
1

Matching Output Queueing with a Combined Input Output Queued

Switch1

Shang-Tse Chuang
Ashish Goel

Nick McKeown
Balaji Prabhakar

Stanford University

Abstract — The Internet is facing two problems simultaneously: there is a need for a
faster switching/routing infrastructure, and a need to introduce guaranteed qualities of
service (QoS). Each problem can be solved independently: switches and routers can be
made faster by using input-queued crossbars, instead of shared memory systems; and QoS
can be provided using WFQ-based packet scheduling. However, until now, the two
solutions have been mutually exclusive — all of the work on WFQ-based scheduling
algorithms has required that switches/routers use output-queueing, or centralized shared
memory. This paper demonstrates that a Combined Input Output Queueing (CIOQ) switch
running twice as fast as an input-queued switch can provide precise emulation of a broad
class of packet scheduling algorithms, including WFQ and strict priorities. More
precisely, we show that for an switch, a “speedup” of is necessary and a
speedup of two is sufficient for this exact emulation. Perhaps most interestingly, this result
holds for all traffic arrival patterns. On its own, the result is primarily a theoretical
observation; it shows that it is possible to emulate purely OQ switches with CIOQ
switches running at approximately twice the line-rate. To make the result more practical,
we introduce several scheduling algorithms that, with a speedup of two, can emulate an
OQ switch. We focus our attention on the simplest of these algorithms, Critical Cells First
(CCF), and consider its running-time and implementation complexity. We conclude that
additional techniques are required to make the scheduling algorithms implementable at
high speed, and propose two specific strategies.

1 Introduction
Many commercial switches and routers today employ output-queueing.2 When a packet

arrives at an output-queued (OQ) switch, it is immediately placed in a queue that is dedicated to its
outgoing line, where it waits until departing from the switch. This approach is known to maximize
the throughput of the switch: so long as no input or output is oversubscribed, the switch is able to
support the traffic and the occupancies of queues remain bounded. Furthermore, by carefully
scheduling the time a packet is placed onto the outgoing line, a switch or router can control the
packet’s latency, and hence provide quality-of-service (QoS) guarantees. But output queueing is

1. This paper was presented at Infocom ‘99, New York, USA.

2. When we refer to output-queueing in this paper, we include designs that employ centralized shared memory.

N N× 2 1 N⁄–

2

impractical for switches with high line rates and/or with a large number of ports, since the fabric
and memory of an switch must run times as fast as the line rate. Unfortunately, at high
line rates, memories with sufficient bandwidth are simply not available.

On the other hand, the fabric and the memory of an input queued (IQ) switch need only run as
fast as the line rate. This makes input queueing very appealing for switches with fast line rates, or
with a large number of ports. For this reason, the highest performance switches and routers use
input-queued crossbar switches [3][4]. But IQ switches can suffer from head-of-line (HOL) block-
ing, which can have a severe effect on throughput. It is well-known that if each input maintains a
single FIFO, then HOL blocking can limit the throughput to just 58.6% [5].

One method that has been proposed to reduce HOL blocking is to increase the “speedup” of a
switch. A switch with a speedup of can remove up to packets from each input and deliver up
to packets to each output within a time slot, where a time slot is the time between packet arrivals
at input ports. Hence, an OQ switch has a speedup of while an IQ switch has a speedup of one.
For values of between 1 and packets need to be buffered at the inputs before switching as
well as at the outputs after switching. We call this architecture a combined input and output queued
(CIOQ) switch.

Both analytical and simulation studies of a CIOQ switch which maintains a single FIFO at
each input have been conducted for various values of speedup [6][7][8][9]. A common conclusion
of these studies is that with or 5 one can achieve about 99% throughput when arrivals are
independent and identically distributed at each input, and the distribution of packet destinations is
uniform across the outputs. Whereas these studies consider average delay (and simplistic input
traffic patterns), they make no guarantees about the delay of individual packets. This is particularly
important if a switch or router is to offer QoS guarantees.

We believe that a well-designed network switch should perform predictably in the face of all
types of arrival process1 and allow the delay of individual packets to be controlled. Hence our
approach is quite different: rather than find values of speedup that work well on average, or with
simplistic and unrealistic traffic models, we find the minimum speedup such that a CIOQ switch
behaves identically to an OQ switch for all types of traffic. (Here, “behave identically” means that
when the same inputs are applied to both the OQ switch and to the CIOQ switch, the correspond-
ing output processes from the two switches are completely indistinguishable.) This approach was
first formulated in the recent work of Prabhakar and McKeown [12]. They show that a CIOQ
switch with a speedup of four can behave identically to a FIFO OQ switch for arbitrary input traf-
fic patterns and switch sizes. In this sense, this paper builds upon and extends the results in [12], as
described in the next paragraph. A number of researchers have recently considered various aspects
of the speedup problem, most notably [18] which obtains packet delay bounds and [19] which
finds sufficient conditions for maximizing throughput through work conservation and mimicking
of output queueing.2

In this paper, we show that a CIOQ switch with a speedup of two can behave identically to an
OQ switch. The result holds for switches with an arbitrary number of ports, and for any traffic

1. The need for a switch that can deliver a certain grade of service, irrespective of the applied traffic is par-
ticularly important given the number of recent studies that show how little we understand network traffic
processes [11]. Indeed, a sobering conclusion of these studies is that it is not yet possible to accurately
model or simulate a trace of actual network traffic. Furthermore, new applications, protocols or data-cod-
ing mechanisms may bring new traffic types in future years.

2. [20] aimed to extend the results of [12], but the algorithms and proofs presented there are incorrect and do
not solve the speedup problem. See http://www.cs.cmu.edu/~istoica/IWQoS98-fix.html for a discussion
of the errors.

N N× N

S S
S

N
S N

S 4=

3

arrival pattern. It is also found to be true for a broad class of widely used output link scheduling
algorithms such as weighted fair queueing, strict priorities, and FIFO. We introduce some specific
scheduling algorithms that achieve this result. We also show more generally that a speedup of

 is both necessary and sufficient for a CIOQ switch to behave identically to a FIFO OQ

switch.

