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David Bull, Member, IEEE

Abstract—Matching pursuits over a basis of separable Gabor
functions has been demonstrated to outperform DCT methods for
displaced frame difference coding for video compression. Unfor-
tunately, apart from very low bit-rate applications, the algorithm
involves an extremely high computational load. This paper con-
tains original contribution to the issues of dictionary selection and
fast implementation for matching pursuits video coding. First, it is
shown that the PSNR performance of existing matching pursuits
codecs can be improved and the implementation cost reduced by
a better selection of dictionary functions. Secondly, dictionary fac-
torization is put forward to further reduce implementation costs.
A reduction of the computational load by a factor of 20 is achieved
compared to implementations reported to date. For a majority of
test conditions, this reduction is supplemented by an improvement
in reconstruction quality. Finally, a pruned full-search algorithm
is introduced, which offers significant quality gains compared to
the better-known heuristic fast-search algorithm, while keeping
the computational cost low.

Index Terms—Displaced frame difference, low-complexity algo-
rithm, matching pursuit, pruned full search, video coding.

I. INTRODUCTION

DECOMPOSING a signal into a linear combination of basis
vectors is a common problem in information processing.

A matching pursuit [1] is a greedy algorithm that addresses the
problem of signal decomposition over an overcomplete basis
set. Matching pursuits can have advantages for compression, as
the basis can be arbitrarily large and contain functions selected
to closely match the structures comprising the coded signal.
This contrasts with transform or subband coding, where the
basis is complete and constrained by orthogonality or perfect
reconstruction conditions. Then, signal structures which are not
present in the basis must be represented by a linear combina-
tion of a larger number of basis functions, which spreads signal
energy and detriments compression. However, the design of an
optimal overcomplete basis in the rate-distortion sense is an np-.

Several matching pursuits algorithms for image [2]–[4] and
video coding [5]–[8] were reported in recent years. This work
pertains to the video codec of Neff and Zakhor [7], which
employs matching pursuits to decompose thedisplaced frame
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difference(DFD) signal over a basis of Gabor functions. This
codec was reported consistently to outperform the MPEG4
Verification Model [9]–[11], which decomposes the DFD
signal over thediscrete cosine transform(DCT) basis.

The drawback of matching pursuits DFD coding is the fact
that, apart from very low bit rates, it necessitates a very high
computational cost compared to other methods. The DFD signal
is decomposed by correlating it with the basis functions. As a
consequence of employing a redundant basis, the number of cor-
relations is increased. In addition, a matching pursuits decom-
position requires multiple passes over data as, in general, it is
not possible to find a compact linear combination of basis func-
tions approximating the coded signal in a single pass.

This paper describes original contribution to the issues of dic-
tionary selection and fast implementation of matching pursuits
DFD coding, and draws on work partially presented in the com-
panion papers [12], [13]. Firstly, it is postulated that a basis for
coding DFD signals should include functions well localized in
space. Example bases which contain such functions are verified
to offer a better trade-off between performance and implementa-
tion cost, compared to the basis reported by Neff and Zakhor [7],
for a broad selection of video sequences. Further, the new bases
are constructed in such a way that a basis vector can be factor-
ized into another basis vector and an auxiliary low-complexity
impulse response. Thus, the basis is constructed through a suc-
cession of short-kernel convolutions, which enables reusing pre-
vious filtering results within the matching pursuits framework
and leads to a considerable reduction of the computational cost.
Finally, it is shown that the new bases have advantages for a
full-search matching pursuit and overcome the traditional prob-
lems of the known full-search algorithms: large storage require-
ments and an extremely high computational cost.

This paper is structured as follows. Section II reviews the
developments in matching pursuits video coding. Section III
presents alternative bases, which offer an improved PSNR
performance at a reduced computational cost, compared to
the basis reported by other authors. Section IV introduces
bases obtained by cascaded short-kernel convolutions for
low-complexity matching pursuits. Section V describes the
original pruned full-search algorithm. Section VI compares the
performances of the proposed bases. Conclusions are drawn in
Section VII.

II. M ATCHING PURSUITSVIDEO CODING

A. Background Theory

This section provides an informative introduction to the prin-
ciples of matching pursuits decomposition. Please refer to [1]
for a comprehensive treatment of the subject.

