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Abstract—Matching pursuits over a basis of separable Gabor difference(DFD) signal over a basis of Gabor functions. This
functions has been demonstrated to outperform DCT methods for codec was reported consistently to outperform the MPEG4
displaced frame difference coding for video compression. Unfor- \sarification Model [9]-[11], which decomposes the DFD
tunately, apart from very low bit-rate applications, the algorithm signal over thaliscrete cosine transforfDCT) basis

involves an extremely high computational load. This paper con- - - A
tains original contribution to the issues of dictionary selection and The drawback of matching pursuits DFD coding is the fact

fast implementation for matching pursuits video coding. First, itis  that, apart from very low bit rates, it necessitates a very high
shown that the PSNR performance of existing matching pursuits computational cost compared to other methods. The DFD signal
codecs can be improved and the implementation cost reduced by is decomposed by correlating it with the basis functions. As a
a better selection of dictionary functions. Secondly, dictionary fac-  consequence of employing a redundant basis, the number of cor-
torization is put forward to further reduce implementation CostS.  ra|ations is increased. In addition, a matching pursuits decom-
A reduction of the computational load by a factor of 20 is achieved L . . . .
compared to implementations reported to date. For a majority of position _requwe_s multiple pass_es over da_ta a_s, in ge”‘?fa" itis
test conditions, this reduction is supplemented by an improvement NOt possible to find a compact linear combination of basis func-
in reconstruction quality. Finally, a pruned full-search algorithm  tions approximating the coded signal in a single pass.

is introduced, which offers significant quality gains compared to This paper describes original contribution to the issues of dic-
the better-known heuristic fast-search algorithm, while keeping tionary selection and fast implementation of matching pursuits

the computational cost low. DFD coding, and draws on work partially presented in the com-
Index Terms—Displaced frame difference, low-complexity algo- panion papers [12], [13]. Firstly, it is postulated that a basis for
rithm, matching pursuit, pruned full search, video coding. coding DFD signals should include functions well localized in

space. Example bases which contain such functions are verified
to offer a better trade-off between performance and implementa-
tion cost, compared to the basis reported by Neff and Zakhor [7],
ECOMPOSING a signal into a linear combination of basifor a broad selection of video sequences. Further, the new bases
vectors is a common problem in information processingre constructed in such a way that a basis vector can be factor-
A matching pursuit [1] is a greedy algorithm that addresses th®d into another basis vector and an auxiliary low-complexity
problem of signal decomposition over an overcomplete basispulse response. Thus, the basis is constructed through a suc-
set. Matching pursuits can have advantages for compressionc@ssion of short-kernel convolutions, which enables reusing pre-
the basis can be arbitrarily large and contain functions selectgdus filtering results within the matching pursuits framework
to closely match the structures comprising the coded signahd leads to a considerable reduction of the computational cost.
This contrasts with transform or subband coding, where tiFnally, it is shown that the new bases have advantages for a
basis is complete and constrained by orthogonality or perféatl-search matching pursuit and overcome the traditional prob-
reconstruction conditions. Then, signal structures which are neins of the known full-search algorithms: large storage require-
present in the basis must be represented by a linear combifm@nts and an extremely high computational cost.
tion of a larger number of basis functions, which spreads signalThis paper is structured as follows. Section Il reviews the
energy and detriments compression. However, the design ofdsvelopments in matching pursuits video coding. Section IlI
optimal overcomplete basis in the rate-distortion sense is an npresents alternative bases, which offer an improved PSNR
Several matching pursuits algorithms for image [2]-[4] angerformance at a reduced computational cost, compared to
video coding [5]-[8] were reported in recent years. This worthe basis reported by other authors. Section IV introduces
pertains to the video codec of Neff and Zakhor [7], whichases obtained by cascaded short-kernel convolutions for
employs matching pursuits to decompose diplaced frame low-complexity matching pursuits. Section V describes the
original pruned full-search algorithm. Section VI compares the
performances of the proposed bases. Conclusions are drawn in
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Let H be the Hilbert spac& = R™. The inner product of
vectorsf, g € H is defined agf, g) = >_,, f[n]g[n] and the
norm of a vectorf is || f|| = (f, f)'/?. Let D = {g}, where
llgx]| = 1, span(D) = H andcard(D) > N be an overcom-
plete basis foH. A matching pursuit strives to compute a linear
expansion of a vectof € H overD by orthogonally projecting
it onto basis vectors. The basis vectgy,, which maximizes
[{f, gr)| is selected as the first approximation of

f = <f7 gko)Qko + le (1) \ {
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Now, the residualR, f is projected onto basis vectors. This 11 W e
process is repeated until the step which satisfies some con- (s e - - '
vergence criterion. The vectgrcan now be expanded as L2
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whereR,f = f. The basis vectors,,, in (2) are referred to H
asatoms In contrast to the decomposition, signal expansion is I
a low-complexity operation and involves a linear combination Il
of selected atoms; the ordering of atoms is not significant. The ||
knowledge of the sequendéR,. f, gx.), kn}, n = 0---m —
1, referred to as thstructure bookis required to recover an
approximation of the vectof with the errori,,, f.

;u---l’r'i'u' -
lllll III
Ill.- Hl . !