It is worth briefly considering the implications of this result. It demonstrates that it is possible
to emulate an OQ switch using buffer memory operating at only twice the speed of the
external line. Previously, an OQ switch could only be implemented with memories operating at N
times the speed of the external line. However, the advantages do not come for free. In essence, the
memory bandwidth is reduced at the expense of a fast cell scheduling algorithm that is required to
configure the crossbar. As we shall see, the scheduling algorithms are complex, the best known-to-
date having a running-time complexity of N. (We discuss the implementation complexity in some
detail in Section 5). This means that it is not yet practicable to emulate fast OQ switches with a
large number of ports. While we propose some strategies in this paper, this is a topic for further
research.

1.1 Background
Consider the single stage, switch shown in Figure 1. Throughout the paper we assume

that packets begin to arrive at the switch from time , the switch having been empty before
that time. Although packets arriving to the switch or router may have variable length, we will
assume that they are treated internally as fixed length “cells”. This is common practice in high per-
formance LAN switches and routers; variable length packets are segmented into cells as they
arrive, carried across the switch as cells, and reassembled back into packets again before they
depart [4][3]. We take the arrival time between cells as the basic time unit and refer to it as a time
slot. The switch is said to have a speedup of , for if it can remove up to
cells from each input and transfer at most cells to each output in a time slot. A speedup of
requires the switch fabric to run times as fast as the input or output line rate. For
buffering is required both at the inputs and at the outputs, and leads to a combined input and output
queued (CIOQ) architecture. The following is the problem we wish to solve.

The speedup problem: Determine the smallest value of and an appropriate cell scheduling
algorithm that

1. allows a CIOQ switch to exactly mimic the performance of an output-queued switch (in a
sense that will be made precise),

2. achieves this for any arbitrary input traffic pattern,

3. is independent of switch size.

 In an OQ switch, arriving cells are immediately forwarded to their corresponding outputs.
This (a) ensures that the switch is work-conserving, i.e. an output never idles so long as there is a
cell destined for it in the system, and (b) allows the departure of cells to be scheduled to meet
latency constraints.1 We will require that any solution of the speedup problem possess these two
desirable features; that is, a CIOQ switch must behave identically to an OQ switch in the following
sense:

1. For ease of exposition, we will at times assume that the output uses a FIFO queueing discipline, i.e. cells depart from
the output in the same order that they arrived to the inputs of the switch. However, we are interested in a broader class
of queueing disciplines: ones that allow cells to depart in time to meet particular bandwidth and delay guarantees.

2 1
N
----–

N N×

N N×
t 1=

S S 1 2 … N, , ,{ }∈ S
S S

S 1 S N< <

S
π

4

Identical Behavior: A CIOQ switch is said to behave identically to an OQ switch if, under iden-
tical inputs, the departure time of every cell from both switches is identical.

Figure 1: A General Combined Input and Output Queued (CIOQ) switch.

As a benchmark with which to compare our CIOQ switch, we will assume there exists a
shadow OQ switch that is fed the same input traffic pattern as the CIOQ switch. Our goal is
to arrange for each cell to depart from the CIOQ switch at exactly the same time as its counterpart
cell departs from the OQ switch. In the CIOQ switch, the sequence in which cells are transferred
from their input queues to the output queue is determined by a scheduling algorithm. In each time
slot, the scheduling algorithm matches each non-empty input with at most one output and, con-
versely, each output is matched with at most one input. The matching is used to configure the
crossbar fabric before cells are transferred from the input side to the output side. A CIOQ switch
with a speedup of is able to make such transfers during each time slot.

Selecting the appropriate scheduling algorithm is the key to achieving identical behavior
between the CIOQ switch and its shadow OQ switch.

1.2 Push-in Queues
Throughout this paper, we will make repeated use of what we will call a push-in queue. Simi-

lar to a discrete-event queue, a push-in queue is one in which an arriving cell is inserted at an arbi-
trary location in the queue based on some criterion. For example, each cell may carry with it a
departure time, and is placed in the queue ahead of all cells with a later departure time, yet behind
cells with an earlier departure time. The only property that defines a push-in queue is that once
placed in the queue, cells may not switch places with other cells. In other words, their relative
ordering remains unchanged. In general, we distinguish two types of push-in queues: (1) “Push-In
First-Out” (PIFO) queues, in which arriving cells are placed at an arbitrary location, and the cell at
the head of the queue is always the next to depart. PIFO queues are quite general — for example, a
WFQ scheduling discipline operating at an output queued switch is a special case of a PIFO queue.
(2) “Push-In Arbitrary-Out” (PIAO) queues, in which cells are removed from the queue in an arbi-
trary order. i.e. it is not necessarily the case that the next cell to depart is the one currently at the
head of the queue.

 It is assumed that each input of the CIOQ switch maintains a queue, which can be thought of
as an ordered set of cells waiting at the input port. In general, the CIOQ switches that we consider,
can all be described using PIAO input queues.1 Many orderings of the cells are possible — each
ordering leading to a different switch scheduling algorithm, as we shall see.

Output 1Input 1

Input N Output N

N N×

S S

5

Each output maintains a queue for the cells waiting to depart from the switch. In addition, each
output also maintains an output priority list: an ordered list of cells at the inputs waiting to be
transferred to this particular output. The output priority list is drawn in the order in which the cells
would depart from the OQ switch we wish to emulate (i.e. the shadow OQ switch). This priority
list will depend on the queueing policy followed by the OQ switch (FIFO, WFQ, strict priorities
etc.).

1.3 Definitions
The following definitions are crucial to the rest of the paper.

Definition 1: Time to Leave — The “time to leave” for cell c, TL(c), is the time slot at which c
will leave the shadow OQ switch. Note that it is possible for TL(c) to increase. This happens if
new cells arrive to the switch, destined for c’s output, and have a higher priority than c. (Of
course, TL(c) is also the time slot in which c must leave from our CIOQ switch for the identical
behavior to be achieved.)