1051–8215/00$10.00 © 2000 IEEE
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Let be the Hilbert space . The inner product of
vectors is defined as and the
norm of a vector is . Let , where

, and be an overcom-
plete basis for . A matching pursuit strives to compute a linear
expansion of a vector over by orthogonally projecting
it onto basis vectors. The basis vector , which maximizes

is selected as the first approximation of

(1)

Now, the residual is projected onto basis vectors. This
process is repeated until the step, which satisfies some con-
vergence criterion. The vectorcan now be expanded as

(2)

where . The basis vectors in (2) are referred to
asatoms. In contrast to the decomposition, signal expansion is
a low-complexity operation and involves a linear combination
of selected atoms; the ordering of atoms is not significant. The
knowledge of the sequence ,
, referred to as thestructure book, is required to recover an

approximation of the vector with the error .

B. Matching Pursuits for DFD Coding

1) Description of the Algorithm:The codec proposed by
Neff and Zakhor [7] employs a matching pursuit to expand the
DFD signal over a basis of separable Gabor functions, defined
as

(3)

where and are one dimensional functions, specified
by the set of parameters : the scale , the
frequency , the phase and the domain size

(4)
where , is a normalization factor, and

is a Gaussian window defined as .
The 2-D form of the dictionary of Neff and Zakhor is shown

in Fig. 1(a). The parameters can be found in the
reference [7]. This dictionary will be referred to as D0 in the fol-
lowing discussion, and was obtained experimentally by decom-
posing a training set of DFD images. In this paper, the set D0, as
shown in Fig. 1(a), will be referred as adictionary, whereas the
basisD0 will consist of all integer translations of the functions
from the dictionary D0 within the DFD signal.

The matching pursuits codec terminates the decomposition
when a pre-selected rate or distortion criterion is satisfied. The
complex entropy coding of the structure book hampers a rate-
distortion optimization of the decomposition. Nevertheless, the
codec of Neff and Zakhor was demonstrated consistently to
outperform the DCT-based algorithms such as H.263 or the

Fig. 1. The 2-D dictionaries. (a) D0 (20� 20), Neff and Zakhor [7]. (b) D1
(16� 16). (c) D2 (11� 11). (d) C1 (16� 16). (e) C2 (11� 11). (f), (g) C3 (13
� 13), De Vleeschouwer and Macq [18], [19]. Haar function dictionary used for
atom search and its smoothed version used for expansion. Functions are indexed
from top left to bottom right, starting from 0.

MPEG4 Verification Model, both subjectively and in the PSNR
sense [9]–[11]. The power of the technique depends on the fact
that the Gabor dictionary matches the structures present in most
DFD signals better than the dictionary consisting of 64 DCT
basis functions. The matching pursuit eliminates the blockwise
segmentation of the motion residual and avoids the blocking
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and ringing artifacts. Moreover, the Gabor dictionary was re-
ported to outperform the DCT dictionary, even if the restriction
of the fixed blockwise structure of the DCT decomposition was
relaxed [14].

2) Computational Cost and Memory Requirements:Due to
the iterative nature of a matching pursuit, the implementation
cost is related to the number of atoms stored in the structure
book. Hence, with the exception of very low bit rates, the com-
putational cost of the video encoder is extremely high. Trunca-
tion of basis functions’ domain sizes as well as separability help
keep the cost of every iteration at a reasonable level. An atom
search can be split into correlating the coded signal with the
basis and picking the atom which maximizes the inner product.
The cost associated with the correlation stage can be expressed
as1

(5)
where

number of 1-D functions in the dictionary
(20 in the case of D0);
total of lengths of the dictionary functions;
size of the search area (the whole frame or
its subset).

corresponds to the number of operations performed during a
single atom search. Neff and Zakhor set , which
gives rise to the “fast” search algorithm, in contrast to a “full”
search where the entire frame is searched. In the case of the fast
algorithm, the search area is considerably smaller than the frame
size, which reduces the computational cost at the expense of a
slightly deteriorated performance. However, before the search
can commence, an attempt is made to identify the region of size

to be searched for atoms. This involves finding the energy
of overlapping subblocks, with the center of the maximum en-
ergy subblock adopted as the origin for atom search. The imple-
mentation cost associated with this “energy search” procedure
is small and can be ignored.

The cost associated with maximizing the inner product can
be estimated as

(6)

stands for the required number of comparisons and ignores
the temporary assignments and control flow. The factor of two
accounts for the fact that the absolute value maximization is per-
formed over a set of signed numbers. Using relations (5) and
(6), the cost of a single atom search with the basis D0 is equal
to multiplications, additions, and compar-
isons.

The traditional serial implementation of a matching pursuit
individually correlates every basis function with the residual.
If the dictionary is separable, then three image buffers are re-

1Equation (5) is a simplification of the formula derived in [7] and does not
account for the fact that localized filtering in one direction (e.g., vertical) is
carried out over a slightly larger area thanS, so that the second stage of filtering
(horizontal) operates on correct data. For the coding parameters selected in [7],
the approximation error is less than 5% and will be further reduced as the search
area increases, to disappear completely in the case of a full-frame search.