B. Matching Pursuits for DFD Coding ©

1) Description of the Algorithm:The codec proposed by

Neff and Zakhor [7] employs a matching pursuit to expand the ,., . ; B
DFD signal over a basis of separable Gabor functions, defined [N R
as
I
g@g(i, J)= ga('i)gg(j) (3) HiIs = —as
whereg(i) andg;(j) are one dimensional functions, specified v - ; e

by the set of parametes® = {s, £, ¢, N}: the scales, the e
frequencyg, the phase> and the domain sizé/ (d)

— N-1
NN (o (i- )
: 2
ali) = Kag | ——=—
9ali) = Kag | ——2— | cos T +¢

4)
wherei =0, 1, ..., N — 1, Kz is a normalization factor, and
g(.) is a Gaussian window defined g&) = ¢~

The 2-D form of the dictionary of Neff and Zakhor is shown
in Fig. 1(a). The{s, &, ¢, N} parameters can be found in the (
reference [7]. This dictionary will be referred to as DO in the fol-

i i ; i ; g. 1. The 2-D dictionaries. (a) DO (20 20), Neff and Zakhor [7]. (b) D1
lowing discussion, and was obtained experimentally by decof(§16>< 16). (0) D2 (11x 11). (d) C1 (16x 16). (&) C2 (L1x 11). (. () C3 (13

posing a training set of DFD images. In this paper, the set DO, 333) pe vieeschouwer and Macq [18], [19]. Haar function dictionary used for
shown in Fig. 1(a), will be referred agdictionary, whereas the atom search and its smoothed version used for expansion. Functions are indexed

basisDO will consist of all integer translations of the functiondrom top left to bottom right, starting from 0.
from the dictionary DO within the DFD signal.

The matching pursuits codec terminates the decompositibiPEG4 Verification Model, both subjectively and in the PSNR
when a pre-selected rate or distortion criterion is satisfied. Teense [9]-[11]. The power of the technique depends on the fact
complex entropy coding of the structure book hampers a ratbat the Gabor dictionary matches the structures present in most
distortion optimization of the decomposition. Nevertheless, th#-D signals better than the dictionary consisting of 64 DCT
codec of Neff and Zakhor was demonstrated consistently basis functions. The matching pursuit eliminates the blockwise
outperform the DCT-based algorithms such as H.263 or teegmentation of the motion residual and avoids the blocking

RELp==E0

—
~—
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and ringing artifacts. Moreover, the Gabor dictionary was re- Vertical Filtering Horizontal Filtering
ported to outperform the DCT dictionary, even if the restriction
of the fixed blockwise structure of the DCT decomposition was
relaxed [14].

2) Computational Cost and Memory Requiremerisie to
the iterative nature of a matching pursuit, the implementation
cost is related to the number of atoms stored in the structure
book. Hence, with the exception of very low bit rates, the com-
putational cost of the video encoder is extremely high. Trunca-
tion of basis functions’ domain sizes as well as separability hetjg. 2. Memory requirements of a serial implementation of the matching
keep the cost of every iteration at a reasonable level. An atdHisuits algorithm [7].
search can be split into correlating the coded signal with the

basis and picking the atom which maximizes the inner produgjuired (at most) to store the correlation results, as illustrated in
The cost associated with the correlation stage can be expregsgd 2. Buffer 0 stores the coded signal. The results of filtering
as the signal in the vertical direction are stored in buffer 1. These

are subjected to filtering in the horizontal direction, and the re-
Tc = (B+1)LS multlphcatlons—i—(B+1)(L—B)S additions Su'ts are Stored in buffer 2

®)

Atom Selection

where
B number of 1-D functions in the dictionary
(20 in the case of DO0);
L = Ef:—ol L; total of lengths of the dictionary functions; This section explains the derivation of new, improved dic-
S size of the search area (the whole frame gionaries for expanding DFD signals. A good dictionary is one
its subset). which provides a compact representation of the coded signal.
T. corresponds to the number of operations performed duringice coding the structure book may involve quantization as
single atom search. Neff and Zakhor $et= 16 x 16, which well as differential and adaptive entropy techniques, it is diffi-
gives rise to the “fast” search algorithm, in contrast to a “fullcultto estimate the coding cost, associated with a given structure
search where the entire frame is searched. In the case of the p@gk, before the decomposition terminates. Therefore, a sim-
algorithm, the search area is considerably smaller than the fraffiéication is adopted in the following discussion and the term
size, which reduces the computational cost at the expense of@mpact representation” refers to a small numberf entries
slightly deteriorated performance. However, before the searffrthe structure book. For a fixee, a more compact represen-
can commence, an attempt is made to identify the region of st2éion yields a smaller value dfffz,, f||. In the terminology of
S to be searched for atoms. This involves finding the enerdgallat and Zhang [1], this is equivalent to improving the decay
of overlapping subblocks, with the center of the maximum ef@ate of the residuak,, f, which can be achieved in two ways:
ergy subblock adopted as the origin for atom search. The imple-1) decomposing the signal over a larger basis;
mentation cost associated with this “energy search” procedure2) including in the basis functions that are better correlated

I1l. | MPROVED DICTIONARIES FOR MATCHING PURSUITSDFD
CODING

is small and can be ignored. to the coded signal.
The cost associated with maximizing the inner product canInherent in increasing the size of the basis set is an increase
be estimated as of the implementation cost, and therefore the first of the above
methods is not attractive. On the other hand, improving the per-
T,, = 2B%S. (6) formance by a better selection of dictionary functions (if pos-