Definition 2: Output Cushion — At any time, the “output cushion of a cell c”, OC(c), is the
number of cells waiting in the output buffer at cell c’s output port with a smaller time to leave
value than cell c.

Notice that if a cell is still on the input side and has a small (or zero) output cushion, the sched-
uling algorithm must urgently deliver the cell to its output so that it may depart on time. Since the
switch is work-conserving, a cell’s output cushion decreases by one during every time slot, and can
only be increased by newly arriving cells that are destined to the same output and have a more
urgent time to leave.

Definition 3: Input Thread — At any time, the “input thread of cell c”, IT(c), is the number of
cells ahead of cell c in its input priority list.

In other words, IT(c) represents the number of cells currently at the input that need to be trans-
ferred to their outputs more urgently than cell c. A cell’s input thread is decremented only when a
cell ahead of it is transferred from the input, and is possibly incremented by newly arriving cells.
Notice that it would be undesirable for a cell to simultaneously have a large input thread and a
small output cushion — the cells ahead of it at the input may prevent it from reaching its output
before its time to leave. This motivates our definition of slackness.

Definition 4: Slackness — At any time, the “slackness of cell c”, L(c), equals the output cushion

of cell c minus its input thread i.e. .

Slackness is a measure of how large a cell’s output cushion is with respect to its input thread. If
a cell’s slackness is small, then it urgently needs to be transferred to its output. Conversely, if a cell
has a large slackness, then it may languish at the input without fear of missing its time to leave.1

Figure 2: A snapshot of a CIOQ switch

1. In practice, we need not necessarily use a PIAO queue to implement these techniques. But we will use the PIAO
queue as a general way of describing the input queueing mechanism.

1. Note that a cell’s input thread and slackness are only defined when the cell is waiting at the input side of
the switch.

L c() OC c() IT c()–=

6

 Figure 2 shows a snapshot of a CIOQ switch with a number of cells waiting at its inputs and

outputs. For convenience we assume the time the snapshot was taken to be 1. Let denote a

cell that, in the shadow switch, will depart from output port at time . Consider, for example,

the cell c denoted in the figure by . For the CIOQ switch to mimic the shadow OQ switch,

the cell must depart from port A at time 3. Its input thread is , since is the only

cell ahead of c in the input priority list. Its output cushion is , since out of the three

cells queued at A’s output buffer, only two cells and will depart before it. Further,

the slackness of cell c is given by .

1.4 The general structure of our CIOQ scheduling algorithms:
For most of this paper we are going to concern ourselves with CIOQ switches that have a

speedup of two. Hence, we will break each time slot into four phases:

1. The Arrival Phase
All arrivals of new cells to the input ports take place during this phase.

2. The First Scheduling Phase
The scheduling algorithm selects cells to transfer from inputs to outputs, and then trans-
fers them across the crossbar.

3. The Departure Phase
All departures of cells from the output ports take place during this phase.

4. The Second Scheduling Phase
Again, the scheduling algorithm selects cells to transfer from inputs to outputs and trans-
fers them across the crossbar.

The order in which the four phases occur is not crucial to our algorithms. However we shall
stick to the above ordering as it makes our proofs simpler.

A matching of input ports to output ports is a (not necessarily maximal) set of cells waiting on
the input side such that all these cells can be sent across the crossbar in a single transfer (i.e. are
free of input and output contention). During each scheduling phase the scheduler finds a stable
matching between the input ports and the output ports.

Definition 5: Stable Matching — A matching of input ports to output ports is said to be stable if
for each cell c waiting in an input queue, one of the following holds:

A

B

C

B,1

B,3A,7

A,1A,2A,4

B,2

C,2

X

Y

Z

A,3A,5

A,6C,3

C,1

Output QueuesInput Queues

P t,()
P t

A 3,()
IT c() 1= B 1,()
OC c() 2=

A 1,() A 2,()
L c() OC c() IT c()– 1= =

7

1. Cell c is part of the matching, i.e. c will be transferred from the input side to the output
side during this phase.

2. A cell that is ahead of c in its input priority list is part of the matching.

3. A cell that is ahead of c in its output priority list is part of the matching.

Notice that conditions 2 and 3 above may be simultaneously satisfied, but condition 1 excludes
the other two. The conditions for a stable matching can be achieved using the so-called stable mar-
riage problem. Solutions to the stable marriage problem are called stable matchings and were first
studied by Gale and Shapely [13]— they gave an algorithm that finds a stable matching in at most

 iterations, where is the sum of the lengths of all the input priority lists.

Our specification of the scheduling algorithm for a CIOQ switch is almost complete: the only
thing that remains is to specify how the input queues are maintained. Different ways of maintain-
ing the input queues result in different scheduling algorithms. In fact, the various scheduling algo-
rithms presented later differ only in the ordering of their input queues. For reasons that will
become apparent, we will restrict ourselves to a particular class of orderings, which is defined as
follows.

Definition 6: PIAO Input Queue Ordering — When a cell arrives, it is given a priority number
which dictates its position in the queue. i.e. a cell with priority number X is placed at location
(X+1) from the head of the list. A cell is placed in an input priority list according to the following
rules:

1. Arriving cells are placed at (or, “push-in” to) an arbitrary location in the queue,

2. The relative ordering of cells in the queue does not change once cells are in the queue, i.e.
cells in the queue cannot switch places, and

3. Cells may be selected to depart from the queue from any location.

Thus, to complete our description of the scheduling algorithms, we need only specify an inser-
tion policy which determines where an arriving cell gets placed in its input queue.

