjustments such as linear regression, and in fact the two 
methods have been shown to work best in combination. Many authors discuss the benefits of combining 
matching or propensity score weighting and regression adjustment (Rubin (1973b), Rubin (1979), 
Robins & Rotnitzky (1995), Heckman et al. (1997), Rubin & Thomas (2000), Abadie & Imbens (2006). 
 
The intuition for this is the same as that behind regression adjustment in randomized experiments, where 
the regression adjustment is used to “clean up” small residual covariate imbalance between the treatment 
and control groups. The matching method reduces large covariate bias between the treated and control 
groups, and the regression is used to adjust for any small residual bias and to increase efficiency. These 
“bias-corrected” matching methods have been found in Abadie and Imbens (2006) and Glazerman et al. 
(2003) to work well in practice, using simulated and actual data. Ho et al. (2007) show that models based 
on matched data are much less sensitive and more robust than are models fit in the full data sets. 



 

Some slight adjustments to the analysis methods are required with particular matching methods. With 
procedures such as full matching, subclassification, or matching with replacement, where there may be 
different numbers of treated and control units at each value of the covariates, the analysis should 
incorporate weights to account for these varying distributions. Examples of this can be found in Dehejia 
and Wahba (1999), Hill et al. (2004) and Michalopoulos et al. (2004). When subclassification has been 
used, estimates should be obtained separately within each subclass and then aggregated across subclasses 
to obtain an overall effect (Rosenbaum and Rubin, 1984). Estimates within each subclass are sometimes 
calculated using simple differences in means, although empirical (Lunceford and Davidian, 2004) and 
theoretical (Abadie and Imbens, 2006) work has shown that better results are obtained if regression 
adjustment is used in conjunction with the subclassification. When aggregating across subclasses, 
weighting the subclass estimates by the number of treated units in each subclass estimates the average 
treatment effect for the units in the treated group; weighting by the overall number of units in each 
subclass estimates the overall average treatment effect for the population of treated and control units. 
 

5  Complications in Using Matching Methods 

5.1  Common support 
In some analyses, some of the control units may be very dissimilar from all treated units, or some of the 
treated units may be very dissimilar from all control units, potentially exhibited by propensity scores 
outside the range of the other treatment group. Thus, it is sometimes desirable to explicitly discard units 
with “extreme” values of the propensity score; for example, treated units for whom there are no control 
units with propensity score values as large. Doing the analysis only in the areas where there is 
distributional overlap, i.e., with “common support” (regions of the covariate space that have both treated 
and control units), will lead to more robust inference. This in essence is what matching is usually 
attempting to do; defining the area of common support is a way to discard units that are unlike all units 
in the other treatment group. 
 
However, it is often difficult to determine whether there is common support in multi-dimensional space. 
One way of doing so is to examine the overlap of the propensity score distributions. This is illustrated in 
Dehejia and Wahba (1999), where comparison units with propensity scores lower than the minimum 
propensity score for the treated units are discarded. A second method of examining the multivariate 
overlap involves examining the “convex hull” of the covariates; essentially identifying the multi-
dimensional space that allows interpolation rather than extrapolation. This method as well as 
applications in political science are described by King and Zeng (2006). Imbens (2004) also discusses 
these issues in an economic context. 

 

5.2  Missing covariate values 
Most of the literature on matching and propensity scores assumes fully observed covariates, so that 
models such as logistic regression can be utilized to estimate the propensity scores. However, there are 
often missing values in the covariates, which complicates matching and propensity score estimation. 
Two complex statistical models used to estimate propensity scores in this case are pattern-mixture 
models (Rosenbaum & Rubin, 1984) and general location models (D’Agostino, Jr. & Rubin, 2000). A 
key consideration when thinking about missing covariate values is that the pattern of missing covariates 



can be prognostically important, and in such cases, the methods should condition on the observed values 
of the covariates and on the observed missing-data indicators. 
 