sible) is an appealing way forward, as it need not imply an in-
T, stands for the required number of comparisons and igno@ease of the implementation cost.
the temporary assignments and control flow. The factor of two Since the design of an optimal overcomplete basis is com-
accounts for the fact that the absolute value maximization is peutationally intractable, the derivation of new dictionaries pre-
formed over a set of signed numbers. Using relations (5) asdnted in this paper was empirical. First, the new dictionaries
(6), the cost of a single atom search with the basis DO is equatre obtained through a progression of tests using a training
to 61325 multiplications,57125 additions, an@®00S compar- set of video sequences. Second, the improvements associated
isons. with the proposed dictionaries were verified using a broader se-
The traditional serial implementation of a matching pursuiection of video sources. The training set consisted of 100 CIF
individually correlates every basis function with the residuatesolution luminance frames from the sequences “Silent Voice,”
If the dictionary is separable, then three image buffers are Ff&oreman,” “Table Tennis,” and “Mobile and Calendar,” which
were encoded using a standard motion-compensated architec-
1Equation (5) is a simplification of the formula derived in [7] and does notture' DFDs were de200mposed using the fast atom search, with
account for the fact that localized filtering in one direction (e.g., vertical) i& S€arch ared = 21<. For any sequence, the number of atoms
carried out over a slightly larger area thinso that the second stage of filtering coded per frame was kept constant, and was equal to: 300 for
(horizontal) operates on correct data. For the coding parameters selected in“@ient \Voice,” 600 for “Foreman,” 1000 for “Table Tennis,”

the approximation error is less than 5% and will be further reduced as the search . . " L
area increases, to disappear completely in the case of a full-frame search. and 2000 for “Mobile and Calendar.” Average atom distribu-
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tions, quoted in the following, refer to an average of normalize
distributions obtained separately for every training sequence

A. Critique of Dictionary DO

It is widely accepted [15]-[17] that the random process ul
derlying DFD signals is nonstationary. Indeed, single DFDs a
reminiscent of line drawings, where signal energy is conce
trated into narrow, elongated regions along moving edges, d
to the inaccuracies of the motion model. Therefore, it is post
lated that a good basis for coding DFD signals should incluc
functions, which are well localized in space, to account for tr
motion-model failure areas. However, as can be observed fr
Fig. 1(a), dictionary DO appears instead to put a strong emphas::
on coding smooth structures of a relatively large spatial support. 8§
For example, consider the subset of zero frequency functions. Il §
begins with function 0, which is the unit impulse with the do- &
main of sizeN = 1, followed by function 1, whose domain size
is equal toN = 5. The increment between these two domain
sizes seems to be too abrupt, which will cause the energy of
nonzero mean structures with a spatial support of, say, 2 or 4 tc
be spread over multiple atoms. Such structures are expected tu
be presentin the coded DFDs. Similarly, the dictionary lacks ﬂ[}% 3. Histograms of functions counts; white corresponds to frequently
high-frequency impulse response-{1l], and the steepest edgeoccurring functions and black to infrequently occurring functions. (a)
that can be accounted for is [1,_()1]' by means of function 9. Dictionary DO, evaluate_d over four training set sequences. (b) Dictionary D1,

The dictionary DO was used to code the training set, ancEafiened, Ve for vaning set sequences (9 Dictonary O3 evalhated fo
histogram of dictionary function counts, shown in Fig. 3(a), was
collected_inthe process..As can _be observed from thg histogram, (functions 0—6 in Table 1) was found to be superior to
the contribution of certain functlons, suc_h as the_ pairs 5 and 6 the progression 1, 5, 9, 11, 15, 21, 23, 29, 35 of zero
or 12 and 13 to the reconstructed signal is negligible. These are
pairs of similar impulse responses, which exemplify the rela-
tively high level of aliasing present in the dictionary. On one
hand, aliasing is inherent in an overcomplete basis and enables

a compact representation of the coded signal. However, from th ¢ = 8, were introduced.
point of view of implementation and coding efficiency, the se- The PSNR improvement achieved by D1 over DO ranged be-

tween 0.1 dB in the case of “Silent Voice” to 0.7 dB in the case

lection of functions in the dictionary DO does not seem to of'feroaf “Mobile and Calendar.” Most importantly, owing to a reduc-

good balance, and for the training set of sequences, the functi?ns o ) . ; ; .
on of the dictionary size and basis function lengths, this gain
that correspond to the least-frequently selected atoms couIdV'\Pe

- . as achieved at a computational costiof = 20235 multi-
removed without affecting the PSNR performance. plications+ 17515 additions,7,,, = 5125 comparisons per

atom, a reduction by factors of 3 and 1.6, respectively. An addi-
tional benefit issues from the fact that an index into dictionary
As an alternative to DO, a new dictionary D1 is proposed. Thi31 can be coded with 8 bits, compared to 8.64 bits required for
dictionary was derived by gradually modifying the dictionaran index into dictionary DO. These costs can be lowered by en-
DO to overcome the deficiencies described above. The benefitspy coding. Experiments performed show that the histograms
(if any) of every modification were evaluated experimentallgf atom counts can vary considerably for different video sources
using the training set. Only the modifications that improved tteee Fig. 3(c) and (d)], which suggests that the source associated
overall system performance by either leading to a better recamith the sequencék,, } in the structure book should be modeled
struction quality or a reduced computational cost were kept. adaptively.
The derived dictionary D1 consists of 256 (¥616) func-
tions, and is shown in Figs. 4 and 1(b). All dictionary D1 funcC. The Proposed Dictionary D2
tions can be described by Gabor parameters, shown in Table frhe dictionary D1 outperformed the dictionary DO both in
The following list summarizes the introduced modifications. terms of rate distortion and implementation cost. Therefore, a
1) Removing from DO functions which corresponded to thguestion arose whether D1 could be further simplified while still

(c) (d)

frequency function lengths in the dictionary DO.
4) Redesigning the set of high-frequency functions. Most
importantly, the functions 7 and 13, with the frequency