On the output side, the CIOQ switch keeps track of the time to leave of each waiting cell. Dur-
ing each time slot the cell that departs from an output and is placed onto the outgoing line is the
one with the smallest time to leave. For the CIOQ switch to successfully mimic the shadow OQ
switch, we must ensure that each cell crosses over to the output side before it is time for the cell to
leave.

Even before we finish defining the algorithm, we can already see that it must maintain a large
amount of state. More importantly, the algorithm must keep track of a large amount of global state,
taking into account information about the queues at all the inputs and all the outputs. We will dis-
cuss in Section 5 the information complexity of these algorithms, and the difficulty of implement-
ing them at high speed.

2 Necessity and Sufficiency of a Speedup of 2-1/N
Having defined speedup, we now address the next natural question: what is the minimum

required speedup, , for a CIOQ switch to emulate an OQ switch. The following theorem answers
this question.

Theorem 7: (Necessity). An CIOQ switch needs a speedup of at least to
exactly emulate an FIFO OQ switch.

M M

S

N N× 2 1
N
----–

N N×

8

Proof: The proof is by counter-example and is presented in Appendix A.

Remark: Since FIFO is a special case of a variety of output queueing disciplines (Weighted

Fair Queueing, Strict Priorities etc.), the lower bound applies to these queueing disciplines as well.

Theorem 8: (Sufficiency). An CIOQ switch with a speedup of can exactly
emulate an FIFO OQ switch.

Proof: The proof is based on an insertion policy that we call Last In Highest Priority (LIHP)
and is presented in Appendix B.

3 A Simple Input Queue Insertion Policy for a Speedup of 2
The proof of Theorem 8 is based on the LIHP input queue insertion policy and — unfortu-

nately — the proof is complex and somewhat counterintuitive. Further, LIHP is complex to imple-
ment, making it of little practical value. So in an attempt to provide a more intuitive understanding
of the speedup problem, we present a simple and slightly more practical insertion policy that, with
a speedup of two, mimics an OQ switch with a FIFO queueing discipline. We call this insertion
policy Critical Cells First (CCF).

Recall that to specify a scheduling algorithm for a CIOQ switch, we just need to give an inser-
tion policy for the input queues. “Critical Cells First” (CCF) inserts an arriving cell as far from the
head of its input queue as possible, such that the input thread of the cell is not larger than its output
cushion. More formally:

The CCF Insertion Policy: Suppose cell c arrives at input port P. Let be the output cushion of
c. Insert cell c into the th position from the front of the input queue at P. Hence, upon
arrival cell c has a slackness of zero. If the size of this list is less than cells, then place c at the
end of the input priority list at P. Hence, in this case, c has a positive slackness.

A consequence of this is that a cell’s slackness is non-negative upon arrival. The intuition
behind this insertion policy is that a a cell with a small output cushion needs to leave soon (i.e. it is
“more critical”), and therefore needs to be delivered to its output sooner than a cell with a larger
output cushion. In other words, a cell with a large output cushion can safely reside further from the
head of its input queue.

We now prove that CCF, with a speedup of two, mimics an OQ switch. Informally, the proof
proceeds as follows. We first show a property of the CCF algorithm: that a cell never has a nega-
tive slackness, i.e. a cell’s input thread never exceeds its output cushion. We then proceed to show
how this ensures that a cell always reaches the output side in time to leave.

Lemma 1: The slackness, , of a cell c waiting on the input side is non-decreasing from time
slot to time slot.

Proof: Let the slackness of c be at the beginning of a time slot. During the arrival phase,
the input thread of c can increase by at most one because an arriving cell might be inserted ahead
of c in its input priority list. During the departure phase, the output cushion of c decreases by one.
If c is scheduled in any one of the scheduling phases, then it is delivered to its output and we need
no longer concern ourselves with c. Otherwise, during each of the two scheduling phases, either
the input thread of c decreases by one, or the output cushion of c increases by one (by the property
of stable matchings — see Definition 5). Therefore the slackness of c increases by at least one dur-

N N× 2 1
N
----–

N N×

X
X 1+()

X

L

L

9

ing each scheduling phase. Counting the changes in each of the four phases (arrival, departure, and
two scheduling phases), we conclude that the slackness of cell c can not decrease from time slot to
time slot.

Remark: Because the slackness of an arriving cell is non-negative, it follows from Lemma 1
that the slackness of a cell is always non-negative.

Theorem 9: Regardless of the incoming traffic pattern, a CIOQ switch that uses CCF with a
speedup of 2 exactly mimics a FIFO OQ switch.

Proof: Suppose that the CIOQ switch has successfully mimicked the OQ switch up until time
slot , and consider the beginning (first phase) of time slot . We must show that any cell
reaching its time to leave is either: (1) already at the output side of the switch, or (2) will be trans-
ferred to the output during time slot t. From Lemma 1, we know that a cell always has a non-nega-
tive slackness. Therefore, when a cell reaches its time to leave (i.e. its output cushion has reached
zero), the cell’s input thread must also equal zero. This means either: (1) that the cell is already at
its output, and may depart on time, or (2) that the cell is simultaneously at the head of its input pri-
ority list (because its input thread is zero), and at the head of its output priority list (because it has
reached its time to leave). In this case, the stable matching algorithm is guaranteed to transfer it to
its output during the time slot, and therefore the cell departs on time.

4 Providing QoS guarantees
As pointed out in the introduction, the goal of our work is to control the delay of cells in a

CIOQ switch in the same way that is possible in an OQ switch. But until now, we have considered
only the emulation of an OQ switch in which cells depart in FIFO order. We now show that, with a
speedup of two, CCF can be used to emulate an OQ switch that uses the broad class of PIFO
(Push-In First-Out) queueing policies; a class that includes widely-used queueing policies such as
WFQ and Strict Priority queueing. Notice that with an arbitrary PIFO policy, the TL of a cell never
decreases, but may increase as a result of arrival of higher priority cells.

The description of CCF remains unchanged; however the output cushion and the output priority
lists are calculated using the OQ switch that we are trying to emulate.