Fig. 2. Memory requirements of a serial implementation of the matching
pursuits algorithm [7].

quired (at most) to store the correlation results, as illustrated in
Fig. 2. Buffer 0 stores the coded signal. The results of filtering
the signal in the vertical direction are stored in buffer 1. These
are subjected to filtering in the horizontal direction, and the re-
sults are stored in buffer 2.

III. I MPROVED DICTIONARIES FOR MATCHINGPURSUITSDFD
CODING

This section explains the derivation of new, improved dic-
tionaries for expanding DFD signals. A good dictionary is one
which provides a compact representation of the coded signal.
Since coding the structure book may involve quantization as
well as differential and adaptive entropy techniques, it is diffi-
cult to estimate the coding cost, associated with a given structure
book, before the decomposition terminates. Therefore, a sim-
plification is adopted in the following discussion and the term
“compact representation” refers to a small numberof entries
in the structure book. For a fixed, a more compact represen-
tation yields a smaller value of . In the terminology of
Mallat and Zhang [1], this is equivalent to improving the decay
rate of the residual , which can be achieved in two ways:

1) decomposing the signal over a larger basis;
2) including in the basis functions that are better correlated

to the coded signal.
Inherent in increasing the size of the basis set is an increase

of the implementation cost, and therefore the first of the above
methods is not attractive. On the other hand, improving the per-
formance by a better selection of dictionary functions (if pos-
sible) is an appealing way forward, as it need not imply an in-
crease of the implementation cost.

Since the design of an optimal overcomplete basis is com-
putationally intractable, the derivation of new dictionaries pre-
sented in this paper was empirical. First, the new dictionaries
were obtained through a progression of tests using a training
set of video sequences. Second, the improvements associated
with the proposed dictionaries were verified using a broader se-
lection of video sources. The training set consisted of 100 CIF
resolution luminance frames from the sequences “Silent Voice,”
“Foreman,” “Table Tennis,” and “Mobile and Calendar,” which
were encoded using a standard motion-compensated architec-
ture. DFDs were decomposed using the fast atom search, with
a search area . For any sequence, the number of atoms
coded per frame was kept constant, and was equal to: 300 for
“Silent Voice,” 600 for “Foreman,” 1000 for “Table Tennis,”
and 2000 for “Mobile and Calendar.” Average atom distribu-

Authorized licensed use limited to: UNIVERSITY OF BRISTOL. Downloaded on February 24, 2009 at 07:42 from IEEE Xplore.  Restrictions apply.



1106 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 10, NO. 7, OCTOBER 2000

tions, quoted in the following, refer to an average of normalized
distributions obtained separately for every training sequence.

A. Critique of Dictionary D0

It is widely accepted [15]–[17] that the random process un-
derlying DFD signals is nonstationary. Indeed, single DFDs are
reminiscent of line drawings, where signal energy is concen-
trated into narrow, elongated regions along moving edges, due
to the inaccuracies of the motion model. Therefore, it is postu-
lated that a good basis for coding DFD signals should include
functions, which are well localized in space, to account for the
motion-model failure areas. However, as can be observed from
Fig. 1(a), dictionary D0 appears instead to put a strong emphasis
on coding smooth structures of a relatively large spatial support.
For example, consider the subset of zero frequency functions. It
begins with function 0, which is the unit impulse with the do-
main of size , followed by function 1, whose domain size
is equal to . The increment between these two domain
sizes seems to be too abrupt, which will cause the energy of
nonzero mean structures with a spatial support of, say, 2 or 4 to
be spread over multiple atoms. Such structures are expected to
be present in the coded DFDs. Similarly, the dictionary lacks the
high-frequency impulse response [1,1], and the steepest edge
that can be accounted for is [1, 0,1], by means of function 9.

The dictionary D0 was used to code the training set, and a
histogram of dictionary function counts, shown in Fig. 3(a), was
collected in the process. As can be observed from the histogram,
the contribution of certain functions, such as the pairs 5 and 6
or 12 and 13 to the reconstructed signal is negligible. These are
pairs of similar impulse responses, which exemplify the rela-
tively high level of aliasing present in the dictionary. On one
hand, aliasing is inherent in an overcomplete basis and enables
a compact representation of the coded signal. However, from the
point of view of implementation and coding efficiency, the se-
lection of functions in the dictionary D0 does not seem to offer a
good balance, and for the training set of sequences, the functions
that correspond to the least-frequently selected atoms could be
removed without affecting the PSNR performance.