B. The Proposed Dictionary D1

least frequently occurring atoms. maintaining superiority over DO.
2) Introducing the short-kernel even length functions 1, 7, 9 The dictionary D2 was derived by progressively removing
(see Table I). functions from the dictionary D1. At every substep of the

3) Redesigning the set of zero frequency functions. In shodegrivation, one function was removed from the dictionary
the progression of function lengths: 1, 2, 3, 5, 9, 17, 2&sed during the previous substep, starting from dictionary D1.
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Fig. 4. The 16 impulse responses comprising dictionary D1.
TABLE |

{s, &, ¢, N} QUADRUPLETS THAT DESCRIBE THEDICTIONARY D1

findex [ of 1] 2] 3] o] 5] 6] 7[ 8] of 1] u] ] 3] 14] 15
P tof20]25]a2]60] 120170 o] o] 6o 70100 140304560
€ 0.0 00|0o|oo|oo| ool 00| 8ol 40| 40| 20| 13| 10|80/ 40/ 30
¢ fooloo|ooloo|oo| ool oolap|ap|az|r2| 2] =2]00]00]o00
N o | 2| 3| s| o | 2| 2| 3| 4| 7| ul| 1| 3| s| 7

The function to be removed was always the one which w&s Comparison of Dictionary Performance
the least-frequently matched to the coded signal (on average

for the training set). The procedure was terminated when the!n Order to verify the improved performances of dictionaries

PSNR performance of the current dictionary became inferibit @nd D2, they were employed to code data from outside the
to the PSNR performance of DO. This occurred when tHERINING set. Fig. 5 shows the PSNR versus the number of atoms
dictionary was narrowed down to between 12 and 8 functiorfd0tS, obtained by coding single DFD frames from example

depending on the sequence. A decision was taken that %@CIF and 4CIF resolution sequences (similar results were also
dictionary D2 should consist of 11 1-D functions for the Simm@btained for QCIF and CIF resolution sources). Fast atom search

reason that, in absence of entropy coding,x.11 functions Was employed and atom products did not undergo any quanti-
can be enumerated with 7 bits with very little redundancgtion- For SQCIF sequences, overlapped motion compensation

Thus, dictionary D2 was formed by removing functions fron{/@s used, as defined in H.263. Non-overlapped motion compen-
D1 in the following order (indices into 1-D functions): 14, 6,sat|on was used in the case of the 4CIF sequences. The following

11, 3, 13, leaving functions 0, 1, 2, 4, 5, 7, 8, 9, 10, 12, arpservations can be made from Fig. 5.
15. Dictionary D2 offers a considerably lower computational 1) For all tested sequences, the decay rate of the residual is

cost, compared to DO, = 8405 multiplications and708S fastest in the case of the dictionary D1.
additions,T;,, = 2425 comparisons per atom, a reduction by 2) The decay rate achieved with the dictionary D2 is slower
factors of 7.3 and 3.3, respectively. than the decay rate achieved with the dictionary DO only
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FIR11: 100000 0-1)
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in the case of “Mother and Daughter.” For remaining s¢
guences, D2 either matches or outperforms DO. ‘ ‘ _ _ o
3) The proposed dictionaries perform consistently well f&19- 7- Succession of convolutions forming the dictionary C2.

different sequences, resolutions, and in the presence of
different motion compensation techniques. filters. This enables reusing previous filtering results within the

It can be concluded that D1 offers an all-round rate-distortiof?@tching pursuits framework.

complexity improvement over dictionary DO. The performance Thus, dictionaries C1 and C2 were designed to approximate
of dictionary D2 is, on average, equivalent to that of dictionafj?€ dictionaries D1 and D2 respectively, and arise through a cas-

DO, at a significantly lower computational cost. Cade of convolutions shown in Figs. 6 and 7. Fig. 1(d) and (e)
show dictionaries C1 and C2 in a 2-D form. The coefficients of

the auxiliary impulse responses FIR are equal te-1, or (in
IV. REDUCED COST CORRELATION FORMATCHING PURSUITS  one case) 2. Therefore, the correlation stage can be implemented

The computational cost figures of dictionaries DO, D1 an\Hith add and shift operations alone. If, for simplicity, a multipli-
e tion by 2 is treated as two additions, then the computational

D2 quoted in Section Il show that correlations form the mo$P ¢ ated with dicti Cli WESS additi
expensive part of a matching pursuit. In this section, it is shoyipSt associated with dictionary IS equa adartions,

how a factorization of dictionary functions can be employed . 7|_mutl_t|pllcat|ons, a_nd;lfs comp?rls?[r;]s ber atom.dThte mlul-
achieve a substantial reduction of that cost. iplications are required to normalize the inner product values.

Prior to normalization, dictionary functions of the same energy
can be grouped and maximized separately. Then, only one nor-
malization per group is required before the final maximization.
The implementation cost required by a matching pursuithere are 57 such groups in C1. Similarly, the computational
decomposition can be considerably reduced by factorizing tbest associated with dictionary C2 is equabki.S additions,
basis functions. The idea is to design the dictionary in such4& multiplications, an@42S comparisons per atom.
way that longer dictionary functions arise through a convolution Employing a factorized dictionary increases storage require-
of shorter dictionary functions with low complexity auxiliaryments. The required number of frame buffers depends on the

A. Factorizing Basis Functions
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C. Extension to Nonseparable Bases

In this section, successive factorizations were used to approx-
imate prototype separable Gabor dictionaries. However, this ap-
proach can be applied in a more flexible manner, to construct
arbitrarily shaped functions. For example, it seems logical to
enrich the dictionary with diagonal functions of various orienta-
tions [8], [12]. Further research is required to establish whether
such extensions justify the associated increase of computational

and memory requirements.
Fig. 8. Memory requirements of a fast matching pursuits algorithm. Arrows
(1) and (2) illustrate possible data flow directions during vertical filtering, and
arrows (3) and (4) illustrate possible data flow directions during horizontal V. PRUNED FULL SEARCH
filtering.