Theorem 10: Regardless of the incoming traffic pattern, a CIOQ switch that uses CCF with
a speedup of 2 exactly mimics an OQ switch that adheres to a PIFO queueing policy.

The proof of Theorem 10 is almost identical to that of Theorem 9, and is omitted here for brevity.

5 Towards making CCF practical
CCF as presented above suffers from two main disadvantages. First, the stable matching that

we need to find in each scheduling phase can take as many as iterations.1 Second, the algo-
rithm has a high information complexity — CCF needs to know both the output cushion and time
to leave of each cell at the inputs; information that is not locally available at each input, but

1. It is not immediately obvious that iterations suffice. The reason for this is that if two cells at the same input port

are destined to the same output port, the one with the lower TL occurs ahead of the other in the input priority list.

t 1– t

N
2

N
2

10

depends on the state of all the switch outputs. We address these disadvantages in this section. The
Delay Till Critical (DTC) strategy reduces the number of iterations needed to compute a stable
matching to (from); and the Group By Virtual Output Queue (GBVOQ) algorithm can emu-
late FIFO and WFQ OQ switches without using global information. Unfortunately, the two solu-
tions do not compose i.e. we can reduce either the number of iterations to or reduce the
information complexity, but not both at the same time. We leave such a composition as an open
problem.

5.1 The Delay Till Critical (DTC) strategy:
The “Delay Till Critical” strategy is as follows: During each scheduling phase, mark as

“active” all cells with a slackness of zero, and mark all other cells inactive. The stable matching
algorithm now considers only active cells. Intuitively, cells with zero slackness are the most criti-
cal and should be considered for immediate transfer across the fabric. Since the slackness of a cell
can never become negative,1 CCF combined with DTC strategy can emulate any OQ switch that
follows a PIFO queueing policy.

It remains to show that this simple strategy reduces the number of iterations required to com-
pute a stable matching from to . Before we prove this fact, let us examine the problem that
we are trying to remove. At any time instant, we define the dependency graph to be a directed
graph with a vertex corresponding to each active cell that is waiting on the input side of the CIOQ
switch. Let and be two cells waiting at the input side. There is a directed edge from to
if and only if cell is ahead of either in an input queue or in an output priority list. Clearly two
cells have to share either the same input port or the same output port if there is to be an edge
between them. If we use CCF as defined in Section 3, there may be cycles in this dependency
graph. These cycles are the main cause of inefficiency in finding stable matchings, and the DTC
strategy is designed to remove these cycles.

Lemma 2: If DTC is used in conjunction with CCF then, during any scheduling phase, the

dependency graph is acyclic.

We defer the proof of Lemma 2 to Appendix C and instead focus on its implications, and how
a match can be constructed in iterations. First, let’s consider how the first cell in the match is
found. Since there are no cycles in , there has to be at least one “sink” (i.e. a cell with no outgo-
ing edges). Let cell be the sink. Since there are no active cells ahead of in either its input
queue or its output priority list, cell has to be part of any stable matching of active cells. Hence

 is guaranteed to be transferred to the output side, and therefore we can remove from the graph
all cells which have the same input or output port as ; they clearly can not be part of the match.
The resulting graph is again acyclic, and we can repeat the above procedure more times to
obtain a stable matching. Notice that each iteration of the above iteration algorithm is quite
straightforward.

We now address the second disadvantage of CCF, i.e. that of high information complexity.

5.2 The Group By Virtual Output Queue (GBVOQ) algorithm:
With CCF, the stable matching algorithm needs to calculate both the time to leave and output

cushion of each cell in the input queues. These quantities require centralized information about the

1. As soon as the slackness becomes zero, the cell would be marked active and the slackness would increase by one

during the current scheduling phase (see Lemma 1).

N N
2

N

N2 N
G

A B B A
A B

G

N
G

X X
X

X
X

N 1–
N

11

state of all the queues in the system, making CCF (as described) unsuitable for a distributed imple-
mentation. However, for emulating a FIFO OQ switch, we can group incoming cells into Virtual
Output Queues and obtain an upper bound of on the number of cells that need to be considered.
The algorithm, GBVOQ, which achieves this bound is described below.

 At each input, GBVOQ maintains a single priority list as before, as well as a VOQ for each
output port. All cells belong to a VOQ and the single input priority list. When a new cell arrives, it
is always placed at the tail of the corresponding VOQ. If the VOQ was empty, the new cell is
placed at the head of the input priority list. If, on the other hand, the VOQ is non-empty, the new
cell is inserted in the input priority list just behind the last cell belonging to the same VOQ. i.e. all
cells that are in the same VOQ occupy contiguous positions in the input priority list. Therefore, to
make a scheduling decision, it is sufficient to just keep track of the relative priority ordering of
VOQs. Since there are at most VOQs at an input port in a FIFO switch, the size of the input pri-
ority list is bounded. Since GBVOQ assigns a non-negative slackness to an incoming cell, a CIOQ
switch that uses GBVOQ with a speedup of two successfully emulates a FIFO OQ switch.

Apart from small priority lists, GBVOQ has other desirable properties. First, the decision of
where an incoming cell needs to be inserted is much simpler for GBVOQ than CCF — each input
port can maintain its local priority queue without any access to global information. Second, during
the stable matching phase, to determine which of two cells has a higher output priority, we just
need to compare the arrival timestamps of the two cells; the cell which arrived earlier will have a
smaller TL (and hence a higher output priority) because of the First In First Out property.

Like CCF, GBVOQ can be used in conjunction with the DTC strategy to reduce the number of
iterations needed to compute a stable matching. In fact, DTC is made much simpler when used in
conjunction with GBVOQ because of the following property: if the cell at the head of a VOQ is
marked inactive during a scheduling phase, the entire VOQ can be marked inactive, reducing the
number of cells that need to be marked active/inactive. However, and unfortunately, to determine
which VOQs need to be marked active, we again need access to global state, namely the output
cushion of each cell at the head of a VOQ. Finding a solution which simultaneously has low infor-
mation complexity and low number of iterations is an interesting open problem.