B. The Proposed Dictionary D1

As an alternative to D0, a new dictionary D1 is proposed. This
dictionary was derived by gradually modifying the dictionary
D0 to overcome the deficiencies described above. The benefits
(if any) of every modification were evaluated experimentally
using the training set. Only the modifications that improved the
overall system performance by either leading to a better recon-
struction quality or a reduced computational cost were kept.

The derived dictionary D1 consists of 256 (1616) func-
tions, and is shown in Figs. 4 and 1(b). All dictionary D1 func-
tions can be described by Gabor parameters, shown in Table I.
The following list summarizes the introduced modifications.

1) Removing from D0 functions which corresponded to the
least frequently occurring atoms.

2) Introducing the short-kernel even length functions 1, 7, 9
(see Table I).

3) Redesigning the set of zero frequency functions. In short,
the progression of function lengths: 1, 2, 3, 5, 9, 17, 25

Fig. 3. Histograms of functions counts; white corresponds to frequently
occurring functions and black to infrequently occurring functions. (a)
Dictionary D0, evaluated over four training set sequences. (b) Dictionary D1,
evaluated over four training set sequences. (c) Dictionary D1, evaluated for
“Silent Voice.” (d) Dictionary D1, evaluated for “Mobile and Calendar.”

(functions 0–6 in Table I) was found to be superior to
the progression 1, 5, 9, 11, 15, 21, 23, 29, 35 of zero
frequency function lengths in the dictionary D0.

4) Redesigning the set of high-frequency functions. Most
importantly, the functions 7 and 13, with the frequency

, were introduced.
The PSNR improvement achieved by D1 over D0 ranged be-

tween 0.1 dB in the case of “Silent Voice” to 0.7 dB in the case
of “Mobile and Calendar.” Most importantly, owing to a reduc-
tion of the dictionary size and basis function lengths, this gain
was achieved at a computational cost of multi-
plications additions, comparisons per
atom, a reduction by factors of 3 and 1.6, respectively. An addi-
tional benefit issues from the fact that an index into dictionary
D1 can be coded with 8 bits, compared to 8.64 bits required for
an index into dictionary D0. These costs can be lowered by en-
tropy coding. Experiments performed show that the histograms
of atom counts can vary considerably for different video sources
[see Fig. 3(c) and (d)], which suggests that the source associated
with the sequence in the structure book should be modeled
adaptively.

C. The Proposed Dictionary D2

The dictionary D1 outperformed the dictionary D0 both in
terms of rate distortion and implementation cost. Therefore, a
question arose whether D1 could be further simplified while still
maintaining superiority over D0.

The dictionary D2 was derived by progressively removing
functions from the dictionary D1. At every substep of the
derivation, one function was removed from the dictionary
used during the previous substep, starting from dictionary D1.

Authorized licensed use limited to: UNIVERSITY OF BRISTOL. Downloaded on February 24, 2009 at 07:42 from IEEE Xplore.  Restrictions apply.
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Fig. 4. The 16 impulse responses comprising dictionary D1.

TABLE I
fs; �; �; Ng QUADRUPLETS THAT DESCRIBE THEDICTIONARY D1

The function to be removed was always the one which was
the least-frequently matched to the coded signal (on average
for the training set). The procedure was terminated when the
PSNR performance of the current dictionary became inferior
to the PSNR performance of D0. This occurred when the
dictionary was narrowed down to between 12 and 8 functions,
depending on the sequence. A decision was taken that the
dictionary D2 should consist of 11 1-D functions for the simple
reason that, in absence of entropy coding, 1111 functions
can be enumerated with 7 bits with very little redundancy.
Thus, dictionary D2 was formed by removing functions from
D1 in the following order (indices into 1-D functions): 14, 6,
11, 3, 13, leaving functions 0, 1, 2, 4, 5, 7, 8, 9, 10, 12, and
15. Dictionary D2 offers a considerably lower computational
cost, compared to D0: multiplications and
additions, comparisons per atom, a reduction by
factors of 7.3 and 3.3, respectively.

D. Comparison of Dictionary Performance

In order to verify the improved performances of dictionaries
D1 and D2, they were employed to code data from outside the
training set. Fig. 5 shows the PSNR versus the number of atoms
plots, obtained by coding single DFD frames from example
SQCIF and 4CIF resolution sequences (similar results were also
obtained for QCIF and CIF resolution sources). Fast atom search
was employed and atom products did not undergo any quanti-
zation. For SQCIF sequences, overlapped motion compensation
was used, as defined in H.263. Non-overlapped motion compen-
sation was used in the case of the 4CIF sequences. The following
observations can be made from Fig. 5.