In order to keep the computational cost of a matching pur-
suits decomposition down to a reasonable level, a fast-search
topology of the diagrams shown in Figs. 6 and 7. It can be showgyorithm which limits the search area to a subset of the whole
that, in the case of dictionaries C1 and C2, a serial implementgame was proposed [7]. However, it is recognized that the fast
tion requires five data buffers (Fig. 8): buffer O stores the codeeéarch leads to suboptimum results, and one way of improving
signal. The results of filtering the signal vertically are stored ithe decay rate is to increase the search &re@ince atom do-
buffer 1. It will be necessary to further vertically filter the datanains are limited, then for a sufficiently large value$fthe
stored in buffer 1, and to store both the original and the filteregbatial support of any atom will occupy a small fractionf
signal versions. Frame buffer 2 is provided for that purpose. Vavtallat and Zhang [1] took advantage of this fact by proposing
tically filtered data, stored either in buffer 1 or 2 is then subjectaHe following full-search algorithm. Suppose that atthe-1)th
to horizontal filtering, and the result is stored in buffer 3. Agairstage of the decomposition an atgm, is selected. Then, the
it will be necessary to further horizontally filter the data storegesidualR,, ,; f can be written as
in buffer 3, and to store both the original and the filtered signal
versions. Frame buffer 4 is provided for that purpose. Roif =R f — (RS, 9., )9k, - @)
It should be stressed that alternative factorizations exist for
dictionaries C1 and C2 to those shown in Figs. 6 and 7, and snf$@Ww, the inner product between any basis funcgpre D and
further reductions of computational cost could be achieved Bye residuali, . f can be written as

rearranging the order of convolutions. However, this would in-
crease storage requirements. <Rn+1f7 9k> = <Rnf7 9k> - <Rnf7 gkn> <9kn7 9k>- 8

e e e et o 1 VAU, . 1) a10(R. 1. e b stre e
e calculation of the products,, 1 f, gx) only requires the

This dictionary consists of Haar wavepackets and is showgm utation of the inner products ). Itis feasible to tab-
in Fig. 1(f). Since the Haar basis arises through ConVOIUtiOﬁ?atepthe alue tg red ce?ﬁegébh lexity even further
with the impulse responses [1,1] andf1] at different scales, u valueggs,., gr) u plexity even 1u '

the computational cost associated with this dictionary is Iov?/_:hen’the computation of an inner produs, 1. f, gx) requires

1685 additions, 9 multiplications, an8i385 comparisons are on_?hmuluptl;canon and one Tdd'tll(on only. | for th
required per atom. However, storage is increased to se\ien t? bro ucﬁ%’“”’ g’“|> only ?he nfonze:ﬁ values for t ?SP}
frame buffers. While this dictionary offered implementatio pnctionsg, which overlapgy, . Therelore, the average cost o
simplicity, its PSNR performance was found to be inferior gFeomputing the prgduc(ﬁnﬂf, g’%‘>.'s independent from the
that of dictionaries C1 and C2, due to the blocky nature jze of the coded signal. Instead, it is governed by the average

Haar functions. Since the submission of this manuscript, &garch ared, estimated using the fol!owmg formula, Wh'Ch
. . assumes that all atoms are selected with equal probabilities

Vleeschouwer and Macq reported a modified version of thei

algorithm [19]. The “blocky” Haar functions are now only used

to search the DFD signal for atoms, while the decomposition

is accomplished using a smoothed version of the diCtionaWhereLmaX is the size of the longest impulse response in the

shown in Fig. 1(g). This dictionary will be referred to as C3 "Ejictionary. For dictionaries DO, C1, C2, and G, evaluates to
the following, and its performance will be compared to othefyz 392 ‘972 549362 respectively.

dictionaries in Section VI.

Sf = (L/B + Lmax - 1)2 (9)

Unfortunately, this method requires an extremely high
amount of memory, as storage fét x B filtered versions
B. Performance of the residual signal is needed. This practically precludes it
from video applications. However, instead of employing the
The performance of dictionaries C1 and C2 was evaluatagdate procedure of (8), the region affected by the previously
using the procedure explained in Section IlI-D, and the resuftgcked atom can be simply recorrelated with the dictionary. If
are shown in Fig. 5. It can be observed that for all tested sefactorized basis is employed, the correlation is accomplished
quences, the factorizations C1 and C2 maintain the performandgéh a small number of additions per function. For example,
of the prototype dictionaries. dictionaries C1 and C2 require an average of 1.86 and 2.28
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TABLE I
SUMMARY OF THE COMPLEXITIES OF DIFFERENT DICTIONARIES
Dictionary DO D1 D2 C1 2 C3
comments Gabor fns Gabor fns Gabor fus factorized factorized smoothed Haar

De
Vleeschouwer
Neff 7] | section ITI-B | section III-C | section IV-A | section IV-A

no. of functions 20x20 16x16 11x11 16x16 11x11 13x13
multiplications/atom 61325 20235 8405 57 43 9
additions/atom 57128 17518 7085 4765 2768 1685
comparisons/atom 8005 5128 2428 5125 2425 3388
no. frame buffers 3 3 3 5 5 7
Sy 49? 322 232 382 272 362

S y—average area filtered during the pruned full-search algorithm.