GBVOQ with per-flow VOQs can emulate WFQ with low information complexity. However,
we have not been able to show a bound of even on the number of iterations for this case.

6 Extensions to Multicasting
We now briefly discuss the speedup required for the exact emulation of an OQ switch by a

CIOQ switch when the incoming traffic is multicast. Suppose that the maximum “fanout” of an
incoming cell (i.e., the maximum number of outputs it wishes to go to) is F. Then by replicating
this cell when it arrives at the input we get up to F new arrivals in each time slot at that input. (This
contrasts with the unicast case , in which at most 1 new cell arrives). Thus, to extend The-
orem 9 to include multicast traffic, we must allow for up to F new arrivals to take place per time
slot. During a departure phase, the slackness of a cell can go down by at most 1. During an arrival
phase, the slackness of a cell already in the system can go down by at most F since a new cell with
fanout F may get inserted ahead of it. Recall, from the proof of Lemma 1, that the slackness of a
cell must go up by at least 1 during each scheduling phase. Therefore an equivalent of Lemma 1
(and hence Theorem 9) holds for multicast if the speedup is .

N

N

N2

F 1=

F 1+

12

7 Conclusions
With the continued demand for faster and faster switches, it is increasingly difficult to imple-

ment switches that use output queueing or centralized shared memory. Before long, it will become
impractical to build the highest performance switches and routers using these techniques. It has
been argued for some time that most of the advantages of output-queuing (OQ) can be achieved
using combined input and output queueing (CIOQ). While this has been argued for very specific,
benign traffic patterns there has always been a suspicion that the advantages would diminish in a
more realistic operating environment.

We have seen that a CIOQ switch with a speedup of just two can behave identically to an OQ
switch which employs a wide variety of packet scheduling algorithms, such as WFQ, strict priori-
ties, etc. Perhaps more importantly, we show this to be true for any traffic arrival pattern and for
arbitrary switch sizes.

However, while this result makes possible a significant reduction in memory bandwidth, it
comes at the expense of a scheduling algorithm. The scheduling algorithm is required to configure
the crossbar, operating at least twice as fast as cells can arrive. While the algorithms that we
describe here are quite simple, they have a running time complexity of at least making them
unsuitable for fast switches with a large number or ports. But the result does not preclude algo-
rithms that are more readily implemented at higher speed. We believe this to be an important area
for future research.

8 Acknowledgements
 Balaji Prabhakar thanks Anna Charny for discussions on the speedup problem, the subject of

her PhD thesis [21], where it was pointed out that speedup could be used to provide delay guaran-
tees for QoS-constrained flows.

9 References
[1] A. Demers, S. Keshav; S. Shenker, “Analysis and Simulation of a Fair Queueing Algorithm,”

J. of Internetworking: Research and Experience, pp.3-26, 1990.

[2] L. Zhang, “Virtual Clock: A New Traffic Control Algorithm for Packet Switching Net-
works,” ACM Transactions on Computer Systems, vol.9 no.2, pp.101-124, 1990.

[3] Partridge, C., et al. “A fifty gigabit per second IP router,” To appear in IEEE/ACM Transac-
tions on Networking.

[4] McKeown, N.; Izzard, M.; Mekkittikul, A.; Ellersick, W.; and Horowitz, M.; “The Tiny Tera:
A Packet Switch Core” Hot Interconnects V, Stanford University, August 1996.

[5] M. Karol; M. Hluchyj; S. Morgan, “Input versus output queueing on a space-division
switch,” IEEE Transactions on Communications, vol. 35, pp. 1347-1356, Dec 1987.

[6] I. Iliadis and W.E. Denzel, “Performance of packet switches with input and output queue-
ing,” in Proc. ICC ‘90, Atlanta, GA, Apr. 1990. p.747-53.

[7] A.L. Gupta and N.D. Georganas, “Analysis of a packet switch with input and output buffers
and speed constraints,” in Proc. InfoCom ‘91, Bal Harbour, FL, Apr. 1991, p.694-700.

[8] Y. Oie, M. Murata, K. Kubota, and H. Miyahara, “Effect of speedup in nonblocking packet
switch,” in Proc. ICC ‘89, Boston, MA, Jun. 1989, p. 410-14.

[9] J.S.-C. Chen and T.E. Stern, “Throughput analysis, optimal buffer allocation, and traffic
imbalance study of a generic nonblocking packet switch,” IEEE J. Select. Areas Commun.,
Apr. 1991, vol. 9, no. 3, p. 439-49.

O N()

13

[10] N. McKeown; V. Anantharam; J. Walrand, “Achieving 100% Throughput in an input-queued
switch,” Infocom ‘96.

[11] W.E. Leland, W. Willinger, M. Taqqu, and D. Wilson, “On the self-similar nature of Ether-
net traffic”, Proc. of Sigcomm, San Francisco, pp.183-193. Sept 1993.

[12] B. Prabhakar and N. McKeown, “On the Speedup Required for Combined Input and Output
Queued Switching.” Stanford University Technical Report, STAN-CSL-TR-97-738. Novem-
ber 1997.

[13] D. Gale, and L.S. Shapley, “College Admissions and the stability of marriage”, American
Mathematical Monthly, vol.69, pp.9-15, 1962.

[14] M.Andrews, B.Awerbuch, A. Fernandez, J. Kleinberg, T. Leighton, and Z. Liu. “Universal
stability results for greedy contention-resolution protocols.” 37th IEEE symposium on Foun-
dations of Computer Science, pp. 380-389 (1996).

[15] A. Borodin, J. Kleinberg, P. Raghavan, M. Sudan, and D. Williamson. “Adversarial queue-
ing theory.” 28th ACM Symposium on Theory of Computing, p. 376-385 (1996).

[16] A. Goel. “Stability of Networks and Protocols in the Adversarial Queueing Model
for Packet Routing.” Stanford University Technical Note STAN-CS-97-59.