1) For all tested sequences, the decay rate of the residual is
fastest in the case of the dictionary D1.

2) The decay rate achieved with the dictionary D2 is slower
than the decay rate achieved with the dictionary D0 only

Authorized licensed use limited to: UNIVERSITY OF BRISTOL. Downloaded on February 24, 2009 at 07:42 from IEEE Xplore.  Restrictions apply.
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(a)

(b)

Fig. 5. Performance plots of matching pursuits video coding with dictionaries
D0, D1, D2, C1, and C2. (a) SQCIF resolution. (b) 4CIF resolution.

in the case of “Mother and Daughter.” For remaining se-
quences, D2 either matches or outperforms D0.

3) The proposed dictionaries perform consistently well for
different sequences, resolutions, and in the presence of
different motion compensation techniques.

It can be concluded that D1 offers an all-round rate-distortion-
complexity improvement over dictionary D0. The performance
of dictionary D2 is, on average, equivalent to that of dictionary
D0, at a significantly lower computational cost.

IV. REDUCEDCOSTCORRELATION FORMATCHING PURSUITS

The computational cost figures of dictionaries D0, D1, and
D2 quoted in Section III show that correlations form the most
expensive part of a matching pursuit. In this section, it is shown
how a factorization of dictionary functions can be employed to
achieve a substantial reduction of that cost.

A. Factorizing Basis Functions

The implementation cost required by a matching pursuits
decomposition can be considerably reduced by factorizing the
basis functions. The idea is to design the dictionary in such a
way that longer dictionary functions arise through a convolution
of shorter dictionary functions with low complexity auxiliary

Fig. 6. Succession of convolutions forming the dictionary C1.

Fig. 7. Succession of convolutions forming the dictionary C2.

filters. This enables reusing previous filtering results within the
matching pursuits framework.

Thus, dictionaries C1 and C2 were designed to approximate
the dictionaries D1 and D2 respectively, and arise through a cas-
cade of convolutions shown in Figs. 6 and 7. Fig. 1(d) and (e)
show dictionaries C1 and C2 in a 2-D form. The coefficients of
the auxiliary impulse responses FIR are equal to 1,1, or (in
one case) 2. Therefore, the correlation stage can be implemented
with add and shift operations alone. If, for simplicity, a multipli-
cation by 2 is treated as two additions, then the computational
cost associated with dictionary C1 is equal to additions,
57 multiplications, and comparisons per atom. The mul-
tiplications are required to normalize the inner product values.
Prior to normalization, dictionary functions of the same energy
can be grouped and maximized separately. Then, only one nor-
malization per group is required before the final maximization.
There are 57 such groups in C1. Similarly, the computational
cost associated with dictionary C2 is equal to additions,
43 multiplications, and comparisons per atom.

Employing a factorized dictionary increases storage require-
ments. The required number of frame buffers depends on the
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Fig. 8. Memory requirements of a fast matching pursuits algorithm. Arrows
(1) and (2) illustrate possible data flow directions during vertical filtering, and
arrows (3) and (4) illustrate possible data flow directions during horizontal
filtering.

topology of the diagrams shown in Figs. 6 and 7. It can be shown
that, in the case of dictionaries C1 and C2, a serial implementa-
tion requires five data buffers (Fig. 8): buffer 0 stores the coded
signal. The results of filtering the signal vertically are stored in
buffer 1. It will be necessary to further vertically filter the data
stored in buffer 1, and to store both the original and the filtered
signal versions. Frame buffer 2 is provided for that purpose. Ver-
tically filtered data, stored either in buffer 1 or 2 is then subjected
to horizontal filtering, and the result is stored in buffer 3. Again,
it will be necessary to further horizontally filter the data stored
in buffer 3, and to store both the original and the filtered signal
versions. Frame buffer 4 is provided for that purpose.

It should be stressed that alternative factorizations exist for
dictionaries C1 and C2 to those shown in Figs. 6 and 7, and small
further reductions of computational cost could be achieved by
rearranging the order of convolutions. However, this would in-
crease storage requirements.

We acknowledge that another factorized dictionary was
independently proposed by De Vleeschouwer and Macq [18].
This dictionary consists of Haar wavepackets and is shown
in Fig. 1(f). Since the Haar basis arises through convolutions
with the impulse responses [1,1] and [1,1] at different scales,
the computational cost associated with this dictionary is low:

additions, 9 multiplications, and comparisons are
required per atom. However, storage is increased to seven
frame buffers. While this dictionary offered implementation
simplicity, its PSNR performance was found to be inferior to
that of dictionaries C1 and C2, due to the blocky nature of
Haar functions. Since the submission of this manuscript, De
Vleeschouwer and Macq reported a modified version of their
algorithm [19]. The “blocky” Haar functions are now only used
to search the DFD signal for atoms, while the decomposition
is accomplished using a smoothed version of the dictionary,
shown in Fig. 1(g). This dictionary will be referred to as C3 in
the following, and its performance will be compared to other
dictionaries in Section VI.