additions per function per every location }, a complexity TABLE Il

equivalent to the multiply-add operation of (8). This is the maiMYMBER OFSECOND“SSPENTDU!,?ING AN EXAMPLE 100 ATOM DECOMPOSITION
EVALUATED FOR “FOREMAN" AT QCIF RESOLUTION, USING A SILICON

idea behind the pruned full-search algorithm, which operates  graphics 02 WorksTATION WiTH A MIPS R10000 ROCESSOR
as follows. CLOCKED AT 195 MHz

1) The entire frame is searched during the first stage of the

o . . Dictionary DO D1 D2 | Cl Cc2 C3
decomposition. For every location, an atom is stored that . “ | ‘ ‘ | ‘

maximizes the absolute value of the prod(B f, gx) fast search, 100 atoms, ' =21 x 21

at that location. Then, the best atom is picked by max- te 16.98 [ 6.07 | 2.59 | 0.84 | 0.50 | 0.53
imizing inner products of atoms stored at all individual tm 0.84 | 0.59 | 0.28 | 0.59 | 0.28 | 0.39
locations.

pruned full search, first atom, S = whole frame

2) During remaining stages, the search is only repeated on
that subset of the signal, which has been affected by the
previously picked atom. The size of this subset depends b
on the domain of dictionary functions and not on the size pruned full search, remaining 99 atoms, S = Sy, M = 8
of the DFD signal. t 2 - - | 474|153 225

The above algorithm was implemented with one modifica- £ 3 . . 276|082 115

tion: instead of storing an atom for every full-pixel location, the
residual is segmented into fixed subblocks of dizex A, and
a single atom is stored for every subblock. This has a number of

advantageS, such as: reducing Storage requirements for locall number of seconds spent correlating basis with residyak-number of
seconds spent maximizing the inner product value. Half-pixel motion estimation

b_eSt atom_s' red_uc_lng the_ number of normal_lzatlon Operat'%& performed within a radius of 16 pixels, using SAD as the matching criterion

(if a factorized dictionary is used), and reducing the number afd the “spiral” evalutation order.

comparisons. A disadvantage of this modification is a small in-

crease of the search area, as the region affected by the previ- . .
9 y P ?etch and result store cycles were not taken into account. In addi-

ously selected atom must be rounded uptofullycoveraninteqer the durai f product mizati d d on dat
number of subblocks. The choice of the subblock dizés im- - o 1€ duration of product maximization may depend on data

plementation dependent; we found that a choicéfot 8 ac- ordering. ) . . .
tually led to a reduction of the search time comparegtite- 1 The bengflts of gmploylng a full-search matching pursuit are
while offering considerable storage savings. presented in Section V.

The computational cost, associated with various dictionaries,
is summarized in Table Il. If a simplifying assumption is made VI. CODING RESULTS

that the costs of multiplication, addition and comparison opera-_, . . - .

tions are equivalent, dictionaries C1, C2 and C3 reduce the cos!—hls §eCt|_on compares the performances qf dictionaries pre-
’ ' . ~sented in this paper for QCIF and CIF resolution sequences.

of atom search by factors of 13, 24 and 25 compared to dictio-

nary DO for the same search area. Apart from the first stage, a

full pruned search with the dictionaries C1, C2 and C3 is smaller

than the cost of a fast search with the dictionary DO by factors ofMatching pursuits was investigated for coding the DFD

4, 15, and 8 respectively. Another observation that can be magiignal. The first frame of every test sequence was coded in

from Table Il is that, for factorized dictionaries, the cost of maxthe H.263 intraframe mode. Remaining frames were coded as

imizing the inner product is comparable to the cost of correl®-frames, using the standard motion-compensated architecture,

tion. This is confirmed by the example coding times, shown wnith half pixel motion estimation and a block size of ¥616.

Table Ill. It should be noted that these times are implementatidhe test sequences were 10 s long; CIF resolution sequences

dependent and serve only as an illustration. Similarly, Table Iligere coded at 30, and QCIF sequences were coded at 15

intended as a general guide. For example, issues such as opeftamdes/s. Overlapped motion compensation was used in the

£, - ; - |o0s85|043| 042
- - 0.54 | 0.25 0.23

motion estimation

‘l 0.98 l 0.98 l 0.98 ‘ 0.98 ‘ 0.98 | 0.98

Coder Configuration
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Fig. 9. PSNR performance of various dictionaries, QCIF resolution, 15 fps. (a) Akiyo. (b) Container Ship. (c) Hall Monitor. (c) Silent Voice.

case of the QCIF sequences, and the H.263 median-predict®inRate Control

algiorlahm was |?1|?]Ie?1ented tohentk:opy codhe the motlog field. Prior to the experiments, the test sequences were H.263 coded
21;.1 ,tAtee(\:/ZSrs gte;[g: oistthseegcrai:o,r;peo:i?iizc, aa&ee?:i\éviii rﬁts(: ll)J(rawder constant quantizgtion conditions. The matching pursuits
made whether to code an atom belonging to the luminance pl cr(])decs were then configured to match the bit expenditure of
or an atom belonging to one of the chrominance planes. It as%B?’ for every frgme. - . .
found that if this decision is taken solely based on inner-product he cost of codmg.a €1 c2, or .C3 d|ct'|onary index is lower
values, then very few chrominance atoms are encoded in fﬁ@n the cost of CO‘?"”G a D,O d|c.t|onary.|ndex'. Consequgntly,
case of dictionaries C1, C2, and C3. Therefore, inner produHEsthe case of factorized dictionaries, a given bit budget will b_e
of the chrominance atoms were biased by a factor of 1.15 Tt by @ higher number of atoms than in the case of DO, as il-
force the encoding of color information. lustrated in Table IV. This counteracts the reduction in compu-
The structure book was divided into three subsets, corf@fions. However, the computational penalty is very small, com-
sponding to the luminance and color component atoms, whiefred to the speed-up figures quoted in Section V. Secondly, it
were then coded separately. Atom positions were coded usifigsually compensated by an improvement in the PSNR perfor-
the algorithm of Zeng and Ahmed [20]. Atom products werg1ance.
quantized inside the decomposition loop to the reconstruction
levels 5, 9, 15, 25, 45, 80, 140, and 240. Thus, product mag- Coder Performance

nitudes were coded with 3 bits and followed by a sign bit. _ . . -
Functions were coded using a single index into the appropriate /95- 9 and 10 show the coding resuits obtained for dictio-