[17] T. Feder, N. Megiddo, and S. Plotkin. “A sublinear parallel algorithm for stable matching.”
Fifth ACM-SIAM Symposium on Discrete Algorithms , p. 632-637 (1994).

[18] A. Charny, P. Krishna, N. Patel, and R. Simcoe. “Algorithms for Providing Bandwidth and
Delay Guarantees in Input-Buffered Crossbars with Speed Up.” Presented at 6th IEEE/IFIP
IWQoS ‘98, Napa, California. May 1998.

[19] P. Krishna, N. Patel, A. Charney , and R. Simcoe. “On the Speedup Required for Work-Con-
serving Crossbar Switches” Presented at 6th IEEE/IFIP IWQoS ‘98, Napa, California. May
1998.

[20] I. Stoica, and H. Zhang. “Exact Emulation of an Output Queueing Switch by a Combined
Input Output Queueing Switch.” Presented at 6th IEEE/IFIP IWQoS ‘98, Napa, California.
May 1998.

[21] A. Charny. “Providing QoS Guarantees in Input-Buffered Crossbar Switches with
Speedup”, Ph.D. dissertation, August 1998, MIT.

Appendix A: The Necessity of a Speedup of 2-1/N
With a speedup of two, the above algorithms (CCF and GBVOQ) exactly mimic an arbitrary

size OQ switch. The next natural question to ask is whether it is possible to emulate output queue-
ing using a CIOQ switch with a speedup less than 2. In this section we show a lower bound of

 on the speedup of any CIOQ switch that emulates OQ switching, even when the OQ switch
uses FIFO. Hence the algorithms that we have presented in this paper are almost optimal. In fact,
the difference of can be ignored for all practical purposes.

Since a speedup between 1 and 2 represents a non-integral distribution of phases, we first

describe how scheduling phases are distributed. A speedup of corresponds to having a trun-

cated time slot out of every time slots; the truncated time slot has just one scheduling phase,

whereas the other time slots have two scheduling phases each. In Figure 3, we show the dif-
ference between one-phased and two-phased time slots. For the purposes of our lower bound, we
need to assume that the scheduling algorithm does not know in advance whether a time slot is trun-
cated.

2 1
N
----–

1
N

2 1
N
----–

N

N 1–

14

 Recall from Section 3 that a cell is represented as P-TL, where P represents which output port
the cell is destined to, and TL represents the time to leave for the cell. For example, the cell C-7
must be scheduled for port C before the end of time slot 7.

The input traffic pattern that provides the lower bound for an CIOQ switch is given
below. The traffic pattern spans time slots, the last of which is truncated.

1. In the first time slot, all input ports receive cells destined for the same output port, .

1. In the second time slot, the input port that had the lowest time to leave in the previous
time slot does not receive any more cells. In addition, the rest of the input ports receive
cells destined for the same output port, .

1. In the th time slot, the input ports that had the lowest time to leave in each of the
previous time slots do not receive any more cells. In addition, the rest of the input ports
must receive cells destined for the same output port, .

We can repeat the above traffic pattern as many time as required to create arbitrarily long traf-
fic patterns. In Figure 4, we show the above sequence of cells for a switch. The departure

events from the OQ switch are depicted on the right, and the arrival events are on the left. For sim-

Time Slot

Arrival
Phase

Scheduling
Phase 1

Departure
Phase

Arrival
Phase

Scheduling
Phase 1

Departure
Phase

Scheduling
Phase 2

One Scheduling Phase Time Slot

Two Scheduling Phases Time Slot

Figure 3: One scheduling phase and two scheduling phase time slots.

N N×
N

P1

P2

i i 1–

Pi

OQ Switch
A

B

C

A-1

A-3B-3C-3

A-2A-3A-4

Time Slot Time Slot
23 1 34 2

A
rr

iv
al

s

X

Y

Z

A-2B-2

A-4B-4C-4D-4

4

B-3B-4

C-4

D-4

A-1

1

B-2

C-3

D

W

D
epartures

Figure 4: Lower bound Input Traffic Pattern for a 4x4 switch.

4 4×

15

plicity, we present the proof of our lower bound on this switch instead of a general
switch.

Figure 5 shows the only possible schedule for transferring these cells across in seven phases.

Of the four time slots, the last one is truncated, giving a total of seven phases. Cell A-1 must leave
the input side during the first phase, since the CIOQ switch does not know whether the first time
slot is truncated. Similarly, cells B-2, C-3, and D-4 must leave during the third, fifth, and seventh
phases, respectively (see Figure 5(a)). Cell A-2 must leave the input side by the end of the third
phase. But it cannot leave during the first or the third phase because of contention. Therefore, it
must depart during the second phase. Similarly, cells B-3 and C-4 must depart during the fourth
and sixth phases, respectively (see Figure 5(b)). Continuing this elimination process (Figure 5(c),
(d)), there is only one possible scheduling order. For this input traffic pattern, the switch needs all

seven phases in four time slots which corresponds to a minimum speedup of (or).

4 4× N N×

Phase PA PB PC PD

1

2

3

4

5

6

7

A-1

B-2

C-3

D-4

Phase PA PB PC PD

1

2

3

4

5

6

7

A-1

B-2

C-3

D-4

 (a) (b)

 (c) (d)

Figure 5: Scheduling Order for the lower bound input traffic pattern in Figure 4.

A-2

B-3

C-4

Phase PA PB PC PD

1

2

3

4

5

6

7

A-1

B-2

C-3

D-4

A-2

B-3

C-4

A-3

B-4

Phase PA PB PC PD

1

2

3

4

5

6

7

A-1

B-2

C-3

D-4

A-2

B-3

C-4

A-3

B-4

A-4

7
4
--- 2 1

4
---–

16

Theorem 11: A minimum speedup of is necessary for an CIOQ switch operat-

ing under any algorithm which is not allowed to consider the number of scheduling phases in a
time slot.