B. Performance

The performance of dictionaries C1 and C2 was evaluated
using the procedure explained in Section III-D, and the results
are shown in Fig. 5. It can be observed that for all tested se-
quences, the factorizations C1 and C2 maintain the performance
of the prototype dictionaries.

C. Extension to Nonseparable Bases

In this section, successive factorizations were used to approx-
imate prototype separable Gabor dictionaries. However, this ap-
proach can be applied in a more flexible manner, to construct
arbitrarily shaped functions. For example, it seems logical to
enrich the dictionary with diagonal functions of various orienta-
tions [8], [12]. Further research is required to establish whether
such extensions justify the associated increase of computational
and memory requirements.

V. PRUNED FULL SEARCH

In order to keep the computational cost of a matching pur-
suits decomposition down to a reasonable level, a fast-search
algorithm which limits the search area to a subset of the whole
frame was proposed [7]. However, it is recognized that the fast
search leads to suboptimum results, and one way of improving
the decay rate is to increase the search area. Since atom do-
mains are limited, then for a sufficiently large value of, the
spatial support of any atom will occupy a small fraction of.
Mallat and Zhang [1] took advantage of this fact by proposing
the following full-search algorithm. Suppose that at the th
stage of the decomposition an atom is selected. Then, the
residual can be written as

(7)

Now, the inner product between any basis function and
the residual can be written as

(8)

If the values and have been stored, then
the calculation of the products only requires the
computation of the inner products . It is feasible to tab-
ulate the values to reduce the complexity even further.
Then, the computation of an inner product requires
one multiplication and one addition only.

The products only take nonzero values for those
functions which overlap . Therefore, the average cost of
recomputing the products is independent from the
size of the coded signal. Instead, it is governed by the average
search area , estimated using the following formula, which
assumes that all atoms are selected with equal probabilities

(9)

where is the size of the longest impulse response in the
dictionary. For dictionaries D0, C1, C2, and C3,evaluates to

, , , and , respectively.
Unfortunately, this method requires an extremely high

amount of memory, as storage for filtered versions
of the residual signal is needed. This practically precludes it
from video applications. However, instead of employing the
update procedure of (8), the region affected by the previously
picked atom can be simply recorrelated with the dictionary. If
a factorized basis is employed, the correlation is accomplished
with a small number of additions per function. For example,
dictionaries C1 and C2 require an average of 1.86 and 2.28
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TABLE II
SUMMARY OF THE COMPLEXITIES OFDIFFERENTDICTIONARIES

S —average area filtered during the pruned full-search algorithm.

additions per function per every location in , a complexity
equivalent to the multiply-add operation of (8). This is the main
idea behind the pruned full-search algorithm, which operates
as follows.

1) The entire frame is searched during the first stage of the
decomposition. For every location, an atom is stored that
maximizes the absolute value of the product
at that location. Then, the best atom is picked by max-
imizing inner products of atoms stored at all individual
locations.

2) During remaining stages, the search is only repeated on
that subset of the signal, which has been affected by the
previously picked atom. The size of this subset depends
on the domain of dictionary functions and not on the size
of the DFD signal.

The above algorithm was implemented with one modifica-
tion: instead of storing an atom for every full-pixel location, the
residual is segmented into fixed subblocks of size , and
a single atom is stored for every subblock. This has a number of
advantages, such as: reducing storage requirements for locally
best atoms, reducing the number of normalization operations
(if a factorized dictionary is used), and reducing the number of
comparisons. A disadvantage of this modification is a small in-
crease of the search area, as the region affected by the previ-
ously selected atom must be rounded up to fully cover an integer
number of subblocks. The choice of the subblock sizeis im-
plementation dependent; we found that a choice of ac-
tually led to a reduction of the search time compared to ,
while offering considerable storage savings.