2-D dictionary. A variable length code designed assuming"@/€s DO, C1, C2, and C3. The following observations can be
uniform distribution of dictionary functions was used to codg'ade from the plots corresponding to the fast-search strategy.

function indices. For dictionaries DO, C1, C2, and C3, the 1) For very low bit rates, where a small number of atoms is
average cost of coding an index was equal to 8.72, 8.00, 6.94, coded, the performance of all dictionaries is very close.
and 7.49 bits, respectively. In some cases (“Silent Voice” QCIF, “Foreman” CIF,
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PSNR performance of various dictionaries, CIF resolution, 30 fps. (a) Mobile and Calendar. (b) Stefan Edberg. (c) Foreman. (d) News.

TABLE IV bile and Calendar” and “Hall Monitor,” the corresponding
PSNR curves cannot be distinguished.

PU D -
REVITSDICTIONARIES 4) Dictionary C3 (De Vleeschouwer and Macq [19])

Sequence Do | ot | cz | cs | matches the performance of the proposed dictionaries in
fast | fast | fast | fost | ful the case of “Mobile and Calendar” and “Container Ship,”
Hall | bit rate, kbps | 27.96 | 27.96 | 27.95 | 27.96 | 27.96 and proves slightly inferior for the remaining sequences
Monitor | av atom/frame | 73.6 | 76.0 | 80.0 | 784 | 76.5 (by Up to 0.4 dB)
QCIF Y {3401 3404 | 33.98 | 33.83 | 34.83 . ’ e . A
15fs | PSNR. | Ob | 3803 | 38.17 | 3837 | 3812 | 3861 For clarity, only a single full-search rgsult is shown in Figs. 9
dB | or | 4037 | 40.19 | 40.31 | 40.08 | 4056 and 10. It was observed that the relationships between PSNR
Stefan | bit rate, kbps | 2663 | 2663 | 2663 | 2663 | 2663 plots obtained with the full-search strategy are identical to those
Edberg | av atom/frame | 4580 | 4710 | 5033 | 4875 | 4710 obtained with the fast-search strategy. The full-search matching
le - CYb zzgg iggz izﬁf 2222 ZZZ pursuit offers a significant PSNR improvement over the fast
301ps s . . 2 . . . .
B | o 010 | 4002 | 4005 | 3945 | 40.87 search, ranging between 0.3-1.5 dB. Owing to the pruned full-

search strategy, the cost of a full-search matching pursuit with
dictionaries C1 and C2 is smaller than the cost of a fast matching

“News” CIF), dictionary DO fractionally outperforms pursuit with dictionary DO.
other dictionaries. The reconstructed sequences also underwent an informal sub-

2)

For all test sequences, the overall performance of the pjeetive quality assessment; example reconstructed frames are

posed dictionaries C1 and C2 is superior to that of dicti@hown in Figs. 11 and 12. In the case of a fast-search algorithm,
nary DO. The gain increases with the bit rate and reachii® subjective quality of reconstructions obtained with different
up to 3 dB in the case of “Mobile and Calendar.” dictionaries was often too close to identify any dictionary as su-

3) There is very little difference between the performanceerior. “Mobile and Calendar” is an exception that clearly favors
of dictionaries C1 and C2. Apart from the sequences “Mdhe proposed factorized dictionaries over DO.
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@ (b)

(© (d)

Fig. 11. Subjective performance of various dictionaries; “Akiyo” frame 298 (fragment), QCIF, 16 kbits/s. (a) Original. (b) DO, fast search, . 35)852Bast
search, 35.74 dB. (d) C1, full search, 36.32 dB.

© (d)

Fig. 12. Subjective performance of various dictionaries; “Mobile and Calendar” frame 299 (fragment), CIF, 2600 kbits/s. (a) Original. (b)&20¢cfa442
dB. (c) C2, fast search, 29.91 dB. (d) C1, full search, 30.40 dB.

A noticeable temporal artifact in matching pursuits videbigh contrast for some scene features. In the worst case,
coding is a sudden change from soft low contrast to shattis may cause selected objects to go in and out of focus on
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a frame-to-frame basis. The full-search algorithm usually [2] H.R.Rabiee, R. L. Kashyap, and S. R. Safavian, “Adaptive image repre-

succeeded in updating the scene more uniformly than the sentationwiths_egmentedorthogonal matching pursiEEE Int. Conf.
. . . Image Processingrol. 2, pp. 233-236, 1998.
fast-search algorithm, thus producing a more pleasing, stable[\e] H. R. Rabiee, S. R. Safavian, T. R. Gardos, and A. J. Mirani, “Low bit

reconstruction with fewer soft-to-sharp transitions. It can rate subband image coding with matching pursusgc. SPIE Visual
be concluded that the full-search matching pursuit can offer ~ Communications and Image Processing Cordl. 3309, pp. 875-880,

ignificant ad he heuristic fast algorith 1998
significant advantages over the heuristic fast algorithm. [4] M. Gharavi-Alkhansari, “A model for entropy coding in matching pur-

suits,” Proc. |IEEE Int. Conf. Image Processingol. 1, pp. 778-782,
1998.
[5] M. Vetterli and T. Kalker, “Matching pursuit for compression and ap-
plication to motion compensated video codinBybc. IEEE Int. Conf.
. . . . Image Processingrol. 1, pp. 725-729, 1994.
Matching pursuits video coding has been cursed by an ex{s] M. Gharavi-Alkhansari and T. S. Huang, “Fractal video coding by
tremely high implementation cost. This has, so far, prevented  matching pursuit,’Proc. IEEE Int. Conf. Image Processingl. 1, pp.