The proof of Theorem 11 is a straight-forward extension of the CIOQ switch example.

Appendix B: The Sufficiency of a Speedup of 2-1/N to Mimic a
FIFO Output Queued Switch

We now show that it is possible to emulate a FIFO OQ switch using a speedup of . Spe-

cifically, we show that this emulation can be achieved by a CIOQ switch which follows the general
framework described in Section 2, using a scheme that we call “Last In Highest Priority” (LIHP)
to determine input priorities for incoming cells. As the name suggests, LIHP places a newly arriv-
ing cell right at the front of the input priority list. The analysis in this section borrows heavily from
ideas described in Section 3.

In this section we use a slightly different time slot structure. A “normal” time slot has an
arrival phase followed by two scheduling phases and then a departure phase, whereas a “trun-
cated” time slot has an arrival phase, a scheduling phase, and then a departure phase. Since the

speedup is , we assume that there are at least normal phases between two truncated

phases. The CIOQ switch does not need to know which phases are truncated.

At any time instant, and for any cell , let denote the number of truncated time
slots between now and the time when this cell leaves the OQ switch, inclusive. Recall from Sec-
tion 2 that is the slackness of cell , where and
refer to the output cushion and input thread of the cell, respectively.

The following lemma holds for CIOQ switches that use LIHP and operate at a speedup of

.

Lemma 3: If the OQ switch being emulated is FIFO, then after the first

scheduling phase and just before the arrival phase, for all cells waiting on the input side.

Theorem 12 is a consequence of Lemma 3 — we defer the proof of the lemma itself to the end of
this section.

Theorem 12: A speedup of suffices for a CIOQ switch that uses LIHP to emulate a
FIFO OQ switch.

Proof: Suppose it is time for cell to leave the OQ switch, and suppose that the CIOQ
switch has successfully mimicked a FIFO OQ switch so far. Clearly, must be zero. If
has already crossed over to the output side then we are done. So suppose is still queued at its
input port. If the current time slot were truncated then would be at least one (Lemma 3).
But then the input thread would be negative, which is not possible. Therefore, the current time slot
has two scheduling phases. Invoking Lemma 3 again, must be at least zero after the first

2 1
N
----– N N×

4 4×

2 1
N
----–

2 1
N
----– N 1–

X NTS X()

L X() OC X() IT X()–= X OC X() IT X()

2 1
N
----–

L X() NTS X()≥

X

2 1
N
----–

X
OC X() X

X
L X()

L X()

17

scheduling phase. Since is zero, the input thread of must be zero too. Cell , there-
fore, is at the front of both its input and its output priority lists, and will cross the switch in the sec-
ond scheduling phase, just before the departure phase. This completes the proof of the theorem. z

 Proof of Lemma 3: Suppose the lemma has been true till the beginning of time slot . We
prove that the lemma holds at the end of the first scheduling phase and at the end of the departure
phase in time slot .

We first consider the end of the first scheduling phase. Cells which were already present on the
input side at the beginning of time satisfy , as does not change (a property of
FIFO -- the departure time of a cell from the OQ switch gets fixed upon arrival, and does not
change), and can only go up (see Lemma 1 for an explanation of why can not decrease) dur-
ing the arrival and the scheduling phases. Now consider a cell which arrives during time slot .
Let . Since the slackness of a cell is at least zero upon arrival (remember that the
input thread of an arriving cell is zero in LIHP), the slackness at the end of the first scheduling
phase must be at least one. Therefore trivially satisfies the lemma if . Suppose . At
most cells could have arrived during the current time slot, and therefore, there must have been a
cell in the system with a of , and the same output port as , at the beginning of time

 (this is where we use the fact that the truncated time slots are spaced at least apart). If is
waiting on the input side, then . Since the OQ switch is FIFO,

. But the input thread of the arriving cell must be zero. Hence, the slack-
ness of is at least after the arrival phase, and consequently, at least after the first sched-
uling phase. The case where is waiting at the output side is similar, and we omit the details.

Now concentrate on the end of time slot . If this time slot turns out to be normal, then the slack-
ness of any cell does not decrease during the second scheduling phase and the departure phase.
Else, the slackness of any cell can go down by at most one. But the value goes down by one
for all cells in the system, and the lemma continues to hold.

Appendix C: Proof of Lemma 2.
The proof is by contradiction. Assume there does exist a cycle in the dependency graph on

active cells. Pick a smallest cycle in this graph. If there is an edge from cell X to cell Y, then Y
must be ahead of X either in the input queue ordering or in the output queue ordering. We call the
edge an “input” edge in the former case and an “output” edge in the latter; ambiguities are resolved
arbitrarily. The smallest cycle must have alternating input and output edges, because two succes-
sive input or output edges could be collapsed into one resulting in a smaller cycle. If there is an
output edge from X to Y, then the output cushion of Y is at most as large as that of X. But X and Y
are both active, and the input thread of an active cell must equal its output cushion. Therefore, the
input thread of Y is no larger than the input thread of X. Also, if there is an input edge from X to Y
then the input thread of Y must be strictly smaller than that of X; that is, X appears in Y’s input
thread. The smallest cycle must have at least two edges, as there can be no self loops in the depen-
dency graph. Consequently, the cycle must contain at least one input edge. But this implies that as
we traverse the cycle once the input thread of the cell where we start must be larger than the input
thread of the cell where we end. Since we start and end at the same cell as we traverse a cycle, this
implies that the input thread of this cell must be less than itself. This is clearly impossible. Hence
our assumption that there exists a cycle in the graph cannot be true, and the lemma is proved.

OC X() X X

t 1–

t

t L NTS≥ NTS

L L
X t

k NTS X()=

X k 1≤ k 1>
N

Y NTS k 1– X
t N Y

OC Y() L Y() k 1–≥ ≥
OC X() OC Y()≥ X

X k 1– k
Y

t

NTS