The computational cost, associated with various dictionaries,
is summarized in Table II. If a simplifying assumption is made
that the costs of multiplication, addition and comparison opera-
tions are equivalent, dictionaries C1, C2 and C3 reduce the cost
of atom search by factors of 13, 24 and 25 compared to dictio-
nary D0 for the same search area. Apart from the first stage, a
full pruned search with the dictionaries C1, C2 and C3 is smaller
than the cost of a fast search with the dictionary D0 by factors of
4, 15, and 8 respectively. Another observation that can be made
from Table II is that, for factorized dictionaries, the cost of max-
imizing the inner product is comparable to the cost of correla-
tion. This is confirmed by the example coding times, shown in
Table III. It should be noted that these times are implementation
dependent and serve only as an illustration. Similarly, Table II is
intended as a general guide. For example, issues such as operand

TABLE III
NUMBER OFSECONDSSPENTDURING AN EXAMPLE 100 ATOM DECOMPOSITION.

EVALUATED FOR “FOREMAN” AT QCIF RESOLUTION, USING A SILICON

GRAPHICS O2 WORKSTATION WITH A MIPS R10000 PROCESSOR

CLOCKED AT 195 MHz

t — number of seconds spent correlating basis with residual.t —number of
seconds spent maximizing the inner product value. Half-pixel motion estimation
was performed within a radius of 16 pixels, using SAD as the matching criterion
and the “spiral” evalutation order.

fetch and result store cycles were not taken into account. In addi-
tion, the duration of product maximization may depend on data
ordering.

The benefits of employing a full-search matching pursuit are
presented in Section VI.

VI. CODING RESULTS

This section compares the performances of dictionaries pre-
sented in this paper for QCIF and CIF resolution sequences.

A. Coder Configuration

Matching pursuits was investigated for coding the DFD
signal. The first frame of every test sequence was coded in
the H.263 intraframe mode. Remaining frames were coded as
P-frames, using the standard motion-compensated architecture,
with half pixel motion estimation and a block size of 1616.
The test sequences were 10 s long; CIF resolution sequences
were coded at 30, and QCIF sequences were coded at 15
frames/s. Overlapped motion compensation was used in the
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(a) (b)

(c) (d)

Fig. 9. PSNR performance of various dictionaries, QCIF resolution, 15 fps. (a) Akiyo. (b) Container Ship. (c) Hall Monitor. (c) Silent Voice.

case of the QCIF sequences, and the H.263 median-prediction
algorithm was implemented to entropy code the motion field.

In the case of the fast search, the search area was set to
. At every stage of the decomposition, a decision must be

made whether to code an atom belonging to the luminance plane
or an atom belonging to one of the chrominance planes. It was
found that if this decision is taken solely based on inner-product
values, then very few chrominance atoms are encoded in the
case of dictionaries C1, C2, and C3. Therefore, inner products
of the chrominance atoms were biased by a factor of 1.15 to
force the encoding of color information.

The structure book was divided into three subsets, corre-
sponding to the luminance and color component atoms, which
were then coded separately. Atom positions were coded using
the algorithm of Zeng and Ahmed [20]. Atom products were
quantized inside the decomposition loop to the reconstruction
levels 5, 9, 15, 25, 45, 80, 140, and 240. Thus, product mag-
nitudes were coded with 3 bits and followed by a sign bit.
Functions were coded using a single index into the appropriate
2-D dictionary. A variable length code designed assuming a
uniform distribution of dictionary functions was used to code
function indices. For dictionaries D0, C1, C2, and C3, the
average cost of coding an index was equal to 8.72, 8.00, 6.94,
and 7.49 bits, respectively.

B. Rate Control

Prior to the experiments, the test sequences were H.263 coded
under constant quantization conditions. The matching pursuits
codecs were then configured to match the bit expenditure of
H.263 for every frame.

The cost of coding a C1, C2, or C3 dictionary index is lower
than the cost of coding a D0 dictionary index. Consequently,
in the case of factorized dictionaries, a given bit budget will be
met by a higher number of atoms than in the case of D0, as il-
lustrated in Table IV. This counteracts the reduction in compu-
tations. However, the computational penalty is very small, com-
pared to the speed-up figures quoted in Section V. Secondly, it
is usually compensated by an improvement in the PSNR perfor-
mance.

C. Coder Performance

Figs. 9 and 10 show the coding results obtained for dictio-
naries D0, C1, C2, and C3. The following observations can be
made from the plots corresponding to the fast-search strategy.

1) For very low bit rates, where a small number of atoms is
coded, the performance of all dictionaries is very close.
In some cases (“Silent Voice” QCIF, “Foreman” CIF,
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(a) (b)

(c) (d)

Fig. 10. PSNR performance of various dictionaries, CIF resolution, 30 fps. (a) Mobile and Calendar. (b) Stefan Edberg. (c) Foreman. (d) News.