There has not been much theoretical work done on the appropriate procedures for dealing with missing 
covariate values. Multiple researchers have done empirical comparisons of methods, but this is clearly an 
area for further research. Work in D’Agostino, Jr. et al. (2001) compares three simpler methods of 
dealing with missing covariate values: the first uses only units with complete data and discards all units 
with any missing data, the second does a simple imputation for missing values and includes indicators 
for missing values in the propensity score model, and the third fits separate propensity score models for 
each pattern of missing data (a pattern-mixture approach, as in Rosenbaum & Rubin, 1984). All three 
methods perform well in terms of creating well-matched samples. They find that this latter method 
performs the best, evaluated by imposing additional nonignorable missing data values on the complete-
case data set and examining which method best reproduces the estimate observed in the original 
complete-case data. Song et al. (2001) compare two methods of using propensity scores with missing 
covariate data. The first uses mean imputation for the missing values and then estimates the propensity 
scores. The second multiply imputes the covariates (Rubin, 1987) and estimates propensity scores in 
each “complete” data set. A mixed-effects model is used to analyze the longitudinal outcome data in 
each data set and the multiple imputation combining rules are used to obtain one estimate of the 
treatment effect. Results are similar using the two methods, although are tempered by the finding that the 
covariates are very poorly balanced between the treated and control groups (a finding that standard 
modeling approaches would not necessarily have discovered). Hill (2004) finds that methods using 
multiple imputation work better than complete-data or complete-variable methods (which use either only 
units with complete data, or variables with complete data).  

 

5.3  Unobserved variables 
A critique of any observational study is that there may be unobserved covariates that affect both 
treatment assignment and the outcome, thus violating the assumption of ignorable treatment assignment. 
The approach behind matching is that of dealing as well as possible with the observed covariates; close 
matching on the observed covariates will also lessen the bias due to unobserved covariates that are 
correlated with the observed covariates. However, there may still be concern regarding unobserved 
differences between the treated and control groups. 
 
The assumption of unconfounded treatment assignment can never be directly tested. However, some 
researchers have proposed tests in which an estimate is obtained for an effect that is “known” to be zero, 
such as the difference in a pre-treatment measure of the outcome variable (Imbens, 2004), or the 
difference in outcomes between multiple control groups (Rosenbaum, 1987b). If the test indicates that 
the effect is not equal to zero, then the assumption of unconfounded treatment assignment is deemed to 
be less plausible. 
 
Analyses can also be performed to assess sensitivity to an unobserved variable. Rosenbaum and Rubin 
(1983a) extends the ideas of Cornfield (1959), examining how strong the correlations would have to be 
between a hypothetical unobserved covariate and both treatment assignment and the outcome to make 
the observed estimate of the treatment effect go away. This approach is also discussed and applied to an 
economic application in Imbens (2003). Rosenbaum (1991b) describes a sensitivity analysis for case-
control studies, and discusses how sensitivity could also be assessed in situations where there are 



multiple sources of control units available–some closer on some (potentially unobserved) dimensions 
and others closer on other (potentially unobserved) dimensions. See Stuart and Rubin (2006) for another 
example of using multiple sources of control units. 

 

5.4  Multiple treatment doses 
Throughout this discussion of matching, it has been assumed that there are just two groups: treated and 
control. However, in many studies there are actually multiple levels of the treatment (e.g., doses of a 
drug). Rosenbaum (2002) summarizes two methods for dealing with doses of treatment. In the first 
method, the propensity score is still a scalar function of the covariates (Joffe and Rosenbaum, 1999). In 
the second method, each of the levels of treatment has its own propensity score (e.g., Rosenbaum, 1987a; 
Imbens, 2000) and each propensity score is used one at a time to estimate the distribution of responses 
that would have been observed if all units had received that dose. These distributions are then compared. 
 
The first approach uses a model such as an ordinal logit model to match on a linear combination of the 
covariates from that model. That is illustrated in Lu et al. (2001), where matching is used to form pairs 
that balance covariates but differ markedly in dose of treatment received. This differs from the standard 
matching setting in that there are not clear “treatment" and “control" groups, and thus any two subjects 
could conceivably be paired. An optimal matching algorithm is described, and the method is applied to 
the evaluation of a media campaign against drug abuse, where teens reported their exposure to the 
campaign. 
 
Encompassing these two approaches, work by Imai and van Dyk (2004) generalizes the propensity score 
to arbitrary treatment regimes (including ordinal, categorical, and multi-dimensional). They provide 
theorems for the properties of this generalized propensity score (the propensity function), showing that it 
has properties similar to that of the propensity score for binary treatments in that adjusting for the low-
dimensional (not always scalar, but always low-dimensional) propensity function balances the 
covariates. They advocate subclassification rather than matching, and provide two examples as well as 
simulations showing the performance of adjustment based on the propensity function. 
 
Diagnostics are especially crucial in this setting because it becomes more difficult to assess the balance 
of the resulting samples when there are multiple treatment levels. It is even unclear what balance means 
in this setting; does there need to be balance among all of the levels, or only among pair-wise 
comparisons of dose levels?  Future work is needed to examine these issues. 