; ; 157-160, 1996.
a widespread acceptance of this method as state-of-the-art, d R. Neff and A, Zakhor, “Very low bit-rate video coding based on

spite excellent subjective and objective performance. This paper = matching pursuits,IEEE Trans. Circuits Syst. Video Technalol. 7,
presented new dictionaries and implementation techniques for  pp. 158-171, Feb. 1997.

; ; ; ; ; SN [8] D. W. Redmill, D. R. Bull, and P. Czerefski, “Video coding using a
matching pursuits video coding, which significantly lessen the fast nonseparable matching pursuits algorithRrdc. IEEE Int. Conf.

computational cost bottleneck. The total number of operations  |mage Processingol. 1, pp. 769-773, 1998.
required to decompose the coded signal was reduced by ovep] S.-C. S. Cheung, R. Neff, and A. Zakhor, “hanges regarding matching

; ; ; ; e pursuits in video VM V.11,” Document ISO/IEC JTC1/SC29/WG11,
20 times, compared to an implementation reported in the liter MPEG 98/M3832, July 1998,

ature [7]. For a majority of test conditions, this reduction was{10] R. Neff and S.-C. S. Cheung, “Cost and benefit analysis for matching
supplemented by an improvement in objective and subjective  pursuits as a version 2 tool,” Document ISO/IEC JTC1/SC29/WG11,

. . MPEG 98/M3834, July 1998.
reconStrU_Ct'on quality. o ) ) [11] O. K. Al-Shaykh, E. Miloslavsky, T. Nomura, R. Neff, and A. Zakhor,
In Section I, new dictionaries D1 and D2 were derived as “Video compression using matching pursuit$ZEE Trans. Circuits

alternatives to the dictionary DO reported by Neff and Zakhor  Syst. Video Technolol. 9, pp. 123-143, Feb. 1999.

P : : : 12] D. Bull, N. Canagarajah, and P. Czeregki “Dictionaries for matching
[7]' The derivation was eXpenmemal and it was gwded by thé pursuits video coding,Proc. IEEE Int. Symp. Circuits and Systewr.

desire to improve the correlation between the dictionaries and 4, pp. 540-543, 1999.
the residual signal. [13] P. Czerepiski, C. Davies, N. Canagarajah, and D. Bull, “Dictionaries

. . -~ . . and fast implementation for matching pursuits video coding Piiac.
In Section IV, an original low-cost implementation for the Picture Coding Symp1999, pp. 41—44.

correlation stage of a matching pursuit was introduced, whicli4] R. Neffand A. Zakhor, “Matching pursuits video coding at very low bit
depended on factorizing the dictionary. Two low-cost factorized Tltfsz"'zigproo IEEE Data Compression Cop&nowbird, UT, 1995, pp.
d!ct!onar!es—Cl and C2—were derived as approxmatlons_ O15] B. Girod,l“The efficiency of motion-compensating prediction for hybrid
dictionaries D1 and D2, and were shown to match the coding  coding of video sequencedEEE J. Select. Areas Commuuol. 5, pp.
performance of their prototypes. Assuming that the costs of ad[—le] él4§t-1;54HAU1@_J- 198t7- wred dant £

s R . . . . 1 A robach, “Tree-structured scene a aptive COdlﬁE rans.
dition, mqltlpl|cat!on, and comparison ope_ranons are equiva Commun.vol. 38, pp. 477-486, Apr. 1990.
lent, the dictionaries C1 and C2 reduce the implementation co$t7] w. Li and M. Kunt, “Morphological segmentation applied to displaced

by factors of 13 and 24, compared to dictionary DO, while pro- _ frame difference coding Signal Processingvol. 38, pp. 45-56, 1994.
viding a superior reconstruction quality. [18] C. De Vleeschouwer and B. Macq, “New dictionaries for matching pur-

; - o ; . suits video coding,Proc. IEEE Int. Conf. Image Processingl. 1, pp.
Section V introduced an efficient implementation of the full- 764-768, 1998.

search matching pursuit using the factorized bases. The full19] C. De Vleeschouwer and B. Macq, “Subband dictionaries for low-cost
- L s matching pursuits of video residue$fZEE Trans. Circuits Syst. Video
search algorithm offered a clear squecnve quality |mprovemen't Technol, vol. 9, pp. 984-993, Oct. 1999.
compared to the fast-search algorithm. In terms of the PSNR, j£o] G.zeng and N. Ahmed, “A block coding technique for encoding sparse
provided an advantage ranging between 0.3-1.5 dB, depending binary patterns,IEEE Trans. Acoust., Speech, Signal Processiog
37, pp. 778780, May 1989.
on the sequence.
The proposed dictionaries C1 and C2 clearly offer a better
balance between complexity and performance, compared to dic-

tionary DO.

VII. CONCLUSION
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