TABLE IV
EXAMPLE CODING STATISTICS AND PSNR PERFORMANCE OFMATCHING

PURSUITSDICTIONARIES

“News” CIF), dictionary D0 fractionally outperforms
other dictionaries.

2) For all test sequences, the overall performance of the pro-
posed dictionaries C1 and C2 is superior to that of dictio-
nary D0. The gain increases with the bit rate and reaches
up to 3 dB in the case of “Mobile and Calendar.”

3) There is very little difference between the performances
of dictionaries C1 and C2. Apart from the sequences “Mo-

bile and Calendar” and “Hall Monitor,” the corresponding
PSNR curves cannot be distinguished.

4) Dictionary C3 (De Vleeschouwer and Macq [19])
matches the performance of the proposed dictionaries in
the case of “Mobile and Calendar” and “Container Ship,”
and proves slightly inferior for the remaining sequences
(by up to 0.4 dB).

For clarity, only a single full-search result is shown in Figs. 9
and 10. It was observed that the relationships between PSNR
plots obtained with the full-search strategy are identical to those
obtained with the fast-search strategy. The full-search matching
pursuit offers a significant PSNR improvement over the fast
search, ranging between 0.3–1.5 dB. Owing to the pruned full-
search strategy, the cost of a full-search matching pursuit with
dictionaries C1 and C2 is smaller than the cost of a fast matching
pursuit with dictionary D0.

The reconstructed sequences also underwent an informal sub-
jective quality assessment; example reconstructed frames are
shown in Figs. 11 and 12. In the case of a fast-search algorithm,
the subjective quality of reconstructions obtained with different
dictionaries was often too close to identify any dictionary as su-
perior. “Mobile and Calendar” is an exception that clearly favors
the proposed factorized dictionaries over D0.
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(a) (b)

(c) (d)

Fig. 11. Subjective performance of various dictionaries; “Akiyo” frame 298 (fragment), QCIF, 16 kbits/s. (a) Original. (b) D0, fast search, 35.65 dB. (c) C2, fast
search, 35.74 dB. (d) C1, full search, 36.32 dB.

(a) (b)

(c) (d)

Fig. 12. Subjective performance of various dictionaries; “Mobile and Calendar” frame 299 (fragment), CIF, 2600 kbits/s. (a) Original. (b) D0, fast search, 24.42
dB. (c) C2, fast search, 29.91 dB. (d) C1, full search, 30.40 dB.

A noticeable temporal artifact in matching pursuits video
coding is a sudden change from soft low contrast to sharp

high contrast for some scene features. In the worst case,
this may cause selected objects to go in and out of focus on
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a frame-to-frame basis. The full-search algorithm usually
succeeded in updating the scene more uniformly than the
fast-search algorithm, thus producing a more pleasing, stable
reconstruction with fewer soft-to-sharp transitions. It can
be concluded that the full-search matching pursuit can offer
significant advantages over the heuristic fast algorithm.

VII. CONCLUSION

Matching pursuits video coding has been cursed by an ex-
tremely high implementation cost. This has, so far, prevented
a widespread acceptance of this method as state-of-the-art, de-
spite excellent subjective and objective performance. This paper
presented new dictionaries and implementation techniques for
matching pursuits video coding, which significantly lessen the
computational cost bottleneck. The total number of operations
required to decompose the coded signal was reduced by over
20 times, compared to an implementation reported in the liter-
ature [7]. For a majority of test conditions, this reduction was
supplemented by an improvement in objective and subjective
reconstruction quality.

In Section III, new dictionaries D1 and D2 were derived as
alternatives to the dictionary D0 reported by Neff and Zakhor
[7]. The derivation was experimental and it was guided by the
desire to improve the correlation between the dictionaries and
the residual signal.

In Section IV, an original low-cost implementation for the
correlation stage of a matching pursuit was introduced, which
depended on factorizing the dictionary. Two low-cost factorized
dictionaries—C1 and C2—were derived as approximations of
dictionaries D1 and D2, and were shown to match the coding
performance of their prototypes. Assuming that the costs of ad-
dition, multiplication, and comparison operations are equiva-
lent, the dictionaries C1 and C2 reduce the implementation cost
by factors of 13 and 24, compared to dictionary D0, while pro-
viding a superior reconstruction quality.

Section V introduced an efficient implementation of the full-
search matching pursuit using the factorized bases. The full-
search algorithm offered a clear subjective quality improvement
compared to the fast-search algorithm. In terms of the PSNR, it
provided an advantage ranging between 0.3–1.5 dB, depending
on the sequence.

The proposed dictionaries C1 and C2 clearly offer a better
balance between complexity and performance, compared to dic-
tionary D0.
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