 

6  Evaluation of matching methods 

Two major types of evaluations of matching methods have been done: using simulated data, and trying 
to replicate results from randomized experiments using observational data. Simulations that compare the 
performance of matching methods in terms of bias reduction include Cochran and Rubin (1973), Rubin 
(1973a,b, 1979), Rubin and Thomas (2000), Gu and Rosenbaum (1993), Frolich (2004), and Zhao 
(2004). These generally include relatively small numbers of covariates drawn from known distributions. 
Many of the results from these simulations have been included in the discussions of methods provided in 
this chapter. 
 



A second type of evaluation has attempted to replicate the results of randomized experiments using 
observational data. Glazerman et al. (2003) summarizes the results from twelve case studies that 
attempted to replicate experimental estimates using non-experimental data, all in the context of job 
training, welfare, and employment programs with earnings as the outcome of interest. The non-
experimental methods include matching and covariance adjustment. From the 12 studies they extract 
1150 estimates of the bias (approximately 96 per study), where bias is defined as the difference between 
the result from the randomized experiment and the result using observational data. They determine that it 
is in general difficult to replicate experimental results consistently, and that non-experimental estimates 
are often dramatically different from experimental results. However, some general guidance can be 
obtained. 
 
Glazerman et al. (2003) find that one-to-one propensity score matching performs better than other 
propensity score matching methods or non-propensity score matching, and that standard econometric 
selection correction procedures such as instrumental variables or the Heckman selection correction tend 
to perform poorly. As discussed in Section  
4.5, their results also show that combining methods, such as matching and covariance adjustment, is 
better than using methods individually. They also stress the importance of high quality data and a rich set 
of covariates, and discuss the difficulties in trying to use large publicly available data sets for this 
purpose. However, there are counter-examples to this general guidance. For example, in the National 
Supported Work Demonstration example, Dehejia and Wahba (1999) found that propensity score 
matching methods using a large publicly available national data set replicated experimental results very 
well. 
 
A number of authors, particularly Heckman and colleagues, use data from the U.S. National Job Training 
Partnership Act (JTPA) study to evaluate matching methods (Heckman et al., 1997, 1998a,b). Some of 
their results are similar to those of Glazerman et al. (2003), particularly stressing the importance of high 
quality data. Matching is best able to replicate the JTPA experimental results when (1) the same data 
sources are used for the participants and non-participants, to ensure similar covariate meaning and 
measurement, (2) participants and non-participants reside in the same local labor markets, and (3) the 
data contain a rich set of covariates to model the probability of receiving the treatment. Reaching 
somewhat similar conclusions, Michalopoulos et al. (2004) uses data on welfare-to-work programs that 
had random assignment, and again find that within-state comparisons have less bias than out-of-state 
comparisons. They compare estimates from propensity score matching, ordinary least squares, a fixed-
effects model, and a random-growth model, and find that no method is consistently better than the 
others, but that the matching method was more useful for diagnosing situations in which the data was 
insufficient for the comparison. Hill et al. (2004) also stresses the importance of matching on geography 
as well as other covariates; using data from a randomized experiment of a childcare program for low-
birth-weight children and comparison data from the National Longitudinal Study of Youth, they were 
able to well-replicate the experimental results using matching with a large set of covariates, including 
individual-level and geographic-area-level covariates. Ordinary least squares with the full set of 
covariates or matching with a smaller set of covariates did not perform as well as the propensity score 
matching with the full set of covariates. Agodini and Dynarski (2004) describe an example where 
matching methods highlighted the fact that the data were insufficient to estimate causal effects without 
heroic assumptions. 



 

7  Advice to an investigator 
To conclude, this section provides advice to investigators interested in implementing matching methods. 

 

7.1  Control group and covariate selection 
As discussed in Cochran (1965), Cochran and Rubin (1973), and Rosenbaum (1999), a key to estimating 
causal effects with observational data is to identify an appropriate control group, ideally with good 
overlap with the treated group. Care should be taken to find data sets that will have units similar to those 
in the treated group, with comparable covariate meaning and availability. Approximations for the 
maximum percent bias reduction possible can be used to determine which of a set of control groups are 
likely to provide the best matches, or to help guide sample sizes and matching ratios (Rubin, 1976c; 
Rubin and Thomas, 1992b, 1996). Large pools of potential controls are beneficial, as many results show 
that much better balance is achieved when there are many controls available for the matching (Rubin, 
1976c; Rubin and Thomas, 1996). As discussed in Section  
4.1, researchers should include all available covariates in the propensity score specification; excluding 
potentially relevant covariates can create bias in the estimation of treatment effects, but including 
potentially irrelevant covariates will typically not reduce the quality of the matches much (Rubin and 
Thomas, 1996). 

 

7.2  Distance measure 

Once the control pool is selected, propensity score matching is the most effective at reducing bias due to 
many covariates (Rosenbaum & Rubin, 1985b; Gu & Rosenbaum, 1993). As discussed in Section  
2.1, propensity scores can be estimated using logistic regression, and the propensity score specification 
should be assessed using a method such as that in Section  
2.1.1. This generally involves examining the balance of covariates in subclasses defined by the 
propensity score. From Section  
4.3.3, if there are a few covariates designated as particularly related to the outcome, and thus it is 
considered desirable to obtain especially close matches on those covariates, Mahalanobis matching on 
those key covariates can be done within propensity score calipers (Rubin & Thomas, 2000). 

 

7.3  Recommended matching methods 
Our advice for the matching method itself is very general: Try a variety of methods and use the 
diagnostics discussed in Section  
4.4 to determine which approach yields the most closely matched samples. Since the design and analysis 
stages are clearly separated and the outcome is not used in the matching process, trying a variety of 
methods and selecting the one that leads to the best covariate balance will not bias the results. Although 
the best method will depend on the individual data set, below we highlight some methods that are likely 
to produce good results for the two general situations considered in this chapter.  
 

7.3.1  To select units for follow-up 

For the special case of doing matching for the purposes of selecting well-matched controls for follow-up 
(i.e., when the outcome values are not yet available), optimal matching is generally best for producing 



well-matched pairs (Gu and Rosenbaum, 1993). Optimal matching aims to reduce a global distance 
measure rather than just considering each match one at a time, and thus reconsiders earlier matches if 
better overall balance could be obtained by breaking that earlier match. Further details are given in 
Section  
4.3.1. However, if overall balanced samples are all that is desired (rather than specifically matched pairs), 
then an easier and more straightforward nearest neighbor greedy matching algorithm can be used to 
select the controls.  
 
Researchers should also consider whether it is feasible (and/or desirable) to obtain more than one 
matched control for each treated unit, as discussed in Section  
4.3.1. With relatively small control pools it may be difficult to obtain more than one match for each 
treated unit and still obtain large reductions in bias. However, with larger control pools it may be 
possible to obtain more than one match for each treated unit without sacrificing bias reduction. This 
decision is also likely to involve cost considerations. 
 

7.3.2  If outcome data already available 

When the outcome values are already available, a variety of good methods exist and should be 
considered and tried. In particular, 1:1 propensity score matching is often a good place to start (or k:1 if 
there are many controls relative to the number of treated units). If there is still substantial bias between 
the groups in the matched samples (e.g., imbalance in the propensity score of more than 0.5 standard 
deviations), the nearest neighbor matching can be combined with subclassification on the matched 
samples, as discussed in Section  
4.3.4. Full matching and subclassification on the full data sets also often work well in practice, where full 
matching can be thought of as in between the two extremes of 1:1 matching and weighting.  

 

7.4  Outcome analysis 
After matched samples are selected the outcome analysis can proceed: linear regression, logistic 
regression, hierarchical modeling, etc. As discussed in Section  
4.5, results should be less sensitive to the modeling assumptions and thus should be fairly insensitive to 
the model specification, as compared with analysis on the original samples. With procedures such as full 
matching, subclassification, or matching with replacement, where there may be different numbers of 
treated and control units at each value of the covariates, the analysis should incorporate weights to 
account for these varying distributions.  

 

8  Software 

A variety of software packages are available to implement matching methods. These include multiple R 
packages (MatchIt, Ho et al., 2006; twang, Ridgeway et al., 2006; Matching, Sekhon, 2006), multiple 
Stata packages (Abadie et al., 2004; Becker and Ichino, 2002; Leuven and Sianesi, 2003), and SAS code 
for propensity score matching (D’Agostino, Jr., 1998; Parsons, 2001). A major benefit of the R packages 
(particularly MatchIt and twang) is that they clearly separate the design and analysis stages and have 
extensive propensity score diagnostics. The Stata and SAS packages and procedures do not explicitly 
separate these two stages.  
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